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Response to Comments from Anonymous Referee #1

1. No data and code that can reproduce the given results are uploaded. Doing so
would increase the value of the article and invite other research groups to contribute to
the topic.

We thank the reviewer for this suggestion. A worked through script will be included
with the publication. However, we will leave it to the reader to generate WRF-STILT
footprints as the model is open source.

We point the reader to the location of the code on page 12, line 8:
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Data Availability. The WRF-STILT model is available for download at
https://uataq.github.io/stilt/. A worked through example of the high-mode detection ob-
serving system simulation experiment (OSSE) described in this paper is available in
the Supplementary Information for this paper.

2. Most of the article uses international standard units. However, the production rate
of wells is described in Mcf/d (in text, e.g. p. 3, ll. 12-13, and Fig. 2 and 3). I suggest
to convert these to SI units.

We add the unit conversion in the text:

Page 3, Line 11-12. (small: 10-100 million cubic feet per day (Mcf/d) where 1 Mcf/d =
0.028 Mm3/d; medium: 100-1000 Mcf/d; large: 1000+ Mcf/d)

3. The authors use ’a x b’ to denote a scalar multiplication in some formulas (e.g., p.
6, l. 28; p. 7, l. 5; p. 8, l. 14), but not consistently. I recommend using ’a " b’ or ’ab’ to
be consistent with standard notation. To describe the dimensions of a matrix, m x n is
the standard notation.

We update the equations to be consistent with standard notation:

Page 7, Line 16. r_ij= σ_Mˆ2 exp{-d/l}exp{-t/τ } for i 6=j (5b)

Page 7, Line 25. r_ij= cor(i,j) σ_Mi σ_Mj exp{-d/l}exp{-t/τ } (5c)

Page 9, Line 9. α= (Σ TP+ Σ FP)(Σ TP+ Σ FN)/(Σ TP+ Σ FP+ Σ FN + Σ TN)= 1/N (Σ
FP)/FAR (Σ TP)/POD

4. The phrase L1-regularization originates from using the norm of the function space
Lp or the sequence space lp with p = 1. To be more consistent with the mathematical
literature I recommend using the notation L1 and L2 instead of L-1 and L-2. It would
be beneficial to define the L-norm/lp-norm in Eq. (1) (see p. 6, l. 1).

We include the standard definition of the L-norm in the text: Page 6, Line 20. The
second term represents an adjustable parameter λ and the L-norm of x, which is a
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measure of the magnitude of the vector x defined as the following:

âĂŰxâĂŰ_L=
√

(L&Σ_(k=1)ˆn |x_k |ˆL ) (2)

We change L-1 and L-2 to L1 and L2 everywhere else in the text.

5. In Section 2.2 (p. 4, ll. 20-26) I suspect there is a problem with the dimensions of
hi and x. If x Rn, then hi Rn to build the scalar product. With this implicit definition
hi changes for each realization of the scenario. On the other hand, hi (possibly hi, i
= 1, 2,. . .) is defined as the ’archived footprint covering the complete set of observing
locations and times’. This definition seems to be incorrect. I think hi is the footprint
corresponding to a particular measurement restricted to the locations of potential emit-
ters. Then, the forward model H for a particular configuration is build only by a subset
of footprint indices that describe the corresponding measurements. There are several
ways to define these quantities properly, but the way it is defined in the article seems
incorrect.

We clarify the in the text:

Page 4, Line 28. We select the footprint information that corresponds to the locations
of the n emitters so that hi is also a vector of n dimension.

6. As described in Sect. 1 the Barnett Shale has 20000 well pads in the 300 km by 300
km domain, i.e. a well density of 0.22 wells/km2. Other oil fields, like the Kern River
Oil Field near Bakersfield, CA, have much larger well densities (> 200 wells/km2). Are
the chosen well densities representative for certain types of oil fields? Also, if well
pads (and other possibly emitting infrastructure) are not homogeneously distributed,
the local density may be much larger. The densities analyzed in this study are thus
more to the lower bound of what is required. The concept of spatial tolerance is an
interesting extension. The analysis is carried out using the much lower well density
(0.04). How do the results compare to the 0.2-case? I expect that the results in Fig. 7
are too optimistic for many oil fields with densely distributed infrastructure.

