
Droplet Inhomogeneity in Shallow Cumuli: The Effects of In–Cloud
Location and Aerosol Number Concentration
Dillon S. Dodson.1 and Jennifer Small Griswold1

1Department of Atmospheric Sciences, University of Hawaii, Manoa, Honolulu, HI, USA

Correspondence: Jennifer Small Griswold (smalljen@hawaii.edu)

Abstract. Aerosol–cloud interactions are complex, including albedo and lifetime effects that cause modifications to cloud

characteristics. With most cloud–aerosol interactions focused on the previously stated phenomena, there has been no in–situ

studies that focus explicitly on how aerosols can affect large–scale (centimeters to tens of meters) droplet inhomogeneities

within clouds. This research therefore aims to gain a better understanding of how droplet inhomogeneities within cumulus

clouds can be influenced by in–cloud droplet location (cloud edge vs. center) and the surrounding environmental aerosol5

number concentration. The pair–correlation function (PCF) is used to identify the magnitude of droplet inhomogeneity from

data collected onboard the Center for interdisciplinary Remotely–Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, flown

during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Time stamps (at 10−4 m spatial

resolution) of cloud droplet arrival times were measured by the Artium Flight Phase–Doppler Interferometer (PDI). Using

four complete days of data with 81 non–precipitating cloud penetrations organized into two flights of low (L1, L2) and high10

(H1, H2) pollution data shows enhanced inhomogeneities near cloud edge as compared to cloud center for all four cases. Low

pollution clouds are shown to have enhanced overall inhomogeneity, with flight L2 being solely responsible for this enhanced

inhomogeneity. Analysis suggests cloud age plays a larger role in the amount of inhomogeneity experienced than the aerosol

number concentration, with dissipating clouds showing increased inhomogeneities as compared to growing or mature clouds.

Results using a single, vertically developed cumulus cloud demonstrate enhanced droplet inhomogeneity near cloud top as15

compared to cloud base.

1 Introduction

The spatial inhomogeneity of cloud droplets at different spatial scales has impacts on multiple cloud processes, including

precipitation formation on the smallest scales (millimeter to centimeter scale, from here on termed inertial clustering or just

clustering) and radiative heating and cooling on the largest spatial scales. The work presented here deals with in–situ measure-20

ments of the magnitude of cloud droplet spatial inhomogeneities at scales of centimeters to tens of meters (from here on termed

droplet inhomogeneities or just inhomogeneities) to provide information on how the entrainment mixing present at cloud–clear

air interfaces impacts inertial particles (i.e. cloud droplets).

This information is of interest due to the complex physical processes controlling clouds, in particular the formation of pre-

cipitation and aerosol–cloud interactions, both of which can affect cloud lifetime and size. Along with these uncertainties, one25
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of the main problems with cloud microphysical research has been determining how turbulence and mixing processes occur-

ring on smaller scales affect the macroscopic evolution of clouds (in particular the cloud droplet size distribution), along with

gathering in–situ data to better understand these properties (Shaw, 2003; Grabowski and Wang, 2013). Due to the complexity

of these processes, clouds are responsible for the greatest uncertainty when estimating climate sensitivity (Ramaswamy et al.,

2001).5

Cloud droplets grow through the diffusion of water vapor up to sizes where collision–coalescence occurs. However, the rapid

onset of rain (typically 15 to 20 minutes observed through radar measurements (Laird et al., 2000; Szumowski et al., 1997)) is

difficult to explain using classical droplet growth theory. This is due to uniform condensational growth of cloud droplets leading

to a narrowing of the drop size distribution, while most observed distributions are much broader. For example, the predicted

growth time of precipitation calculated by Jonas (1996) of 80 minutes is four times slower than that observed. Although10

progress in modeling the formation of rain has been made (i.e., Wyszogrodzki et al. (2013); Seifert et al. (2010); vanZanten

et al. (2011)), improvements still need to be implemented; in particular, in developing a better understanding of precipitating

processes and the resulting feedbacks to implement better microphysical schemes (Wyszogrodzki et al., 2013). It has long been

proposed that the entrainment of dry air into the cloud causes the broad size distributions observed (J.Warner, 1969; Telford

and Chai, 1980; Jonas and Mason, 1982). Khain et al. (2000) states that the smallest droplets form through nucleation of drops15

during entrainment of drop-free air into the cloud, while the largest droplets are formed during inhomogeneous mixing leading

to a local increase in the supersaturation.

Enhanced evaporation from smaller droplet sizes arises from aerosol perturbations, resulting in a stronger horizontal buoy-

ancy gradient and increased entrainment (known as the evaporation–entrainment feedback mechanism), as shown in both

simulation (Xue and Feingold, 2006) and observational (Small et al., 2009) studies, where increased (decreased) entrainment20

leads to decreased (increased) cloud lifetimes. This suggests that aerosol perturbations can lead to modifications in the turbu-

lent environment within clouds, specifically at the entrainment interface, influencing the amount of dry air being entrained into

the cloud.

It is generally assumed that sub–saturated (droplet free and laminar) ambient air is entrained in ’blobs’ due to the turbulent

motions of the cloud. This results in a reduction in the total liquid water and directly influences the droplet size distribution.25

As suggested by Baker et al. (1980), the exact influence of entrainment mixing on the drop size distribution can be described

by the Damkohler number (see Small et al. (2013)), which relates the time scales for turbulent mixing (τmix) and droplet

evaporation(τevap). Homogeneous mixing (τevap� τmix) results in the drop size distribution shifting towards smaller diam-

eters due to all droplets experiencing the same sub–saturation. Inhomogeneous mixing (τevap� τmix) results in a decrease

in the overall droplet number (while the drop size distribution remains unshifted) due to droplets experiencing different sub–30

saturated and super–saturated values.

After initial entrainment of the ambient, drop free air into the cloud, the subsequent turbulent mixing within the cloud acts to

produce smaller and smaller parcels of sub–saturated cloudy and ambient air until the Kolmogorov length scale (approximately

1 mm for atmospheric conditions, depending on the turbulent kinetic energy dissipation rate) is reached (Baker et al., 1984;

Brenguier, 1993). Direct Numerical simulations by Ireland and Collins (2012) and experimental results by Good et al. (2012)35
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of particle entrainment showed droplet inhomogeneity resulting from the initial entrainment of particle free (non–turbulent)

air into the particle laden turbulent air, with a decrease in the observed inhomogeneity in time due to turbulent mixing. Large

scale spatial inhomogeneities resulting from mixing have also been observed and discussed by Saw et al. (2008) and Saw et al.

(2012).

Up until the late 1980’s, it was mostly accepted that droplet spacing within clouds was statistically homogeneous, or uni-5

formly distributed according to Poisson statistics (Marshak et al., 2005; Rogers and Yau, 1989). Srivastava (1989) argued that

in most numerical studies of cloud physics it is assumed that droplet to droplet variability is not important in calculating the

growth of an ensemble of droplets. However, this conclusion must be viewed as tentative due to evidence that has been gathered

over the past three decades for the inhomogeneous distribution of droplet populations at all length scales (i.e., Baker (1992);

Kostinski and Jameson (1997); Kostinski and Shaw (2001); Larsen (2007); Shaw et al. (1998, 2002); Saw et al. (2008, 2012);10

Good et al. (2012)). The presumption that droplet spacing is homogenous has consequences for cloud parameterizations in mi-

crophysical models such as the formation of precipitation. For example, the stochastic collection equation, used to describe the

growth of droplets via collision-coalescence, assumes that droplets are homogeneously distributed and not preferentially con-

centrated (Kostinski and Shaw, 2001). An enhanced collision kernel and collision efficiency also results from droplet clustering

(Pinsky et al., 1999; Grabowski and Wang, 2013).15

Analysis of droplet observations in adiabatic cores of cumulus clouds from Chaumat and Brenguier (2001) display droplets

that are randomly distributed (homogeneous) on the small and large scales, albeit, this homogeneous droplet distribution is

observed in adiabatic cores away from dry air entrainment at cloud edge. These results are in disagreement with the afore-

mentioned studies in the previous paragraph, suggesting more in–situ studies into droplet spatial inhomogeneity need to be

performed. The in–situ observations of droplet spatial distributions that do exist are scarce, with most studies (i.e., Shaw et al.20

(2002); Lehmann et al. (2007)) focusing on single cloud traverses and/or quantifying the statistical tools used to measure said

inhomogeneity. Our understanding of the motion of inertial particles in turbulence has advanced considerably, particularly due

to the study of inertial clustering at the Kolmogorov scales (i.e., Maxey (1987); Squires and Eaton (1991); Shaw et al. (1998);

Eaton and Fessler (1994); Sundaram and Collins (1997)). However, this understanding has not been extended to particles being

clustered due to larger scale influences such as the entrainment mixing found at the boundaries of clouds. The work conducted25

here therefore becomes important due to the fact that a dataset is provided that gives in–situ cloud droplet spatial data allowing

for an investigation into the influence that entrainment has on the droplet spatial distribution.

