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Abstract. Aerosol–cloud interactions are complex, including albedo and lifetime effects that cause modifications to cloud

characteristics. With most cloud–aerosol interactions focused on the previously stated phenomena, there has been no in–situ

studies that focus explicitly on how aerosols can affect droplet clustering within clouds. This research therefore aims to gain

a better understanding of how droplet clustering within cumulus clouds can be influenced by in–cloud droplet location (cloud

edge vs. center) and aerosol number concentration. The pair–correlation function (PCF) is used to identify the magnitude of5

droplet clustering from data collected onboard the Center for interdisciplinary Remotely–Piloted Aircraft Studies (CIRPAS)

Twin Otter aircraft, flown during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Time

stamps (at 10−4 m spatial resolution) of cloud droplet arrival times were measured by the Artium Flight Phase–Doppler

Interferometer (PDI). Using four complete days of data with 81 non–precipitating cloud penetrations organized into two flights

of low (L1, L2) and high (H1, H2) pollution data shows more clustering near cloud edge as compared to cloud center for all10

four cases. Low pollution clouds are shown to have enhanced overall clustering, with flight L2 being solely responsible for

this enhanced clustering. Analysis suggests cloud age plays a larger role in the clustering amount experienced than the aerosol

number concentration, with dissipating clouds showing increased clustering as compared to growing or mature clouds. Results

using a single, vertically developed cumulus cloud demonstrate more clustering near cloud top as compared to cloud base.

1 Introduction15

The physical processes controlling clouds are complex, with two of the largest uncertainties being precipitation formation

and aerosol–cloud interactions, both of which can affect cloud lifetime and size. Along with these uncertainties, one of the

main problems with cloud microphysical research has been determining the importance of turbulence on extremely small

scales in affecting the macroscopic evolution of clouds, along with gathering in–situ data to better understand these properties

(Shaw, 2003). These uncertainties and problems lead to clouds being one of the largest inaccuracies when estimating climate20

sensitivity.

Focusing on precipitation formation, there appears to be a factor of two or more difference between the predicted growth

time of precipitation calculated by Jonas (1996) of 80 minutes and the observed growth time of 15 to 20 minutes from radar

measurements made by Laird et al. (2000) and Szumowski et al. (1997), as discussed in Lehmann et al. (2009). Cloud droplets

of radii less than 10 to 15 µm grow efficiently through diffusion of water vapor while droplets larger than 30 to 50 µm grow25
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efficiently through gravitational collisions (Langmuir, 1948; Kogan, 1993; Pruppacher and Klett, 1997). In general, it is hard

to explain the rapid growth of cloud droplets in the size range from 10 to 50 µm (the so–called size gap), for which neither

the condensation nor the gravitational collision–coalescence mechanism is effective. Multiple theories have been proposed to

explain the short rain formation time observed, including: turbulent deviations in supersaturation (Vaillancourt et al., 2002);

entrainment mixing (Khain et al., 2000; Lehmann et al., 2009); giant (GN) and ultragiant (UGN) nuclei (with diameters greater5

than 2 µm and 10 µm, respectively (Knight et al., 2002)); and the turbulent enhancement of collision–coalescence due to

droplet clustering. Although each of these theories has merit, no one theory has been able to explain the fast formation of rain

that is observed (i.e., Srivastava (1989); Vaillancourt et al. (2002); Rosenfeld et al. (2002); Feingold et al. (1999)).

Shifting our focus to aerosols, it is known that the effects of aerosols on clouds can lead to increased cloud lifetime due to the

suppression of rain formation and to higher cloud albedo due to smaller droplets, better known as the cloud lifetime and albedo10

effects, respectively (Small et al., 2009). Enhanced evaporation from smaller droplet sizes arises from aerosol perturbations, re-

sulting in a stronger horizontal buoyancy gradient and increased entrainment, known as the evaporation–entrainment feedback

mechanism (Small et al., 2009), where increased (decreased) entrainment could lead to decreased (increased) cloud lifetimes.

This suggests that aerosol perturbations can lead to modifications of the turbulent environment within clouds, specifically at

the entrainment interface. According to Ramaswamy et al. (2001), although increased aerosols are known to casue a negative15

forcing on the radiative budget when interacting with clouds, the magnitude of that negative forcing has the largest uncertainty

as compared to other components considered (greenhouse gases, surface albedo, etc.) when studying factors contributing to

cliamte change.

The complexity of clouds can clearly be seen from the discussion above, and a better understanding of said complexity

can be gained by understanding droplet clustering on the smallest scales. Up until the late 1980’s, it was mostly accepted that20

droplet spacing within clouds was statistically homogeneous, or uniformly distributed according to Poisson statistics (Marshak

et al., 2005; Rogers and Yau, 1989). Srivastava (1989) argued that in most numerical studies of cloud physics it is assumed that

droplet to droplet variability is not important in calculating the growth of an ensemble of droplets. However, this conclusion

must be viewed as tentative due to evidence that has been gathered over the past three decades for droplet clustering occurring

specifically at the millimeter and centimeter scales (e.g., Baker (1992); Kostinski and Jameson (1997); Kostinski and Shaw25

(2001); Larsen (2007); Siebert et al. (2010); Shaw et al. (1998, 2002)). The presumption that droplet spacing is homogeneous

has consequences for cloud parameterizations in microphysical models such as the formation of precipitation. For example,

the stochastic collection equation, used to describe the growth of droplets via collision–coalescence, assumes that droplets

are homogeneously distributed and not preferentially concentrated (Kostinski and Shaw, 2001). An enhanced collision kernel

and collision efficiency also results from droplet clustering (Pinsky et al., 1999). Quantitative results from Pinsky et al. (2008)30

found that droplet growth can be enhanced by a factor of 2–3 through turbulent collision–coalescence, while Grabowski and

Wang (2009) found that growth was enhanced between factors of 1.2 to 4.5 based on different values of turbulent kinetic energy

(TKE) dissipation rates.

One of the main difficulties in turbulence and droplet clustering work as explained by Pinsky et al. (2006) is no measure-

ments of the fine turbulent structure in clouds have been carried out. Most laboratory experiments are conducted for Reynolds35
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number values that are much smaller than those typically found for atmospheric turbulence. Since the structure of a turbulent

flow depends on the Reynolds number, it is not clear how the results obtained in laboratory experiments can be extended to

atmospheric conditions. The work conducted here therefore becomes important due to the fact that a dataset is provided that

gives in–situ cloud droplet spatial data that allows for an analysis of spatial variability, and the fact that droplet spatial variations

can be compared to laboratory measurements to see if they can indeed be extended to atmospheric conditions.5

This research focuses on the fundamental investigation of droplet clustering, specifically how it changes within clouds (cloud

edge vs. cloud center, as a function of cloud height) and different cloud environments (low vs. high pollution clouds). Specific

questions in regards to droplet clustering in shallow, warm continental cumulus clouds to be answered include: (1) Does droplet

clustering depend on aerosol number concentration? (2) Does droplet clustering change as a function of location (cloud center

vs. edge)? (3) Does droplet clustering change as a function of cloud height? This information can eventually be used to develop10

better cloud microphysical parameterizations not only for modeling precipitation, but for modeling the overall role of clouds

in radiation models. Section 2 will introduce droplet clustering and the statistical tool used to measure the clustering. Section

3 will discuss data collection and instrumentation along with environmental and flight characteristics. Section 4 will provide

results related to the three scientific questions proposed above. Section 5 will lead to a discussion of the results, including a

hypothesis on how clustering is influenced by cloud age, followed by concluding remarks.15

2 Droplet Clustering and the Pair-Correlation Function (PCF)

2.1 Droplet Clustering

It has been proposed in multiple studies (i.e., Shaw et al. (1998); Eaton and Fessler (1994); Sundaram and Collins (1997)) that

droplet clustering (also known as preferential concentration or inertial clustering) can be understood as the result of particles

being centrifuged out of regions of high fluid vorticity (where vorticity is a measure of local rotation in fluid flow) and thus20

preferentially concentrating into regions of high strain or low fluid vorticity as a consequence of their inertia. Sundaram and

Collins (1997) have shown that the most responsible scale for preferential concentration is the Kolmogorov scale (mm to

cm, depending on the rate of turbulent dissipation). This is partially supported by the fact that vorticity plays a key role in

concentrating particles, and vorticity is predominantly concentrated in the smallest eddies (Tennekes and Lumley, 1972). This

is due to turbulence being dissipative. The dissipation of energy is most effective at small scales, which together with the fact25

that energy is mainly provided at large scales implies that energy is transferred from larger to smaller scales (energy cascade).

