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 29 

Abstract: 30 

One of the challenges in representing warm rain processes in global climate models 31 

(GCM) is related to the representation of the subgrid variability of cloud properties, such as cloud 32 

water and cloud droplet number concertation (CDNC), and the effect thereof on individual 33 

precipitation processes such as autoconversion. This effect is conventionally treated by 34 

multiplying the resolved-scale warm ran process rates by an enhancement factor (𝐸") which is 35 

derived from integrating over an assumed subgrid cloud water distribution. The assumed subgrid 36 

cloud distribution remain highly uncertain. In this study, we derive the subgrid variations of 37 

liquid-phase cloud properties over the tropical ocean using the satellite remote sensing products 38 

from Moderate Resolution Imaging Spectroradiometer (MODIS) and investigate the 39 

corresponding enhancement factors for the GCM parameterization of autoconversion rate. We 40 

find that the conventional approach of using only subgrid variability of cloud water is insufficient, 41 

and that the subgrid variability of CDNC, as well as the correlation between the two, are also 42 

important for the correctly simulating the autoconversion process in GCMs. Using the MODIS 43 

data which has the near-global data coverage, we find that 𝐸" shows a strong dependence on 44 

cloud regimes, due to the fact that the subgrid variability of cloud water and CDNC is regime-45 

dependent. Our analysis shows a significant increase of 𝐸" from the stratocumulus (Sc) to 46 

cumulus (Cu) regions. Furthermore, the enhancement factor 𝐸$ due to the subgrid variation of 47 

CDNC is derived from satellite observation for the first time, and results reveal several regions 48 

downwind of biomass burning aerosols (e.g., Gulf of Guinea, East Coast of South Africa), air 49 

pollution (i.e., Eastern China Sea), and active volcanos (e.g., Kilauea Hawaii and Ambae Vanuatu), 50 

where the 𝐸$ is comparable, or even larger than 𝐸", suggesting an important role of aerosol in 51 

influencing the 𝐸$. MODIS observations suggest that the subgrid variations of cloud liquid water 52 

path (LWP) and CDNC are generally positively correlated. As a result, the combined enhancement 53 

factor, including the effect of LWP and CDNC correlation, is significantly smaller than the simple 54 

product of 𝐸" ∙ 𝐸$. Given the importance of warm rain processes in understanding the Earth 55 

system dynamics and water cycle, we conclude that more observational studies are needed to 56 

provide a better constraint on the warm rain processes in GCMs.    57 
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1. Introduction 58 

Marine boundary layer (MBL) clouds are a strong modulator of Earth’s radiative energy 59 

budget (Klein and Hartmann, 1993; Trenberth et al., 2009). They can interact with other 60 

components of the climate system, such as aerosols and precipitations, in various ways. The 61 

feedback of MBL clouds to climate change remains one of the largest uncertainties in our 62 

understanding of the climate sensitivity (Bony and Dufresne, 2005; Soden and Held, 2006). 63 

Despite their importance in the climate system, simulating MBL clouds in general circulations 64 

models (GCM) has proved to be extremely challenging. A main difficulty is rooted in the fact the 65 

typical grid size of GCM (~100km) is much larger than the spatial scale of many cloud 66 

microphysical processes, and as a result these subgrid scale processes, as well as the subgrid 67 

cloud variations, have to be highly simplified and then parameterized as functions of resolved, 68 

grid-level variables.  69 

Of particular interest in this study is the warm rain processes in MBL clouds, which have 70 

fundamental impacts on the cloud water budget and lifetime. Although in reality it is highly 71 

complicated and involves multiple factors, warm rain formation in GCMs is usually parameterized 72 

as simple functions of only key cloud parameters. For example, the drizzle in MBL cloud is 73 

initialized by the so-called autoconversion process in which the collision-coalescence of cloud 74 

droplets gives birth to large drizzle drops (Pruppacher and Klett, 1997). In GCMs, for the sake of 75 

efficiency, this process is usually parameterized as a power function of liquid water content (LWC 76 

or symbol 𝑞') and cloud droplet number concentration (CDNC or symbol 𝑁'). One of the most 77 

widely used parameterization scheme is developed by Khairoutdinov and Kogan (2000) 78 

(“KK2000” hereafter), which has the form 79 

 )"*
)+
= 𝐶(𝑞')/0(𝑁')/1, 

(1) 

where )"*
)+

 is the rain water tendency due to the autoconversion process, 𝑞'  has the unit of kg/kg, 80 

and 𝑁'  of cm−3. The three parameters 𝐶 = 1350, 𝛽" = 2.47 and 𝛽$ = −1.79 are derived 81 

through a simple least-square fitting of the autoconversion rate results from a large-eddy 82 

simulation with bin microphysics that can simulate the process-level physics. Even though this is 83 

highly simplified, the parametrization scheme still faces a great challenge. The calculation of grid-84 
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mean autoconversion efficiency requires the knowledge of subgrid distributions of LWC and 85 