Specific questions in regards to droplet inhomogeneity in shallow, warm continental cumulus clouds to be answered include:

(1) Does droplet inhomogeneity change as a function of location (cloud center vs. edge)? It is hypothesized that said inhomo-

geneities will be enhanced at cloud edge where entrainment of dry air is directly occurring. Turbulent mixing will reduce the30

large scale inhomogeneities in the droplet population moving towards cloud center. (2) Does droplet inhomogeneity change

as a function of cloud height? It is hypothesized that an increase in inhomogeneity will be present near cloud top due to the

entrainment of dry air. (3) Does droplet inhomogeneity depend on aerosol number concentration? It is hypothesized that an

increased aerosol load leads to enhanced inhomogeneities due to the resulting increased entrainment from smaller droplet sizes

and evaporation.35
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This is a first step in developing a better understanding of droplet inhomogeneities as a result of entrainment mixing, in

the hopes of eventually leading to better cloud microphysical parameterizations for modeling precipitation and the overall

role of clouds in radiation models. Section 2 will provide a deeper introduction into droplet inhomogeneity along with the

pair-correlation function (the statistical tool used to measure the magnitude of droplet inhomogeneities). Section 3 will discuss

data collection and instrumentation along with environmental and flight characteristics. Results related to the three scientific5

questions proposed above are presented in Section 4. Finally, in Section 5 we discuss and summarize the work presented and

provide suggestions for extending the analysis presented here.

2 Droplet Inhomogeneity and the Pair–Correlation Function (PCF)

2.1 Droplet Inhomogeneity

As briefly introduced in Section 1, droplet inhomogeneity inherently occurs on different spatial scales. It has been proposed in10

multiple studies (i.e., Shaw et al. (1998); Eaton and Fessler (1994); Sundaram and Collins (1997)) that inertial clustering can be

understood as the result of particles being centrifuged out of regions of high fluid vorticity (where vorticity is a measure of local

rotation in a fluid flow) and thus preferentially concentrating into regions of high strain or low fluid vorticity as a consequence

of their inertia. Sundaram and Collins (1997) have shown that the scale most responsible for preferential concentration is the

Kolmogorov scale. This is partially supported by the fact that vorticity plays a key role in concentrating particles, and vorticity15

is predominantly concentrated in the smallest eddies (Tennekes and Lumley, 1972).

Saw et al. (2008); Hogan and Cuzzi (2001) and Wood et al. (2005) have shown that inertial clustering is very sensitive to the

particle Stokes number, given by:

St =
τd
τK

=
ρwd

2ε
1
2

18ρaν
3
2

(1)

where ρa and ρw represent the density of air and liquid droplets, respectively, d the droplet diameter, ν the fluid kinematic20

viscosity, ε the turbulent energy dissipation rate, τd the particle response time, and τK the Kolmogorov timescale. The Stokes

number characterizes a particles inertial response to the flow. Particles with St �1 react very slowly to changes in the flow,

while particles with St �1 follow the flow exactly. For the range of Stokes number in clouds (St � 1 to St <1), inertial

clustering increases as the droplet size increases or as the turbulent dissipation rate increases, with inertial clustering peaking

at St ∼ 1 and decreasing for smaller Stokes values.25

However, the mechanism responsible for inertial clustering is completely unrelated to droplet inhomogeneities that results

from entrainment mixing, which is the focus of the work presented here. Inhomogeneous mixing (i.e., entrainment mixing)

leads to the mixing of particles from one region of the flow to another on a spatial scale comparable to the length scale of

the mixing eddies. The largest eddies are slightly smaller than the length scale of the cloud itself (Grabowski and Clark,

1993), while the smallest mixing eddies are on centimeter scales. These mixing length scales have been observed in non–30

precipitating continental cumulus, with observations of the largest mixed cloud and clear air parcels on the scale of meters to

tens of meters (Paluch and Baumgardner, 1989), with the smallest parcels down to centimeter scales from turbulent mixing of
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the larger parcels. Other observations (Baker, 1992; Brenguier, 1993) suggest sharp interfaces between mixed parcels down to

centimeter scales, with Brenguier (1993) observing a change from near 0 to 2000 drops per cubic centimeter over a length scale

of approximately 5 mm. These observations support the conceptual ideas of entrainment mixing, with the initial engulfment of

ambient air followed by turbulent mixing of cloudy air down to the smallest scales.

Entrainment is found to be governed by the large–scale parameters of the flow. Veeravalli and Warhaft (1989) and Kang5

and Meneveau (2008) show that the entrainment interface is characteristic of turbulent bursts penetrating the low–turbulent

region, resulting in non–turbulent (drop free) air being entrained into the turbulent region. The non–turbulent air then becomes

turbulent through the viscous diffusion of vorticity at the interface. The viscous diffusion of vorticity is a Kolmogorov length

scale process, while the entrainment rate at large Reynolds numbers is known to be independent of viscosity. This suggests that

although the transition from non–turbulent to turbulent occurs through small eddies, its rate is governed by the larger eddies10

(Hunt et al., 2006). This suggests that the rate of entrainment determines the magnitude of droplet inhomogeneity present, with

more entrainment leading to larger droplet inhomogeneities due to larger and more numerous packets of environmental air

being mixed with the cloud.

Good et al. (2012) and Ireland and Collins (2012) have shown that mixing–driven droplet inhomogeneities are only weakly

dependent on the particle Stokes number. Unlike inertial clustering, large scale droplet inhomogeneities due to entrainment15

should exist even as the Stokes number approaches zero. Droplet inhomogeneity would only be reduced as the Stokes number

approaches infinity (such as heavy particles) due to the droplets not following the turbulent flow as dry air is entrained.

The effect that gravity (i.e., droplet sedimentation) has on the droplet response to the fluid must also be considered.

Grabowski and Vaillancourt (1999) suggest if the droplet terminal velocity is much larger than the Kolmogorov velocity scale,

then the particle will fall through the microscale structures associated with the turbulent flow regardless of the particle inertia.20

Ireland and Collins (2012) found that particles are less dependent on the turbulent fluctuation for enhanced gravity, leading to

lower levels of droplet inhomogeneity as compared to the reduced gravity case. Ireland and Collins (2012) also found enhanced

settling of droplets with moderate Stokes numbers (larger droplet size), consistent with the findings in Wang and Maxey (1993)

where droplets tended to cluster at the edges of vortical eddies leading to a preferential sweeping of the particles in a downward

moving fluid. On the other hand, Good et al. (2012) observed reduced settling for droplets with moderate Stokes numbers. This25

contradiction suggests more research into droplet spatial tendencies is needed. It is also important to note that the studies just

discussed present results for Reynolds numbers that are smaller than those encountered in atmospheric clouds. Although the

Reynolds number is shown to have a very weak dependence (if any at all) on droplet inhomogeneities, the results presented

here can be used to compare in–cloud measurements with measurements from laboratory experiments made by Ireland and

Collins (2012) and Good et al. (2012).30

2.2 Pair–Correlation Function

There are multiple tools that can be used to measure droplet clustering using a time series of droplet detection times, but the 1–D

temporal pair–correlation function (PCF) will be used throughout this paper due to the advantages of the PCF outlined in Shaw

et al. (2002); Shaw (2003); Larsen (2007, 2012); Baker and Lawson (2010). The PCF can be introduced as a scale–localized
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deviation from a stationary Poisson distribution, where the PCF is given by:

η(t) =
p(to + t|to)

λ
− 1 (2)

from Larsen (2012), where η(t) is the PCF, p(to + t|to) is the probability of finding a particle in the time lag to + t given a

particle detected at some time to, and λ is the mean number of droplets per time bin. Calculating p(to + t|to) can become

simplified by using:5

η(t) =−1+ 1

λ

∞∑
k=1

fk(t) (3)

where fk(t) is the probability distribution function that the kth particle posterior to a particle at to (the kth nearest neighbor)

is located at to + t, where it is assumed that co–located particles are impossible. Each of the fk(t) can be estimated from the

observed inter–arrival distributions (time between droplet arrival), thus allowing a computationally simple way to compute the

PCF from particle arrival times (Picinbono and Bendjaballah, 2005; Larsen, 2007, 2012).10

The main advantage of the PCF is the fact that it is scale localized. The PCF depends only on the presence or absence of

particles separated by t in time (Larsen, 2012). Physically, when η(t)> 0 there is an enhanced probability of finding a particle

in the time frame t. The range of the PCF is (−1,∞) with η(t) = 0 representing perfect randomness and η(t) = 3, for example,

resulting in a factor of 4 enhancement of finding another droplet time t away, as discussed in Kostinski and Shaw (2001).

When measuring data that is non–stationary (i.e., large scale spatial inhomogeneities are present), the PCF measures droplet15

spatial heterogeneities that are a result of inertial clustering and entrainment mixing (Saw et al., 2008, 2012). This results in a

PCF (see Figure 4 in Saw et al. (2012)) with a power–law-like region at the smallest scales (Kolmogorov scales) due to inertial

clustering, followed by an extended ‘shoulder’ region due to entrainment mixing at larger scales (above Kolmogorov to tens

of meters), followed by a rapid drop–off at even larger scales. Figure 3 in Shaw et al. (2002) demonstrates two PCF plots, one

with data from an entire cloud penetration and another with only cloud center data. The PCF for the entire cloud traverse is20

shown to be shifted to larger clustering values due to large scale droplet concentration fluctuations caused by ‘holes’ in the

cloud. Although Shaw et al. (2002) does not elaborate on the cause of these cloud ‘holes’, for our purposes we can think of

them as areas of decreased droplet concentration due to the entrainment of dry environmental air into the cloud and subsequent

filamentation during turbulent mixing.

2.3 Calculating the PCF25

The PCF was calculated three times for each cloud penetration (120 m section, representing roughly 2 seconds worth of data)

at cloud edge (cloud entry and exit) and cloud center. To calculate the kth nearest neighbor, a maximum time interval (t–max)

and time bin (dt) are selected. Careful consideration must be given. Set dt too small, the PCF will be too noisy. Set dt too

large, you end up doing unnecessary scale averaging which results in a poor estimate of the PCF. Typically, t–max is an order

of magnitude or so above the mean inter–arrival time (mean time between each droplet within the data) of the particles and30

sets the maximum temporal lag. A dt of 0.0003 seconds and a t–max of 0.2 seconds were selected for all PCF calculations
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throughout this paper. This results in a vector ranging from 0 to 0.2 by 0.0003, giving the temporal lag (x–axis) for each PCF

measurement. This results in a spatial range of ∼3 cm to 12 m, ideal for analyzing droplet inhomogeneities due to entrainment

mixing.

The PCF is calculated by binning the inter–arrival times of the droplets into the vector sequence discussed in the previous

paragraph. An inter–arrival time is first determined between every subsequent droplet, binned and summed (the sum of each5

inter–arrival time per bin). An inter–arrival time is then determined for every other droplet, every third droplet, every fourth

droplet, and so on. The inter–arrival times are binned and added to the previously summed binned inter–arrival times up until

the minimum inter–arrival time in the data is no longer less than t–max. The total summed binned data is then used to calculate

the PCF from Equation 3.

Figure 1 gives a visualization and description of the PCF clustering signature, giving both temporal and spatial lag on the10

x–axis. Note that the PCF results presented from this point on will be in spatial lag (where spatial lag was estimated using the

mean aircraft velocity) for the simplicity of being able to more easily comprehend spatial lag over temporal lag. Real data (top

left) from a randomly selected cloud shows a peak in the PCF at smaller spatial scales and a decrease to zero at larger spatial

scales (where the decrease starts at ∼ 1.2 m) while simulated Poisson data (top right) shows the PCF varying around zero,

indicating no inhomogeneities at any scale. The PCF signature for the real data is indicative of droplet inhomogeneity at larger15

scales, where the ‘shoulder’ region of the curve is present before a decrease to zero (note that inertial clustering is not presented

since the curve does not extend into small enough length scales). In comparing the two PCF curves, it is clear that the real cloud

droplets have a greater amount of spatial inhomogeneity as compared to droplets that have a perfectly random orientation, i.e.,

the simulated Poisson data. A better visual representation of the droplet inhomogeneity that the PCF is displaying can be gained

by analyzing the raw droplets (bottom panels), where the real data is patchy or clustered and the Poisson point data is nearly20

perfectly homogeneous.

3 Data Collection and Characteristics

The Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) was conducted jointly with the 2006 Texas Air

Quality Study (TexAQS) during August and September of 2006 as a combined climate change and air quality intensive field

campaign. The Center for Interdisciplinary Remotely–Piloted Aircraft Studies (CIRPAS) Twin Otter (flight speed of about 6025

m s−1) performed 22 research flights to explore aerosol–cloud relationships over the Houston and northwestern Gulf of Mexico

regions (Lu et al., 2008). Among the 22 research flights, 14 intensive cloud measurements were carried out (where the clouds

were all continental warm cumulus subjected to various levels of anthropogenic influence), including one flight in which an

isolated cumulus cloud of sufficient size and lifetime existed to allow detailed sampling at different altitudes. The other 13

cases involved scattered cumuli that were sampled in such a manner as to provide statistical properties over the cloud field (Lu30

et al., 2008), with each cloud being traversed through once and no one cloud being measured multiple times.

Table 1 shows each flight conducted during GoMACCS, with the corresponding Research Flight (RF) number, date, number

of clouds in the flight after filtering (including clouds that are only > 300 m in length and non–precipitating), the aerosol
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number concentration (Na, measured by the condensation particle counter (CPC)), and the aerosol number concentration for

accumulation mode particles (Nacc, measured by the passive cavity aerosol spectrometer probe (PCASP)), which includes

aerosols that are only in the size range of 0.1 µm < particle size < 2.5 µm. The Phase–Doppler interferometer (PDI, see

Chuang et al. (2008)) was used to collect droplet velocity, size, and measurement time. It was found that the droplet arrival

time can accurately be measured to < 3.5 µs from Saw (2008), resulting in accurately mapping droplets down to 2.1·10−4 m5

(assuming average aircraft speed). Note that there is no dead time in PDI measurements. For more information on each of the

flights and the instrument payload, see Lu et al. (2008).

Following the methods in Small et al. (2013), two low (L1 and L2, where L1 (L2) is given by RF 5 (RF 22)) and high (H1 and

H2, where H1 (H2) is given by RF 12 (RF 18)) pollution flights were selected out of the 22 research flights. The two least and

most polluted flights were selected which had satisfactory cloud sampling for analysis of how aerosol number concentration10

effects droplet inhomogeneity. A Case Flight (RF 18) was selected where an isolated cumulus cloud was sampled at different

altitudes for analysis of droplet inhomogeneity as a function of cloud height. Table 2 shows variables highlighting different

cloud and environmental conditions within each flight. Note that the environmental lapse rate and relative humidity (RH) in

Table 2 was calculated from data collected from out of cloud spirals, where the average RH was computed for the vertical range

of cloud measurments for the respected flight. As a result of RH measurement problems occuring throughout the campaign15

(i.e., values considerably above 100 %) the RH data was filtered to include values that were only less than 103 %. Table 3 gives

a summary of average values for low and high pollution cases for select properties from Table 2.