Fluid inertia dominates over viscosity at larger spatial scales, while viscosity dominates at smaller scales (dissipation range).

Preferential concentration is enhanced between the dissipation and inertial ranges because it is at these scales that turbulent

vorticity is dominant (Wang and Maxey, 1993). Dissipative structures that appear within turbulence can be referred to as vortex

tubes that infuse isotropic turbulence, where turbulence is said to be isotropic if rotation and buoyancy are not important and30

can be neglected, and there is no mean flow. Vortex tubes are relevant to the present discussion because they are thought to be

responsible for ejecting particles into high strain regions of the flow (Shaw et al., 1998).
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Droplet clustering, for small Stokes numbers, can be understood mathematically by the equation:

∂Ui

∂xi
=−τd(sij

2−Ωij
2) (1)

where Ui is droplet velocity, sij is the strain rate tensor, Ωij is the rotation tensor or vorticity tensor, and τd is the droplet

response time (Maxey, 1987). The conclusion can be made from Equation 1 that the droplet velocity field is divergent in

regions of high vorticity (Ωij) and convergent in regions where strain (sij) dominates (Maxey, 1987; Shaw, 2003). This makes5

sense in an analysis of the full derivation, where the divergence of the droplet velocity is taken to obtain Equation 1, keeping

in mind that divergence (convergence) results when the divergence equation is positive (negative).

The particle response time (τd) is not the only value that determines whether or not particles will tend to cluster. The ratio

of τd to the relevant timescale of fluid accelerations is also of importance. Since clustering is associated with vorticity, and the

vorticity spectrum peaks at small scales, the Kolmogorov timescale τk is the relevant fluid time scale, where10

St =
τd
τK

=
ρwd

2ε
1
2

18ρaν
3
2

(2)

is the Stokes number (Vaillancourt et al., 2002), with ρa and ρw representing the density of air and liquid droplets, respectively,

d the droplet diameter, ν the fluid kinematic viscosity, and ε the turbulent energy dissipation rate. The Stokes number charac-

terizes a particles inertial response to the flow. Particles with St� 1 react very slowly to the changes in the flow due to large

particle response times while particles with St� 1 follow the flow exactly. Droplet clustering is related to St by the power15

law:

η(r)∝ (
r

rK
)−f(St) (3)

where η(r) is the spatial pair–correlation function (used to measure the amount of clustering, see Section 2.2), rK is the

Kolmogorov length scale, and f(St)> 0 increases monotonically with St for St < 1 (Saw et al., 2008). This implies that

clustering increases for increasing St (for values between zero and one). Hogan and Cuzzi (2001) and Wood et al. (2005)20

also concluded that clustering is at a maximum for Stokes numbers near one. This suggests that clustering depends on the

droplet size and the turbulent dissipation rate. It is known that the typical range of Stokes number in clouds is St� 1 to St < 1

(Vaillancourt et al., 2002; Fouxon et al., 2015; Moghadaripour et al., 2017), indicating that for the range of Stokes numbers

that occur in clouds, clustering increases as the droplet size increases or as the turbulent dissipation rate increases.

It is important to note that how droplet clustering is related to turbulence will be discussed, but no actual turbulence pa-25

rameters will be measured due to data availability, leaving for the chance of future work to expand on the results presented

here. For example, one would expect that turbulence should be enhanced near cloud top and edge where the entrainment of

non–turbulent air is mixed with turbulent cloudy air (Siebert et al., 2006). Shaw (2003) also states that one of the main sources

of TKE in clouds is shear evaporative cooling due to the entrainment of dry air at cloud edge and top. Direct measurements

have shown that the mean TKE dissipation rate peaks near cloud top at its edge (MacPherson and Isaac, 1977; Gerber et al.,30

2008). It can therefore by hypothesized that droplet clustering will be enhanced at cloud edge (top) as compared to cloud center

(bottom) due to increased Stokes numbers. On the contrary, an increase in aerosol number concentration will lead to a decrease
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in droplet size (Small et al., 2009; Rosenfeld et al., 2008), a decrease in the Stokes number, and a decrease is droplet clustering.

Note that while clustering may well be enhanced at cloud edge or top, the reason for this enhanced clustering is made based on

previous work and is speculative due to the fact that TKE is not directly measured here. This work sets out to simply determine

how the spatial variability of droplet clustering changes with in–cloud location and aerosol number concentration, leaving the

direct relationship between in–cloud turbulence and clustering for future work.5

It is important to state that preferential concentration and the physical processes leading to it at the millimeter and centimeter

scales is different than the inhomogeneity in droplet concentration that occurs at larger scales on the order of several meters.

Larger scale inhomogeneity is caused by the inhomogeneity of turbulence (fluctuations of vertical velocity) and cloud conden-

sation nuclei (Pinsky and Khain, 2002, 2003), and the entrainment of sub–saturated air containing few or no droplets (Krueger

et al., 1997). The inhomogeneity of the droplet population at larger scales will be accounted for, as will be discussed in Section10

2.3.

2.2 Pair–Correlation Function

There are multiple tools that can be used to measure droplet clustering using a time series of droplet detection times, but the 1–D

temporal pair–correlation function (PCF) will be used throughout this paper due to the advantages of the PCF outlined in Shaw

et al. (2002); Shaw (2003); Larsen (2006, 2012); Baker and Lawson (2010). The PCF can be introduced as a scale–localized15

deviation from a stationary Poisson distribution, where the PCF is given by:

η(t) =
p(to + t|to)

λ
− 1 (4)

from Larsen (2012), where η(t) is the PCF, p(to + t|to) represents: given a particle detected at some time to, what is the

probability of finding another particle in the time lag to+t. The mean number of droplets per time bin is given by λ. Calculating

p(to + t|to) can become simplified by using:20

η(t) =−1 +
1
λ

∞∑

k=1

fk(t) (5)

where fk(t) is the probability distribution function that the kth particle posterior to a particle at to (the kth nearest neighbor)

is located at to + t, where it is assumed that co–located particles are impossible. Each of the fk(t) can be estimated from the

observed inter–arrival distributions (time between droplet arrival), thus allowing a computationally simple way to compute the

PCF from particle arrival times. For more information and a derivation of the kth nearest–neighbor function see Picinbono and25

Bendjaballah (2005).