CDNC, but in the GCMs only grid-mean quantities 〈𝑞'〉 and 〈𝑁'〉 are known and available for use 86 

in the computation of autoconversion rate. As pointed out by Pincus and Klein (2000), for a 87 

process 𝑓(𝑥) such as autoconversion that is nonlinearly dependent on subgrid variables, 𝑥, the 88 

grid-mean value 〈𝑓(𝑥)〉 is not equal to the value estimated based on the grid-mean 〈𝑥〉, i.e., 89 

〈𝑓(𝑥)〉 ≠ 𝑓(〈𝑥〉). Mathematically, if 𝑓(𝑥) is convex, then 𝑓(〈𝑥〉) < 〈𝑓(𝑥)〉 (Larson and Griffin, 90 

2013; Larson et al., 2001).  To take this effect into account, a parameter 𝐸 is often introduced in 91 

the GCM as part of the parameterization such that 〈𝑓(𝑥)〉 = 𝐸 ∙ 𝑓(〈𝑥〉). It is referred to as the 92 

“enhancement factor” in many studies and this study too because 𝐸 > 1 for a convex function. 93 

Such a nonlinear effect is not just limited to the autoconversion process. Some other examples 94 

are the plane-parallel albedo bias (Barker, 1996; Cahalan et al., 1994; Oreopoulos and Davies, 95 

1998a), subgrid cloud droplet activation (Morales and Nenes, 2010) and accretion (Boutle et al., 96 

2014; Lebsock et al., 2013). 97 

The value of 𝐸 is determined primarily by two factors: the nonlinearity of 𝑓(𝑥) and the 98 

subgrid probability density function (PDF) 𝑃(𝑥). Given the same subgrid variation of LWC, i.e., 99 

𝑃(𝑞'), the nonlinear effect impacts the autoconversion parameterization more than it does on 100 

the accretion, because the former is a more nonlinear function of 𝑞'  than the latter. For the same 101 

𝑓(𝑥), a grid box with a narrow and symmetric 𝑃(𝑥) would require a smaller 𝐸 than another grid 102 

box with a broader and non-symmetric 𝑃(𝑥). Ideally, the value of the enhancement factor 𝐸 103 

should be diagnosed from the subgrid cloud PDF 𝑃(𝑥). Unfortunately, because this is not possible 104 

in most conventional GCMs, the value of 𝐸 is usually assumed to be a constant for the lack of 105 

better options. The 𝐸 for autoconversion due to subgrid LWC variation is assumed to be 3.2 in 106 

the two-moment cloud microphysics parameterization schemes by Morrison and Gettelman 107 

(2008) (MG scheme hereafter), which is employed in the widely used Community Atmosphere 108 

Model (CAM). This choice of 𝐸 = 3.2 is based on an early study by Barker et al. (1996), in which 109 

the mesoscale variation of column-integrated optical thickness of the “overcast stratocumulus”, 110 

“broken stratocumulus” and “scattered stratocumulus” are studied. The value 𝐸 = 3.2 is derived 111 

based on the mesoscale variation of the broken stratocumulus.     112 
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Clearly, a simple constant 𝐸 is not adequate. The following is a list of attempts to better 113 

understand the subgrid cloud variations and the implications for warm rain simulations in GCMs. 114 

Several previous studies have shown that the mesoscale cloud water variation is a strong function 115 

of cloud regime—the subgrid cloud water variation of Sc cloud is much different from that of Cu 116 

clouds (Barker et al., 1996; Lee et al., 2010; Oreopoulos and Cahalan, 2005; Wood and Hartmann, 117 

2006). As the first part of a two-part study, Larson and Griffin (2013) first laid out a systematic 118 

theoretical basis for understanding the effects of subgrid cloud property variations on simulating 119 

various nonlinear processes in GCM, including not only the autoconversion but also the accretion, 120 

condensation, evaporation and sedimentation processes. In the second part, using cloud fields 121 

from a large-eddy simulation (LES), Griffin and Larson (2013) showed that inclusion of the 122 

enhancement factor indeed leads to more rainwater at surface in single-column simulations and 123 

makes them agree better with high-resolution large-eddy simulations. Using a combination of in 124 

situ measurement and satellite remote sensing data, Boutle et al. (2014) analyzed the spatial 125 

variation of both cloud and rain water, as well as their covariation, and developed a simple 126 

parameterization scheme to relate the subgrid cloud water variance to the grid-mean cloud 127 

fraction. Later, the study of Boutle et al. (2014) was extended by Hill et al. (2015) who developed 128 

a cloud regime dependent and scale-aware parameterization scheme for simulating subgrid 129 

cloud water variation. Recently, using the ground-based observations from three Department of 130 

