1 Supplementary Information for

- 2 Primary emissions versus secondary formation of fine particulate matter in the top
- 3 polluted city, Shijiazhuang, in North China
- 4 Ru-Jin Huang¹, Yichen Wang¹, Junji Cao¹, Chunshui Lin^{1,2}, Jing Duan¹, Qi Chen³, Yongjie Li⁴,
- 5 Yifang Gu¹, Jin Yan¹, Wei Xu^{1,2}, Roman Fröhlich⁵, Francesco Canonaco⁵, Carlo Bozzetti⁵,
- 6 Jurgita Ovadnevaite², Darius Ceburnis², Manjula R. Canagaratna⁶, John Jayne⁶, Douglas R.
- 7 Worsnop⁶, Imad El-Haddad⁵, André S. H. Prévôt⁵, Colin D. O'Dowd²
- 8 ¹Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and
- 9 Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an
 710061, China
- ²School of Physics and Centre for Climate and Air Pollution Studies, National University of
 Ireland Galway, Galway, Ireland
- ³State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
 Environmental Sciences and Engineering, Peking University, Beijing, China
- ⁴Department of Civil and Environmental Engineering, Faculty of Science and Technology,
- 16 University of Macau, Taipa, Macau, China
- ⁵Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerl
 and
- 18 and
- 19 ⁶Aerodyne Research, Inc., Billerica, MA, USA
- 20 Correspondence to: R.-J. Huang (rujin.huang@ieecas.cn)
- 21
- 22

2 Fig. S1. PMF profiles of OA sources for 4-, 5-, and 6-factor solutions.

,

Note: The resolved two secondary factors in the 6-factor solution, referred to as "OOA₁" and "OOA₂", have the similar contributions from oxygenated fragment-related m/z (m/z 44) and the strong correlation with each other ($R^2 = 0.72$). The sum of the contributions of OOA₁ and OOA₂ matches the OOA contribution from 5-factor solution ($R^2 = 0.92$ and slope = 1.1).

1 m/Z
2 Fig. S3. ME-2 profiles of OA sources. The COA profile is from that of Crippa et al. (2013), and the

- 3 HOA profile is from that of Ng et al. (2011b). The others are unconstrained factors.

Fig. S4. The relative contributions of OA factors to the m/z's.

Fig. S5. The maps of potential source contribution function (PSCF) analysis for BBOA, CCOA, and

3 00A.