The main advantage of the PCF is the fact that it is scale localized. The PCF depends only on the presence or absence of

particles separated by t in time (Larsen, 2012). Physically, when η(t)> 0 there is an enhanced probability of finding a particle

in the time frame t. The range of the PCF is (−1,∞) with η(t) = 0 representing perfect randomness and η(t) = 3, for example,

resulting in a factor of 4 enhancement of finding another droplet time t away, as discussed in Kostinski and Shaw (2001).30

Although the PCF is a great statistical tool for detecting droplet clustering, its physical sense is not so profound. Along

with that, particle positions have been determined in 1–D space, although 3–D space would provide more information on
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the overall local concentration enhancement. Both issues can be accounted for from Holtzer and Collins (1997); Sundaram

and Collins (1997) and Zhou et al. (2001). It should also be noted that the PCF is referred to as the radial distribution function

(g(r) = η(r)+1, where r represents distance as compared to time) in these papers (Shaw, 2003). Sundaram and Collins (1997)

showed that preferential concentration can be accounted for in the Saffman–Turner collision kernel (Saffman and Turner, 1956)

by a factor equal to η(t) + 1. This has been shown to be true for both monodisperse (g11(r)) and bidisperse (g12(r)) systems5

(Zhou et al., 2001), where g11(r) and g12(r) represents the radial distribution function (RDF) for each system, respectively.

The droplets in this paper would be considered bidisperse as droplets of different sizes were used to caluclate the PCF. To infer

information about 3–D clustering, it has been shown in Holtzer and Collins (1997) that the 1–D PCF is equivalent to integrals

of the 3–D PCF (Equation 2.5 from Holtzer and Collins (1997)). Although measuring the actual physical impact that the PCF

has on collision–coalescence is beyond the scope of this paper, it is important to understand how the results obtained here can10

be used to better understand the physical processes that occur within clouds.

2.3 Calculating the PCF

The PCF is reliant on the fact that the underlying dataset must be statistically stationary/homogeneous (the mean and variance

of the number of counts are assumed to be constant over the analyzed time interval). This is due to the fact that the PCF may

deviate from zero not from a statistical correlation of clustering at smaller scales, but from inhomogeneity at larger scales15

(Larsen (2012) Appendix B). This requirement can be met when sampling horizontally homogeneous clouds such as stratus.

For more turbulent cumulus clouds were stronger entrainment and mixing processes occur, this condition is usually only

fulfilled for subsections of the cloud.

The PCF was calculated three times for each cloud penetration (120 m section) at cloud edge (cloud entry and exit) and cloud

center. One–hundred and twenty meters represents a two second interval of data, which provided enough cloud droplets to run20

the PCF while not completely ignoring data stationarity. However, due to the data being slightly non–stationary nonetheless,

each PCF calculation was normalized so it decayed to zero. The justification for PCF normalization comes from Shaw et al.

(2002), where it was shown that the PCF shape is similar when comparing the PCF of an entire cloud penetration vs. just

cloud center. The two PCF curves were separated by a vertical shift due to droplet concentration fluctuations occurring on

scales larger than t from non–stationarity. Qualitatively however, the curves were identical. The small–scale clustering was25

shown to not be influenced by large scale fluctuations, making normalization possible (see Figure 3 in Shaw et al. (2002) for

more information). Note that the PCF is a useful quantitative and qualitative tool, but anything quantitative must be carefully

evaluated if it comes from data that is either nonstationary or not known to be stationary, again, stating the importance that this

paper is only looking at how clustering changes with cloud location and with aerosol number concentration, and not drawing

any quantitative results from the clustering on processes such as collision–coalescence.30

To calculate the kth nearest neighbor, a maximum time interval (t–max) and time bin (dt) had to be selected. Careful

consideration had to be given. Set dt too small, the PCF will be too noisy. Set dt too large, you end up doing unnecessary

scale averaging which results in a poor estimate of the PCF. Typically, t–max is an order of magnitude or so above the mean

inter–arrival time (MIT, mean time between each droplet within the data) of the particles and sets the maximum temporal lag. A
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dt of 0.0003 seconds and a t–max of 0.2 seconds were selected for all PCF calculations throughout this paper. This results in a

vector ranging from 0.000 to 0.2 by 0.0003, giving the temporal lag (x–axis) for each PCF measurement. The PCF is calculated

by binning the inter–arrival times of the droplets into the vector sequence seen above. An inter–arrival time is first determined

between every subsequent droplet, binned and summed (the sum for each inter–arrival time per bin). An inter–arrival time is

then determined for every other droplet, every third droplet, every fourth droplet, and so on. The inter–arrival times are binned5

and added to the previously summed binned inter–arrival times up until the minimum inter–arrival time in the data is no longer

less than t–max. The total summed binned data is then used to calculate the PCF from Equation 4.

Figure 1 gives a visualization and description of the PCF clustering signature, giving values for temporal and spatial lag on

the x–axis. Note that the results will present the PCF in terms of spatial lag (where spatial lag was estimated using the mean

aircraft velocity) for the simplicity of being able to more easily comprehend spatial lag over temporal lag. The real data (top10

left) shows a peak at smaller spatial scales and a steady decrease to zero at larger spatial scales while the Poisson data (top

right) shows the PCF varying around zero, indicating no clustering at any scale. The mean of the two PCFs are 0.057 and

1.94·10−5 for the real and simulated data, respectively. The mean was calculated by taking the first 8 PCF values (covering a

spatial scale up to 13 cm), since it is at smaller spatial scales in terms of analyzing droplet clustering that we are concerned

with. This displays that real cloud droplets have a greater amount of clustering as compared to droplets that have a perfectly15

random orientation. From a visual examination of the raw droplets (bottom panels), the real data is preferentially concentrated

or patchy, whereas the Poisson point data is perfectly homogeneous.

3 Data Collection and Characteristics

The Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) was conducted jointly with the 2006 Texas Air

Quality Study (TexAQS) during August and September of 2006 as a combined climate change and air quality intensive field20

campaign. The Center for Interdisciplinary Remotely–Piloted Aircraft Studies (CIRPAS) Twin Otter (flight speed of about 60

m s−1) performed 22 research flights to explore aerosol–cloud relationships over the Houston and northwestern Gulf of Mexico

regions (Lu et al., 2008). Among the 22 research flights, 14 intensive cloud measurements were carried out (where the clouds

were all continental warm cumulus subjected to various levels of anthropogenic influence), including one flight in which an

isolated cumulus cloud of sufficient size and lifetime existed to allow detailed sampling at different altitudes. The other 1325

cases involved scattered cumuli that were sampled in such a manner as to provide statistical properties over the cloud field (Lu

et al., 2008), with each cloud being traversed through once, with no one cloud being measured multiple times.

Table 1 shows each flight conducted during GoMACCS, with the corresponding Research Flight (RF) number, date, number

of clouds in the flight after filtering (including clouds that are only > 300 m in length and non–precipitating), the aerosol

number concentration (Na, measured by the condensation particle counter (CPC)), and the aerosol number concentration for30

accumulation mode particles (Nacc, measured by the passive cavity aerosol spectrometer probe (PCASP)), which includes

aerosols that are only in the size range of 0.1 µm < particle size < 2.5 µm. The Phase–Doppler interferometer (PDI, see

Chuang et al. (2008)) was used to collect droplet velocity, size, and measurement time. It was found that the droplet arrival
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time can accurately be measured to < 3.5 µm from Saw (2008), resulting in accurately mapping droplets down to 2.1·10−4 m

(assuming average aircraft speed). Note that there is no dead time in PDI measurements. For more information on each of the

flights and the instrument payload, see Lu et al. (2008).