C3

We thank the reviewer for these useful points on context and update the manuscript
accordingly:

Page 10, Line 13. Actual fields can be even denser but we are limited in our investiga-
tion by the 1.3 × 1.3 km2 resolution of the WRF simulation.

7. Section 2.2 describes how the pseudo-observations are created. It seems that no
transport error is considered in the noise (p. 4, ll. 29-31). However, transport errors
are mentioned when describing the inversion methods (p. 6, ll. 18-20). Are transport
errors included in the study? I think they should!

Non-perfect transport is anticipated and accounted for in the inversion through R (page
7, line 4). Transport errors are not included in the pseudo-observation creation (page
5, line 1), as this error is related to the instrument characteristics (Table 1).

8. The study considers column measurements by satellites but also a network of in-
situ observations. The advantage of column measurements is that the in-flowing back-
ground concentration (= b, see p. 4., l. 26) is measured and the assumption that it is
constant (or known) is justified. When considering only the in-situ network the back-
ground concentration is unknown, which is an additional challenge in the inversion.
This aspect could be mentioned to support the assumption of a constant boundary in
this study.

We address this issue in the text:

Page 5, Line 26. We assume that these sites report hourly data with 1 ppb precision
and that the background concentration in surface air is constant, consistent with the
assumption made for satellite observations. A variable background would complicate
the problem but could be retrieved as part of the inversion (Wecht et al., 2014).

9. Also, I wonder at which altitude the in-situ analyzers are placed? I expect that local
low mode emitters may have a significant influence on observations taken close to the
surface.
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We clarify in the text:

Page 4, Line 12. Surface observations are taken in the lowest model layer (centered
at 28 m above ground) and the corresponding footprints are obtained by releasing and
tracking back in time 100 particles at the observation location and time.

10. In Sect. 2.5 high-mode emitters are defined via the standard deviation, whereas in
Sect. 2.1 high-mode emitters are those that exceed 40 kg/h. Which definition applies
for the results? And what are the reasons to use that definition over the other?

We refer the reviewer to the discussion on page 8, line 10 of the manuscript:

"In a real-world application we would not know the actual pdfs of emissions (Figure
1), so we need to diagnose the occurrence of high-mode emitters on the basis of
anomalies in the distribution of x ÌĆ."

We expand this discussion on page 8, line 13:

Using anomaly detection on x ÌĆ instead of a fixed threshold (e.g., 40 kg h-1) allows for
generalization to other emission fields where the mean normal and high modes may
be different than the Barnett Shale.

11. The concept of L2-regularization is well described in many textbooks covering
inverse problems. I think that the given reference, i.e. Evgeniou et al. (2000), is not very
helpful for applied atmospheric sciences. My recommendation for applied researchers
would be P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, 2010, but
many other options exist.

We thank the reviewer for the suggestion and change the reference to Hansen (2010).

12. Using L1-regularization to exploit the sparsity of the problem is a great idea, which
turns out to give better results than the standard approach. This concept has rarely
been used in atmospheric inverse modeling studies and is probably new to many in
the research community. The references provided are helpful. Still, some questions
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remain: - How does a solution produced by L1-regularization differ from one produced
by L2-regularization? The answer is described in Sect. 3.1, but I think a figure com-
paring both solutions for some representative realization would be useful. The same
figure could also be used to illustrate how high-mode emitters are detected from the
emission estimate. - I assume and I hope that 5% of high-mode emitters is generally a
large estimate of failing systems. Further, I suspect that the identification of high-mode
emitters improves for a smaller percentage of failing systems. Are there consequences
on the solution produced by L1-regularization if the solution is less sparse, i.e. more
high-mode emitters? Is a low degree of sparsity important for the algorithm to perform
well?

