
We thank the reviewers for their thoughtful comments, which we have addressed below. All page and line 
numbers refer to those in the revised manuscript.  Reviewer comments are in italics, our response is in 
plain text, and text in the revised manuscript is in blue. 
 
 
Response to Comments from Anonymous Referee #1 
 
1. The supplement provides code written in R programming language, which is open source and easily 
applicable. The example code includes instructions, but is not running because the authors do not provide 
the required inputs, i.e. a forward operator or the footprints. The argument that the input can also be 
created using open source software is weak from my point of view, because installing and running a 
complex open source model, which has its own requirements, is far more an obstable than running an 
example script with prepared inputs. I suggest to include the required input data as part of the 
supplement. I do not expect a full program, but a script that can reproduce some basic results. 
 
We include in the supplement an end-to-end worked example script with example data. 
 
 
2. From authors response: '7. Section 2.2 describes how the pseudo-observations are created. It seems 
that no transport error is considered in the noise (p. 4, ll. 29-31). However, transport errors are 
mentioned when describing the inversion methods (p. 6, ll. 18-20). Are transport errors included in the 
study? I think they should! Non-perfect transport is anticipated and accounted for in the inversion 
through R (page 7, line 4). Transport errors are not included in the pseudo-observation creation (page 5, 
line 1), as this error is related to the instrument characteristics (Table 1).' From my point of view the 
transport errors should also be included in the creation of synthetic measurements (cp. e.g. Michalak et 
al., 2004: A geostatistical approach to surface flux estimation of atmospheric trace gases; Miller et al., 
2014: Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions). 
In a real data scenario the mismatch between simulated and measured data is not limited to instrumental 
noise. The noise model also includes (transport) model errors. This aspect is important because the cross 
validation chooses a suitable weighting parameter for the inversion method based on the input data. A 
small noise (instrumental error only) on the input data results in a smaller optimal weighting parameter 
and an improved reconstruction. This approach is used in the study and likely produces results that are 
too optimistic. Estimation of the transport model error is a challenge by itsself but the assumption has 
already been made by the authors by the choice of the covariance matrix R. A higher level of noise 
(transport and instrumental error) forces the inversion with a larger weighting parameter and shows a 
reconstruction ability that is closer of what can be expected from (future) observation systems. The 
situation in such an approach is still optimistic because the noise has the same characteristics as 
anticipated by the covariance matrix R in the reconstruction method. If the intent of this study is to 
assume a perfect transport model because models may improve similar to observing systems the matrix R 
should respect the reduced transport error estimate. To me omitting the transport error reduces the value 
of the results signicantly. Such an assumption should be stated clearly in the abstract and the conclusion. 
 
We clarify that the same transport model was used for pseudo-observations and the inverse model. 
 
Page 6, Line 10. “We use the same matrix H for both pseudo-observation construction and the inversion.” 
 
We clarify that transport error is added and accounted through R.  
 
Page 7, Line 5. “The observational error covariance matrix R = (rij) adds and accounts for both instrument 
and model transport errors.” 
 



3. Page 4, line 20: I would not use the phrase 'dilution effect' and rather explain in half a sentence why 
the surface influence is smaller for column measurements. 
 
We change the text accordingly: 
 
Page 4, Line 20. “Column footprints are about an order of magnitude smaller than surface footprints 
because surface signal is weakened for receptors (e.g., satellites) with total column sensitivity.” 
 
4. Page 4, lines 26: In the definition of the footprint hi, i.e. hi = (dyi/dx)T , the variable x is already 
limited to the location of emitters and has dimension n. Thus, hi has dimension n. The authors continue: 
'We select the footprint information that corresponds to the locations of the n emitters so that hi is also a 
vector of n dimension.' To me this formulation seems a bit confusing. I suggest something like: 'hi is then 
a vector of dimension n with the selected footprint information that corresponds to the locations ...'. 
 
We thank the reviewer for the suggestion and update the text. 
 
Page 4, Line 28. “The vector hi is also a vector of n dimension.” 
 
 
5. Page 4, lines 30-32: The background b is assumed to be constant in line 30. Implicitly, it is assumed to 
be zero in line 32. This discrepancy should be fixed. 
 
We fix the discrepancy: 
 
Page 4, Line 32. “ytrue = Hx + b” 
 
 
6. Decide for one of the spellings: 'L1-regularization' or 'L1 regularization'. Both versions are used 
throughout the manuscript. 
 
We decide on L1 regularization and update accordingly in the manuscript. 
 
 
7. Page 6, line 13: I recommend using '(e.g. Hansen, 2010)' instead of '(Hansen, 2010)' , because it is just 
one of many possible sources. 
 
We add this caveat: 
 
Page 6, Line 14. “(e.g., Hansen, 2010)” 
 
 
8. Page 6, line 29: 'Evgeniou et al., 2000' does not appear in the literature list. Should it be replaced with 
'Hansen, 2010' or something from the statistical literature? 
 
We thank the reviewer for catching this error and include the correct citation to the text. 
 
Page 13, Line 16. “Evgeniou, T., Pontil, M. and Poggio, T.: Regularization networks and support vector 
machines. Advances in Computational Mathematics, 13, 1, https://doi.org/10.1023/A:1018946025316, 
2000.” 
 
 



9. Page 1, line 11 and page 11, lines 12-13.: As pointed out in Referee Comment #1 oil fields with much 
higher well densities exist. Since most of the analysis is carried out using the 100 emitter scenario, I am 
not convinced that such fields should be called dense (e.g. 'a high density of wells'). Are they dense for a 
particular type of gas fields (e.g. fracking)? Then, this should be specified. 
 