Figures 2 and 3 show the flight altitude as a function of time with droplet counts per second overlaid (top panels) and the

flight paths (bottom panels) for low and high polluted clouds, respectively. Note that the flight path for the Case Flight is not

shown here. The average droplet counts (clouds) encountered per second (flight) for L1 and L2 were 660 (18) and 1016 (13),20

respectively. Whereas for H1 and H2, the average counts (clouds) encountered per second (flight) were 958 (29) and 3300 (21),

respectively. Low pollution clouds were sampled to the North of Houston (upwind) and high pollution clouds were sampled to

the Southwest (H1) and West (H2) of Houston (downwind), as confirmed using archived wind data from the NOAA National

Center for Environmental Information and HYSPLIT trajectories (not shown here) from the Air Resources Laboratory (Stein

et al., 2015).25

It can be calculated from analyzing Table 3 that the high pollution clouds had roughly 2.5 times more aerosols per cubic

centimeter than the low pollution clouds. The difference in aerosol number concentration between the low and high pollution

clouds produce clouds that are statistically different from one another. Figure 4 shows cloud droplet diameter in microns (µm)

on the x–axis with aerosol number concentration (cm−3) on the y–axis, with low pollution data in green and high pollution data

in gold. Density curves are given to show how the data is distributed for the respected axis. The p–value (used to determine30

statistical significance between two datasets, where p–value < 0.05 is considered significant, see Wilks (2011)) between low

and high pollution cloud droplet size is 3.99·10−10 (average droplet diameter is 13.4 µm (10.7 µm) for low (high) pollution

clouds). The linear best fit trend lines show that droplet size decreases with increasing aerosol number concentration, with

R–squared values (the proportion of the variance in droplet size that is predictable from the aerosol number concentration)

of 0.24 and 0.07 for low and high pollution, respectively. The p–value for the aerosol number concentration is < 2.22·10−16.35
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Both properties of the droplet population have p–values less than 0.05, making the difference in droplet size and aerosol

number concentration significant for the two populations of data. Having two statistically different data populations is ideal for

comparing PCF values for low and high pollution clouds. If the magnitude of spatial inhomogneity does not change between

the two, then an argument cannot be made for the statistical similarities in the data sets as a possible reason. Note that all

p–values in this paper were calculated using the Wilcoxon–rank–sum–test, which is used to determine a statistical difference5

in the medians of two datasets that have different populations (Wilks, 2011).

4 Results

4.1 Edge, Center, and Cloud Top Inhomogeneities

PCF functions for L1, L2, H1, and H2 are given in Figure 5, moving from top left to bottom right, respectively, with blue (red)

representing cloud edge (cloud center) data. The two envelopes represent the 85th and 15th percent quantile of the data. The10

center lines in each envelope represent the edge and center mean inhomogeneity, with bold mean lines representing data that

is statistically significant (p–value less than 0.05) and thin mean lines representing data that is statistically similar. The PCF

functions for both center and edge data indicate clustering associated with larger–scale inhomogeneity, with the ‘shoulder’

region of the curves present out to ∼1.2 m before a decrease to zero at spatial scales beyond ∼1.2 m .

The main takeaway from Figure 5 is the larger degree of inhomogeneity for cloud edge as compared to the center zones15

for all four flights. Mean PCF and quantile values for edge and center data can be found in Table 4. The mean and quantile

values were calculated by taking the first 60 PCF values (taking PCF values to the left of the green reference line in Figure 1),

covering a spatial scale up to ∼1 m since it is the ‘shoulder’ region of the PCF curve that we are interested in analyzing. The

percent of statistically significant data (for the first 60 PCF values) and the corresponding p–values can be found in Table 5.

Note to calculate the p–value, every PCF curve generated for the respective plot was grouped. A p–value was then generated20

for each spatial–lag on the x–axis by calculating the Wilcoxon–rank-sum–test between the two sets of data for the specific

x–axis location.

From analyzing Figure 5 and the corresponding tables, L1, H1 and H2 show PCF characteristics which are comparable to

one another, including: (1) the mean PCF value for the edge data is always greater than the mean PCF value for the center data.

(2) The 15th percent quantile value for the center data is always smaller than the 15th percent quantile value for the edge data.25

(3) The 85th percent quantile value for the edge data is always larger than the 85th percent quantile value for the center data.

(4) There is a statistical significance between the inhomogeneities occurring between the edge and center zones of the clouds.

Note that the statistical significance in the inhomogeneities between the two zones breaks down at larger spatial scales (this is

very apparent in the H1 case) as the PCF decays towards zero for both entrainment and center data.

From analyzing L2 (bottom left panel) and the corresponding tables, there are significant differences from the other three30

cases. Although the mean edge inhomogeneity is enhanced as compared to the center zone, the difference is not statistically

significant, with zero percent of the data having a p–value below 0.05 (average p–value of 0.40). Another difference is the

range of the quantile values, with the cloud edge data having a lower 15th percent quantile value than that of the center data,
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in contrast to what is observed in L1, H1, and H2. Note that the mean inhomogeneity amount for L2 (both center and edge) is

enhanced as compared to the other three cases (Table 4).

It is clear that there is enhanced inhomogeneities in the edge zone as compared to the center zone, but one needs to understand

how to define if the overall inhomogeneities (both edge and center) are significant as compared to a randomly distributed droplet

population. This is done by analyzing the range that the PCF can take on due to the random nature of the data. If the physical5

inhomogeneities measured fall outside of this range, then the conclusion can be made that the droplet spatial inhomogeneities

being viewed are indeed real and not perfectly homogeneous. This test was performed on each of the four cases, following the

methods outlined in Larsen and Kostinski (2005). For the data, 1000 Poisson simulations were produced (as is seen in the top

right of Figure 1, showing a single Poisson simulation) using the same time duration and droplet count as the original data.

These Poisson simulations then form an envelope of PCF values (using the maximum and minimum values from the 100010

simulations) one would consider homogeneous. PCF values that lie within the Poissonian simulation envelope were recorded

by using the average PCF value and were labeled non–significant. Table 6 shows the percentage of PCF values for each flight

and each location (edge and center) that were considered non–significant and significant. From analyzing Table 6 it can be

seen that not every cloud section measured experienced inhomogeneity that would be considered a statistical difference from

a random distribution. However, a majority of the data sets do display inhomogeneities that are statistically significant, with15

the exception of the L1 center and H1 center data, which shows that less than 50 percent of the droplet populations display

statistically significant inhomogeneities. With the exception of the L2 case (which does not have a statistical difference between

edge and center inhomogeneity), the center inhomogeneity contains a higher percentage of PCF values that are non–significant

as compared to the edge data.

We can use the inter–arrival times used in calculating the PCF to develope a better understanding of the overall droplet20

spatial distributions and the largest inhomogeneities measured by directly analyzing the inter–arrival time distribution (as is

done in Baker (1992)). Figure 6 shows the inter–arrival distance (IAD, distance between each droplet measurement) binned for

L1 and zoomed in on a frequency of 60 as to put more emphasis on the largest IAD’s measured. Zooming in further on the first

bin (range of 0 to 60 cm), where 98.4 percent and 99.5 percent of the data lies for edge and center data, respectively, it can be

seen that the IAD’s follow a Poisson distribution. Analyzing the largest IAD’s, the boxplot in the top left corner shows the data25

for center and edge that is greater than or equal to the 0.998 quantile of the IAD data, i.e., the largest 0.2 percent of the IAD

data. This results in approximately the largest 100 IAD’s to be represented in the boxplot.

Although the raw histograms of IAD data are not displayed for L2, H1, and H2 (they appear very similar in nature to

that of L1), the resulting boxplots of the IAD data which are greater than or equal to the 0.998 quantile for each of the four

flights are presented in Figure 7, where the tickmarks occuring on the upper wiskers represent the raw data positions for a30

better visualization of how the data is distributed. For each of the four flights, the edge data is shifted to larger IAD values as

compared to the center data, with the IAD’s between the edge and center data being statistically significant for each of the four

cases. Note that the median value for each dataset is displayed within the boxplot. This tells us that there are more numerous,

larger pockets of droplet free air within the edge zone as compared to the center zone. For example, in analyzing the boxplots
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for L2, we can see that there are five cases where there is a distance of 20 meters or greater between droplet mesurements for

the edge zone, as compared to only one case for the cloud center zone.

