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Abstract: 31 

One of the difficulties of simulating the warm rain process in global climate models (GCM) 32 

is how to account for the impact of subgrid variations of cloud properties, such as cloud water 33 

and cloud droplet number concertation, on the nonlinear precipitation processes such as 34 

autoconversion. In practice, this impact is often treated by adding a so-called enhancement 35 

factor term to the parameterization scheme. In this study, we derive the subgrid variations of 36 

liquid-phase cloud properties over the tropical ocean using the satellite remote sensing products 37 

from MODIS (Moderate Resolution Imaging Spectroradiometer) and investigate the 38 

corresponding enhancement factors for the GCM parameterization of autoconversion rate. The 39 

wide spatial coverage of the MODIS product enables us to depict a detailed quantitative picture 40 

of the enhancement factor 𝐸"  due to the subgrid variation of cloud water, which shows a clear 41 

cloud regime dependence, namely a significant increase from the stratocumulus (Sc) to cumulus 42 

(Cu) cloud regions. Assuming a constant 𝐸" = 3.2 would overestimate the observed 𝐸"  in the Sc 43 

regions and underestimate it in the Cu regions. We also found that the 𝐸"  based on the 44 

Lognormal PDF assumption performs slightly better than that based on the Gamma PDF 45 

assumption. A simple parameterization scheme is provided to relate the 𝐸"  to the grid-mean 46 

liquid cloud fraction, which can be readily used in GCMs. For the first time, the enhancement 47 

factor 𝐸'  due to the subgrid variation of CDNC is derived from satellite observation, and results 48 

reveal several regions downwind of biomass burning aerosols (e.g., Gulf of Guinea, East Coast of 49 

South Africa), air pollution (i.e., Eastern China Sea), and active volcanos (e.g., Kilauea Hawaii and 50 

Ambae Vanuatu), where the 𝐸'  is comparable, or even larger than 𝐸" , even after the optically 51 

thin clouds are screened out.  52 

 53 
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1. Introduction 55 

Clouds are a strong modulator of Earth’s radiative energy budget (Klein and Hartmann, 56 

1993; Trenberth et al., 2009). They can interact with other components of the climate system, 57 

such as ocean, land, and aerosols, in various ways. The feedback of clouds to climate change 58 

remains one of the largest uncertainties in our understanding of the climate sensitivity (Bony and 59 

Dufresne, 2005; Soden and Held, 2006). Despite their importance in the climate system, 60 

simulating clouds in conventional general circulations models (GCM) has proved to be extremely 61 

challenging. A main difficulty is rooted in the fact the typical grid size of GCM (~100km) is much 62 

larger than the spatial scale of many cloud microphysical processes, and as a result these subgrid 63 

scale processes, as well as the subgrid cloud variations, have to be highly simplified and then 64 

parameterized as functions of resolved, grid-level variables.  65 

Of particular interest in this study is the warm rain processes in liquid-phase clouds, which 66 

have fundamental impacts on the cloud water budget and lifetime. Although in reality it is highly 67 

complicated and involves multiple factors, warm rain formation in GCMs is usually parameterized 68 

as simple functions of only key cloud parameters. For example, the drizzle in MBL cloud is 69 

initialized by the so-called autoconversion process in which the collision-coalescence of cloud 70 

droplets gives birth to large drizzle drops (Pruppacher and Klett, 1997). In GCMs, for the sake of 71 

efficiency, this process is usually parameterized as a function of liquid water content (LWC or 72 

symbol 𝑞)) and cloud droplet number concentration (CDNC or symbol 𝑁)) (Khairoutdinov and 73 

Kogan, 2000) (see section 2 for details). Even though this is highly simplified, the parametrization 74 

scheme still faces a great difficulty. The calculation of grid-mean autoconversion efficiency 75 

requires the knowledge of subgrid distributions of LWC and CDNC, but in the GCMs only grid-76 

mean quantities 〈𝑞)〉 and 〈𝑁)〉 are known and available for use in the computation of 77 

autoconversion rate. As pointed out by Pincus and Klein (2000), for a process 𝑓(𝑥) such as 78 

autoconversion that is nonlinearly dependent on subgrid variables, 𝑥, the grid-mean value 〈𝑓(𝑥)〉 79 

is not equal to the value estimated based on the grid-mean 〈𝑥〉, i.e., 〈𝑓(𝑥)〉 ≠ 𝑓(〈𝑥〉). 80 

Mathematically, if 𝑓(𝑥) is convex, then 𝑓(〈𝑥〉) < 〈𝑓(𝑥)〉 (Larson and Griffin, 2013; Larson et al., 81 

2001).  To take this effect into account, a parameter 𝐸 is often introduced in the GCM as part of 82 

the parameterization such that 〈𝑓(𝑥)〉 = 𝐸 ∙ 𝑓(〈𝑥〉). It is referred to as the “enhancement factor” 83 
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in many studies and this study too because 𝐸 > 1 for a convex function. Such a nonlinear effect 84 

is not just limited to the autoconversion process. Some other examples are the plane-parallel 85 

albedo bias (Barker, 1996; Cahalan et al., 1994; Oreopoulos and Davies, 1998a), subgrid cloud 86 

droplet activation (Morales and Nenes, 2010) and accretion (Boutle and Abel, 2012; Lebsock et 87 

al., 2013). 88 

The value of 𝐸 is determined primarily by two factors: the nonlinearity of 𝑓(𝑥) and the 89 

subgrid probability density function (PDF) 𝑃(𝑥). Given the same subgrid variation of LWC, i.e., 90 

𝑃(𝑞)), the nonlinear effect impacts the autoconversion process more than it does on the 91 

accretion process, because the former is a more nonlinear function of 𝑞) than the latter. For the 92 

same 𝑓(𝑥), a grid box with a narrow and symmetric 𝑃(𝑥) would require a smaller 𝐸 than another 93 

grid box with a broader and non-symmetric 𝑃(𝑥). The shape of the 𝑃(𝑥) is dependent on mainly 94 

on cloud regime. Take cloud water for example. The subgrid PDF of cloud water  𝑃(𝑞)) is usually 95 

narrower and more Gaussian-like in the stratocumulus (Sc) region while in the broken cumulus 96 

(Cu) cloud region, 𝑃(𝑞)) is usually broader and more skewed (Barker et al., 1996; Lee et al., 2010; 97 

Oreopoulos and Cahalan, 2005; Wood and Hartmann, 2006). Obviously, model resolution is also 98 

an important factor—the coarser the spatial resolution, the larger the subgrid cloud 99 

inhomogeneity. Ideally, the value of the enhancement factor 𝐸 should be diagnosed from the 100 

subgrid cloud PDF 𝑃(𝑥), which should be scale aware and dependent on cloud regime. 101 

Unfortunately, because this is not possible in most conventional GCMs, the value of 𝐸 is usually 102 

assumed to be a constant for the lack of better options. The 𝐸 for autoconversion due to subgrid 103 

LWC variation is assumed to be 3.2 in the two-moment cloud microphysics parameterization 104 

schemes by Morrison and Gettelman (2008) (MG scheme hereafter), which is employed in the 105 

widely used Community Atmosphere Model (CAM). This choice of 𝐸 = 3.2 is based on an early 106 

study by Barker et al. (1996), in which the mesoscale variation of column-integrated optical 107 

thickness of the “overcast stratocumulus”, “broken stratocumulus” and “scattered 108 

stratocumulus” are studied. The value 𝐸 = 3.2 is derived based on the mesoscale variation of the 109 

broken stratocumulus.     110 

Clearly, a simple constant 𝐸 is not adequate. The following is a list of attempts to better 111 

understand the subgrid cloud variations and the implications for warm rain simulations in GCMs. 112 
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Several previous studies have shown that the mesoscale cloud water variation is a strong function 113 

of cloud regime—the subgrid cloud water variation of Sc cloud is much different from that of Cu 114 

clouds (Barker et al., 1996; Lee et al., 2010; Oreopoulos and Cahalan, 2005; Wood and Hartmann, 115 

2006). As the first part of a two-part study, Larson and Griffin (2013) first laid out a systematic 116 

theoretical basis for understanding the effects of subgrid cloud property variations on simulating 117 

various nonlinear processes in GCM, including not only the autoconversion but also the accretion, 118 

condensation, evaporation and sedimentation processes. In the second part, using cloud fields 119 

from a large-eddy simulation (LES), Griffin and Larson (2013) showed that inclusion of the 120 

enhancement factor indeed leads to more rainwater at surface in single-column simulations and 121 

makes them agree better with high-resolution large-eddy simulations. Using a combination of in 122 

situ measurement and satellite remote sensing data, Boutle et al. (2014) analyzed the spatial 123 

variation of cloud and rain water, as well as their covariation. They further developed a simple 124 

parameterization scheme to relate the subgrid cloud water variance to the grid-mean cloud 125 

fraction. Recently, using the ground-based observations from three Department of Energy (DOE) 126 