We change the language describing the characterization of 100-emitter fields: 
 
Page 2, Line 29. “Given a dense population of production sites…” 
 
Page 10, Line 19. “of high-mode emitters in dense emission fields of 100+ wells.” 
 
Page 11, Line 13. “emitters among a dense field of individual point sources.” 
 
We continue to characterize 500-emitter fields as dense as they match the well density of the Barnett 
Shale (Lyon et al., 2015). 
 
10. Figure 5: An axis break at the y-axis could be useful. Including the thresholds is a great idea to 
vizualize the concept of detecting high-mode emissions. Which value of S is used or the threshold? Maybe 
the uncertainties in the threshold by varying S could be included in the figure, too. 
 
We clarify in the caption the S threshold used. 
 
Figure 5 (caption): “Dashed lines represent the thresholds to classify an emitter as high-mode, determined 
either from the distribution 𝐱" (S = 2) or from a fixed prior value (here 40 kg h-1).” 
 
11. Figure 9: Why is the uncertainty from the threshold increasing for a larger number of surface sites for 
the next-generation instrument? 
 
We add a short discussion of this fact in the text: 
 
Page 11, Line 2. “The already successful next-generation instrument shows no benefit from added surface 
sites, and the uncertainty increases slightly with the number of surface sites. This increase is due to 
imperfect accounting of correlated error between satellite and surface measurements.” 
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Abstract. Methane emissions from oil/gas fields originate from a large number of relatively small and densely clustered point 

sources. A small fraction of high-mode emitters can make a large contribution to the total methane emission. Here we conduct 

observation system simulation experiments (OSSEs) to examine the potential of recently launched or planned satellites to 

detect and locate these high-mode emitters through measurements of atmospheric methane columns. We simulate atmospheric 

methane over a generic oil/gas field (20-500 production sites of different size categories in a 50 × 50 km2 domain) for a 1-15 

week period using the WRF-STILT meteorological model with 1.3 × 1.3 km2 horizontal resolution. The simulations consider 

many random realizations for the occurrence and distribution of high-mode emitters in the field by sampling bi-modal 

probability density functions (pdfs) of emissions from individual sites. The atmospheric methane fields for each realization are 

observed virtually with different satellite and surface observing configurations. Column methane enhancements observed from 

satellites are small relative to instrument precision, even for high-mode emitters, so an inverse analysis is necessary. We 20 

compare L1 and L2 regularizations and show that L1 regularization effectively provides sparse solutions for a bi-modally 

distributed variable and enables the retrieval of high-mode emitters. We find that the recently launched TROPOMI instrument 

(low Earth orbit, 7 × 7 km2 nadir pixels, daily return time) and the planned GeoCARB instrument (geostationary orbit, 2.7 × 

3.0 km2 pixels, 2× or 4×/day return time) are successful (>80% detection rate, <20% false alarm rate) at locating high-emitting 

sources for fields of 20-50 emitters within the 50 × 50 km2 domain as long as skies are clear. They are unsuccessful for denser 25 

fields. GeoCARB does not benefit significantly from more frequent observations (4×/day vs. 2×/day) because of temporal 

error correlation in the inversion, unless under partly cloudy conditions where more frequent observation increases the 

probability of clear sky. It becomes marginally successful when allowing a 5-km error tolerance for localization. A next-

generation geostationary satellite instrument with 1.3 × 1.3 km2 pixels, hourly return time, and 1 ppb precision can successfully 

detect and locate the high-mode emitters for a dense field with up to 500 sites in the 50 × 50 km2 domain. The capabilities of 30 

TROPOMI and GeoCARB can be usefully augmented with a surface air observation network of 5-20 sites, and in turn the 

satellite instruments increase the detection capability that can be achieved from the surface sites alone. 



2 
 

1 Introduction 

Anthropogenic methane emissions from oil/gas fields originate from a large number of relatively small and densely clustered 

point sources (Allen et al., 2013). For example, the Barnett Shale in Texas has over 20000 well pads spread over a 300 × 300 

km2 domain, contributing 40% of total oil/gas emissions from the region (Lyon et al., 2015).  It has been estimated that 7% of 

the wells contribute 50% of total well emissions (Rella et al., 2015; Zavala-Araiza et al., 2015). Identifying such high-emitting 5 

wells is of both economic and environmental interest. We present here observing system simulation experiments (OSSEs) to 

examine the potential of using satellite observations of atmospheric methane for this purpose.  

Satellites measure backscattered solar radiation in the shortwave infrared (SWIR) from which atmospheric columns 

of methane can be retrieved with near uniform sensitivity down to the surface under clear-sky conditions (Jacob et al., 2016). 

The satellite record for SWIR methane began with the SCIAMACHY instrument (2003-2012; Frankenberg et al., 2005), which 10 

provided coarse resolution measurements (30 x 60 km2 in nadir). The currently operating GOSAT instrument (2009-; Kuze et 

al., 2016) has finer resolution (10-km diameter pixels) but sparse coverage (individual pixels 250 km apart). The TROPOMI 

instrument launched in October 2017 provides complete daily coverage at 7 × 7 km2 nadir resolution (Hu et al., 2018). The 

geostationary GeoCARB instrument, to be launched in the early 2020s, is currently planned to provide 2.7 × 3 km2 pixel 

resolution with a return time that may range from one to four times per day (Polonsky et al., 2014; O’Brien et al., 2016). Other 15 

geostationary methane satellite missions have been proposed with various combinations of more frequent coverage, finer pixel 

resolution, and higher instrument precision (Fishman et al., 2012; Butz et al., 2015; Xi et al., 2015; Propp et al., 2017).  