Following the methods in Small et al. (2013), two low (L1, L2) and high (H1, H2) pollution flights were selected out of the

22 research flights that occurred. The two least and most polluted flights were selected which had satisfactory cloud sampling5

for analysis of how aerosol number concentration effects droplet clustering. A Case Flight (Flight 16) was selected where an

isolated cumulus cloud was sampled at different altitudes for analysis of droplet clustering as a function of cloud height. Table

2 shows variables highlighting different cloud and environmental conditions within each flight. Note that the environmental

lapse rate and relative humidity (RH) in Table 2 was calculated from data collected from out of cloud spirals, where the average

RH was computed for the vertical range of cloud measurments for the respected flight. Table 3 gives a summary of average10

values for low and high pollution cases for select properties from Table 2.

Figures 2 and 3 show the flight altitude as a function of time with droplet counts per second overlaid (top panels) and the

flight paths (bottom panels) for low and high polluted clouds, respectively. Note that the flight path for the Case Flight is not

shown here. The average droplet counts (clouds) encountered per second (flight) for L1 and L2 were 660 (18) and 1016 (13),

respectively. Whereas for H1 and H2, the average counts (clouds) encountered per second (flight) were 958 (29) and 3300 (21),15

respectively. Low pollution clouds were sampled to the North of Houston (upwind) and high pollution clouds were sampled to

the Southwest (H1) and West (H2) of Houston (downwind), as confirmed using archived wind data from the NOAA National

Center for Environmental Information and HYSPLIT trajectories (not shown here) from the Air Resources Laboratory (Stein

et al., 2015).

It can be calculated from analyzing Table 3 that the high pollution clouds had roughly 2.5 times more aerosols per cubic20

centimeter than the low pollution clouds. The difference in aerosol number concentration between the low and high pollution

clouds produce clouds that are statistically different from one another. Figure 4 shows cloud droplet diameter in microns (µm)

on the x–axis with aerosol number concentration (cm−3) on the y–axis, with low pollution data in green and high pollution data

in gold. Density curves are given to show how the data is distributed for the respected axis. The p–value (used to determine

statistical significance between two datasets, where p–value < 0.05 is considered significant, see Wilks (2011)) between low25

and high pollution cloud droplet size is 3.99·10−10 (average droplet diameter is 13.4 µm (10.7 µm) for low (high) pollution

clouds). The linear best fit trend lines show that droplet size decreases with increasing aerosol number concentration, with

R–squared values (the proportion of the variance in droplet size that is predictable from the aerosol number concentration)

of 0.24 and 0.07 for low and high pollution, respectively. The p–value for the aerosol number concentration is < 2.22·10−16.

Both properties of the droplet population have p–values less than 0.05, making the difference in droplet size and aerosol30

number concentration significant for the two populations of data. Having two statistically different data populations is ideal

for comparing PCF values for low and high pollution clouds. If clustering does not change between the two, then an argument

cannot be made for the statistical similarities in the data sets as a possible reason. Note that all p–values in this paper were

calculated using the Wilcoxon–rank–sum–test, which is used to determine a statistical difference in the medians of two datasets

that have different populations (Wilks (2011)).35
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4 Results

4.1 Edge, Center, and Cloud Top Clustering

PCF functions for L1, L2, H1, and H2 are given in Figure 5, moving from top left to bottom right, respectively, with blue (red)

representing entrainment zone (cloud center) data. The two envelopes represent the 85th and 15th percent quantile of the data.

The center lines in each envelope represent the entrainment and center mean clustering, with bold mean lines representing data5

that is statistically significant (p–value less than 0.05) and thin mean lines representing data that is statistically similar. The PCF

function for both the center and entrainment zone is at a maximum for lower spatial scales (< 30 cm) and decreases towards

zero at larger spatial scales for all four flights. The main takeaway from Figure 5 is the more dominant clustering signature at

smaller spatial scales and the enhanced clustering for the entrainment as compared to the center zones for all four flights. Mean

PCF and quantile values for entrainment and center data can be found in Table 4. The percent of statistically significant data10

(for the first 21 PCF values, spatial lag≤ 36 cm) and the corresponding p–values can be found in Table 5. Note to calculate the

p–value, every PCF curve generated for the respective plot was grouped. A p–value was then generated for each spatial-lag on

the x–axis by calculating the Wilcoxon–rank-sum–test between the two sets of data for the specific x–axis location.

From analyzing Figure 5 and the corresponding tables, L1, H1 and H2 show clustering characteristics which are comparable

to one another, including: (1) the mean PCF value for the entrainment data is always greater than the mean PCF value for the15

center data. (2) The 15th percent quantile value for the center data is always smaller than the 15th percent quantile value for the

entrainment data. (3) The 85th percent quantile value for the entrainment data is always larger than the 85th percent quantile

value for the center data. (4): There is a statistical significance between the clustering occurring between the entrainment and

center zones of the clouds. Note that the statistical significance in the clustering between the two zones breaks down at larger

spatial scales (this is very apparent in the H1 case). This is expected, since the two datasets converge to zero as the clustering20

disappears and droplet spacing shifts from non–homogeneous to homogeneous at larger spatial scales. (5) The mean PCF

values for entrainment data are very similar, ranging from 0.50 to 0.54, whereas the range for the center data is between 0.18

to 0.30 (Table 4).

From analyzing L2 (bottom left panel) and the corresponding tables, there are significant differences from the other 3

cases. Although the mean entrainment clustering is enhanced as compared to the center zone, the difference is not statistically25

significant, with zero percent of the data having a p–value below 0.05 (average p–value of 0.30). Another difference is the range

of the 85th percent quantiles, with the two quantile values being virtually similar at 1.79 and 1.81 for center and entrainment

zone data, respectively. Note that the mean clustering amount (both center and entrainment) is enhanced as compared to the

other three cases.

It is clear that there is enhanced clustering in the entrainment zone as compared to the center zone, but one needs to under-30

stand how to define if the overall clustering (both entrainment and center) is significant. This is done by analyzing the range

that the PCF can take on due to the random nature of the data. If the physical clustering measured falls outside of this range,

then the conclusion can be made that the clustering being viewed is indeed real and not perfectly homogeneous. This test was

performed on each of the four cases, following the methods outlined in Larsen and Kostinski (2005). For the data, 1000 Poisson
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simulations were produced (as is seen in the top right of Figure 1, showing a single Poisson simulation) using the same time

duration and droplet count as the original data. These Poisson simulations then form an envelope of PCF values (using the

maximum and minimum values from the 1000 simulations) one would consider homogeneous. PCF values that lie within the

Poissonian simulation envelope were recorded by using the average PCF value and were labeled non–significant. Table 6 shows

the percentage of PCF values for each flight, and each location (entrainment and center), that were considered non–significant5

and significant. It can be seen that except for the L2 case (which does not have a statistical difference between entrainment and

center clustering) that the center clustering contains a higher percentage of PCF values that are non–significant as compared to

the entrainment data.

Figure 6 shows how the PCF and other environmental properties (cloud droplet number concentrtion (cm−3), liquid water

content (g m−3), RH (%), and vertical velocity (m s−1)) vary with normalized cloud height. Variable quantities for each10

normalized cloud height can be found in Table 7. The liquid water content (LWC) increases from cloud base (0.073 g m−3)

to a normalized cloud height of 0.7 (0.98 g m−3) before decreasing to 0.23 g m−3 at cloud top. Accompanied by the decrease

in LWC is a sharp decrease in the RH from 99.74 % to 64.17 % between normalized cloud heights of 0.7 and 0.9, before

increasing again at cloud top to 95.7 %. As both the LWC and RH decrease, the PCF has a sharp increase from 0.26 to 1.81

between normalized cloud heights of 0.8 and 1.0, indicating enhanced clustering at cloud top. Panel (a) gives the cloud drop15

size distribution for each normalized cloud height. The median drop size increases from 11.88 µm at cloud base to 17.65 µm

at cloud top. In comparing the median drop size to the mean PCF value for each normalized height, the R–squared value is

0.07, indicating no correlation between the PCF and median droplet size. Panel (c) shows that the vertical velocity is negative

in the upper portion of the cloud, while an updraft is present in the lower 50 % of the cloud. Table 8 gives the p–value between

every normalized cloud height for the PCF. It is important to note that PCF values between normalized cloud heights of 0.8 to20

0.9 are statistically significant, making clustering that is present from a normalized cloud height of 0.9 to cloud top statistically

significant from the clustering that is occurring in lower cloud layers.