Figure 8 shows how the mean PCF value (where again, the mean PCF value is obtained by taking the mean of all inidivdual

PCF values to the left of the green reference line in Figure 1) and other environmental properties (cloud droplet number con-

centrtion (cm−3), liquid water content (g m−3), RH (%), and vertical velocity (m s−1)) vary with normalized cloud height from5

the Case Flight. Variable quantities for each normalized cloud height can be found in Table 7. The liquid water content (LWC)

increases from cloud base (0.073 g m−3) to a normalized cloud height of 0.7 (0.98 g m−3) before decreasing to 0.23 g m−3

at cloud top. Accompanied by the decrease in LWC is a sharp decrease in the RH from 91.8 % to 38.4 % between normalized

cloud heights of 0.7 and 0.9, before increasing again at cloud top to 95.7 %. As both the LWC and RH decrease, the PCF has a

sharp increase from 0.36 to 1.49 between normalized cloud heights of 0.8 and 1.0, indicating enhanced inhomogeneity at cloud10

top. The PCF values at cloud top (between normalized cloud heights of 0.8 to 1.0) are statistically significant as compared to

the PCF values below a normalized altitude of 0.8 (with a p–value of 0.043), making the inhomogeneity that is present at cloud

top statistically significant from the inhomogeneity that is occurring in lower cloud layers.

Panel (a) gives the cloud drop size distribution for each normalized cloud height while Panel (b) gives the median droplet

diameter along with the 5th and 95th percent quantiles of the drop size distribution. The median drop size increases from 8.2915

µm at cloud base to 19.67 µm at cloud top. In comparing the median drop size to the mean PCF value for each normalized

height, the R–squared value is 0.041, indicating no correlation between the PCF and median droplet size. Particulary at cloud

top where the PCF increases, there is no associated changes in the median drop size or the quantile values of the size distribu-

tion. Panel (d) shows that the vertical velocity is negative in the upper portion of the cloud, while an updraft is present in the

lower 50 % of the cloud.20

4.2 Low vs. High Pollution Inhomogeneity

Figure 9, Panels (1a) and (1b) gives the same information as in Figure 5, except for the PCF values for total low pollution

(average of L1 and L2) and total high pollution (average of H1 and H2), respectively. The characteristics of the two clustering

signatures are similar to that of Figure 5. The average PCF values for low and high pollution edge and center data can be found

in Table 4, along with the 15th and 85th percent quantile values. Table 4 reveals that the mean PCF values (for both edge and25

center data) for the low pollution case are larger than the corresponding mean PCF values for the high pollution case. As can

be seen in Table 5, 100 percent of the first 60 spatial lags are statistically significant for both average low and high pollution

cases between the edge and center data.

The larger mean inhomogeneity amount for the low pollution clouds can be seen well in Panel (2a), which shows low

pollution data in green and high pollution data in gold. The boundaries of each green and gold envelopes are created by the30

mean center (bottom of each envelope) and edge (top of each envelope) inhomogeneity. Low pollution clouds are clearly

offset to a higher inhomogeneity amount for both mean center and edge inhomogeneity. Panel (2b) shows the overall mean

of all the PCF values for low and high pollution clouds. The overall mean PCF value for low pollution clouds (average of

entrainment and center inhomogeneity for both L1 and L2) is 0.54, while the overall mean PCF value for high pollution clouds
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is 0.43. Although it appears that low pollution clouds experience more inhomogeneity as compared to high pollution clouds,

the difference is statistically similar. The average p–value is 0.19 for the first 60 spatial lags with zero percent of the data being

statistically significant.

Low pollution clouds have a non–statistically significant higher amount of inhomogeneity than high pollution clouds, with

further analysis showing that the higher amount of inhomogeneity in the low pollution case is due entirely to the L2 flight.5

Figure 10 gives the same information as Panels (2a) and (2b) in Figure 9, except for the individual flights (L1, L2, H1, H2)

are shown. From analyzing Panel (a), one can see the mean center and edge inhomogeneity for L2 (light green envelope) is

beyond the range of the other three flights. The total mean PCF for the clouds in L1, L2, H1, and H2 is shown in Panel (b).

L2 has a mean PCF value of 0.76, which is roughly twice the mean PCF values (and statistically significant, see Table 8) of

the other three flights, where L1 (dark green), H1 (dark gold), and H2 (light gold) have mean PCF values of 0.39, 0.40, and10

0.46, respectively. The question of whether inhomogeneity depends on aerosol number concentration cannot confidently be

answered. Although Figure 9 shows that low pollution clouds have a larger amount of inhomogeneity, statistically speaking

the inhomogeneity between low and high pollution clouds is the same. Further analysis shows that L1, H1, and H2 all have

statistically similar inhomogeneity values (see Table 8) with mean inhomogeneity amounts that are almost identical. Flight L2

has statistically significant inhomogeneity as compared to the other three cases, and is solely responsible for causing the low15

pollution clouds to have a higher mean PCF value than that of the high pollution clouds.

5 Discussion

5.1 Cloud Lifetime Hypothesis and Inhomogeneity in L2

An explanation for the statistically different inhomogeneity in L2 as compared to the other three cases could be cloud age. A

study by Schmeissner et al. (2015) found that dissipating clouds have five main characteristics, including: a negative buoyancy20

(m s−2) and vertical velocity, lower LWC and cloud droplet number concentrations (CDNC) as compared to actively growing

clouds, and a larger RH shell around the cumulus cloud. Decaying clouds are also associated with the enhanced entrainment

of dry air, where Cooper and Lawson (1984) found that the LWC decreases due to entrainment as cumulus clouds deteriorate.

Lu et al. (2013) and Cheng et al. (2015) also found enhanced entrainment leads to decreases in cloud droplet concentration,

droplet size, and LWC.25

Figure 11 shows box plots of vertical velocity, LWC, cloud width, CDNC, buoyancy, and RH. Red median lines represent

datasets that are statistically different when compared to L2. Note that except for cloud width, each variable is represented

from 1–Hz data collected during in–cloud sampling. From analyzing Figure 11 (exact median values for variables can be

found in Table 9), L2 has the lowest median vertical velocity, LWC, cloud width, and CDNC, with L2 being statistically

significant (p–values found in Table 10) when compared to the other three flights. The fact that L2 has the lowest median30

vertical velocity reflects the fact that clouds have smaller positive vertical velocities than those measured in the other three

flights, suggesting weaker growth potential. The low LWC in L2 signifies that entrainment of dry air has been occurring,

resulting in the evaporation of liquid water droplets, reducing the LWC and the CDNC (Pruppacher and Klett, 1997). Although

12



Schmeissner et al. (2015) does not discuss cloud width, clouds that are dissipating would be expected to have a smaller

horizontal extent due to entrainment of dry air leading to evaporation of cloud edge droplets as compared to mature clouds.

Panel (f) gives a box plot of in–cloud RH, with L2 having the second lowest in–cloud RH, while being statistically similar

to that of the other three flights. The red dots represent the median out–of–cloud RH (100 m before and after cloud edge). L2

is the only flight where the RH increases out of the cloud. The fact that the RH is larger, on average, outside of the clouds in5

L2 as compared to inside of the clouds could be a sign of a large humid shell that is surrounding the individual clouds. The

humid shell results from entrainment of dry air into the cloud while moist air is detrained out of the cloud into the cloud free

environment, resulting in a lower (larger) RH inside (outside) the cloud (Heus and Jonker, 2008; Jonker et al., 2008; Heus

et al., 2008). More evidence for the large humid shell can be gathered from the vertical profiles of environmental RH reported

in Table 2, where the average RH (measured out–of–cloud) for the vertical range of cloud measurements was 96.3 % for L2,10

while for the other flights the RH was considerably lower.