A number of studies have examined the value of satellite observations for quantifying methane sources. Inverse 

analyses of SCIAMACHY and GOSAT data have focused on quantifying emissions at ~100 km regional scales (Bergamaschi 

et al., 2013; Wecht et al., 2014a; Alexe et al., 2015; Turner et al., 2015).  OSSEs have shown the potential for TROPOMI and 20 

GeoCARB to effectively constrain emissions at the 25-100 km scale without the multiyear averaging required by 

SCIAMACHY and GOSAT (Wecht et al., 2014b; Sheng et al., 2018a). Other OSSEs have examined the potential for satellites 

to quantify large point sources from plume observations (Buchwitz et al., 2013; Rayner et al., 2014; Varon et al., 2018). A 

recent study by Turner et al. (2018) evaluated the capability of TROPOMI and GeoCARB to quantify emissions in the Barnett 

Shale down to the kilometer scale for a 1-week observing period. They found that GeoCARB should have some capability for 25 

constant sources over a 1-week period but not for transient sources. Hase et al. (2017) simulated surface and aircraft pseudo-

observations over North America and used them to constrain North American emissions at 1° × 1° resolution. They found that 

sparse optimization better constrained local methane hotspots than the standard Bayesian approach.  

Here we target a different problem. Given a population of production sites (wells) in an oil/gas field, can satellites 

localize high-mode emitters to enable corrective action? In this problem, quantifying emissions is not as important as 30 

identification of the high-mode emitters. The location of the individual point sources is known, but their mode of emission 

(normal low-mode or high-mode) is unknown. Once a well starts emitting in the high mode, it continues doing so until 

corrective action is taken. Satellites offer an attractive monitoring approach for identifying high-mode emitters but their 
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capability may be limited by return frequency, cloud cover, pixel resolution, error in the atmospheric transport model needed 

to relate the plume to the location of emission, and limitations in the inverse method for identifying sparse high-mode sources. 

Here we will evaluate the potential of different satellite observing configurations and inverse methods to address this problem 

with application to TROPOMI, GeoCARB, and finer-resolution geostationary data. We will also examine whether the 

information from satellites can be usefully complemented with a supporting network of surface observations. 5 

 

2 Observing System Simulation Experiment 

We consider a hypothetical oil/gas field of dimension 50 × 50 km2 with 20, 50, 100, or 500 randomly placed production sites 

(wells), corresponding to site densities of 0.008 km-2, 0.02 km-2, 0.04 km-2, and 0.2 km-2, respectively. The latter case 

corresponds to the average site density in the Barnett Shale. We create a large ensemble of emission scenarios in each case 10 

where different random subsets of sites of different production size categories (small: 10-100 million cubic feet per day (Mcf/d) 

where 1 Mcf/d = 0.028 Mm3/d; medium: 100-1000 Mcf/d; large: 1000+ Mcf/d) are in the high-emission mode, and we simulate 

the resulting atmospheric methane concentration fields with the WRF meteorological model at 1.3 × 1.3 km2 resolution. We 

then sample this pseudo-atmosphere with different satellite and surface observing configurations and apply different inverse 

methods to detect the high emitters. Detection success is evaluated for each observing configuration and inverse method using 15 

statistics for the ensemble of emission scenarios.  We describe in this section the different elements of the OSSE.  

2.1 Constructing an ensemble of emission fields 

Production sites within the 50 × 50 km2 domain are randomly placed on the 1.3 × 1.3 km2 WRF model grid, with at most one 

site per grid cell. Emission statistics for the sites are based on observations from the Barnett Shale Coordinated Campaign 

(Lyon et al. 2015). For each scenario we randomly assign a production size category to each site with 23% of the sites as small, 20 

62% as medium, and 15% as large (Rella et al., 2015). We then assign an emission rate for each site by randomly sampling 

the bi-modal probability density functions (pdfs) describing low-mode emissions and high-mode emissions for each size 

category (Lan et al., 2015; Rella et al., 2015; Yacovitch et al., 2015). We assume no other sources in the domain. 

Figure 1 shows the pdfs of methane emissions for each production site size category. We flag production sites to be 

in the high-emission mode if they exceed an emission threshold of 40 kg h-1 (axis break in Figure 1), which corresponds on 25 

average to 5% of all the sites. High-mode emissions from small facilities are much lower, centered around 24 kg h-1, and would 

be difficult to distinguish from the normal (low) emission mode. Thus we do not attempt to detect them as high-mode emitters. 

Figure 2 shows a sample realization of the oil/gas field with 24 small production sites, 67 medium sites, and 9 large 

sites (100 total) within the 50 × 50 km2 domain. In this realization there are five sites in the high-emission mode. We generate 
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500 emission scenarios in the same fashion as Figure 2 by randomly assigning size categories for each site (small, medium, 

large) and randomly sampling the emission pdfs from Figure 1. 

2.2 Constructing pseudo-observations of atmospheric methane 

We use the meteorological simulation previously generated by Turner et al. (2018) for a 1-week period (October 19-25, 2013) 

in the Barnett Shale. This simulation applied the Weather Research and Forecasting Model (WRF; Skamarock et al., 2008) at 5 

1.3 km horizontal resolution to drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Nehrkorn et al., 

2010). STILT is a receptor-oriented Lagrangian particle dispersion model that defines the source footprints for individual 

atmospheric observations. Turner et al. (2018) applied it to generate 1.3 × 1.3 km2 hourly footprints for any daytime surface 

or atmospheric column observation in a 70 × 70 km2 domain. Footprints for each column were obtained by releasing and 

tracking back in time 100 particles from vertical levels centered at 28 m, 97 m, 190 m, 300 m above ground, and 8 additional 10 

levels up to 14 km altitude spaced evenly on a pressure grid. The column footprints were weighted with a typical near-uniform 

SWIR averaging kernel for satellite observations (Worden et al., 2015). Surface observations are taken in the lowest model 

layer (centered at 28 m above ground) and the corresponding footprints are obtained by releasing and tracking back in time 

100 particles at the observation location and time. We use the ensemble of footprints generated by Turner et al. (2018) and add 

to it hourly footprints for surface observations at night. The 70 × 70 km2 observing domain encompasses our 50 × 50 km2 15 

oil/gas field plus 10 km outside the boundaries (Figure 2) to account for plume transport. 