Atmospheric Radiation Measurement (ARM) sites, Xie and Zhang (2015) developed a scale-aware 127 

parameterization scheme for GCMs to account for subgrid cloud water variation. Although these 128 

previous studies have shed important light on subgrid cloud variation and the implications for 129 

GCM, they lack a global perspective because they are only based on limited data (e.g., LES cases, 130 

in situ and ground-based measurement). Currently, satellite remote sensing observation is the 131 

only way to achieve a global perspective, although remote sensing products suffer from inherent 132 

retrieval uncertainties. Using the observations from the space-borne radar CloudSat, Lebsock et 133 

al. (2013) showed that the subgrid cloud water variance is larger over the Sc region than over the 134 

Cu region, and as a result the enhancement factor shows an increasing trend from Sc to Cu region. 135 

They also highlighted importance of considering the subgrid co-variability of cloud water and rain 136 

water in the computation of the accretion rate.  On the modeling side, Guo et al. (2014) 137 

investigated the sensitivity of cloud simulation in the Geophysical Fluid Dynamics Laboratory 138 

(GFDL) Atmospheric General Circulation Model (AM) to the subgrid cloud water parameterization 139 

schemes. A similar study  was carried out by Bogenschutz et al. (2013) using the National Center 140 

of Atmospheric Research (NCAR) Community Atmospheric Model (CAM). Both studies show that 141 
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the more sophisticated subgrid parameterization scheme— Cloud Layers Unified by Binormals 142 

(CLUBB) (Golaz et al., 2002a; 2002b; Larson et al., 2002)—lead to a better simulation of clouds in 143 

the model. However, a more recent study by Song et al. (2017) reveals that the CLUBB in CAM 144 

version 5.3 (CAM5.3) overestimates the enhancement factor in the trade wind cumulus cloud 145 

region, which in turn leads to the “empty cloud” problem.  146 

Despite these previous studies, many questions remain unanswered. First of all, all the 147 

previous studies, as far as we know, have focused on the impact of subgrid cloud water variation. 148 

The potential impact of subgrid variation of cloud microphysics, namely CDNC, has been 149 

overlooked so far. Given the same amount of cloud water, a cloud with a smaller CDNC would 150 

have larger droplets and therefore larger precipitation efficiency than another cloud with a larger 151 

CDNC. Secondly, most of previous studies are based on the assumption that the subgrid cloud 152 

property variation follows certain well-behaved distributions, usually either Gamma (e.g., Barker, 153 

1996; Morrison and Gettelman, 2008; Oreopoulos and Barker, 1999; Oreopoulos and Cahalan, 154 

2005) or Lognormal (Boutle et al., 2014; Larson and Griffin, 2013; e.g., Lebsock et al., 2013). 155 

However, the validity and performance of the assumed PDF shape are seldom checked. 156 

Furthermore, although the study by Lebsock et al. (2013) has depicted a global picture of the 157 

enhancement factor for the autoconversion modeling in GCM, the picture is far from clear due 158 

to the small sampling rate of CloudSat observations.  159 

In this study, we revisit the subgrid variations of liquid-phase cloud properties over the 160 

tropical ocean using 10 years of MODIS cloud observations, with the overarching goal to better 161 

understand the potential impacts of subgrid cloud variations on the warm rain processes in the 162 

conventional GCMs. Similar to previous studies, we will quantify the subgrid cloud water 163 

variations based on MODIS observations. Going one step further, we will also attempt to unveil 164 

for the first time the subgrid CDNC variation and investigate its implications for warm rain 165 

simulations in GCM. Moreover, we will take advantage of the wide spatial coverage of MODIS 166 

data to achieve a more detailed picture of the enhancement factor for the autoconversion 167 

simulation. Last but not least, we will evaluate the two widely used distributions, i.e., Lognormal 168 
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and Gamma, in terms of their performance and limitations for simulating the enhancement 169 

factor.  170 

The rest of the paper is organized as follows, we will first explain the theoretical 171 

background in Section 2 and introduce the data and methodology in Section 3. The MODIS 172 

observations of the grid mean values and subgrid variations of key cloud properties will be 173 

presented and discussed in Section 4. The implications for the autoconversion process simulation 174 

in the GCMs will be discussed in 5. The main findings will be summarized in Section 6 with an 175 

outlook for future studies.  176 

2. Theoretical Background  177 

2.1. Theoretical Distributions to describe subgrid cloud property variations 178 

In previous studies, the spatial variations of cloud properties, such as cloud optical thickness 179 

(COT), cloud liquid water path (LWP) and cloud liquid water content (LWC), are often described 180 

using either of two theoretical distributions—the Gamma and Lognormal distribution. The 181 

probability density function (PDF) from a Gamma distribution is a two-parameter function as 182 

follows (Barker, 1996; Oreopoulos and Davies, 1998b): 183 

 𝑃7(𝑥) =
1

Γ(𝑣) 𝛼
;𝑥;<= exp(−𝛼𝑥), (1) 

where Γ is the Gamma function, 𝑣 is the so-called inverse relative variance, and 𝛼 the so-called 184 

rate parameter. The mean value of a Gamma distribution Is given by 185 

 〈𝑥〉 = ∫ 𝑥D
E 𝑃7(𝑥)𝑑𝑥 =

G
H
, (2) 

and the variance given by 186 

 𝑉𝑎𝑟(𝑥) = ∫ (𝑥 − 〈𝑥〉)LD
E 𝑃7(𝑥)𝑑𝑥 =

G
HM

. (3) 

It follows from Eq. (2) and (3) that the inverse relative variance   187 

 𝑣 = =
N
= 〈O〉M

PQR(O)
, (4) 

where 𝜂 = PQR(O)
〈O〉M

 is the relative variance.  188 
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The PDF of a Lognormal distribution is given as follows (Larson and Griffin, 2013; 189 

Lebsock et al., 2013): 190 

 𝑃T(𝑥) =
=

√LVOW
exp X− (YZO<[)M

LWM
\, (5) 

where 𝜇 = 〈ln 𝑥〉 and 𝜎L = 𝑉𝑎𝑟(𝑙𝑛𝑥) are the two parameters that determine the shape of the 191 

Lognormal distribution and correspond to the mean and variance of 𝑙𝑛𝑥, respectively. The 192 

mean value of the Lognormal distribution is given by 193 

 〈𝑥〉 = ∫ 𝑥D
E 𝑃T(𝑥)𝑑𝑥 = 𝑒[d

eM

M , 
(6) 

and the variance given by 194 

 𝑉𝑎𝑟(𝑥) = ∫ (𝑥 − 〈𝑥〉)LD
E 𝑃T(𝑥)𝑑𝑥 = 𝑒L[dWMf𝑒WM − 1g. (7) 

It follows from Eq. (6) and (7) that the inverse relative variance can be derived from the 195 

following equation 196 

 	𝑒WM = 1 +
𝑉𝑎𝑟(𝑥)
〈𝑥〉L = 1 +

1
𝑣	. 

(8) 

An example of the Gamma and Lognormal distributions for LWC is shown in Figure 1a. In this 197 

example, both distributions have the same mean 〈𝐿𝑊𝐶〉 = 0.5𝑔/𝑘𝑔 and also the same inverse 198 

relative variance 𝑣 = 3. Although the general shapes of the two PDFs are similar, they differ 199 

significantly at the two ends: the Gamma PDF is larger than Lognormal PDF over the small values 200 

of LWC, and the opposite is true over the large values of LWC. The Gamma and Lognormal 201 

distributions can also be used to describe the spatial variation of CDNC (Gultepe and Isaac, 2004). 202 

An example is given in Figure 1c, in which the LWC=0.5𝑔/𝑘𝑔, the mean CDNC 〈𝑁)〉 = 50	𝑐𝑚<t, 203 

and the inverse relative variance of CDNC 𝑣 = 5.0. 204 

 Both Gamma and Lognormal distributions are mathematically convenient. For example, 205 

if any physical process 𝑀(𝑥) is a power function of 𝑥,  206 

 𝑀(𝑥) = 𝐾𝑥w,  (9) 

then if 𝑥 follows the Gamma distribution, the expected value 〈𝑀(𝑥)〉 is given by 207 

 〈𝑀(𝑥)〉7 = 𝐾 ∫ 𝑥wD
E 𝑃7(𝑥)𝑑𝑥 =

x(Gdw)
x(G)Gy

𝐾〈𝑥〉w, 𝛽 > −𝑣. (10) 

Similarly if 𝑥 follows the Lognormal distribution, the expected value of 〈𝑀(𝑥)〉 is 208 
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 〈𝑀(𝑥)〉T = 𝐾{ 𝑥w
D

E
𝑃T(𝑥)𝑑𝑥 = f𝑒WMg

wM<w
L 𝐾〈𝑥〉w.		 (11) 