Panel (e) shows the in–cloud buoyancy, which was calculated by taking the in–cloud and out–of–cloud (100 m before and

after cloud edge) virtual potential temperatures. L2 has the largest median buoyancy and is statistically significant as compared

to the other three flights. The clouds in the L2 flight have five out of the six characteristics for decaying clouds, including (1)

lowest vertical velocity; (2) lowest LWC; (3) lowest CDNC; (4) lowest cloud width; (5) largest humid shell. The evidence points15

to the clouds in L2 to be decaying on average, therefore leading to larger droplet inhomogeneities as more dry air is mixed

into the clouds as compared to the other three cases. The statistically similar values between center and edge inhomogeneities

for L2 adds to the cloud lifetime hypothesis, as it is not only the cloud edge zone that is experiencing mixing, but the entire

horizontal extent of the clouds (both edge and center zones) that are experiencing mixing and dissipation. However, one would

expect the buoyancy of dissipating clouds to be negatively buoyant, not positively buoyant as is shown. Although cloud age is20

a good hypothesis in describing the higher inhomogeneity amounts measured in the L2 flight, the data presented does not offer

a conclusive resolution.

Aerosols can act as cloud condensation nuclei (CCN), increasing the number of droplets in clouds and decreasing the mean

droplet size (Twomey, 1977). Although not shown in Figure 11, for the clouds measured in this study the median droplet size

was 15.01 (L1), 11.45 (L2), 11.19 (H1) and 10.92 µm (H2). Although L2 has roughly half the aerosol number concentration25

as that of H1 and H2, the droplet size for L2 is more comparable to that of the high pollution flights as compared to L1. This

suggests that some physical process is resulting in the droplet sizes of L2 to be smaller than what is expected based on the

reported Na values. The most likely explanation is the entrainment of dry air leading to enhanced evaporation.

Other possible explanations for the increased inhomogeneity in L2 could be due to flight path or the atmospheric environment

for a given flight. The flight path through the cumuli for L2 could have favored cloud edge or cloud top instead of true cloud30

center. Favoring cloud edge would result in measuring areas of cloud that favor a higher amount of inhomogeneity (as displayed

in Figure 5), and could result in the overall larger average amount of inhomogeneity experienced. Measuring just cloud edge

would result in: a lower vertical velocity, LWC and CDNC due to evaporation from entrainment, and a shorter cloud width

from not traversing the maximum diameter of the cloud. However, just as with the cloud lifetime hypothesis, the buoyancy is

expected to be negative, not positive, in the edge zone of the cloud due to evaporational cooling of the air.35
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Comparing cloud width on different days can become complicated due to the environmental factors that control cloud size.

As is discussed in Hill (1973) and Seigel (2014), the dominant factor governing the size and spatial distribution of cumulus

clouds is the size and strength of the sub–cloud circulations. There is no way to know what the sub–cloud circulation was for

the given days. Only vertical velocity is available, which, as we saw from Panel (a) in Figure 11, was smallest for the in–cloud

portions of the L2 flight. Whether the fact that L2 clouds were smaller as compared to the other flights is due to dissipation5

through entrainment of dry air or environmental characteristics is unknown.

5.2 Edge vs. Center Inhomogeneity and Aerosol Number Concentration

The finding that droplet spacing is inhomogeneous agrees with the findings in multiple other papers, including Good et al.

(2012); Ireland and Collins (2012); Saw et al. (2012). Note that in this paper inhomogeneity is measured down to ∼2 cm.

It is expected from the inertial clustering hypothesis that droplet clustering continues to increase at scales below what was10

measured here, into the millimeter scales (Shaw, 2003) due to inertial clustering from fluid vorticity. It is important to note

however, that not all the inhomogeneities measured were statistically different from a random poisson distribution. Only 60.8

% of the traverses for center data showed a statistical deviation from a randomly distributed droplet population, as compared

to 72.2% for edge data. This suggests that although a majority of the data displays large–scale inhomogeneity, 31.7 % of the

data are randomly distributed. This is partially in agreement with Chaumat and Brenguier (2001), which found that droplets15

displayed homogeneous distributions on small and large scales.

PCF curves measuring inertial clustering in other literature (Larsen, 2007; Shaw, 2003; Shaw et al., 2002) show an elevated

value of the PCF at the smallest separations that is naturally accompanied with lower values of the PCF at larger separations.

The PCF curves presented here are measured over separations ranging from 2 cm (just above the Kolmogorov scale) to 12 m

(on the order of the integral scale) and show elevated values over a large spatial range (2 cm to 1.2 m) before the PCF begins to20

decay. It is important to keep in mind that this suggests that the elevated PCF values examined here are the result of spatial holes

in the droplet concentrations (non–stationary) due to mixing with dryer air, and not preferential concentration from particle

inertia. Note that other possible causes of larger scale inhomogeneity that are not examined here include fluctuations in the

vertical velcity and cloud condensation nuclei (Pinsky and Khain, 2002, 2003).

From the clouds measured, the conclusion can be made that droplet inhomogeneity does change as a function of cloud25

center vs. cloud edge, with the edge zone having a larger amount of inhomogeneity than the center of the cloud, which is

shown to be statistically significant. The decrease in inhomogeneity in the center of the cloud as compared to the edge may be

attributed to several aspects, including (1) the mean entrainment rate decreases from cloud edge to cloud center, as has been

shown with in–situ measurements made by Cheng et al. (2015). Although the entrainment rate is not directly measured here,

an analysis of the type of entrainment that is occurring is provided in Table 11. It can clearly be seen from Table 11 that the30

median droplet size along with the spectral width of the drop size distribution is virtually the same between the center and edge

zones for each respective flight. This suggests that the drop size distribution is unshifted between center and edge zones. The

CDNC is reduced for the edge zone as compared to the center zone for each of the four cases however, with percent reductions

of the CDNC in the edge zone of 35, 40, 47, and 42 percent, for L1, L2, H1, and H2, respectively. The unshifted drop size
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distribution along with a reduction in the CDNC at cloud edge is evident to the occurrence of inhomogeneous mixing. The

fact that the CDNC is reduced at cloud edge suggests increased evaporation at the edge zone due to enhanced mixing with dry

air as compared to cloud center. The altitude between edge and center zones for each respective flight is virtually the same,

suggesting that the analysis conducted on the drop size distribution is not affected by differences in altitude. (2) Turbulent

mixing within the cloud leads to a breakup of the larger-scale inhomogeneities, reducing the PCF. Ireland and Collins (2012)5

through simulations observed a larger degree of non-uniformity for a turbulent–non–turbulent interface (i.e., cloud edge) as

compared to a turbulent–turbulent interface (i.e., cloud center) due to the lower turbulence levels at the edge weakening the

homogenization process of the droplet spacings.

Along with enhanced inhomogeneity at cloud edge, enhanced inhomogeneity at cloud top is also evident due to entrainment

as is shown in Figure 8, where the LWC and RH have a sharp decrease near cloud top accompanied by an incease in the PCF.10

The decrease in RH and LWC is characteristic of dry air being entrained into the cloud. The entrainment at cloud top can also

be seen to cause a negative vertical velocity (from evaporative cooling, typically termed cloud–top entrainment instability)

in the upper portion of the cloud (Figure 8, Panel (c)), where the average vertical velocity is increasingly negative above a

normalized cloud height of 0.5, suggesting penetrative downdrafts extend into the middle section of the cloud.

Although the conclusion in this paper is that aerosol number concentration does not affect droplet inhomogeneity, this15

conclusion can only be made for the range of Na given and the resulting mean droplet sizes. For example, Xue and Feingold

(2006) showed that smaller droplets evaporate more readily, leading to dissipation of the cloud through entrainment. However,

in Xue and Feingold (2006) the difference in droplet size was roughly -81 % between clean and polluted clouds. Although

the difference in droplet size is statistically significant between flights, the largest percent difference analyzed here is only -28

% between flights L1 and H2. Perhaps the aerosol number concentration can affect the amount of clustering that is occurring20

if there are more significant changes in the sizes of the droplet populations than those analyzed here. Such a case could

be comparing a highly polluted cloud in Houston (mean droplet diameter ∼11 µm) to a clean cloud over the ocean (mean

droplet diameter ∼35 µm, as was found for some Atlantic trade wind cumuli (Wang et al., 2009)). This would result in

droplet populations that have a large enough percent different in their size that evaporative effects may be severe enough to

lead to statistically different entrainment rates and droplet inhomogeneity. However, sampling clouds in two different types of25

boundary layers would result in vast differences in their evironmental characteristics. One way in which sampling could be

achieved would be to analyze cumuli that are exposed to a point source of pollution (such as volcanic gas emissions in Hawaii)

in the marine boundary layer and cumuli that lie outside the pollution plume. This would allow for the sampling of clouds

which are exposed to vast differences in Na but still share many of the same environmental characterisitcs.