4.2 Low vs. High Pollution Clustering

Figure 7, Panels (1a) and (1b) gives the same information as in Figure 5, except for the PCF values for total low (average of

L1 and L2) and total high pollution (average of H1 and H2), respectively. The characteristics of the two clustering signatures25

are similar to that of Figure 5. The average PCF values for low and high pollution entrainment and center data can be found in

Table 4, along with the 15th and 85th percent quantile values. Table 4 reveals that the mean PCF values (for both entrainment

and center data) for the low pollution case are larger than the corresponding mean PCF values for the high pollution case. As

can be seen in Table 5, 100 percent of the first 21 spatial lags are statistically significant for both average low and high pollution

cases between the entrainment and center data.30

The larger average clustering amount for the low pollution clouds can be seen well in Panel (2a), which shows low pollution

data in green and high pollution data in gold. The boundaries of each green and gold envelopes are created by the average

center (bottom of each envelope) and entrainment (top of each envelope) clustering. Low pollution clouds are clearly offset to

a higher clustering amount for both average center and entrainment clustering. Panel (2b) shows the overall average of all the
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PCF values for low and high pollution clouds. The overall average PCF value for low pollution clouds (average of entrainment

and center clustering for both L1 and L2) is 0.57, while the overall average PCF value for high pollution clouds is 0.44.

Although it appears that low pollution clouds experience more clustering as compared to high pollution clouds, the difference

is statistically similar. The average p–value is 0.10 for the first 21 time lags with zero percent of the data being statistically

significant.5

Although it appears that low pollution clouds have a non–statistically significant higher amount of clustering than high

pollution clouds, further analysis shows that the higher amount of clustering in the low pollution case is due entirely to the

L2 flight. Figure 8 gives the same information as Panels (2a) and (2b) in Figure 7, except for the individual flights (L1, L2,

H1, H2) are shown. From analyzing Panel (a), one can see the average center and entrainment clustering for L2 (light green

envelope) is beyond the range of the other three flights. The total average PCF for the clouds in L1, L2, H1, and H2 is shown in10

Panel (b). L2 has an average PCF value of 0.77, which is roughly twice the average PCF value (and statistically significant, see

Table 9) of the other three flights, where L1 (dark green), H1 (dark gold), and H2 (light gold) have average PCF values of 0.42,

0.44, and 0.43, respectively. The question of whether clustering depends on aerosol number concentration cannot confidently

be answered. Although Figure 7 shows that low pollution clouds have a larger amount of clustering, statistically speaking the

clustering between low and high pollution clouds is the same. Further analysis shows that L1, H1, and H2 all have statistically15

similar clustering values (see Table 9) with average clustering amounts that are almost identical. Flight L2 has statistically

significant clustering as compared to the other three cases, and is solely responsible for causing the low pollution clouds to

have a higher average PCF value than that of the high pollution clouds.

5 Discussion

5.1 Cloud Lifetime Theory and Clustering in L220

An explanation for the statistically different clustering in L2 as compared to the other three cases could be cloud age. A study

by Schmeissner et al. (2015) found that dissipating clouds have five main characteristics, including: a negative buoyancy (m

s−2) and vertical velocity, lower LWC and cloud droplet number concentrations (CDNC) as compared to actively growing

clouds, and a larger RH shell around the cumulus cloud. Cooper and Lawson (1984) also found that the LWC decreases due to

entrainment as cumulus clouds deteriorate.25

Figure 9 shows box plots of vertical velocity (a), LWC (b), cloud width (c), CDNC (d), buoyancy (e), and RH (f) on the

y–axis and L1, L2, H1, and H2 represented in that order on the x–axis. Red median lines represent datasets that are statistically

different when compared to L2. Note that except for cloud width, each variable is represented from 1 Hz data collected during

in–cloud sampling. From analyzing Figure 9 (exact median values for variables can be found in Table 10), L2 has the lowest

median vertical velocity, LWC, cloud width, and CDNC, with L2 being statistically significant (p–values found in Table 11)30

when compared to the other three flights for each of the variables. The fact that L2 has the lowest median vertical velocity

reflects the fact that clouds in L2 are either dominated by downdrafts, or have weak updrafts, making growth unlikely. A low

LWC signifies that entrainment of dry air has been occurring, resulting in the evaporation of liquid water droplets, reducing the
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LWC and the CDNC (Pruppacher and Klett, 1997). Although Schmeissner et al. (2015) does not discuss cloud width, clouds

that are dissipating would be expected to have a smaller horizontal extent due to entrainment of dry air leading to evaporation

of cloud edge droplets as compared to mature clouds.

Panel (f) gives a box plot of in–cloud RH, with L2 having the lowest (by 0.1 percent) in–cloud RH, while being statistically

similar to that of L1. The red dots represent the median out–of–cloud RH (100 m before and after cloud edge). L2 is the only5

flight where the RH increases out of the cloud. According to Schmeissner et al. (2015), the width of the humid shell around

clouds is larger for dissolving clouds as compared to actively growing clouds. The fact that the RH is larger, on average, outside

of the clouds in L2 as compared to inside of the clouds could be a sign of a large humid shell that is surrounding the individual

clouds. The humid shell results from entrainment of dry air into the cloud, while moist air is detrained out of the cloud into the

cloud free environment, resulting in a lower (larger) RH inside (outside) the cloud. More evidence for the large humid shell can10

be gathered from the vertical profiles of environmental RH reported in Table 2, where the average RH (measured out–of–cloud)

for the vertical range of cloud measurements was 105.2 % for L2, while for the other flights the RH was considerably lower.

Panel (e) shows the in–cloud buoyancy, which was calculated by taking the in–cloud and out–of–cloud (100 m before and

after cloud edge) virtual potential temperatures. L2 has the largest median buoyancy and is statistically significant as compared

to the other three flights. The clouds in the L2 flight have five out of the six characteristics for decaying clouds, including (1)15

lowest vertical velocity; (2) lowest LWC; (3) lowest CDNC; (4) lowest cloud width; (5) largest humid shell. The evidence points

to the clouds in L2 to be decaying on average, and therefore to be more turbulent as dry air is mixed into the clouds causing

dissipation. The statistically similar values between center and entrainment clustering for L2 adds to the cloud lifetime theory,

as it is not only the entrainment zone that is experiencing mixing, but the entire horizontal extent of the clouds (both entrainment

and center zones) that are experiencing mixing and dissipation. However, one would expect the buoyancy of dissipating clouds20

to be negatively buoyant, not positively buoyant as is shown. Although cloud age is a good theory in describing the higher

clustering amounts measured in the L2 flight, the data presented does not offer a conclusive resolution.