Energy (DOE) Atmospheric Radiation Measurement (ARM) sites, Xie and Zhang (2015) developed 131 

a scale-aware parameterization scheme for GCMs to account for subgrid cloud water variation. 132 

Also using ARM measurement, Ahlgrimm and Forbes (2016) analyzed the dependence of cloud 133 

water variability on cloud regime. Although these previous studies have shed important light on 134 

subgrid cloud variation and the implications for GCM, they lack a global perspective because they 135 

are only based on limited data (e.g., LES cases, in situ and ground-based measurement). 136 

Currently, satellite remote sensing observation is the only way to achieve a global perspective. 137 

Using the observations from the space-borne radar CloudSat, Lebsock et al. (2013) showed that 138 

the subgrid cloud water variance is smaller over the Sc region than over the Cu region, and as a 139 

result the enhancement factor shows an increasing trend from Sc to Cu region. They also 140 

highlighted importance of considering the subgrid co-variability of cloud water and rain water in 141 
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the computation of the accretion rate. On the modeling side, Guo et al. (2014) investigated the 142 

sensitivity of cloud simulation in the Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric 143 

General Circulation Model (AM) to the subgrid cloud water parameterization schemes. A similar 144 

study  was carried out by Bogenschutz et al. (2013) using the National Center of Atmospheric 145 

Research (NCAR) Community Atmospheric Model (CAM). Both studies show that the more 146 

sophisticated subgrid parameterization scheme— Cloud Layers Unified by Binormals (CLUBB) 147 

(Golaz et al., 2002a; 2002b; Larson et al., 2002)—lead to a better simulation of clouds in the 148 

model. However, a more recent study by Song et al. (2018b) reveals that the CLUBB in CAM 149 

version 5.3 (CAM5.3) overestimates the enhancement factor in the trade wind cumulus cloud 150 

region, which in turn leads to excessive drizzle in the model and “empty clouds” with near-zero 151 

cloud water. In addition to CLUBB, the so-called super-parameterization (a.k.a Multiscale 152 

Modeling Framework (MMF)), which uses cloud resolving model embeded in the GCM grids to 153 

diagnose sub-grid cloud variations (Randall et al., 2003), have also gained increasing popularity. 154 

Takahashi et al. (2017) compared the subgrid cloud water variations simulated by a CAM-MMF 155 

model with those derived from A-Train observations and found reasonable agreement.     156 

Despite these previous studies, many questions remain unanswered. First of all, all the 157 

previous studies, as far as we know, have focused on the impact of subgrid cloud water 158 

𝑞'	variation. The potential impact of subgrid variation of 𝑁'  and the co-variability of 𝑁'  with 𝑞'  159 

have been overlooked so far. Given the same amount of 𝑞', a cloud with a smaller 𝑁'	would have 160 

larger droplets and therefore larger precipitation efficiency than another cloud with a larger 𝑁'. 161 

For the same reason, other things equal, a grid with positive correlation of subgrid 𝑁'  and 𝑞'  162 

would be less efficient in terms of autoconversion than a grid with negative correlation of the 163 

two.  Secondly, most of previous studies are based on the assumption that the subgrid cloud 164 

property variation follows certain well-behaved distributions, usually either Gamma (e.g., Barker, 165 

1996; Morrison and Gettelman, 2008; Oreopoulos and Barker, 1999; Oreopoulos and Cahalan, 166 

2005) or Lognormal (Boutle et al., 2014; Larson and Griffin, 2013; e.g., Lebsock et al., 2013). 167 

However, the validity and performance of the assumed PDF shape are seldom checked. 168 