6 Conclusions30

Flight data obtained from the CIRPAS Twin otter aircraft flown during the GoMACCS campaign near Houston, TX from

2006 were used to investigate 81 non–precipitating cumulus clouds, and one vertically developed cumulus cloud, to better

understand how droplet inhomogeneity changes as a function of cloud location (cloud edge vs. cloud center) and aerosol
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number concentration. Of the 22 flights flown, two low (L1, L2) and high (H1, H2) pollution flights were selected to analyze

how droplet inhomogeneity changed with aerosol number concentration.

It has been shown that (1) droplet inhomogeneity is enhanced at cloud edge as compared to cloud center, with a statistically

significant difference. Most of the inhomogeneity measured is shown to be real, physical variability (non-Poissonian). Statisti-

cally significant, enhanced inhomogeneity is also shown at cloud top as compared to the lower portion of the cloud. (2) There5

is no statistical difference at the 5 percent level for droplet inhomogeneity between low and high pollution clouds, at least for

the range of Na that was measured in this research. Although it was found that low pollution clouds do, on average, have a

larger amount of inhomogeneity in both the center and edge zones, this is due entirely to the L2 flight. (3) L1, H1, and H2 have

a statistically similar amount of inhomogeneity at the 5 percent level, while L2 has a larger, statistically significant amount of

inhomogeneity. It is proposed that cloud age plays an important role in the amount of inhomogeneity that is occurring, with10

decaying clouds demonstrating an enhanced amount of inhomogeneity as compared to developing clouds due to enhanced

entrainment of dry air, although this hypothesis needs more work as the buoyancy data is not in agreement for decaying clouds.

This work provides a good statistical base for analyzing how droplet inhomogeneity changes with cloud location and aerosol

number concentration. The conclusions from this work are drawn only from 81 clouds whose properties are highly variable

and influenced by environmental aspects that are not constrained by the observations, including the sub-cloud layer properties15

and the lifecycle stage of the clouds. This study examined the cloud properties at instantaneous moments, resulting in a mean

behavior averaged over each cloud and each flight. Further analysis and data from more clouds is required to confirm some

of the ideas that have been presented here. For example, if a field campaign takes place in the future for the purposes of

illuminating these results, constraints on the lifecycle stage of the observed clouds must be considered, along with the proper

instrumentation for turbulent analysis.20
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Figure 1. Top panels represent the clustering signature for the PCF, with the x–axis showing the temporal and spatial lag on a log–scale

and the y–axis representing the PCF (unitless). The top–left shows the PCF for data from a randomly selected portion of cloud covering a

temporal range of 2 seconds (∼120 m) with a population of 2168 droplets. The top–right panel shows simulated Poisson point data with the

same temporal scale and droplet population. The red line represents a rolling mean of five for the raw PCF values (shown in black). The

bottom panels represent short 25 m subsets (∼ 270 droplets) of the data used in generating the PCF curves. Each circle represents a cloud

droplet, and each line with vertical bars represents the distance traversed for each sampling volume, with each vertical bar corresponding to

a droplet count of 10. The green vertical line is used for reference, where the mean value of the PCF is obtained by taking PCF values to the

left of the green line.
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Figure 2. Shows L1 and L2 on the left and right, respectively. Flight altitude (blue) as a function of time is displayed in the top panels, with

droplet counts per second in black. The “n=” represents the number of clouds sampled for each flight after filtering. The bottom panels show

the Texas coast in grey with the location of Houston represented by the red dot. The flight path is outlined in red with the location of clouds

displayed by green dots.
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Figure 3. As in Figure 1, but for H1 and H2.
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Figure 4. Shows cloud droplet diameter (µm) on the x–axis and aerosol number concentration (cm−3) on the y–axis, with low pollution data

in green and high pollution data in gold. The corresponding density curves of the high and low pollution data are given on the outer margins

of the plot.
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Figure 5. PCF clustering signatures for L1 (top right), L2 (bottom left), H1 (top right), and H2 (bottom right) with spatial lag (m) on the

x–axis and PCF values (unitless) on the y–axis. Edge data is in blue and cloud center data is in red, with the envelopes representing the 85th

(top) and 15th (bottom) percent quantile values of the data. The mean PCF value for each case is represented by the middle line in each

envelope, where a bold mean line represents edge and center differences that are statistically significant.
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Figure 6. Histogram distributions of the inter–arrival distance (IAD) for droplet populations mesured in flight L1, with edge data in blue and

center data in red. Note that the main histogram is zoomed in to a value of 60 on the y–axis, with further analysis of the first bin (representing

a range from 0 to 0.60 m) below the main histogram. The boxplots in the top right represents the IAD data that is greater than or equal to the

0.998 quantile of the overall data sets for entrainment and center.
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Figure 7. Boxplots for the IAD data which is greater than or equal to the 0.998 quantile of the overall data sets for edge (blue) and center

(red), with L1, L2, H1, and H2 shown moving from left to right, respectively. The median value for each dataset is displayed within the

plot. Tickmarks occuring on the upper wiskers represent the raw data positions. Note that Panel L1 represents the same boxplot displayed in

Figure 6.
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Figure 8. Shows the cloud droplet size distribution in panel (a). Panel (b) gives the median droplet size along with the 5th and 95th percent

quantiles (red) of the droplet size distribution. Panel (c) shows LWC (blue), RH (red), and the mean PCF value (black). Panel (c) shows

vertical velocity. All variables are represented as a function of cloud normalized altitude.
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Figure 9. Panels (1a) and (1b): as in Figure 5, except for average low pollution PCF values (L1, L2) in Panel (1a) and average high pollution

PCF values (H1, H2) in Panel (1b). Panels (2a) and (2b): low pollution data in green and high pollution data in gold. Panel (2a) shows

envelopes that span the mean center PCF value (lower limit of the envelopes) to the mean edge PCF value (upper limit of the envelopes).

Panel (2b) gives the overall mean PCF for low and high pollution clouds.
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Figure 10. As in Panels (2a) and (2b) from Figure 9, except for the individual flights of L1 (dark green), L2 (light green), H1 (dark gold), and

H2 (light gold). Note that the envelopes in Panel (a) represents the range from the mean center inhomogeneity (lower limit of each envelope)

to the mean edge inhomogeneity (upper limit of each envelope).
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Figure 11. Box plots of L1, L2, H1, and H2, represented in that order on the x–axis, with Panels (a) through (f) representing vertical velocity

(m s−1), LWC (g m−3), cloud width (m), CDNC (cm−3), buoyancy (m s−3), and in–cloud RH (%), respectively. Red median lines represent

datasets that are statistically significant as compared to the L2 dataset. Each red dot in Panel (f) represents out–of–cloud RH.
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Table 1. Shows the flight information for 20 of the 22 flights that occurred during the GoMACCS campaign. Each flight corresponds to a

RF number, date, the number of clouds (after filtering, see text), the total aerosol number concentration (Na), and the accumulation mode

aerosol number concentration (Nacc). Values in parentheses represent the standard deviation.

RF Number Date Clouds Na cm−3 Nacc cm−3

1 8/21/06 1 NA NA

2 8/22/06 11 NA NA

3 8/23/06 9 2984 (588) 413 (66)

4 8/25/06 17 22667 (10672) 1797 (4184)

5 8/26/06 18 1304 (699) 290 (223)

6 8/27/06 0 NA NA

7 8/28/06 0 NA NA

9 8/29/06 28 3157 (1980) 360 (169)

11 8/31/06 37 3205 (650) 972 (214)

12 9/2/06 29 4768 (2826) 710 (169)

13 9/3/06 0 NA NA

14 9/4/06 14 2770 (758) 697 (126)

15 9/6/06 10 1427 (398) 465 (147)

16 9/7/06 32 3547 (966) 949 (306)

17 9/8/06 21 4824 (1806) 821 (154)

18 9/10/06 1 1396 (918) 943 (472)

19 9/11/06 27 6561 (5419) 1280 (4172)

20 9/13/06 0 NA NA

21 9/14/06 25 2230 (1157) 653 (276)

22 9/15/06 13 2323 (688) 436 (159)
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Table 2. A summary of cloud, flight, and environmental properties from the L1, L2, H1, H2, and Case flights. Note that CDNC stands for

cloud droplet number concentration, LWC stands for liquid water content, and Mean Drops (s−1) represents the mean number of drops

measured by the PDI per second. Standard deviation values are represented in parentheses.