Thus, the expected value of 〈𝑀(𝑥)〉 can be computed from the analytical solutions above, 209 

instead of a numerical integration over the PDF. However, it is important to note that Eq. (10) is 210 

only valid when 𝛽 > −𝑣. The Gamma function 𝛤(𝑣 + 𝛽) can run into singular values when 𝑣 +211 

𝛽<0. In contrast, Eq. (11) is valid for any real value 𝛽. This is one advantage of the Lognormal 212 

distribution over the Gamma distribution.  213 

2.2. Impacts of subgrid cloud variations on warm rain simulations in climate models  214 

As pointed out in Pincus and Klein (2000), the subgrid cloud property variations have 215 

important implications for modeling the nonlinear cloud processes in climate models, such as the 216 

precipitation and radiative transfer processes. Of particular interest to this study is the auto-217 

conversion process that initializes the warm rain in marine boundary layer clouds. Following 218 

Khairoutdinov and Kogan (2000) (“KK2000” hereafter), the auto-conversion rate is often modeled 219 

in GCMs as a power function of LWC and cloud droplet number concentration (CDNC) as follows 220 

 }"~
}�
= 𝐶(𝑞))w�(𝑁))w�, 

(12) 

where }"~
}�

 is the rain water tendency due to the auto-conversion process, 𝑞) is the cloud water 221 

mixing ratio in the unit of kg/kg, 𝑁) is the CDNC in the unit of cm−3. The three parameters 𝐶 =222 

1350, 𝛽" = 2.47 and 𝛽' = −1.79 are derived through a least-square fitting of the rain rate 223 

results from a large-eddy simulation. The KK2000 scheme has been adopted in the popular two-224 

moment cloud microphysics scheme for GCMs developed by Morrison and Gettelman (2008) 225 

(referred to as MG scheme). Ideally, if the subgrid variations of 𝑞) and 𝑁) are known, then the 226 

grid-mean in-cloud auto-conversion rate can be derived from the following integral  227 

 〈}"~
}�
〉 = ∫ ∫ 𝐶(𝑞))w�(𝑁))w�

D
E

D
E 𝑃(𝑞), 𝑁))𝑑𝑞)𝑑𝑁), 

(13) 

where 𝑃(𝑞),𝑁)) is the joint PDF of 𝑞) and 𝑁). Unfortunately, most conventional GCMs lack the 228 

capability of predicting the subgrid variations of cloud properties, with only a couple of 229 

exceptions (Thayer-Calder et al., 2015). What is known from the GCM is usually the in-cloud 230 

grid-mean values 〈𝑞)〉 and 〈𝑁)〉. As a result, instead of using Eq. (13), the auto-conversion rate 231 

in GCMs is usually computed from the following equation 232 
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 〈}"~
}�
〉 = 𝐸 ∙ 𝐶(〈𝑞)〉)w�(〈𝑁)〉)w�, 

(14) 

where 𝐸 is referred to as the “enhancement factor” in Morrison and Gettelman (2008), or the 233 

“subgrid scale homogeneity bias” in Pincus and Klein (2000). By definition its value is the ratio 234 

 𝐸 = ∫ ∫ ("�)y�('�)y�
�
�

�
� �("�,'�)�"��'�

(〈"�〉)y�(〈'�〉)y�
. 

(15) 

The root of this enhancement factor is that the auto-conversion process is a non-linear function 235 

of 𝑞) and 𝑁). As a result, the rain rate computed based on the grid-mean values 〈𝑞)〉 and 〈𝑁)〉 236 

would be biased in comparison with the result from the integral in Eq. (13) (Pincus and Klein, 237 

2000).  Obviously, the value of the enhancement factor depends on the subgrid variations of 𝑞) 238 

and 𝑁). If clouds are homogenous on the subgrid scale, then 𝐸	~	1. The more inhomogeneous 239 

the clouds are, the larger the 𝐸 is. In the special case where 𝑞) and 𝑁) are independent, then the 240 

joint PDF 𝑃(𝑞), 𝑁)) becomes 𝑃(𝑞),𝑁)) = 𝑃(𝑞))𝑃(𝑁)) , where 𝑃(𝑞)) and 𝑃(𝑁)) are the PDF of 241 

the subgrid 𝑞) and 𝑁). Consequently, Eq. (13) reduces to  242 

 〈}"~
}�
〉 = 𝐶 ∫ (𝑞))w�𝑃(𝑞))𝑑𝑞)

D
E ∫ (𝑁))w�𝑃(𝑁))𝑑𝑁)

D
E . 

(16) 

And Eq.(15) reduces to 243 

 𝐸 = 𝐸" ∙ 𝐸', 
(17) 

where 𝐸"  is the enhancement factor due to the subgrid variation of cloud water which has the 244 

form, 245 

 𝐸" =
∫ ∫ ("�)y�

�
�

�
� �("�)�"�

(〈"�〉)y�
, 

(18) 

and the 𝐸"  is the enhancement factor due to the subgrid variation of cloud water which has the 246 

form, 247 

 𝐸' =
∫ ∫ ('�)y�

�
�

�
� �('�)�'�

(〈'�〉)y�
. 

(19) 

 248 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-697
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



 11 

 Because most current GCMs do not have the capability to simulate the subgrid cloud 249 

property variations, models usually use pre-defined subgrid cloud variations in the computation 250 

of grid-mean auto-conversion rate instead of using prognostic values. For example, in the MG 251 

scheme for the CAM5.3, the subgrid LWC is assumed to follow the Gamma distribution in Eq. (1). 252 

Furthermore, it is assumed that the subgrid variation of CDNC is small and therefore the 253 

enhancement factor due to CDNC variation is negligible (i.e., close to unity). Substituting the 254 

Gamma distribution in Eq. (1) into the definition equation of enhancement factor in Eq.(18), and 255 

with help from Eq. (10), one can derive that  256 

 𝐸(𝑃7, 𝛽) =
=

〈O〉y ∫ 𝑥wD
E 𝑃7(𝑥)𝑑𝑥 =

�(Gdw)
�(G)Gy

, (20) 

where 𝑥~𝑞), 𝛽 = 𝛽" = 2.47 for the enhancement factor for the KK2000 scheme due to the 257 

subgrid variation of cloud water. In addition to the Gamma distribution, some studies also use 258 

the Lognormal distribution to account for the subgrid cloud water variation (Lebsock et al., 2013). 259 

In such case, substituting the Lognormal distribution in Eq. (5) into Eq.(18), and with help from 260 

Eq.(11), one can find that the enhancement factor for the Lognormal distribution is given by 261 

 𝐸(𝑃T, 𝛽) =
1
〈𝑥〉w

{ 𝑥w
D

E
𝑃T(𝑥)𝑑𝑥 = f𝑒WMg

wM<w
L = �1 +

1
𝑣�

wM<w
L
.	 

(21) 

  Figure 1b shows the rain rate based on the KK2000 parameterization scheme for the 262 

Gamma and Lognormal LWC PDF in Figure 1a. Interestingly, although the cumulative rain rates 263 

based on the two types of PDFs are almost identical, the contribution to the total rain rate from 264 

the different LWC bins are quite different. As show in Figure 1a, the 𝑃T(𝑞)) has a longer tail than 265 

the 𝑃7(𝑞)), i.e., the occurrence probability of large LWC (e.g., 𝑞) > 2.0𝑔/𝑘𝑔 ) is much higher in 266 

the Lognormal than in Gamma PDF. This difference is further amplified in the rain rate 267 

computation in Figure 1b because the rain rate is proportional to 𝑞)L.��.  268 

 The enhancement factors based on the Gamma (i.e., 𝐸(𝑃7, 𝛽) in Eq. (20)) and Lognormal 269 

(i.e., 𝐸(𝑃T, 𝛽) in Eq. (21)) PDF for 𝛽" = 2.47 are plotted as a function of the inverse relative 270 

variance 𝑣 in Figure 2. When subgrid clouds are more homogenous i.e., 𝑣 > 1, the enhancement 271 

factor based on the two PDFs are similar. However, for more inhomogeneous grids with i.e., 𝑣 <272 

1, the 𝐸(𝑃T, 𝛽) is significantly larger than that 𝐸(𝑃7,𝛽), which is probably because of the longer 273 

tail of 𝑃T(𝑞)) as shown in Figure 1 a and b.  274 
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 It is important to note that not only the subgrid variation of 𝑞) can lead to a nonlinear 275 

effect on the simulation of autoconversion rate, the subgrid variation of 𝑁) can have the same 276 

effect. Physically, provided the same LWC, a cloud with smaller 𝑁) would have larger droplet size 277 

and therefore larger precipitation efficiency than the cloud with larger 𝑁). Because the 278 

autoconversion rate depends nonlinearly on 𝑁), the grid-mean autoconversion rate computed 279 

based on a skewed PDF of 𝑁) (i.e., ∫ (𝑁))w�𝑃(𝑁))𝑑𝑁)
D
E ) would be different from that computed 280 

based on the mean of 𝑁) (i.e., (〈𝑁)〉)w�). The autoconversion enhancement factor based on the 281 