Adding to the discussion, the larger the age of a cloud the higher the typical Stokes number will be due to larger droplets

(from a longer droplet growth duration), implying larger clustering values. For the clouds measured in this study, the median

droplet size was 15.01 (L1), 11.45 (L2), 11.19 (H1), and 10.92 µm (H2). Although the droplet size of each droplet population is25

statistically significant form one another (all p–values are≤ 2.32·10−2), the resulting Stokes numbers for each flight (assuming

a constant TKE dissipation rate of 100 cm 2 s−3 are 0.018, 0.010, 0.0097, and 0.0093 for L1, L2, H1, and H2, respectively.

These Stokev values are all very similiar to one another, suggesting that the significant difference in clustering seen in L2 is

due to increased turublence from mixing, and not a difference in droplet size.

Other possible explanations for the increased clustering in L2 could be due to flight path or the atmospheric environment30

for a given flight. The flight path through the cumuli for L2 could have favored cloud edge or cloud top instead of true cloud

center. Favoring cloud edge would result in measuring areas of cloud that favor a higher amount of clustering (as displayed in

Figure 5), and could result in the overall larger amount of average clustering experienced. Measuring just cloud edge would

result in: a lower vertical velocity, LWC, and CDNC (due to evaporation from entrainment), and a shorter cloud width from
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not traversing the maximum diameter of the cloud. However, just as with the cloud lifetime theory, the buoyancy is expected

to be negative, not positive, in the entrainment zone of the cloud due to evaporational cooling of the air.

Comparing cloud width on different days can become complicated due to the environmental factors that control cloud size.

As is discussed in Hill (1973), the dominant factor governing the size of cumulus clouds is the size and strength of the sub–

cloud circulations. There is no way to know what the sub–cloud circulation was for the given days. Only vertical velocity is5

available, which, as we saw from Panel (a) in Figure 9, was smallest for the in–cloud portions of the L2 flight. Whether the fact

that L2 clouds were smaller as compared to the other flights is due to dissipation or environmental characteristics is unknown.

5.2 Edge vs. Center Clustering

The finding that clustering is enhanced at smaller spatial/temporal scales agrees with the findings in multiple other papers,

including Kostinski and Shaw (2001); Shaw (2003); Shaw et al. (2002); Larsen (2007, 2012). Note that in this paper clustering10

is measured down to ∼1.8 cm. It is expected from the inertial clustering hypothesis that clustering continues to increase at

scales below what was measured here, into the millimeter scales (Shaw, 2003).

PCF curves in other literature (Saw et al., 2008; Shaw, 2003; Shaw et al., 2002) show an elevated value of the PCF at the

smallest separations that is naturally accompanied with lower values of the PCF at larger separations. The PCF curves presented

here are measured over separations ranging from 1.8 cm (around the Kolmogorov scale) to 12 m (on the order of the integral15

scale) and show elevated values over a large spatial range (1.8 to 60 cm) before the PCF begins to decay. It is important to keep

in mind that this suggests that the elevated PCF values between 12–60 cm are likely to be a result of spatial holes in the droplet

concentrations (nonstationary) due to mixing with dryer air, and not preferential concentration from particle inertia.

From the clouds measured, the conclusion can be made that droplet clustering does change as a function of cloud center

vs. cloud entrainment (with a large amount of clustering being non–Poissonian, as seen in Table 6), with the entrainment zone20

having a larger amount of clustering than the center of the cloud, which is shown to be statistically significant. Entrainment

is the process by which sub–saturated air surrounding a cloud is drawn into the cloud due to the turbulent motions of the

cloudy air, leading to a decrease in the LWC and RH. Cloud top entrainment is evident from looking at Figure 6, Panel (b),

which shows the RH and LWC decreasing near cloud top. The entrainment at cloud top can be seen to cause a negative vertical

velocity (from evaporative cooling) in the upper portion of the cloud (Figure 6, Panel (c)), where the average vertical velocity is25

increasingly negative above a normalized cloud height of 0.5, suggesting penetrative downdrafts extend into the middle section

of the cloud. Accompanying the cloud top entrainment is a clear increase in the clustering amount.

The production of turbulent energy is equal to the rate of viscous dissipation. Since both production and dissipation depend

on the rate of strain sij (Tennekes and Lumley, 1972), and droplet clustering also depend on sij from Equation 1, this suggests

that droplet clustering depends on turbulence. It was also discussed in Section 2.1 that the Stokes number, which effects the30

clustering amount, depends on the turbulent dissipation rate. Smith and Jonas (1995) found that the dominant TKE source was

at cloud top and was interpreted as evidence for the cloud–top entrainment instability process which produced observed strong

downdrafts at cloud top. Shaw (2003) states that one of the main sources of TKE in clouds is from shear evaporative cooling at
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cloud edge and cloud top. Kitchen and Caughey (1981) found that turbulent dissipation rates were twice as large at cloud top,

which can also be inferred for cloud edge as well.

The findings from previous papers that turbulence is enhanced at cloud top and edge, on top of the fact that entrainment

is defined as a mixing process, which in turn is turbulent, could be a possible explanation for the enhanced clustering that is

observed in entrainment and cloud top zones. Unfortunately, the turbulent dissipation rate was not measured in this study due5

to the lack of 3–D wind data. This work therefore has the potential to be expanded upon by measuring the turbulent dissipation

rate and droplet clustering, and determining if there is a strong correlation. Keep in mind that the results presented here provide

an overall statistical look at how droplet clustering changes with cloud edge, center, and top, and provides some theories as to

how the clustering measured may be related to turbulence. However, the overall numerical values obtained should not be used

quantitatively for precipitation modeling since the data used is non–stationary, and comes from a source (cumulus clouds) that10

are not known to be stationary.

5.3 Aerosol Number Concentration

The results show that the clustering between low and high pollution clouds is statistically similar, suggesting that clustering

does not depend on the aerosol number concentration. However, the Stokes number (Equation 2) depends on (1) turbulent

dissipation; (2) droplet size. Even though the droplet sizes between low and high pollution clouds are statistically different,15

they are still too similar in size (13.4 µm for low and 10.7 µm for high) to produce significant differences in St. For example,

assuming the two mean droplet diameters and a turbulent dissipation rate of 100 cm2 s−3, a Stokes Number of 0.036 and 0.023

for low and high pollution data, respectively, is obtained. Both Stokes numbers are� 1, resulting in the droplets following the

fluid flow very accurately.

Perhaps the aerosol number concentration can affect the amount of clustering that is occurring if there are significant changes20

in the sizes of the droplet populations. Such a case could be comparing a highly polluted cloud in Houston (mean droplet

diameter∼11 µm) to a clean cloud over the ocean (mean droplet diameter∼35 µm, as was found for some Atlantic trade wind

cumuli (Wang et al., 2009)). Assuming the Turbulent dissipation rate is constant at 100 cm2 s−3, the Stokes number for the

polluted cloud would be 0.024, while for the Atlantic trade wind cumuli it would be 0.243, a full order of magnitude greater. A

cloud with a mean droplet diameter of 50 µm would result in a Stokes number of 0.49. Per Equation 3, a monotonic increase25

of droplet clustering occurs with increasing Stokes number. Although different authors have come to different conclusions on

the exact increase in droplet clustering with different Stokes numbers using direct numerical simulations, it has been found

that for a range of St� 1 to St =0.25 that the PCF can vary between near homogeneous (zero) amounts of droplet clustering

at the lower limit and values between one and two at the upper limit (Chun and Koch, 2005; Wang et al., 2000; Falkovich

and Pumir, 2004). This suggests that the large range of droplet sizes experienced between highly polluted and clean maritime30

clouds can result in Stokes number differences that produce significant differences in clustering signatures, although this has

not been observed/measured in naturally occurring clouds to this point.