The 70 × 70 km2 archive of WRF-STILT footprints allows us to immediately compute the time-dependent methane 

concentration field associated with any emission scenario. Figure 3 shows a sample footprint, expressing the sensitivity of 

atmospheric concentrations at a given location and time i to the emission field upwind. Column footprints are about an order 

of magnitude smaller than surface footprints because surface signal is weakened for receptors (e.g., satellites) with total column 20 

sensitivity. Taking the footprints to represent the true atmospheric transport relating emissions to atmospheric concentrations 

for that location and time, we can combine them with any realization of our emission field (Section 2.1) to generate the true 

time-dependent methane concentrations in the domain to be sampled by the instruments. 

Satellite observations of methane column concentrations are conventionally expressed in unit of dry column mean 

mixing ratio (ppb), which is the ratio of the vertical column density of methane to the vertical column density of dry air (Jacob 25 

et al., 2016). The footprint for location and time i is mathematically represented as hi = (∂yi /∂x)T (units ppb µmol-1 m2 s ) 

where yi is the methane concentration (ppb) for that location and time, and x (µmol m-2 s-1) is a vector of dimension n describing 

the emission field for the n emitters in the domain. The vector hi is also a vector of n dimension. The true atmospheric 

concentration can be immediately constructed for any emission field x as yi = hi • x + b, where • denotes the scalar product 

and b is a background assumed here to be constant.  30 

A given methane observing configuration makes m observations of the domain over the 1-week simulation period. 

The true methane concentrations for that observation ensemble can be assembled as an m-dimensional vector ytrue = Hx + b 
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where H = ∂ytrue/∂x is the m ´ n Jacobian matrix of footprints with rows hiT. The pseudo-observations are then generated as y 

= ytrue + σε where σ is the instrument precision (one standard deviation) and the vector ε is a random realization of Gaussian 

noise with mean value of zero and standard deviation of unity for each vector element. SWIR instruments may also suffer from 

systematic errors but we do not account for those here in the absence of information. The largest source of systematic error on 

our scale would likely be the inhomogeneity in surface reflectivity (Pfister et al., 2005).  5 

The mean daytime 10 m horizontal wind speed inside the observing domain during the simulated week is 5.4 m/s. 

Stronger winds could further dilute plumes within an observing domain, making the ability for satellite detection of emitters 

more difficult; on the other hand, the model transport error is less for stronger winds (Varon et al., 2018).  

 

2.3 Satellite and surface observing configurations 10 

Table 1 describes the different satellite observing configurations evaluated in this work including TROPOMI, GeoCARB with 

2 or 4 return times per day, and an aspirational next-generation geostationary instrument with 1.3 × 1.3 km2 pixel resolution, 

1 ppb precision, and hourly return frequency between 8 and 17 local time (LT). Successful methane retrievals from satellites 

require clear sky. The probability of clear sky in a partly cloudy domain depends greatly on pixel size (Remer et al., 2012). 

Results for a partly cloudy condition would depend on the particular cloud configuration and would be difficult to generalize.  15 

Here we assume clear-sky conditions to avoid this complication, but the detection probability for high-mode emitters should 

then be viewed as an upper limit. In particular, it should be recognized that no detection from satellite is possible for a cloudy 

domain.  

We also wish to determine the benefit of a well-positioned surface air monitoring network for supplementing the 

satellite observations. Assume that we have M fixed monitoring instruments to deploy measuring surface air methane 20 

concentrations in situ. We want to place them in a configuration that maximizes the information that they would provide, 

assuming an isotropic wind for generality. A trivial solution would be to place an instrument at each production site, in which 

case the monitoring problem would be fully solved, but this solution may not be practical for a large number of production 

sites. Given a known spatial distribution of emitters (the locations of the production sites), we use the k-means spatial clustering 

approach (Hartigan and Wong, 1979) to select monitoring site locations minimizing the distances to emitter locations. Figure 25 

2 shows the selected locations for five surface monitoring sites. We assume that these sites report hourly data with 1 ppb 

precision and that the background concentration in surface air is constant, consistent with the assumption made for satellite 

observations. A variable background would complicate the problem but could be retrieved as part of the inversion (Wecht et 

al., 2014b).  

An important consideration in the interpretation of satellite observations is that methane column enhancements from 30 

individual point sources are typically small relative to instrument precision, even in the high-emitting mode (Jacob et al., 2016; 

Varon et al., 2018). Figure 4 shows the pixel-resolved distribution of atmospheric methane column enhancements above the 

background for a single pass of the different satellite instruments sampling the emission field of Figure 2. The enhancements 
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are less than 1 ppb even for 1.3 × 1.3 km2 pixels and are weaker at coarser pixel resolution. This is less than the single-scene 

precision of the satellite instruments (Table 1). Successful detection of high-mode emitters thus requires the sampling of many 

pixels, across the plume and/or through repeated sampling, to reduce the noise. This is less of an issue for surface air 

measurements, where methane enhancements are an order of magnitude higher (Figure 3). On the other hand, surface 

monitoring sites are spatially sparse. For both satellite and surface air observations, a formal inverse analysis of the ensemble 5 

of atmospheric observations accounting for plume transport is required for detection of the high-mode emitters.    