Lognormal PDF 𝐸(𝑃T, 𝛽) for 𝛽' = −1.79 is given in Figure 2. Interestingly, at the same inverse 282 

relative variance 𝑣, the enhancement factor based on the same Lognormal PDF 𝐸(𝑃T, 𝛽) for 𝛽' =283 

−1.79 is actually larger than that for𝛽" = 2.47 because of the formula of the exponent in Eq. 284 

(21) (i.e., w
M<w
L

). This potentially important effect of the subgrid inhomogeneity of 𝑁) on the 285 

simulation of autoconversion rate has been overlooked or ignored in most previous studies. It is 286 

perhaps partly because modeling 𝑁) in GCM, especially its subgrid variation, is notoriously 287 

difficult, and also partly because there is a lack of observation-based study of the subgrid 288 

variation of 𝑁). One important objective of this study is to fill the second gap. We will use MODIS 289 

observations to investigate the role of subgrid 𝑁) variation on autoconversion simulation.    290 

 Finally, it has to be noted that when both 𝑞) and 𝑁) have significant subgrid variations, 291 

their covariation also becomes important. As explained in Griffin and Larson (2013), if the 𝑞) and 292 

𝑁) are negatively correlated, clouds with larger 𝑞) would tend to have smaller 𝑁). The 293 

autoconversion rate in such a case would be larger than that in the case where 𝑞) and 𝑁) are 294 

positively correlated (i.e., larger 𝑞) would tend to have larger 𝑁)). As explained in Eq. (17), only 295 

when they are uncorrelated can the total enhancement factor be decomposed into the product 296 

of two independent factors 𝐸 = 𝐸" ∙ 𝐸' . Otherwise additional terms are necessary to take into 297 

account the effect of 𝑞) and 𝑁) correlation. Although potentially important, the correlation of 𝑞) 298 

and 𝑁) from satellite remote sensing data is difficult to derive from the satellite remote sensing 299 

observations due to the retrieval uncertainties. We will return to this point later in Section 5.3.    300 

 301 
3. Data and Methodology  302 

Of particular interest to this study are the grid-mean value and subgrid variation of several 303 
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key properties of liquid-phase clouds, namely, COT, CER, LWP and CDNC, in the tropical regions. 304 

For this purpose, we use the latest collection 6 (C6) daily mean level-3 cloud retrieval product 305 

from the Aqua-MODIS instrument (product name “MYD08_D3”). The MODIS level-3 (i.e., grid-306 

level) product contains statistics computed from a set of level-2 (i.e., pixel-level) MODIS granules. 307 

As summarized in (Platnick et al., 2003; 2017), the operational level-2 MODIS cloud product 308 

provides cloud masking (Ackerman et al., 1998), cloud top height (Menzel et al., 1983), cloud top 309 

thermodynamic phase determination (Menzel et al., 2006), and COT, CER and LWP retrievals 310 

based on the bi-spectral solar reflectance method (Nakajima and King, 1990). All MODIS level-2 311 

atmosphere products, including the cloud, aerosol and water vapor products, are aggregated to 312 

1°×1° spatial resolution on a daily, eight-day, and monthly basis. Aggregations include a variety 313 

of scalar statistical information, including mean, standard deviation, max/min occurrences, as 314 

well as histograms including both marginal and joint histograms. For COT, CER and LWP, the 315 

MODIS level-3 product provides both their “in-cloud” grid-mean values (〈𝑥〉) and subgrid 316 

standard deviations (𝜎O). The inverse relative variance 𝑣 can then be derived from Eq. (4), i.e., 317 

𝑣 = 〈𝑥〉L/𝜎OL. Note that the operational MODIS product provides two CER retrievals, one based 318 

on the observation from the band 7 centered around 2.1 µm and the other from band 20 at 3.7 319 

µm. As discussed in several previous studies (Cho et al., 2015; Zhang and Platnick, 2011; Zhang 320 

et al., 2012; 2016), the 3.7 µm band CER retrieval is more resilient to the 3-D effects and retrieval 321 

failure than the 2.1 µm band retrievals. For these reasons, it is used as the observational 322 

reference in this study. 323 

Given the COT and CER retrieval, the operational MODIS product estimates the LWP of cloud 324 

using 325 

 𝐿𝑊𝑃 = L
t
𝜌�𝐶𝑂𝑇 ∙ 𝐶𝐸𝑅, (22) 

where 𝜌� is the density of water. Several studies have argued that a smaller coefficient of 5/9, 326 

instead of 2/3, should be used in estimation of LWP (Seethala and Horváth, 2010; Wood and 327 

Hartmann, 2006). The choice of the coefficient has no impact on our study, because we are 328 

interested in the relative inverse variance 𝑣 = 〈𝑥〉L/𝜎OL. We note here that it is the LWC, instead 329 

of the LWP, that is used in the KK2000 scheme. So, the spatial variability of LWC is what is most 330 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-697
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



 14 

relevant. However, the remote sensing of cloud water vertical profile from satellite sensor for 331 

liquid-phase clouds is extremely challenging even with active sensors. It is why most previous 332 

studies using the satellite observations analyzed the spatial variation of LWP, rather than LWC. 333 

In fact, even Lebsock et al. (2013), who used the level-2 CloudSat observations, had to use the 334 

vertical averaged LWC in their analysis. Ground-based observations are much better than 335 

satellite observation in this regard because they are closer to the target (i.e. clouds). Recently, 336 

Xie and Zhang (2015) analyzed the cloud water profiles retrieved using ground-based radars from 337 

the three ARM sites and found no obvious in-cloud vertical dependence of the spatial variability 338 

of LWC. Following these previous studies, we assume that the horizontal subgrid variation of LWC 339 

is not strongly dependent on height and its value can be inferred from the spatial variability of 340 

the vertical integrated quantity LWP. The uncertainty caused by this assumption will be assessed 341 

in future studies.         342 

The current MODIS level-3 cloud product does not provide CDNC retrievals. Following 343 

previous studies (Bennartz, 2007; Bennartz and Rausch, 2017; Grosvenor and Wood, 2014; 344 

McCoy et al., 2017a), we estimate the CDNC (𝑁)) of liquid-phase clouds from the MODIS retrieved 345 

COT (𝜏) and CER (𝑟�) based on the classic adiabatic cloud model  346 

 𝑁)(𝜏, 𝑟�) =
√5
2𝜋𝑘

�𝑓Q�Γ�
�𝜌�𝑄�

𝜏
=
L𝑟�

<�L,	 (23) 

where 𝜌� is the density of water; 𝑄� ≈ 2 is the extinction efficiency of cloud droplets; 𝑘 is the 347 

ratio of 𝑟� to mean volume-equivalent radius; 𝑓Q�  is the adiabaticity of the cloud; Γ� is the LWC 348 

lapse rate. Following previous studies, we assume 𝑘 = 0.8 and 𝑓Q� = 1.0 to be constant and 349 

compute  Γ� from the grid mean liquid cloud top temperature and pressure.  The theoretical 350 

basis and main uncertainty sources of the CDNC estimation based on the adiabatic cloud model 351 

from MODIS-like passive cloud retrievals are nicely reviewed by Grosvenor et al. (2018).  352 

Ideally, the values of 𝐿𝑊𝑃 and CDNC should be estimated on pixel-by-pixel basis from the 353 

level-2 MODIS product. However, pixel-by-pixel estimation is highly time consuming, which 354 

makes it difficult to achieve a global perspective. Using an alternative method, many previous 355 

studies estimate the grid-level CDNC statistics from the joint histogram of COT vs. CER provided 356 
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in the level-3 MODIS cloud products (Bennartz, 2007; McCoy et al., 2017a; 2017b). For a given 357 

1°×1° grid-box, the liquid-phase COT-CER joint histogram provides the counts of successful cloud 358 

property retrievals with respect to 108 joint COT-CER bins that are bounded by 13 COT bin 359 

boundaries, ranging from 0 to 150, and 10 CER bin boundaries, ranging from 4 µm to 30 µm. With 360 

the joint histogram, which is essentially the joint PDF of COT and CER 𝑃(𝜏, 𝑟�), we can estimate 361 

the grid mean and variance of CDNC from the following equations 362 

 〈𝑥〉 = {{𝑥(𝜏, 𝑟�)𝑃(𝜏, 𝑟�)𝑑𝜏𝑑𝑟�, (24) 

 𝑉𝑎𝑟(𝑥) = ∫∫(𝑥(𝜏, 𝑟�) − 〈𝑁)〉)L𝑃(𝜏, 𝑟�)𝑑𝜏𝑑𝑟�, (25) 

where 𝑥  can be either LWP or CDNC. Figure 3a shows the LWP in Eq. (22) as a function of the 13 363 