We include a new figure (now Figure 5) and add the following text:

Page 8, Line 4. Figure 5 shows the distribution x ÌĆ from a single realization of emis-
sions, GeoCARB 4×/day pseudo-observations, and both L1 and L2 regularization. In
this simulation, L1 regularization enables the retrieval of high-mode emitters while L2
regularization is more restrictive in allowing excursions from the low-mode mean.

Page 8, Line 15. Figure 5 shows thresholds for classifying high-mode emitters using
anomaly detection and a fixed value of 40 kg h-1. The L1 threshold is larger than the
L2 threshold, but smaller than the 40 kg h-1. Had the fixed threshold been used, some
high-mode emitters (relative to x ÌĆ) would have not been classified as such.

13. It could be argued that 20% failure of an alarm system is still a lot, but some
criteria for success needs to be applied. However, this criteria is neither mentioned in
the abstract nor in the conclusions, when systems are defined successful or not. I think
it should be briefly mentioned in both sections.

Page 1, Line 24. ". . .are successful (>80% detection rate, <20% false alarm rate) at
locating high-emitting sources. . ."

Page 11, Line 20. GeoCarb shows little difference in success rate (Equitable Threat
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Score (ETS) > 0.65) for 2 or 4 overpasses per day.

14. I recommend uploading scripts that reproduce the given results. The study could
serve as a test environment for new modeling approaches and as an interesting project
for students.

See Response to Comment #1.

15. P. 4, l. 2: A comma is missing in ’(small, medium, large)’.

Fixed

16. P. 4, l. 20: ... 1.3 x 1.3 km2 pixels

Fixed

17. P. 5, l. 28: remove brackets around x ÌĆ

Fixed

Response to Comments from Anonymous Referee #2

1. I have significant concerns about the effect of meteorological conditions (espe-
cially wind speed) on the detection of methane plumes by satellite observations. The
high-wind condition promotes the dispersal and dilution of methane in the atmosphere,
which makes the methane enhancement relative to background smaller than that un-
der a low-wind condition, and the resulting low concentrations are much difficult to be
detected by satellite. Therefore I wonder if the results of this paper are sensitive to the
meteorological conditions used. This study was performed based on only a 1-week
simulation using the WRF-STILT model, however, it used a very strong statement on
the findings in the abstract and conclusion parts. It cannot convince me that the 7
days meteorological fields are representative enough. I suggest that the authors give
a detailed discussion on the potential influence of meteorological conditions on their
results.
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We thank the reviewer for bringing this point to light. We address this issue on page 5,
line 6:

The mean daytime 10 m horizontal wind speed inside the observing domain during
the simulated week is 5.4 m/s. Stronger winds could further dilute plumes within an
observing domain, making the ability for satellite detection of emitters more difficult; on
the other hand, the model transport error is less for stronger winds (Varon et al., 2018).

Page 11, Line 15. "Our results in these meteorological conditions can be summarized
usefully in terms of answers to questions that a field manager might have:"

2. It’s not clear to me how this study used the WRF-STILT model because the model
configurations are not described in details in Sect. 2.2. How many theoretical particles
are released from each receptor, and what are the receptor heights? How is the column
footprint calculated? Is it integrated from the footprints of different vertical layers? It is
important that the method part is self-contained and does not require the reader to go
through another source.

We add more information in the text:

Page 4, Line 9. Footprints for each column were obtained by releasing and tracking
back in time 100 particles from vertical levels centered at 28 m, 97 m, 190 m, 300 m
above ground, and 8 additional levels up to 14 km altitude spaced evenly on a pressure
grid.

3. In the inverse method, the observational error covariance matrix accounts for in-
strument and model transport errors (line 18, page 6). What about the representation
error? How is it considered for the satellite observations that have a different pixel size
from the resolution of transport model?