 

2.4 Inverse methods  

Given a set of observations y and Jacobian matrix H, we need an inverse method to determine the best solution 𝐱" of the 

emission field x at predetermined locations. We use the same matrix H for both pseudo-observation construction and the 10 

inversion. The inversion should be able to detect the small fraction of sources in the high-emitting mode, with detection being 

more important than quantification. This is known as a sparse-solution problem, where most elements of the emission field x 

are very small (for which an optimized value of zero would be acceptable), and a few of the elements are relatively large. We 

use regularized least squares regression (e.g., Hansen, 2010), also known as Tikhonov Regularization, where the solution is 

found by minimizing the cost function J(x),  15 

 

𝐽(𝐱) = (𝐇𝐱 − 𝐲)*𝐑,-(𝐇𝐱− 𝐲) + 𝜆‖𝐱‖1
2 							(1) 

 

Here the first term on the right hand side represents the ordinary least-squares cost function, such that the solution would 

minimize the residuals between the prediction Hx and the observations weighted by the observational error covariance matrix 20 

R. The second term represents an adjustable parameter λ and the L-norm of x, which is a measure of the magnitude of the 

vector x defined as the following:  

‖𝑥‖1 = 		 6Σ89-: |𝑥8|1
< 					(2) 

 

Adding this second term in the cost function penalizes the total magnitude of x in the solution, which reduces overfitting to 25 

noise and regularizes the solution. When L = 1 and p = 1, this is known as L1 regularization or the least absolute shrinkage and 

selection operator (LASSO; Tibshirani, 1996), and Equation 1 takes the form: 

 

𝐽(𝐱) = (𝐇𝐱 − 𝐲)*𝐑,-(𝐇𝐱 − 𝐲) + 𝜆>|𝑥8|
:

89-

			(3) 

When L = 2 and p = 2, Equation 1 takes the form known as L2-regularization or Ridge Regression (Evgeniou et al., 2000): 30 
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𝐽(𝐱) = (𝐇𝐱 − 𝐲)*𝐑,-(𝐇𝐱− 𝐲) + 𝜆𝐱@𝐱					(4) 

 

Equation 4 is equivalent to the standard Bayesian optimization (Rodgers, 2000) assuming Gaussian distributions, a prior 

emission estimate of zero, and uniform prior error variance of λ-1.  

The observational error covariance matrix R = (rij) adds and accounts for both instrument and model transport errors. 5 

Representation errors are negligible due to the model grid resolution being finer or the same resolution as the instrument pixels 

(Turner et al., 2018). The diagonal terms add the corresponding error variances in quadrature:  

 

𝑟CC = 	𝜎EF +	𝜎GF 	(5a) 

 10 

where σI is the instrument error standard deviation as given by the precision in Table 1, and σM is the model transport error 

standard deviation previously estimated to be 4 ppb for methane columns (Turner et al., 2018). Given the order of magnitude 

difference in sensitivity between satellite columns and surface measurements (Figure 3), we assume σM to be 40 ppb for surface 

measurements. Off-diagonal terms account for model transport error correlation between different observations. Following 

Turner et al. (2018), we assume a temporal error correlation length scale (τ) of 2 hours and a spatial error correlation length 15 

scale (ℓ) of 40 km:  

𝑟CJ =	𝜎GF 	exp N−
𝑑
ℓQ exp N−

𝑡
𝜏Q 				for	𝑖	 ≠ 𝑗	(5b) 

 

where d and t are the distance and elapsed time between observations yi and yj. 

Additional model transport error correlation applies when combining satellite and surface air observations in the 20 

inversion, since the footprints can be similar (Figure 3). To quantify this error correlation, we use the work of Sheng et al. 

(2018b), who jointly compared column (TCCON) and surface air (NOAA) measurements of methane at Lamont, Oklahoma 

with GEOS-Chem transport model simulations. By correlating the model-observation differences for coincident column (i) 

and surface air (j) observations we find a model transport error correlation coefficient cor(i, j) = 0.65 that we apply to the 

corresponding off-diagonal terms: 25 

𝑟CJ = 	cor(𝑖, 𝑗)	𝜎GC𝜎GJexpN−
𝑑
ℓQ exp N−

𝑡
𝜏Q		(5c) 

 

Inverse solutions derived using L1 regularization produce sparser solutions than the L2 counterpart (Tibshirani, 1996), 

which is desirable for our application and has previously been shown to produce good results for constraining methane hotspots 

(Hase et al. 2017). Here we will perform both L1 and L2 inversions and compare the results.  Minimization of J(x) in Equations 30 

3 and 4 to obtain the solution 𝐱" corresponding to dJ/dx = 0 is done numerically using coordinate gradient descent (Friedman 

et al., 2009). The regularization parameter l is chosen so that the mismatch between model and observations is small, but not 
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so small that the solution 𝐱" is overfit to random noise, which would occur when l = 0. We use the process of 5-fold cross-

validation to select an optimal l value (Arlot and Celisse, 2010). This process randomly samples H and y into a training and 

validation set. Minimization of J is done on the training set using an array of l values. The process is repeated five times, and 

the value of l that on average minimizes the residual error on the validation set is retained. 

Figure 5 shows the distribution 𝐱" from a single realization of emissions, GeoCARB 4×/day pseudo-observations, and 5 

both L1 and L2 regularization. In this simulation, L1 regularization enables the retrieval of high-mode emitters while L2 

regularization is more restrictive in allowing excursions from the low-mode mean. 