Furthermore, although the study by Lebsock et al. (2013) has depicted a global picture of the 169 
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enhancement factor for the autoconversion modeling in GCM, the picture is far from clear due 170 

to the small sampling rate of CloudSat observations.  171 

In this study, we revisit the subgrid variations of liquid-phase cloud properties over the 172 

tropical ocean using 10 years of MODIS cloud observations, with the overarching goal to better 173 

understand the potential impacts of subgrid cloud variations on the warm rain processes in the 174 

conventional GCMs. Similar to previous studies, we will quantify the subgrid cloud water 175 

variations based on MODIS observations. Going one step further, we will also attempt to unveil 176 

for the first time the subgrid 𝑁'  variation, as well as its correlation with cloud water, and 177 

investigate the implications for warm rain simulations in GCM. Moreover, we will take advantage 178 

of the wide spatial coverage of MODIS data to achieve a more detailed picture of the 179 

enhancement factor for the autoconversion simulation. Last but not least, we will evaluate the 180 

two widely used distributions, i.e., Lognormal and Gamma, in terms of their performance and 181 

limitations for simulating the enhancement factor. We will first explain the theoretical 182 

background in Section 2 and introduce the data and methodology in Section 3. The MODIS 183 

observations will be presented and discussed in Section 4. The implications for the 184 

autoconversion parameterization in the GCMs will be discussed in 5. The main findings will be 185 

summarized in Section 6 with an outlook for future studies.  186 

2. Theoretical Background  187 

2.1. Theoretical Distributions to describe subgrid cloud property variations 188 

In previous studies, the spatial variations of cloud properties, such as cloud optical thickness 189 

(COT), cloud liquid water path (LWP) and cloud liquid water content (LWC), are often described 190 

using either of two theoretical distributions—the Gamma and Lognormal distribution. The 191 

probability density function (PDF) from a Gamma distribution is a two-parameter function as 192 

follows (Barker, 1996; Oreopoulos and Davies, 1998b): 193 

 𝑃F(𝑥) =
1

Γ(𝑣) 𝛼
J𝑥JKL exp(−𝛼𝑥), (2) 

where Γ is the Gamma function, 𝑣 is the so-called inverse relative variance, and 𝛼 the so-called 194 

rate parameter. If 𝑥 follows the Gamma distribution, its mean value Is given by 195 
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 〈𝑥〉 = ∫ 𝑥R
S 𝑃F(𝑥)𝑑𝑥 =

U
V
, (3) 

and variance given by 196 

 𝑉𝑎𝑟(𝑥) = ∫ (𝑥 − 〈𝑥〉)ZR
S 𝑃F(𝑥)𝑑𝑥 =

U
V[

. (4) 

It follows from Eq. (3) and (4) that the so-called inverse relative variance is   197 

 𝑣 = L
\
= 〈]〉[

^_`(])
, (5) 

where 𝜂 = ^_`(])
〈]〉[

 is the relative variance. If 𝑥 follows the Gamma distribution, for a physical 198 

process 𝑀(𝑥) that is a power function of 𝑥,  199 

 𝑀(𝑥) = 𝐾𝑥/,  (6) 

then the expected value 〈𝑀(𝑥)〉 is given by 200 

 〈𝑀(𝑥)〉F = 𝐾 ∫ 𝑥/R
S 𝑃F(𝑥)𝑑𝑥 =

d(Ue/)
d(U)Uf

𝐾〈𝑥〉/, 𝛽 > −𝑣. (7) 

As explained in the introduction, for a nonlinear process 𝑀(𝑥) ,  〈𝑀(𝑥)〉 ≠ 𝑀(〈𝑥〉). The ratio 201 

between the two 𝐸 is by definition the enhancement factor: 202 

 𝐸(𝑃F, 𝑣, 𝛽) =
〈g]f〉
g〈]〉f

= L
〈]〉f ∫ 𝑥/R

S 𝑃F(𝑥)𝑑𝑥 =
h(Ue/)
h(U)Uf

, (8) 

The PDF of a Lognormal distribution is given as follows (Larson and Griffin, 2013; 203 

Lebsock et al., 2013): 204 

 𝑃i(𝑥) =
L

√Zk]l
exp m− (no ]Kp)[

Zl[
q, (9) 

where 𝜇 = 〈ln 𝑥〉 and 𝜎Z = 𝑉𝑎𝑟(𝑙𝑛𝑥) correspond to the mean and variance of 𝑙𝑛𝑥, respectively. 205 

The mean value of the Lognormal distribution is given by 206 

 〈𝑥〉 = ∫ 𝑥R
S 𝑃i(𝑥)𝑑𝑥 = 𝑒pe

y[

[ , 
(10) 

and the variance by 207 

 𝑉𝑎𝑟(𝑥) = ∫ (𝑥 − 〈𝑥〉)ZR
S 𝑃i(𝑥)𝑑𝑥 = 𝑒Zpel[z𝑒l[ − 1{. (11) 

It follows from Eq. (10) and (11) that the inverse relative variance can be derived from the 208 

following equation 209 
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 	𝑒l[ = 1 +
𝑉𝑎𝑟(𝑥)
〈𝑥〉Z = 1 +

1
𝑣	. 