Variable L1 L2 H1 H2 Case

Date 2006–Aug–26 2006–Sept–15 2006–Sept–02 2006–Sept–06 2006–Sept–10

Flight Number RF 5 RF 22 RF 12 RF 17 RF 18

UTC for Cloud Sampling 1447–1717 1654–1748 1806–2018 1832–2002 1633–1742

Clouds > 300 m in width 18 13 29 21 1

Min cloud base height (m) 672 1120 1457 1476 806

Max cloud top height (m) 2412 2101 2463 2451 3381

Cloud thickness (m) 1740 981 1007 976 2575

Cloud width (m) 700 (235) 520 (110) 850 (404) 861 (451) 943 (472)

Mean true air speed (m s−1) 61.2 (1.5) 59.9 (1.3) 62.7 (2.3) 63.0(2.3) 61.4 (2.2)

Mean CDNC (cm−3) 318 (163) 210 (141) 421 (255) 531(363) 472 (404)

Max CDNC (cm−3) 819 526 1059 1630 2342

Mean drops (s−1) 661 (448) 1016 (1037) 958 (895) 3300 (2704) 1679 (1441)

Cloud top LWC (g m−3) 0.97 (0.66) 0.55 (0.54) 0.47 (0.48) 0.60 (0.48) 0.45 (0.35))

Mean vertical velocity (m s−1) 1.81 (1.67) 1.16 (1.28) 2.34 (2.21) 1.61 (1.62) 0.35 (1.89)

Na (cm−3) 1304 (699) 2323 (688) 4768 (2826) 4824 (1806) 1396 (918)

Nacc (cm−3) 290 (223) 436 (159) 710 (169) 821 (154) 943 (472)

Environmental lapse rate (◦C km−1) 5.4 4.5 4.8 5.7 NA

Environmental RH (%) 77 96 74 86 NA

Table 3. Average values for low (L1, L2) and high (H1, H2) pollution clouds for select variables from Table 2

Variable Low High

Mean CDNC (cm−3) 264 476

Mean Drops (s−1) 839 2129

Na (cm−3) 1814 4796

Nacc (cm−3) 363 766

Cloud thickness (m) 1361 992

Cloud width (m) 610 856

Clouds > 300 m in width 31 (total) 50 (total)
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Table 4. Provides the mean PCF, 85th percent quantile and 15th percent quantile values for center data (on the left) and edge data (on the

right) for L1, L2, H1, and H2 in Figure 5, along with average low and high values from Figure 9

Center Data Edge Data

Flight Mean PCF Upper Quantile Lower Quantile Mean PCF Upper Quantile Lower Quantile

L1 0.18 0.36 0.02 0.49 0.89 0.09

L2 0.61 1.39 0.16 0.83 1.62 0.14

Avg. Low 0.39 0.88 0.09 0.66 1.26 0.11

H1 0.26 0.69 0.009 0.46 0.86 0.09

H2 0.26 0.65 0.02 0.57 1.01 0.18

Avg. High 0.27 0.67 0.01 0.52 0.93 0.14

Table 5. Provides the mean p–value and the percent of data that is statistically significant (for the first 60 PCF values) between edge and

center data for L1, L2, H1, and H2 in Figure 5 and for Average Low and High in Figure 9

Flight p–value % Significant

L1 5.9 · 10−3 100

L2 0.40 0

Avg. Low 0.01 100

H1 0.01 100

H2 3.5 · 10−4 100

Avg. High 3.1·10−5 100

Table 6. Provides the percentage of inhomogeneities that are significant and non–significant (as compared to a randomly distributed droplet

population) for center (C) and edge (E) data in L1, L2, H1, and H2.

Flight % Significant % Non–significant

L1 C 44.4 55.5

L1 E 61.1 38.9

L2 C 92.3 7.7

L2 E 76.9 23.1

H1 C 48.3 51.7

H1 E 58.6 41.4

H2 C 71.4 28.6

H2 E 97.6 2.4

34



Table 7. Gives values for vertical velocity (m s−1), RH (%), LWC (g m−3), the PCF, and the median drop size (µm), respectively, for each

normalized cloud height in Figure 8

Normalized height Vertical Velocity (m s−1) RH (%) LWC (g m−3) PCF Median drop size (µm)

0 0.91 100.38 0.07 0.76 8.29

0.1 0.84 99.28 0.24 0.77 12.32

0.2 0.49 96.46 0.52 0.40 15.29

0.3 0.71 98.46 0.59 0.71 15.85

0.4 0.16 99.43 0.54 0.81 16.43

0.5 0.36 98.19 0.41 0.41 14.23

0.6 -1.31 94.91 0.62 0.39 17.03

0.7 -1.22 91.83 0.98 0.32 19.67

0.8 -0.28 59.72 0.87 0.36 20.39

0.9 -3.52 38.43 0.41 1.10 20.37

1 -4.00 95.72 0.22 1.49 19.67

Table 8. Provides the mean p–value and the percent of data that is statistically significant (for the first 60 PCF values) between PCF functions

provided in Panel (b) of Figure 10.

Comparison p–value % Significant

L2–L1 2.2 · 10−3 100

L2–H1 1.3 · 10−3 100

L2–H2 2.2 · 10−2 100

L1–H1 0.86 0

L1–H2 0.21 0

H1–H2 0.19 0
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Table 9. Median values of vertical velocity (m s−1), LWC (g m−3), cloud width (m), CDNC (cm−3), buoyancy (m s−2), in–cloud RH and

out–of–cloud RH (%) from Figure 11.

Variable Median L1 L2 H1 H2

Vertical velocity (m s−1) 0.94 0.25 1.21 0.74

LWC (g m−3) 0.43 0.14 0.19 0.38

Cloud width (m) 765 480 690 631

CDNC (cm−3) 261 172 399 406

Buoyancy (m s−3) -0.00097 0.0081 -0.0031 -0.010

in-cloud RH 98.3 98.4 99.1 99.8

out–of–cloud RH 95.6 99.2 97.9 98.0

Table 10. Gives p–values between L2 and L1, L2 and H1, and L2 and H2 for in–cloud vertical velocity (m s−1), LWC (g m−3), RH (%),

CDNC (cm−3), cloud width (m), and in–cloud buoyancy (m s−2). Statistically significant values are presented in bold.

Comparison Vertical Velocity (m/s) LWC gm−3 RH (Percent) CDNC (cm−3) Width (m) Buoyancy (ms−2)

L2–L1 6.0 · 10−4 2.1 · 10−12 0.48 0.03 0.008 0.011

L2–H1 2.9 · 10−7 0.009 0.19 0.002 7.8 · 10−4 3.9 · 10−5

L2–H2 0.011 2.2 · 10−7 0.10 1.9 · 10−4 0.003 5.5 · 10−11

Table 11. Provides the medin value and spectral width (10th to 90th percent quantile range) of the drop size distribution, the altitude at

which measurements occured, and the cloud droplet number concentration (CDNC) for both the center and edge zone of cloud passages for

each of L1, L2, H1 and H2. Standard deviation values are given in parenthesis.

L1 L2 H1 H2

Variable Center Edge Center Edge Center Edge Center Edge

Median (µm) 13.7 13.4 12.7 11.7 11.0 11.4 10.9 10.7

Spectal Width (µm) 8.5 - 20.3 8.6 - 20.0 8.5 -18.5 8.0 - 17.4 7.1 - 15.4 7.0-15.5 6.8 - 14.7 6.6 - 14.8

CDNC (cm−3) 405 (393) 264 (232) 268 (341) 170 (169) 570 (613) 301 (289) 692 (790) 402 (423)

Altitude (m) 1577 (393) 1573 (385) 1673 (372) 1673 (369) 2146 (382) 2141 (380) 2137 (301) 2135 (296)
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