 

2.5 Detection of high-emission modes  

Success in the detection of high-mode emitters from the distribution of 𝐱" can be determined by comparison to the actual 10 

occurrence and location of these emitters as defined in Section 2.1 and illustrated in Figure 2. In a real-world application we 

would not know the actual pdfs of emissions (Figure 1), so we need to diagnose the occurrence of high-mode emitters on the 

basis of anomalies in the distribution of 𝐱". We define high-mode elements as being more than S standard deviations from the 

mean of the 𝐱" distribution, where S is varied in the 1.65-2.5 range to examine the associated sensitivity. Using anomaly 

detection on 𝐱" instead of a fixed threshold (e.g., 40 kg h-1) allows for generalization to other emission fields where the mean 15 

normal and high modes may be different than the Barnett Shale. Figure 5 shows thresholds for classifying high-mode emitters 

using anomaly detection and a fixed value of 40 kg h-1. The L1 threshold is larger than the L2 threshold, but smaller than the 

40 kg h-1. Had the fixed threshold been used, some high-mode emitters (relative to 𝐱") would have not been classified as such. 

The detection of high-mode emitters by the inversion is graded into four categories: 1) true positives (TP), or the 

inversion correctly identifying the locations of the high-mode emitters, 2) true negatives (TN), or the inversion correctly 20 

identifying the locations of the low-mode emitters, 3) false positives (FP), or the inversion signaling a high-mode emitter when 

in reality the emitter is in the low mode, and 4) false negatives (FN), or the inversion signaling a low-mode emitter when in 

reality the emitter is in the high mode.  

We compile these grades into three overall performance metrics (Brasseur and Jacob, 2017). The probability of 

detection (POD) is defined as the ratio of true positives to true positives plus false negatives: 25 

𝑃𝑂𝐷	 =	
Σ	𝑇𝑃

Σ	𝑇𝑃 + Σ	𝐹𝑁			(6) 

This metric measures the ability to detect high-mode emitters. The false alarm ratio (FAR) is defined as the ratio of false 

positives to false positives plus true positives: 

𝐹𝐴𝑅	 = 	
Σ	𝐹𝑃

Σ	𝑇𝑃 + Σ	𝐹𝑃		(7) 

This metric measures the reliability of high-mode emission occurrences detected by the inversion.   30 
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A perfect observing system would have a POD of one and a FAR of zero. Here we define a successful observing system as 

achieving a POD of 0.8 (80%) and a FAR of 0.2 (20%). These criteria, although somewhat arbitrary, allow us to succinctly 

summarize the success of each observing configuration.  

 

We combine the POD and FAR metrics into one overall performance metric called the Equitable Threat Score (ETS; Wang, 5 

2014): 

𝐸𝑇𝑆 = 		
Σ	𝑇𝑃 − 	𝛼

Σ	𝑇𝑃 + Σ	𝐹𝑃 + 	Σ	𝐹𝑁 − 	𝛼			(8) 

where α is the number of TP predictions that are expected by chance: 

𝛼 =		
(Σ	𝑇𝑃 + 	Σ	𝐹𝑃)(Σ	𝑇𝑃 + 	Σ	𝐹𝑁)
Σ	𝑇𝑃 + 	Σ	𝐹𝑃 + 	Σ	𝐹𝑁	 + 	Σ	𝑇𝑁 =	

1
𝑁
Σ	𝐹𝑃
𝐹𝐴𝑅

Σ	𝑇𝑃
𝑃𝑂𝐷			(9) 

 10 

and N = Σ	𝑇𝑃 + 	Σ	𝐹𝑃 + 	Σ	𝐹𝑁	 + 	Σ	𝑇𝑁. The ETS measures how well the high-mode emitters detected by the observing 

system correspond to the actual occurrences, beyond what could be achieved by chance. A perfect observing system has an 

ETS of one, and a system performing worse than chance would have a negative ETS.  An observing system with POD of 0.8 

and FAR of 0.2 has an ETS of 0.65 for a field where 5% of emitters are in the high mode. We take this as our ETS criterion 

for successful detection. 15 

 

3 Results and discussion 

3.1 Performance of different satellite and surface observing systems 

We begin by testing the ability of each satellite configuration of Table 1 to detect high-mode emitters from fields of 20 to 500 

randomly scattered production sites within the 50×50 km2 domain. For a given number of sites, we conduct each test for 500 20 

different realizations of the emission field assigning randomly each production site to a size category (small, medium, large) 

and sampling randomly the pdfs of Figure 1. Emitter locations are fixed across all 500 realizations. Figure 6 shows the POD, 

FAR, and ETS results for a field of 100 emitters and compares the results of L1 and L2 regularizations. The values represent 

the mean results for the ensemble of 500 realizations, and the error bars represent the range of results when the high-mode 

detection threshold S is varied from 1.65 to 2.5. We find that L1 regularization provides better predictions for all cases. This is 25 

especially the case for the next-generation satellite, where L1 regularization produces a POD of 0.85 with a near-perfect FAR 

of 0.04. L2-regularization is more conducive to spreading emissions across a broader array of state vector elements. The better 

performance of L1 regularization is also observed for other site densities (not shown). We use L1 regularization in what follows. 