COT bins and 10 CER bins from the MODIS level-3 product. As expected, the largest LWP values 364 

are found when both COT and CER are large. Figure 3b shows the CDNC in Eq. (23) as a function 365 

of the COT and CER bins. As expected, the largest CDNC values are found when both COT is large 366 

and CER is small. Figure 3c shows an example of the COT-CER joint histogram from the Aqua-367 

MODIS daily level-3 product “MYD08_D3” on January 09th, 2007 at the grid box 1°S and 1°W. In 368 

this particular grid box, a combination of 2~4 COT and 10 µm ~12 µm CER is the most frequently 369 

observed cloud value. Using the joint histogram in Figure 3c, we can derive the mean and variance 370 

of both LWP and COT using the Eqs. (24) and (25).    371 

The efficiency of using the level-3 product is accompanied by two important limitations. 372 

First, the current level-3 MODIS cloud product has a fixed 1°x1° spatial resolution. Although this 373 

resolution is highly relevant to the current generation of GCMs, i.e., CMIP5 (Taylor et al., 2012), 374 

future GCMs may have significantly finer resolution. Second, it is difficult to sub-sample the pixels 375 

with the best retrieval quality. As reviewed in Grosvenor et al. (2018), the main source of 376 

uncertainty in the CDNC retrieval is the MODIS retrieval uncertainties, particularly in CER because 377 

of 𝑁)~𝑟�
<�M dependence. In the pixel-by-pixel method, the pixel-level retrieval uncertainties, as 378 

well as some other metrics such as the sub-pixel inhomogeneity index, provided in the level-2 379 

product can be used to select the pixels with the best retrieval quality. Here, because we use the 380 

static COT-CER joint histogram provided in the operational level-3 product, we do not have the 381 
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flexibility to sub-sample the data using retrieval quality. Alternatively, we can sub-sample the 382 

data using the COT. It is well known that the bi-spectral retrieval method has a large uncertainty 383 

for thin clouds. Indeed, the clouds with  COT thinner than about 4 have often been screened out 384 

in previous studies (Quaas et al., 2008). Such screening can be easily done with the joint PDF of 385 

COT and CER, but it would obviously lead to sampling bias in LWP. The impact on CDNC is 386 

dependent on whether the CDNC is correlated with the COT, i.e., whether thin clouds have the 387 

similar CDNC as the thick clouds. We will revisit this point later. It should be noted that because 388 

thin clouds in MODIS retrieval tend to have large uncertainty, any type of data quality-based data 389 

screening would inevitably lead to the sampling bias.  390 

4. Grid-mean and subgrid variations of liquid-phase cloud properties 391 

The annual mean total cloud fraction (𝑓��� ), liquid-phase cloud fraction (𝑓 ¡" ), in-cloud COT, 392 

CER from the 3.7 µm band, LWP and estimated CDNC over the tropical oceans based on 10 years 393 

Aqua-MODIS retrievals are shown in Figure 4. The highest 𝑓 ¡" in the tropics is usually found in the 394 

stratocumulus (Sc) decks over the Eastern boundary of the ocean, e.g., SE Pacific off coast of Peru, 395 

NE Pacific off the coast of California and SE Atlantic off the coast of Namibia. These regions are 396 

associated with relatively low sea surface temperature (SST) due to cold upwelling ocean surface 397 

current and mid-tropospheric subsidence of warm air from large-scale circulations, which 398 

together lead to a strong low-tropospheric stability and high liquid-cloud fraction. With an annual 399 

mean TOA cloud radiative effect usually around -40 ~ -60 W/m2, the Sc decks are important 400 

modulators of the local and global radiative energy budget. The liquid-cloud fraction reduces 401 

significantly toward the open ocean trade wind regions, where the dominate cloud types are 402 

broken cumulus (Cu). Close to the continents, the Sc decks are susceptible to the influence of 403 

continental air mass with higher loading of aerosols in comparison with pristine ocean 404 

environment, which is probably the reason the SC decks have smaller CER and higher CDNC than 405 

the open-ocean trade cumulus (Figure 4 d and f). The in-cloud COT (Figure 4 c) and LWP (Figure 406 

4 e) generally increase from the Sc decks to the open-ocean Cu regime, although less dramatically 407 

than the transition of cloud fraction. The Sc decks and the Sc-to-Cu transition are the most 408 

prominent features of liquid-phase clouds in the tropics. However, as mentioned in the 409 

introduction, simulating these features in the GCMs proves to be an extremely challenging task, 410 
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and most GCMs suffer from some common problems, such as the “too few too bright” problem 411 

and the abrupt Sc-to-Cu transition problem (Kubar et al., 2014; Nam et al., 2012; Song et al., 412 

2018).   413 

 Switching the focus now from grid-mean values to subgrid variability, we show the grid-414 

level inverse relative variances 𝑣 = 〈𝑥〉L/𝑉𝑎𝑟(𝑥)) for several key cloud properties. Recall that 𝑣 415 

is defined such that the larger the 𝑣, the larger the mean value in comparison with the variance, 416 

and the more homogeneous the cloud property within the grid. Because the value of 𝑣 can be ill-417 

behaved when 𝑉𝑎𝑟(𝑥) approaches zero, instead of the mean value, we plot the median value of 418 

𝑣¢ based on 10 years of MODIS observations in Figure 5. There are several interesting and 419 

important features in Figure 5. First of all, the 𝑣¢ of all four sets of cloud properties (i.e., COT, CER, 420 

LWP and CDNC) all exhibits a clear and similar Sc-to-Cu transition, with larger values in the Sc 421 

region and smaller value in the broken Cu regions. This indicates that cloud properties, including 422 

both optical and microphysical properties, are more homogenous, in terms of spatial distribution 423 

within the grid, in the Sc region than in the Cu region. Secondly, the value of 𝑣¢  of CER (i.e., 10~100 424 

in Figure 5b) is larger than that of the other properties (i.e., 1~10) by almost an order of 425 

magnitude, indicating that the subgrid variability of CER is very small. On the hand, however, it is 426 

important to note that the 𝑣¢ of CDNC (Figure 5d) is comparable with that of COT (Figure 5a) and 427 

LWP (Figure 5c). The reason is probably in part because the highly nonlinear relationship between 428 

CDNC and CER (i.e., 𝑁)~𝑟�
<�M ) leads to a stronger variability of CDNC than CER, and also in part 429 

because the variability of CDNC is also contributed by the subgrid variation of COT.  In some 430 

regions, the Gulf of Guinea, East and South China Sea, and Bay of Bengal for example, the 𝑣¢ of 431 

CDNC is close to unity, indicating the subgrid standard deviation of CDNC is comparable to the 432 

grid-mean values in these regions. As discussed in the next section, the significant subgrid 433 

variability of CDNC in these regions should be taken into account when modeling the nonlinear 434 

processes, such as the auto-conversion, in GCM to avoid systematic biases due to the nonlinearity 435 

effect.    436 

 The values of 𝑣¢ in Figure 5 from this study are in reasonable agreement with previous 437 

studies. Barker (1996) selected a few dozens of cloud scenes, each about 100 ~ 200 km in size, 438 

from the Landsat observation and analyzed their spatial variability of COT. It is found that the 439 
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typical value of 𝑣 for “overcast stratocumulus”, “broken stratocumulus” and “scattered cumulus” 440 

is 7.9, 1.2, and 0.7, respectively (see their Table 3), which is consistent with the Sc-to-Cu transition 441 

pattern seen in Figure 5. Oreopoulos and Cahalan (2005) derived the subgrid inhomogeneity of 442 

COT on a global scale from the level-3 Terra-MODIS retrievals. Although using a different metric 443 

(i.e., their inhomogeneity parameter is defined as 𝜒 = exp(ln〈𝜏〉) /〈𝜏〉), they also found 444 

systematic increase of inhomogeneity (decreasing value of 𝜒) from the Sc region to cu region. 445 

Also using the MODIS cloud property retrievals, Wood and Hartmann(2006) investigated the 446 

meso-scale spatial variability of LWP in the NE Pacific and SE Pacific region. The 𝑣 of LWP is found 447 

to increase systematically with meso-scale cloud fraction and the relationship between the two 448 

can be reasonably explained by a simple PDF cloud thickness model in Considine et al. (1997). 449 

See also Kawai and Teixeira (2010).  450 

5. Implications for warm-rain simulations in GCM 451 

5.1. Influence of subgrid variation of LWP  452 

As explained in the Theoretical Background, in GCMs the influences of subgrid cloud water 453 

variability on the simulation of highly nonlinear autoconversion process are accounted for using 454 

the enhancement factors defined in Eq. (15). For example, in CAM5.3, the MG cloud microphysics 455 

parameterization scheme assumes that the subgrid cloud water follows the Gamma distribution 456 

with the value of 𝑣 = 1, which leads to a constant enchantment factor of 3.2 for the  KK2000 457 

autoconversion scheme (Morrison and Gettelman, 2008). Because its direct connection with the 458 

precipitation rate, the enhancement factor can have significant impacts on precipitation, cloud, 459 

and radiation fields of the host model. For the same reason, it is also often used as a “tuning” 460 

parameter to optimize the model and reduce the differences between model simulations and 461 

observations (Guo et al., 2014). Thus, an observational constraint on the enhancement factor is 462 

of great interest to the modeling community and has been the target of several recent studies. 463 