We clarify in the text:

Page 7, Line 5. Representation errors are negligible due to the model grid resolution
finer or the same resolution as the instrument pixels (Turner et al., 2018).
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Response to Comments from Anonymous Referee #3

1) My first major concern is regarding the treatment of clouds. The authors claim
that they "assume clear-sky conditions to simplify the discussion" but this is a serious
assumption, which, in my opinion, is unacceptable. The caveat at the end of the con-
clusions that states "as long as skies are clear" is really problematic. Clouds have a
major impact on observational coverage. Would accounting for clouds enhance the
disparity between the next-generation satellite and TROPOMI and GeoCARB? Actu-
ally, my main concern here is whether accounting for clouds would reduce the POD of
the next generation satellite (as envisaged here) to less than 0.8, which would mean
that even such an instrument would be unable to detect dense high-emitting sources.
It is critical that the authors account for the impact of clouds in their analysis.

We thank for the reviewer for bringing up this important point. We expand upon our
decision to consider only clear-sky on page 5, line 13.

Successful methane retrievals from satellites require clear sky. The probability of clear
sky in a partly cloudy domain depends greatly on pixel size (Remer et al., 2012). Re-
sults for a partly cloudy condition would depend on the particular cloud configuration
and would be difficult to generalize. Here we assume clear-sky conditions to avoid
this complication, but the detection probability for high-mode emitters should then be
viewed as an upper limit. In particular, it should be recognized that no detection from
satellite is possible for a cloudy domain.

We explain how it relates to denser fields on page 10, line 13.

Actual fields can be even denser but we are limited in our investigation by the 1.3 × 1.3
km2 resolution of the WRF simulation.

2) My other major concern is with the treatment of model transport error. The authors
assumed an error of 4 ppb for both the surface and satellite observations. However,
that is not a justifiable assumption. The model transport errors at the surface, in the
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vicinity of point sources, will be very different from that in the CH4 column. Assuming
the same transport errors for these two types of measurements does not allow for a fair
and meaningful comparison of the satellite and surface measurements.

We update our results and figures to account for this discrepancy:

Page 7, Line 10. ". . .σM is the model transport error standard deviation previously
estimated to be 4 ppb for methane columns (Turner et al., 2018). Given the order
of magnitude difference in sensitivity between satellite columns and surface measure-
ments (Figure 3), we assume σM to be 40 ppb for surface measurements."

Page 7, Line 25. r_ij= cor(i,j) σ_Mi σ_Mj exp{-d/l}exp{-t/τ } (5c)

We update Figures 6 and 9 (previously 5 and 8). The new analysis did not change
conclusions in the text.

3) My third concern is with the lack of discussion of the impact of systematic errors in
the satellite data. Since the launch GOSAT it has become clear that systematic errors
in the greenhouse gas retrievals pose a major challenge for the use of the data. I
appreciate that it would be challenging for the authors to reasonably address the issue
of biased retrievals in their OSSEs, but they should at least add some discussion in
the manuscript about how systematic errors could confound the detection of the CH4
sources.

We add more information about systematic errors in the text:

Page 5, Line 3. SWIR instruments may also suffer from systematic errors but we do not
account for those here in the absence of information. The largest source of systematic
error on our scale would likely be the inhomogeneity in surface reflectivity (Pfister et
al., 2005).

Technical Comments 1) Page 2, line 8: Satellites do not measure the atmospheric
columns of methane. They measure backscattered solar radiation from which the at-
mospheric columns of methane are retrieved. Please change the wording here.
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We fixed the wording in the text:

Page 2, Line 8. Satellites measure backscattered solar radiation in the shortwave
infrared (SWIR) from which atmospheric columns of methane can be retrieved with
near uniform sensitivity down to the surface under clear-sky conditions (Jacob et al.,
2016).

2) Table 1: The row is not properly aligned for the TROPOMI entry.

Fixed

Please also note the supplement to this comment:
https://www.atmos-chem-phys-discuss.net/acp-2018-741/acp-2018-741-AC1-
supplement.zip

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-741,
2018.
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