Figure 6 also compares the performances of the satellite observing systems to those of an ensemble of 5-20 optimally 

placed (k-means) surface sites. We find that the surface observing system performs comparably to GeoCARB. We explore 30 

combining satellite and surface observations into a single prediction in Section 3.3.   
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 The results from Figure 6 show that TROPOMI and GeoCARB are unsuccessful in locating high-mode emitters for 

a  field of 100 production sites (0.04 sites km-2). We examine the sensitivity of this result to site density. Figure 7 compares 

the detection results for fields of 20, 50, 100, and 500 production sites within the 50×50 km2 domain. For a field of only 20 

emitters, TROPOMI is successful and GeoCARB produces near perfect results. For a field of 50 emitters, TROPOMI is no 

longer successful, but GeoCARB is still marginally successful due to finer pixel resolution and higher instrument precision. 5 

We find in general that GeoCARB gains little by sampling four times a day (4×/day) vs. 2×/day. This is due to the temporal 

model error correlation between successive GeoCARB observations. Accounting for cloud cover would show more benefit 

from 4×/day observations, since a higher frequency of observations allows a greater chance of sampling clear-sky conditions, 

although the benefit depends on the cloud persistence time scale (Sheng et al., 2018a).  

The ability of a satellite observing configuration to localize high-mode emitters thus depends not only on repeat time, 10 

resolution, precision, and cloud cover, but also on the density of emitters within a field. For the high-density fields of 100 and 

500 production sites considered here (0.04 sites km-2 and 0.2 sites km-2), we find that only the next-generation satellite 

instrument is successful. Actual fields can be even denser but we are limited in our investigation by the 1.3 × 1.3 km2 resolution 

of the WRF simulation. Detecting individual high-mode emitters in denser fields would require geostationary satellite 

observations with sub-km pixels but this is beyond the scope of current proposals. 15 

 

3.2 Spatial tolerance in detection of high-mode emitters 

The results from Figure 7 are somewhat pessimistic regarding the ability of near-future satellite observations (TROPOMI and 

GeoCARB) to detect the locations of high-mode emitters in fields of 100+ wells. It may be acceptable to relax the localization 

criterion. If the observing system detects a false positive that is sufficiently close to the actual location of a high-mode emitter, 20 

then the detection may still have some value. In our OSSE setup, localization is effectively limited by the 1.3 × 1.3 km2 grid 

resolution of the WRF simulation. To examine the sensitivity to localization, we repeated the analysis allowing for 3-5 km 

tolerance of false predictions. Figure 8 shows the results for a field of 100 emitters. We find that spatial tolerance significantly 

improves the performance of GeoCARB but still falls short of our success criterion. The FAR decreases below 0.2 for 3 km 

tolerance and below 0.1 for 5 km tolerance, but the POD only improves to 0.7 and thus the ETS remains below 0.65.  25 

 

3.3 Combining satellite and surface observations 

We saw in Section 3.1 that only the next-generation satellite instrument can successfully detect high-mode emitters when the 

site density is high. Here we examine if a combination of satellite and surface observations can improve detection, i.e., if 

TROPOMI and GeoCARB could benefit from an in situ supporting surface network and vice versa. This is addressed with a 30 

joint inversion of the satellite and surface observations, taking into account the error correlation between the two as described 

in Section 2.4. 
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Figure 9 shows the results for a field of 100 emitters.  The already successful next-generation instrument shows no 

benefit from added surface sites, and the uncertainty increases slightly with the number surface sites. This increase is due to 

imperfect accounting of correlated error between satellite and surface measurements. On the other hand, the surface sites 

provide greatly added value to TROPOMI and GeoCARB. Adding 10-20 surface sites enables near-successful detection of the 

high-mode emitters. At the same time, TROPOMI and GeoCARB data add significantly to the performance of a surface 5 

observing system alone by providing observations with more spatial coverage. We find that TROPOMI and GeoCARB 

perform similarly when added to surface sites, and that their main benefit is to decrease the FAR. Accounting for clouds would 

show more benefit for GeoCARB because the finer pixels allow for more frequent clear-sky observations (Sheng et al., 2018a).   

 

4 Conclusions 10 

We performed observing system simulation experiments (OSSEs) to test the ability of near-future satellite instruments 

measuring atmospheric methane (TROPOMI, GeoCARB, next-generation geostationary) to detect high-mode point source 

emitters among a field of individual point sources, alone or supported by a surface monitoring network.  We focused on the 

practical problem of detecting high-mode emitters in an oil/gas production field with a high density of wells. Remote detection 

from satellites, combined with operator knowledge, could supplement on-site leak detection and repair (LDAR) programs to 15 

identify and fix unexpected high emitters. Our results in these meteorological conditions can be summarized usefully in terms 

of answers to questions that a field manager might have:  

 

Can I rely on satellite data alone to detect high-mode emitters among the production sites in my oil/gas field? 

We find that TROPOMI and GeoCARB can detect high-mode emitters as long as the density of point sources is relatively 20 

small (20 sites within our 50 × 50 km2 domain, or a density of 0.008 km-2) and skies are clear. GeoCARB shows little difference 

in success rate (Equitable Threat Score (ETS) > 0.65) for 2 or 4 overpasses per day. GeoCARB is marginally successful for 

50 sites (0.02 km-2) but fails for 100 sites (0.04 km-2). A next-generation geostationary satellite instrument with ~1-km pixel 

resolution and hourly return time would deliver precise detection in dense fields up to 500 sites (0.2 km-2).  Allowing for a 5-

km spatial error tolerance for localization, we find that GeoCARB comes close to successful detection in a field of 100 sites.  25 

 

How should I analyze the satellite observations to detect high-mode emitters? 

Detection of high-mode emitters from satellite observations is not a simple matter of flagging hot spots because the methane 

column enhancements are typically small compared to instrument precision, even for high-mode emitters. Repeated clear-sky 

observation combined with inverse analysis using an atmospheric transport model is needed. We find that an inversion with 30 

L1 regularization produces better results than L2-regularization. This is expected since the L1 regularization method is designed 

to recover sparse signals.  
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Can I usefully supplement satellite information with surface monitoring?  