In the part 1 of a two-part study, Larson and Griffin (2013) present a theoretical framework based 464 

on the joint PDF of cloud and meteorological properties for diagnosing the enhancement factors 465 

for various nonlinear processes in warm clouds, e.g., autoconversion, accretion, and evaporation. 466 

In part 2, Griffin and Larson (2013) analyzed the in situ measurements from the research flight 467 

two (RF02) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field 468 
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experiment. It is found that taking into account the nonlinear effect caused by subgrid cloud 469 

variability increases the autoconversion and accretion rates, leading to significantly more surface 470 

precipitation and better agreement to the observations.  471 

 As discussed in Section 2.2, given the subgrid cloud property variations, we can derive the 472 

enhancement factor using two approaches. In the first, we can derive the enhancement factor 473 

based on its definition in Eq. (18) and (19) directly from the observed PDF of LWP or CDNC, 474 

respectively. The advantage of this approach is that we do not have to make any assumption 475 

about the shape of the subgrid cloud property variation (i.e., Gamma or Lognormal), although 476 

this approach is more time consuming because it has to solve the integration. In the second 477 

approach, we first derive the relative inverse relative variance 𝑣  and then derive the 478 

enhancement factor by assuming the subgrid PDF to be either Gamma (i.e., Eq. (20)) or 479 

Lognormal (i.e., using Eq. (21)). This approach is more although it may be subject to significant 480 

error if the true PDF deviates from the assumed PDF shape.  481 

Figure 6a shows the median enhancement factor 𝐸"  in the tropical region derived based 482 

on Eq. (18) (i.e., the first approach) from 10 years of MODIS observation. Figure 6 b and c show 483 

the median enhancement factor 𝐸"  derived by assuming the subgrid cloud water follows the 484 

Lognormal and Gamma distribution, respectively. There are a couple of interesting and important 485 

points to note. First of all, similar to the grid-mean quantities in Figure 4, the enhancement factor 486 

𝐸"  also shows a clear Sc-to-Cu transition. Over the Sc decks, because clouds are more 487 

homogeneous (𝑣¢ > 5), the enhancement factor 𝐸"  is only around 1 ~ 2.5, while over the Cu 488 

regions, the more inhomogeneous clouds with  𝑣¢ < 1 leads to a larger enhancement factor 𝐸"  489 

around 3~5. As aforementioned, in the current CAM5.3, 𝐸"  is assumed to be a constant of 3.2. 490 

While this value is within the observational range, it obviously cannot capture the Sc-to-Cu 491 

transition. In fact, the constant value 3.2 overestimates the 𝐸"  over the Sc region and 492 

underestimates the 𝐸"  over the Cu region, which could lead to unrealistic drizzle product in both 493 

regions and to consequential impacts on cloud water budget, radiation and even aerosol indirect 494 

effects on the model. The second point to note is that the 𝐸"  based on the Lognormal PDF 495 

assumption in Figure 6 b agrees well with the results in Figure 6 b derived directly from the 496 

observation. In contrast, the 𝐸"  based on the Gamma PDF assumption in Figure 6 c tend to be 497 
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smaller, especially in the Cu regions. This result seems to suggest that the Lognormal distribution 498 

provides a better fit to the observed subgrid cloud water variation than the Gamma distribution, 499 

which has rarely been noted and reported in the previous studies.   500 

 A flexible, cloud-regime dependent 𝐸"  could help improve the simulation of Sc-to-Cu 501 

transition in the GCM. If a GCM employs an advanced cloud parameterization scheme, such as 502 

CLUBB, that is able to provide regime-dependent information on subgrid cloud variation, i.e., 𝑣, 503 

then the enhancement factor 𝐸"  could be diagnosed from 𝑣 . However, most traditional cloud 504 

parameterization schemes do not provide information on subgrid cloud variation. In such case, if 505 

one does not wish to use a constant 𝐸" , but a varying regime-dependent scheme, then either 𝑣 506 

or 𝐸"  need to be parameterized as a function of some grid-mean cloud properties resolved by 507 

the GCM. In facts, several attempts have been made along this line. Based on the combination 508 

air-borne in situ measurement and satellite remote sensing product, Boutle et al. (2014) 509 

parameterized the “fractional standard deviation” (which is equivalent to 1/√𝑣 in our definition) 510 

of liquid-phase cloud as a function of grid-mean cloud fraction. This scheme was later updated 511 

and tested in a host GCM in Hill et al. (2015), and was found to reduce the shortwave cloud 512 

radiative forcing biases in the model. In a recent study, Xie and Zhang (2015) derived the subgrid 513 

cloud variations from the ground-based observations from three Department of Energy (DOE) 514 

Atmospheric Radiation Measurement (ARM) sites, and then parameterize the inverse relative 515 

variance 𝑣 as a function of the atmospheric stability.  516 

Figure 7a shows the variation of inverse relative variance 𝑣 as a function of the grid-mean 517 

liquid-phase cloud fraction 𝑓 ¡" . In general, the value of 𝑣 increases with the increasing 𝑓 ¡" , which 518 

is expected from the Sc-to-Cu increase of 𝑓 ¡" in Figure 4b and the Sc-to-Cu decrease of  𝑣 in Figure 519 

5c. The 𝑣(𝑓 ¡") pattern in Figure 7a is also consistent with the results reported in Wood and 520 

Hartmann (2006) and Lebsock et al. (2013). In the hope of obtaining a simple parameterization 521 

scheme for 𝑣(𝑓 ¡") that can be used in GCMs, we fit the median value of  𝑣 as a simple 3rd order 522 

polynomial of 𝑓 ¡"  as follows: 523 

 𝑣(𝑓 ¡") = 2.38−4.95𝑓 ¡" + 8.74𝑓 ¡"L − 0.49𝑓 ¡"t , 𝑓 ¡" ∈ (0,1]. (26) 
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To test the performance of this simple parameterization, we first substitute the 𝑓 ¡"  from MODIS 524 

daily mean level-3 product into the above equation and then use the resultant 𝑣 to compute the 525 

enhancement factor 𝐸" . Unfortunately, the median value of the enhancement factor 𝐸"  526 

computed based on the parameterized 𝑣(𝑓 ¡") as shown in Figure 8a substantially underestimate 527 

the observation-based results in Figure 6, especially over the Cu regions. The deviation is 528 

probably because the relationship between 𝐸"  and 𝑣 is highly nonlinear (e.g., Eq. (20) and (21)) 529 

and therefore the above parameterization scheme that only fits the median value of 𝑣 is not able 530 

to capture the variability of 𝐸" . Based on this consideration, we tried an alternative approach. 531 

Instead of parameterization of 𝑣, we directly parameterize the enhancement factor 𝐸"  as a 532 

function of 𝑓 ¡" . Figure 7b shows the variation of 𝐸"  as a function of 𝑓 ¡" . As expected, 𝐸"  generally 533 

decreases with increasing 𝑓 ¡" . The median value of 𝐸"  is fitted with the following 3rd order 534 

polynomial of 𝑓 ¡"  535 

 𝐸"(𝑓 ¡") = 2.72+7.33𝑓 ¡" − 19.17𝑓 ¡"L + 10.69𝑓 ¡"t , 𝑓 ¡" ∈ (0,1]. (27) 

As shown in Figure 8b, the median value of 𝐸"  based on the above equation clearly agrees with 536 

the observation-based values in Figure 6 better than that based on the parameterization of 537 

𝑣(𝑓 ¡"). The elimination of the middle step indeed improves the parameterization results. While 538 

this is encouraging, it should be kept in mind that the Eq. (27) has very limited application, i.e., it 539 

is only useful for the autoconversion rate computation for a particular value of the 540 

autoconversion exponent beta, i.e., 𝛽" = 2.47. A good parameterization of 𝑣 could be useful for 541 

not only autoconversion, but also for accretion and radiation computations. Another caution is 542 

that, if applied to a GCM, the performance of the 𝐸"(𝑓 ¡") parameterization in Eq. (27) will be 543 

dependent on the simulated accuracy of 𝑓 ¡"  in the model. In future study, we will implement this 544 

parameterization scheme in a couple of GCMs and study the impacts on the cloud, precipitation 545 

and radiation simulations. We will also explore better ways to parameterize the inverse relative 546 

variance 𝑣.  547 

 548 
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5.2. Influence of subgrid variance of CDNC 549 