Although the conclusion in this paper is that aerosol number concentration does not affect droplet clustering, this conclusion

can only be made for the range of Na given and the resulting mean droplet sizes. From Equation 3, the aerosol number
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concentration can affect droplet clustering, given there is a large enough difference in mean droplet size from the aerosol

forcing. Also, consider that the droplet size can influence the entrainment rate from increased evaporation of smaller droplets,

impacting the turbulent dissipation rate.

6 Conclusions

Flight data obtained from the CIRPAS Twin otter aircraft flown during the GoMACCS campaign near Houston, TX from 20065

were used to investigate 81 non–precipitating cumulus clouds, and one vertically developed cumulus cloud, to better understand

how droplet clustering changes as a function of cloud location and aerosol number concentration. Of the 22 flights flown, two

low (L1, L2) and high (H1, H2) pollution flights were selected to analyze how droplet clustering changed with aerosol number

concentration.

It has been shown that (1) droplet clustering is enhanced at cloud edge (and cloud top) as compared to cloud center (statisti-10

cally significant), and the clustering measured is real, physical variability (non-Poissonian). (2) There is no statistical difference

at the 5 percent level for droplet clustering between low and high pollution clouds, at least for the range of Na that was mea-

sured in this research. Although it was found that low pollution clouds do, on average, have a larger amount of clustering

in both the center and entrainment zones, this is due entirely to the L2 flight. (3) L1, H1, and H2 have a statistically similar

amount of clustering at the 5 percent level, while L2 has a larger, statistically significant amount of clustering. It is proposed15

that cloud age plays an important role in the amount of clustering that is occurring, with decaying clouds demonstrating a

higher amount of clustering as compared to developing clouds. Although, this theory needs more work as the buoyancy data is

not in agreement for decaying clouds.

This work provides a good statistical base for analyzing how droplet clustering changes with cloud location and aerosol

number concentration, keeping in mind that using the results presented here for quantitative purposes is not wise due to the20

non–stationarity of the data. The conclusions from this work are drawn only from 81 clouds whose properties are highly

variable and influenced by environmental aspects that are not constrained by the observations, including the sub-cloud layer

properties and the lifecycle stage of the clouds. Further analysis and data from more clouds is required to confirm some of the

ideas that have been presented here. For example, if a field campaign takes place in the future for the purposes of illuminating

these results, constraints on the lifecycle stage of the observed clouds must be considered, along with the proper instrumentation25

for turbulent analysis.
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Figure 1. The top panels represent the clustering signature for the PCF, with the x–axis showing the temporal and spatial lag on a log–scale

and the y–axis representing the PCF (unitless). The top–left shows the PCF for data from a randomly selected portion of cloud covering a

temporal range of 2 seconds (∼120 m) with a population of 2168 drops. The top–right panel shows simulated Poisson point data with the

same temporal scale and droplet population. The red line represents a rolling mean of five for the PCF values (shown in black). The bottom

panels represent short 10 m subsets (∼180 droplets) of the data used in generating the PCF curves. Each circle represents a cloud droplet,

and each line with the squares represents the distance traversed for each sampling volume, with each square corresponding to a droplet count

of 10.

Figure 2. Shows L1 and L2 on the left and right, respectively. Flight altitude (blue) as a function of time is displayed in the top panels, with

droplet counts per second in black. The “n=” represents the number of clouds sampled for each flight after filtering. The bottom panels show

the Texas coast in grey with the location of Houston represented by the red dot. The flight path is outlined in red with the location of clouds

displayed by green dots.
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Figure 3. As in Figure 1, but for H1 and H2.

Figure 4. Shows cloud droplet diameter (µm) on the x–axis and aerosol number concentration (cm−3) on the y–axis, with low pollution data

in green and high pollution data in gold. The corresponding density curves of the high and low pollution data are given on the outer margins

of the plot.
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Figure 5. PCF clustering signatures for L1 (top right), L2 (bottom left), H1 (top right), and H2 (bottom right) with spatial lag (m) on the x–

axis and PCF values (unitless) on the y–axis. Entrainment zone data is in blue and cloud center data is in red, with the envelopes representing

the 85th (top) and 15th (bottom) percent quantile values of the data. The mean PCF value for each case is represented by the middle line in

each envelope, where a bold mean line represents entrainment and center differences that are statistically significant.

Figure 6. Shows the cloud droplet size distribution in panel (a). Panel (b) shows LWC (blue), RH (red), and the PCF (black). Panel (c) shows

vertical velocity. All variables are represented as a function of cloud normalized altitude.
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Figure 7. Panels (1a) and (1b): as in Figure 5, except for average low pollution PCF values (L1, L2) in Panel (1a) and average high pollution

PCF values (H1, H2) in Panel (1b). Panels (2a) and (2b): low pollution data in green and high pollution data in gold. Panel (2a) shows

envelopes that span the average center PCF value (lower limit of the envelopes) to the average entrainment PCF value (upper limit of the

envelopes). Panel (2b) gives the overall average PCF value for low and high pollution clouds.

Figure 8. As in Panels (2a) and (2b) from Figure 7, except for the individual flights of L1 (light green), L2 (dark green), H1 (light gold), and

H2 (dark gold). Note that the envelopes in Panel (a) represents the range from the mean center clustering (lower limit of each envelope) to

the mean entrainment clustering (upper limit of each envelope).
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Figure 9. Box plots of L1, L2, H1, and H2, represented in that order on the x–axis, with Panels (a) through (f) representing vertical velocity

(m s−1), LWC (g m−3), cloud width (m), CDNC (cm−3), Buoyancy (m s−3), and in–cloud RH (%), respectively. Red median lines represent

datasets that are statistically significant as compared to the L2 dataset. Each red dot in Panel (f) represents out–of–cloud RH.
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Table 1. Shows the flight information for 20 of the 22 flights that occurred during the GoMACCS campaign. Each flight corresponds to a

RF number, date, the number of clouds (after filtering, see text), the total aerosol number concentration (Na), and the accumulation mode

aerosol number concentration (Nacc). Values in parentheses represent the standard deviation.

Flight RF Number Date Clouds Na cm−3 Nacc cm−3

Flight 1 1 8/21/06 1 NA NA

Flight 2 2 8/22/06 11 NA NA

Flight 3 3 8/23/06 9 2984 (588) 413 (66)

Flight 4 4 8/25/06 17 22667 (10672) 1797 (4184)

Flight 5 5 8/26/06 18 1409 (762) 310 (216)

Flight 6 6 8/27/06 0 NA NA

Flight 7 7 8/28/06 0 NA NA

Flight 8 9 8/29/06 28 3157 (1980) 360 (169)

Flight 9 11 8/31/06 37 3205 (650) 972 (214)

Flight 10 12 9/2/06 29 4768 (2826) 710 (169

Flight 11 13 9/3/06 0 NA NA

Flight 12 14 9/4/06 14 2770 (758) 697 (126)

Flight 13 15 9/6/06 10 1427 (398) 465 (147)

Flight 14 16 9/7/06 32 3547 (966) 949 (306)

Flight 15 17 9/8/06 21 4824 (1806) 821 (154)

Flight 16 18 9/10/06 1 1940 (2125) 1280 (4172)

Flight 17 19 9/11/06 27 6561 (5419) 1280 (4172)

Flight 18 20 9/13/06 0 NA NA

Flight 19 21 9/14/06 25 2230 (1157) 653 (276)

Flight 20 22 9/15/06 13 2361 (613) 442 (127)
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Table 2. A summary of cloud, flight, and environmental properties from the L1, L2, H1, H2, and Case flights. Note that CDNC stands for

cloud droplet number concentration, LWC stands for liquid water content, and Mean Drops (s−1) represents the mean number of drops

measured by the PDI per second. Standard deviation values are represented in parentheses.