Both TROPOMI and GeoCARB add significantly to the information provided by a surface monitoring network of 5-20 sites 

within the 50×50 km2 domain, and conversely the addition of a surface network enhances significantly the information that 

can be retrieved from TROPOMI and GeoCARB. The combination of these satellite instruments with the surface monitors can 

deliver successful detection of high-mode emitters through a joint inversion. Adding surface sites provides no benefit to the 5 

next-generation geostationary instrument, which can successfully detect high-mode emitters on its own as long as skies are 

clear.  

 

Data Availability. The WRF-STILT model is available for download at https://uataq.github.io/stilt/. A worked through 

example of the high-mode detection observing system simulation experiment (OSSE) described in this paper is available in 10 

the Supplementary Information for this paper. 
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Table 1. Observing configurations considered in this work. 

Instrument 
Observation 

Frequency 

Pixel size 

(km2) 

Precisiona 

(ppb) 

Number of 

observationsb  

Satellites  

   TROPOMI  dailyc 7.0 x 7.0 11d 567 

   GeoCARB  2×/day  2× dailye 2.7 x 3.0 4.0 f 7700 

   GeoCARB 4×/day 4× dailyg 2.7 x 3.0 4.0 15400 

   Next generationh  hourlyi 1.3 x 1.3 1.0 164500 

Surface sitesj hourlyk point 1.0 840 – 3360l 

aDry column mean mixing ratio for the satellite observations, local mixing ratio for the surface observations 5 
bOne week of clear-sky conditions in the 70 × 70 km2 domain 
c13 local solar time (LT) 
dButz et al. (2012) 
e12 and 16 LT 
fO’Brien et al. (2016) 10 
g10, 12, 14, and 16 LT 
hAspirational instrument combining the characteristics of instruments currently at the proposal stage (Fishman et al., 2012; 
Butz et al., 2015; Xi et al., 2015) 
iBetween 8 and 17 LT 
j in situ measurements of surface air concentrations 15 
kDay and night 
lFor 5 to 20 surface sites 
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Figure 1. Probability density functions (pdfs) of emissions for oil/gas production sites of different production size categories 

(small, medium, and large), taken from Barnett Shale observations (Lan et al., 2015; Rella et al., 2015; Yacovitch et al., 2015). 

Note the difference in y-axis scales between the left (low-mode) and right (high-mode) panels. The axis break at 40 kg h-1 5 

represents the threshold for flagging an emitter as high.   
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Figure 2. Sample realization of emissions from a hypothetical oil/gas production field with 100 production sites of different 5 

production size categories (symbols) within a 50×50 km2 domain (dashed line). Different production size categories are shown 

with symbols. Red shading indicates high-mode emitters. Blue symbols mark the locations of five surface air monitoring sites 

placed according to the k-means algorithm. 
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Figure 3: Sample sensitivities of observed atmospheric concentrations (column and surface) to surface emissions upwind, 

defining the emission footprint for that observation. Values are shown here for a particular observation point (purple dot) and 

time (October 19, 2013 at 09 LT). Concentrations are in mixing ratio units of ppb (dry column mean mixing ratio for the 

column) and emissions are in units of µmol m-2 s-1.   5 
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Figure 4: Simulated noiseless methane column enhancement for sampling by single overpasses of TROPOMI, GeoCARB, 

and a next-generation high-resolution geostationary satellite (Table 1). Emission field is that of Figure 2. The locations of the 

five high-mode emitters in that field are indicated. Values are for 22 October 2013 at 13 LT.   5 
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Figure 5: An example distribution of the optimal emission estimate 𝐱"  for a realization of the emission inventory (100 sites), 

GeoCARB 4×/day pseudo-observations, and L1 or L2 regularization. Dashed lines represent the thresholds to classify an emitter 5 

as high-mode, determined either from the distribution 𝐱" (S = 2) or from a fixed prior value (here 40 kg h-1). 
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 5 
Figure 6. Probability of detection (POD), false alarm ratio (FAR), and Equitable Threat Score (ETS) of high-mode emitters 

for each satellite and surface observing configuration. Each bar represents the mean of 500 observing system simulation 

experiments (OSSEs), where 100 production sites in a 50×50 km2 domain were used to construct 500 random realizations of 

an emission field including different subsets of high-mode emitters. For each observing configuration, the left bar (lighter 

color) shows results for the inversion with L1 regularization, and the right bar (darker color) is for the L2-regularization. The 10 

dashed lines represent the POD, FAR, and ETS criteria for successful observing systems. Here and in following figures, the 

vertical lines measure the sensitivity to the choice of threshold for diagnosing high-mode emitters in the inversion. 
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Figure 7. Equitable Threat Score (ETS) for each satellite observing configuration, varying the density of production sites (20-

500 sites in 50×50 km2 domain). Results are from the L1 inversion. The dashed line represents the ETS criterion for successful 5 

observation. 
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Figure 8: Effect of introducing spatial tolerance in the detection of high-mode emitters. Spatial tolerance is the radius within 

which a high-mode emitter must be located in order for a prediction to be called true positive (TP). The results are for an 

emission field with 100 production sites in the 50×50 km2 domain. Only results from the L1 inversion method are shown. The 5 

dashed line represents the ETS success criterion. 
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Figure 9: Effectiveness of a combined satellite and surface observing system for detecting high-mode emitters in an oil/gas 

field of 100 emitters over a 50×50 km2 domain, as determined from joint inversion of the observations. The dashed line 

represents the ETS success criterion. 5 

 
 