In the previous section, we have mainly focused on the enhancement factor 𝐸"  on 550 

autoconversion simulation due to the subgrid variation of cloud water. In this section we switch 551 

the focus on the enhancement factor 𝐸'  due to the subgrid variation of CDNC.  552 

The median value of 𝐸'  derived based on Eq. (19) from 10 years of MODIS observation is 553 

shown in Figure 9a. There are several intriguing points to note. First of all, the value of 𝐸'  is 554 

actually larger than 𝐸"  in Figure 9 such that we even have to use a different color scale for this 555 

plot. Secondly, 𝐸'  the regions with escalated 𝐸'  seem to coincide with the downwind regions of 556 

biomass burning aerosols (e.g., Gulf of Guinea, East Coast of South Africa), air pollution (i.e., 557 

Eastern China Sea), and, most interestingly, active volcanos (e.g., Kilauea Hawaii and Ambae 558 

Vanuatu). We have also checked the seasonal variation of the 𝐸'  (shown in supplementary 559 

materials) and the results also support this observation. Another interesting feature to note is 560 

that, although the dust outflow regions such as Tropical East Atlantic and Arabian Sea, have heavy 561 

aerosol loading, the value of 𝐸'  there is only moderate. Figure 9b shows the value of 𝐸'  562 

computed based on Eq. (21) from the inverse relative variance of 𝑣, assuming that the subgrid 563 

CDNC follows a Lognormal PDF. Although the overall pattern is consistent with Figure 9a, the 564 

assumption of Lognormal PDF seems to underestimate 𝐸'. A closer examination indicates that 565 

the Lognormal PDF tend to underestimate the population of clouds with small CDNC, and 566 

therefore underestimate the variance of CDNC as well as 𝐸'. We did not compute the 𝐸'   based 567 

on the Gamma distribution because of the singular value problem aforementioned in Section2.1.   568 

 We could not find any previous observation-based study on the global pattern of the 569 

subgrid variation of CDNC and the corresponding 𝐸'. So, it is difficult for us to corroborate our 570 

results. On one hand, the pattern of 𝐸'  in Figure 9a seems to suggest that there are some 571 

underlying physical mechanisms controlling the subgrid variation of CDNC, in which aerosols 572 

seem to play an important role. On the other hand, the magnitude of 𝐸'  is surprisingly large. As 573 

explained in section 3, the CDNC is estimated based on Eq. (23) from the MODIS retrieval of COT 574 

and CER. Could retrieval uncertainty contribute to the large subgrid variation of CDNC and 575 

therefore 𝐸'? In order to better understand the large value of 𝐸', we selected a case during the 576 

biomass burning season in the Gulf of Guinea, which is shown in Figure 10. During the boreal 577 
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winter, the grassland and savanna fires in the southern West Africa generate a thick layer of 578 

smoke aerosols that are clearly visible in the satellite image (Andreae and Merlet, 2001). On this 579 

day, the Gulf of Guinea is quite cloudy, filled with broken cumulus clouds in the northern coastal 580 

region and stratiform clouds in the south. We arbitrarily selected a smaller region, marked with 581 

the red box, for detailed analysis. Although the cloud fraction in this region is about 60%, the 582 

clouds are broken and optically thin with COT mostly smaller than 10. Interestingly, the CER varies 583 

substantially from as low as 4 µm up to 30 µm in this relatively small region. Because of the highly 584 

nonlinear dependence of CDNC on CER (i.e., 𝑁)~𝑟�
<�/L), the large variance of CER leads to an 585 

even larger variance of CDNC. The 𝐸'  derived based on Eq. (19) is 9.9. In contrast, the 𝐸"  is only 586 

about 1.5.  587 

 The results from the above case study raises some concerns. It seems that the large 588 

variations of CER and therefore CDNC are usually associated with thin clouds. While there could 589 

be a physical explanation (e.g., CCN activation), it seems more likely to be caused, or at least 590 

contributed, by retrieval uncertainty. It is well known that the bispectral method has large 591 

uncertainties for thin clouds, especially when they are broken. Several previous studies have 592 

shown that the sub-pixel level surface contamination, subpixel inhomogeneity, and three-593 

dimensional radiative transfer effects, tend to cause overestimated CER retrieval on top of large 594 

uncertainties (Zhang and Platnick, 2011; Zhang et al., 2012; 2016). Therefore, for such a 595 

challenging case in Figure 10, it is not surprising that the large CDNC variation and 𝐸'  are partly 596 

caused by retrieval uncertainty. Based on this consideration, we did a sensitivity test, in which 597 

we screen out the thin clouds with COT < 4 in the computation and analysis of CDNC and  𝐸'. The 598 

result from this test is shown in Figure 9c. Indeed, the removal of thin clouds substantially 599 

reduces the value of  𝐸'. For example, in the Gulf of Guinea, the median value of 𝐸'  reduces by 600 

a factor of 4 from about 10 to only about 2.5. Nevertheless, the global pattern of 𝐸'  still remains, 601 

i.e., nonnegligible values of 𝐸'  are found in the downwind regions of biomass burning, air 602 

pollution and volcano emission.   603 

 As far as we know, the results in Figure 9 and Figure 10 mark the first attempt based on 604 

satellite observations to unveil the global pattern of the subgrid variations of CDNC and 605 

investigate the consequential impacts on warm rain simulations in GCMs. Although obscured by 606 
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satellite retrieval uncertainties, the results still provide several valuable insights. First of all, the 607 

enhancement factor 𝐸'  due to the subgrid variations of CDNC is nonnegligible, even comparable 608 

the effect of subgrid cloud water variation (i.e., 𝐸"). Second, the global pattern of 𝐸'  in Figure 9 609 

provides a valuable map for future studies, which in our opinion should focus on the regions with 610 

large 𝐸', e.g., Gulf of Guinea, East Coast of South Africa and Eastern China Sea. Last, but not least, 611 

the example in Figure 10 clearly exposes the limitation of the current satellite remote sensing 612 

method. There are alternative methods for retrieving the CDNC from satellite observations (see 613 

discussion in Grosvenor et al. (2018)). However, these methods more or less face the same 614 

challenges as the MODIS retrieval (i.e., surface contamination, 3D effects). Future studies should 615 

consider using the air-borne in situ measurements of cloud microphysics in the regions with 616 

significant 𝐸', if available.  617 

5.3. The combined effect of subgrid variations of cloud water and CDNC 618 

 As discussed in Section 2.2, the combined effect of the subgrid variations of cloud water 619 

and CDNC can be derived from joint PDF 𝑃(𝑞, 𝑁)) based on Eq. (15). Because both 𝑞 and 𝑁§  are 620 

a function of the retrieved COT and CER, we can easily derive the combined enhancement factor 621 

𝐸 from the COT-CER joint histogram of MODIS product simply changing the integration domain 622 

of Eq. (15) from 𝑞 and 𝑁§  to COT and CER. The median value of the combined enhancement 623 

factor 𝐸 based on Eq. (15) is shown in Figure 11a. As one would expect, the combined 624 

enhancement factor is generally larger than both 𝐸"  in Figure 6 and the 𝐸'  in Figure 9. It is easy 625 

to see that the in some regions (e.g., Gulf of Guinea, East Coast of South Africa and Eastern China 626 

Sea) the combined enhancement factor 𝐸 resembles the 𝐸'  while in other regions (i.e., trade 627 

wind cumulus regions over open ocean) it resembles more of 𝐸" . Interestingly, because both 𝐸"  628 

and 𝐸'  are small over the Sc decks, those regions have the smallest combined enhancement 629 

factor 𝐸.  630 

 As discussed in Section 2.2, only when the subgrid variation of cloud water is uncorrelated 631 

with the subgrid variation of CDNC can the combined enhancement factor 𝐸 be decomposed into 632 

the simple product of 𝐸"  and 𝐸'  (i.e., Eq. (17)). Otherwise, additional terms that could be quite 633 

complicated are needed to account for the effect of correlation (Lebsock et al., 2013). Here, we 634 

performed a couple of simple tests to understand the potential correlation between 𝐸"  and 𝐸'. 635 
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In the first test, we simply compare the product 𝐸" ∙ 𝐸'  with the observation-based 𝐸 in Figure 636 

11a and we found that the simple product 𝐸" ∙ 𝐸'  substantially overestimates 𝐸, especially over 637 

the region with large 𝐸'  (not shown). In the light of the example in Figure 10, in the second test 638 

we screened out the optical thin clouds and computed the 𝐸" ∙ 𝐸'(𝐶𝑂𝑇 > 4), which is shown in 639 