Variable L1 L2 H1 H2 Case

Date 2006–Aug–26 2006–Sept–15 2006–Sept–02 2006–Sept–06 2006–Sept–10

Flight Number RF 5–2 RF 22 RF 12 RF 17 RF 18

UTC for Cloud Sampling 1447–1717 1654–1748 1806–2018 1832–2002 1633–1742

Clouds > 300 m in width 18 13 29 21 1

Min cloud base height (m) 672 1120 1457 1476 806

Max cloud top height (m) 2412 2101 2463 2451 3381

Cloud thickness (m) 1740 981 1007 976 2575

Cloud width (m) 700 (235) 520 (110) 850 (404) 861 (451) 943 (472)

Mean true air speed (m s−1) 61.2 (1.5) 59.9 (1.3) 62.7 (2.3) 63.0(2.3 61.4 (2.2)

Mean CDNC (cm−3) 318 (163) 210 (141) 421 (255) 531(363) 472 (404)

Max CDNC (cm−3) 819 526 1059 1630 2342

Mean drops (s−1) 661 (448) 1016 (1037) 958 (895) 3300 (2704) 1679 (1441)

Cloud top LWC (g m−3) 0.97 (0.66) 0.55 (0.54) 0.47 (0.48) 0.60 (0.48 0.45 (0.35))

Mean vertical velocity (m s−1) 1.81 (1.67) 1.16 (1.28) 2.34 (2.21) 1.61 (1.62) 0.35 (1.89)

Na (cm−3) 1304 (699) 2323 (688) 4331 (2789) 4650(2057) 1396 (918)

Nacc (cm−3) 290 (223) 436 (159) 671 (255) 771 (283) 943 (472)

Environmental lapse rate (◦C km−1) 5.4 4.5 4.8 5.7 NA

Environmental RH (%) 77 105 74 86 NA

Table 3. Average values for low (L1, L2) and high (H1, H2) pollution clouds for select variables from Table 2

Variable Low High

Mean CDNC (cm−3) 264 476

Mean Drops (s−1) 839 2129

Na (cm−3) 1814 4491

Nacc (cm−3) 363 721

Cloud thickness (m) 1361 992

Cloud width (m) 610 856

Clouds > 300 m in width 31 (total) 50 (total)
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Table 4. Provides the mean PCF, upper quantile, and lower quantile values for center data (on the left) and entrainment data (on the right)

for L1, L2, H1, and H2 in Figure 5, along with average low and high values from Figure 7

Center Data Entrainment Data

Flight Mean PCF Upper Quantile Lower Quantile Mean PCF Upper Quantile Lower Quantile

L1 0.18 0.25 0.053 0.54 0.83 0.094

L2 0.62 1.79 0.099 0.81 1.81 0.21

Avg. Low 0.42 1.05 0.08 0.69 1.36 0.16

H1 0.30 0.51 0.03 0.50 0.84 0.11

H2 0.19 0.58 0.04 0.54 0.098 1.13

Avg. High 0.25 0.57 0.04 0.53 0.98 0.11

Table 5. Provides the mean p–value and the percent of data that is significant (for the first 21 PCF values) between entrainment and center

data for L1, L2, H1, and H2 in Figure 5 and for Average Low and High in Figure 7

Flight p–value % Significant

L1 6.7 · 10−3 80.9

L2 0.30 0

Avg. Low 4.8·10−3 100

H1 3.6 · 10−3 90.5

H2 2.3 · 10−4 100

Avg. High 8.2·10−6 100

Table 6. Provides the percentage of clustering that is significant and non–significant for center (C) and entrainment (E) data in L1, L2, H1,

and H2.

Flight % Significant % Non–significant

L1 C 50 50

L1 E 55.6 44.4

L2 C 84.6 15.4

L2 E 80.8 19.2

H1 C 55.2 44.8

H1 E 60.3 39.7

H2 C 85.7 14.3

H2 E 95.2 4.8
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Table 7. Gives values for vertical velocity (m s−1), RH (%), LWC (g m−3), the PCF, and the median drop size, respectively, for each

normalized cloud height in Figure 6

Normalized height Vertical Velocity (m s−1) RH (%) LWC (g m−3) PCF Median drop size (µm)

0 0.91 100.38 0.07 0.74 11.88

0.1 0.84 101.01 0.24 0.78 16.43

0.2 0.49 97.89 0.52 0.34 8.59

0.3 0.71 99.88 0.59 0.73 13.23

0.4 0.16 102.12 0.54 0.84 15.28

0.5 0.36 101.90 0.41 0.24 15.84

0.6 -1.31 103.96 0.62 0.39 17.65

0.7 -1.22 99.74 0.98 0.36 17.03

0.8 -0.28 77.87 0.87 0.27 15.84

0.9 -3.52 64.17 0.41 1.18 16.43

1 -4.00 95.72 0.22 1.81 17.65

Table 8. Gives the p–value (significant in bold) between every consecutive normalized cloud altitude for PCF values, where (∗) represents a

value that is borderline significant/non-significant .

Comparison p–value

0 to 0.1 0.42

0.1 to 0.2 0.35

0.2 to 0.3 0.46

0.3 to 0.4 0.34

0.4 to 0.5 0.025

0.5 to 0.6 0.26

0.6 to 0.7 0.39

0.7 to 0.8 0.53

0.8 to 0.9 0.066 (∗)

0.9 to 1 0.30
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Table 9. Provides the mean p–value and the percent of data that is significant (for the first 21 PCF values) between PCF functions provided

in Panel (b) of Figure 8.

Comparison p–value % Significant

L2–L1 2.9 · 10−3 100

L2–H1 3.3 · 10−3 95.2

L2–H2 7.5 · 10−3 85.7

L1–H1 0.82 0

L1–H2 0.92 0

H1–H2 0.91 0

Table 10. Median values of vertical velocity (m s−1), LWC (g m−3), cloud width (m), CDNC (cm−3), buoyancy (m s−2), in–cloud RH, and

out–of–cloud RH (%) from Figure 9.

Variable Median L1 L2 L1 L2

Vertical velocity (m s−1) 0.94 0.25 1.21 0.74

LWC (g m−3) 0.43 0.14 0.19 0.38

Cloud width (m) 765 480 690 631

CDNC (cm−3) 261 172 399 406

Buoyancy (m s−3) -0.00097 0.0081 -0.0031 -0.010

in-cloud RH 101.3 101.2 108.1 105.1

out–of–cloud RH 97.8 101.9 106.8 99.4

Table 11. Gives p–values between L2 and L1, L2 and H1, and L2 and H2 for in–cloud vertical velocity (m s−1), LWC (g m−3), RH (%),

CDNC (cm−3), cloud width (m), and in–cloud buoyancy (m s−2). Statistically significant values are presented in bold.

Comparison Vertical Velocity (m/s) LWC gm−3 RH (Percent) CDNC (cm−3) Width (m) Buoyancy (ms−2)

L2–L1 6.0 · 10−4 2.1 · 10−12 0.82 0.03 0.008 0.011

L2–H1 2.9 · 10−7 0.009 < 2.2 · 10−16 0.002 7.8 · 10−4 3.9 · 10−5

L2–H2 0.011 2.2 · 10−7 3.87 · 10−7 1.9 · 10−4 0.003 5.5 · 10−11
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