Figure 11b. It should be clarified that optically thin clouds are kept in the computation of both 𝐸"  640 

and 𝐸, only left out in 𝐸'. Apparently, the 𝐸" ∙ 𝐸'(𝐶𝑂𝑇 > 4) agrees reasonably well with the 641 

combined enhancement factor in Figure 11a. This is encouraging on one hand, but on the other 642 

not easy to explain. A possible explanation is that there is an apparent positive correlation 643 

between cloud water and CDNC in the region with large 𝐸'  (i.e., optically thin clouds with less 644 

cloud water tend to have larger CER and smaller CDNC). This correlation mainly exists among 645 

optically thin clouds as a result of retrieval bias and uncertainty and it tends to counteract the 646 

effect of 𝐸"  and 𝐸'  making the combined enhancement factor 𝐸 substantially smaller than the 647 

simple product of 𝐸" ∙ 𝐸'  (i.e., assuming no correlation).  648 

 649 

6. Summary and Outlook  650 

One of the difficulties in GCM simulation of the warm rain process is how to account for 651 

the impact of subgrid variations of cloud properties, such as cloud water and CDCN, on nonlinear 652 

precipitation processes such as autoconversion. In practice, this impact is often treated by adding 653 

the enhancement factor term to the parameterization scheme. In this study, we derived the 654 

subgrid variations of liquid-phase cloud properties over the tropical ocean using the satellite 655 

remote sensing products from MODIS and investigated the corresponding enhancement factors 656 

for parameterizations of autoconversion rate. In comparison with previous work, our study is 657 

able to shed some new light on this problem in the following regards: 658 

1. The wide spatial coverage of the Level-3 MODIS product enables us to depict a 659 

detailed quantitative picture of the enhancement factor 𝐸"  due to the subgrid 660 

variation of cloud water, which shows a clear cloud regime dependence, i.e., a Sc-661 

to-Cu increase. The constant 𝐸" = 3.2 used in the current CAM5.3 model 662 

overestimates and estimates the observed 𝐸"  in the Sc and Cu regions, 663 

respectively.  664 
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2. The 𝐸"  based on the Lognormal PDF assumption performs slightly better than that 665 

based on the Gamma PDF assumption. 666 

3. A simple parameterization scheme is provided to relate 𝐸"  to the grid-mean liquid 667 

cloud fraction, which can be readily used in GCMs. 668 

4. For the first time, the enhancement factor 𝐸'  due to the subgrid variation of CDNC 669 

is derived from satellite observation, and the results reveal several regions 670 

downwind of biomass burning aerosols (e.g., Gulf of Guinea, East Coast of South 671 

Africa), air pollution (i.e., Eastern China Sea), and active volcanos (e.g., Kilauea 672 

Hawaii and Ambae Vanuatu), where the 𝐸'  is comparable, or even larger than 673 

𝐸" ,even after the optically thin clouds are screened out.  674 

In future studies, we will further investigate the implications of these findings from 675 

observations for warm rain simulations in GCMs. For example, the parameterization scheme of 676 

𝐸"(𝑓 ¡") in Eq. (27) can be implemented in the GCMs and compared to the results based on the 677 

constant 𝐸"  assumption to understand the potential influence of considering a cloud-regime-678 

dependent 𝐸"  on cloud simulations. Recently, a few novel methods have been developed to 679 

provide certain information on the subgrid cloud property variations to the host GCM. Most 680 

noticeable examples are the super-parameterization method (a.k.a. multi-scale modeling 681 

framework) (Wang et al., 2015) and the higher-order turbulence closure methods (e.g., Cloud 682 

Layer Unified By Binormals, CLUBB) (Golaz et al., 2002a; Guo et al., 2015; Larson et al., 2002). 683 

Those GCMs coupled with these new schemes, theoretically, would no longer need the 684 

enhancement factor. Nevertheless, the subgrid cloud property variations derived in this study 685 

provide the observational basis for the evaluation and improvement of these schemes.  686 

As noted in the previous sections, this study has several important limitations, most of 687 

which are a result of using the level-3 MODIS observations. The fixed 1°x1° spatial resolution of 688 

MODIS level-3 product makes it impossible for us to investigate the scale-dependence of subgrid 689 

cloud variation. Similar to previous studies, we have to make several assumptions when 690 

estimating the CDNC from level-3 MODIS product. Furthermore, the retrieval uncertainties 691 

associated with the optically thin clouds in MODIS product pose a challenging obstacle for the 692 

quantification of subgrid cloud property variations and the corresponding enhancement factors.  693 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-697
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



 27 

These limitations have to be addressed using additional independent observations from, for 694 

example, ground based remote sensing product and/or in situ measurement from air-borne field 695 

campaigns. Nevertheless, the results from this study provide a valuable roadmap for future 696 

studies.   697 
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 710 

Figures: 711 

 712 
Figure 1 a) The PDF and cumulative distribution function (CDF) of cloud LWC that follow the 713 
Gamma (dashed) and Lognormal (solid) distribution. For the both distributions, 〈𝐿𝑊𝐶〉 =714 
0.5𝑔/𝑘𝑔 and 𝑣 = 3.0. b) The PDF and CDF of rain rate computed based on the KK2000 scheme 715 
in Eq. (12) and the PDF of LWC. In the computation, the CDNC is kept at a constant of 50 𝑐𝑚<=. 716 
c) The PDF and CDF of CDNC that follow the Gamma (dashed) and Lognormal (solid) 717 
distribution. For the both distributions, 〈𝑁)〉 = 50𝑐𝑚<t and 𝑣 = 5.0. d) the PDF and CDF of the 718 
rain rate computed based on the KK2000 scheme in Eq. (12) and the PDF of CDNC. The LWC is 719 
kept at 0.5𝑔/𝑘𝑔 in the computation.  720 

  721 
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 722 
Figure 2 Enhancement factors based on Lognormal 𝐸(𝑃T, 𝛽) and Gamma 𝐸(𝑃7, 𝛽) subgrid PDF 723 
for different 𝛽 as a function of the inverse relative variance 𝑣.   724 

  725 
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 726 

 727 
Figure 3 The (a) LWP and (b) CDNC as a function of COT and CER. (c) An exmaple of the COT-CER 728 
joint histogram observed by Aqua-MODIS on Jan. 09th, 2007 at 1°S and 1°W.  729 

  730 
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 731 
 732 

 733 
Figure 4 10-year (2007~2016) averaged annual mean a) total cloud fraction, b) liquid cloud 734 
fraction, c) cloud optical thickness, d) cloud effective radius retrieved from the 3.7 µm band, e) 735 
cloud wather path and f) cloud droplet concentration retrievals from Aqua-MODIS over the 736 
tropical (30° S-30° N) oceans. All quantaties are “in-cloud” mean that are averaged over the 737 
cloudy-part of the grid only.  738 

  739 
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 740 
Figure 5 10-year (2007~2016) averaged annual mean inverse relative variance (i.e., 𝑣 =741 
〈𝑥〉L/𝑉𝑎𝑟(𝑥)) of a) COT, b) CER, c) LWP and d) CDNC. Note that the color scale of CER is 742 
different from others’.  743 

  744 
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 745 

 746 
Figure 6 The median enhancement factor for the KK2000 scheme due to subgrid variation of 747 
LWP computed a) directly from observation, i.e., 𝐸"  in Eq. (17), b) from relative variance 748 
assuming Lognormal PDF of LWP and c) from relative variance assuming the Gamma PDF of 749 
LWP.  750 
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 752 

 753 

 754 

Figure 7 a) The inverse relative variance 𝑣 and b) autoconversion enhancement factor due to 755 
LWP subgrid variability assuming Log-normal PDF as a function of grid-mean liquid cloud 756 
fraction, where the solid line, dark shaded area, and light shaded area correspond to the 757 
median value, 25%~75% percentiles, and 10~90% percentiles, respectively. The dotted lines 758 
correspond to simple 3-rd order polynomial fitting.  759 
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 761 
Figure 8 Median value of the enhancement factor computed based on the a) 𝑣(𝑓 ¡") 762 
parameterization scheme in Eq. (26) and b) 𝐸"f𝑓 ¡"g parameterization scheme in Eq. (27).  763 
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 765 
 766 
 767 

 768 
Figure 9 Median value of the enhancement factor 𝐸'  derived from a) observation based on Eq. 769 
(19) and b) from Eq. (21) assuming Lognormal subgrid CDNC distribution. c) same as a) except 770 
that thin clouds with COT <4 have been screened out from the analysis.  771 
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 773 
 774 

Figure 10 An example of the large 𝐸'  in the Gulf of Guinea observed by Aqua-MODIS on 775 
Jan.09th, 2007. The large image on the left shows the true color image of the region. The three 776 
smaller images on the right are, from top to bottom, the zoom-in RGB image, CER and COT 777 
retrievals of the subregion in red box.   778 
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 780 

Figure 11 a) the combined enhancement factor based on Eq. (15), b) the combined 781 
enhancement factor based on the assumption that subgrid variations of LWP and CDNC are 782 
uncorrelated, i.e., 𝐸" ∙ 𝐸'(𝐶𝑂𝑇 > 4). Optical thin clouds (COT<4) are screened out in the 783 
computation of 𝐸'  to reduce the impact of retrieval artifacts.  784 

 785 
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