(12) 

If 𝑥 follows the Lognormal distribution, the expected value of 〈𝑀(𝑥)〉 is 210 

 〈𝑀(𝑥)〉i = 𝐾} 𝑥/
R

S
𝑃i(𝑥)𝑑𝑥 = ~1 +

1
𝑣�

/[K/
Z

𝐾〈𝑥〉/.		 
(13) 

Evidently, the corresponding enhancement factor is given by 211 

 𝐸(𝑃i, 𝑣, 𝛽) =
〈g]f〉
g〈]〉f

= m1 + L
U
q
f[�f
[ . 

(14) 

Note that Eq. (7) and (8) are only valid when 𝛽 > −𝑣 because Gamma function 𝛤(𝑣 + 𝛽) can 212 

run into singular values when 𝑣 + 𝛽<0. In contrast, Eq. (13) and (14) are valid for any real value 213 

𝛽. This is one advantage of the Lognormal distribution over the Gamma distribution.  214 

An example of the Gamma and Lognormal distributions for 𝑞'  is shown in Figure 1a. In 215 

this example, both distributions have the same mean 〈𝑞'〉 = 0.5𝑔/𝑘𝑔 and also the same inverse 216 

relative variance 𝑣" = 3. Although the general shapes of the two PDFs are similar, they differ 217 

significantly at the two ends: the Gamma PDF is larger than Lognormal PDF over the small values 218 

of 𝑞', and the opposite is true over the large values of 𝑞'. The Gamma and Lognormal 219 

distributions can also be used to describe the spatial variation of 𝑁'  (Gultepe and Isaac, 2004). 220 

An example is given in Figure 1c, in which 𝑞'  is a constant of 0.5𝑔/𝑘𝑔, 〈𝑁'〉 = 50	𝑐𝑚K�, and 𝑣$ =221 

5.0. Figure 1 b shows the autoconversion rate based on the KK2000 parameterization scheme for 222 

the Gamma 𝑃F(𝑞')	and Lognormal 𝑃i(𝑞')	that are shown in Figure 1a. Interestingly, although 223 

the cumulative autoconversion rates based on the two types of PDFs are almost identical, the 224 

contribution to the total autoconversion rate from the different LWC bins are quite different. As 225 

show in Figure 1a, the 𝑃i(𝑞') has a longer tail than the 𝑃F(𝑞'), i.e., the occurrence probability of 226 

large 𝑞'  (e.g., 𝑞' > 2.0𝑔/𝑘𝑔 ) is much higher in the Lognormal than in Gamma PDF. This 227 

difference is further amplified in the autoconversion rate computation in Figure 1b because the 228 

autoconversion rate is proportional to 𝑞'Z.��.  229 

 The enhancement factors based on the Gamma (i.e., 𝐸(𝑃F, 𝛽) in Eq. (8)) and Lognormal 230 

(i.e., 𝐸(𝑃i, 𝛽) in Eq. (14)) PDF for 𝛽" = 2.47 are plotted as a function of the inverse relative 231 

variance 𝑣 in Figure 2. When subgrid clouds are more homogenous i.e., 𝑣 > 1, the enhancement 232 

factor based on the two PDFs are similar. However, for more inhomogeneous grids with i.e., 𝑣 <233 
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1, the 𝐸(𝑃i, 𝛽) is significantly larger than that 𝐸(𝑃F, 𝛽), which is probably because of the longer 234 

tail of 𝑃i(𝑞') as shown in Figure 1 a and b.  235 

 236 

2.2. Impacts of subgrid cloud variations on warm rain parameterization in GCM  237 

The warm rain process in MBL clouds involves many interacting microphysical processes. In 238 

this study, we only focus only on the simulation of autoconversion in GCM. Other nonlinear 239 

processes, such as accretion and evaporation have been investigated in previous studies (Boutle 240 

et al., 2014; Lebsock et al., 2013).  241 

Ideally, if the subgrid variations of 𝑞'  and 𝑁'  are known, then the grid-mean in-cloud 242 

autoconversion rate should be derived from the following integral  243 

 〈)"*
)+
〉 = ∫ ∫ 𝐶(𝑞')/0(𝑁')/1

R
S

R
S 𝑃(𝑞', 𝑁')𝑑𝑞'𝑑𝑁', 

(15) 

where 𝑃(𝑞', 𝑁') is the joint PDF of 𝑞'  and 𝑁'. Unfortunately, most conventional GCMs lack the 244 

capability of predicting the subgrid variations of cloud properties, with only a couple of 245 

exceptions (Thayer-Calder et al., 2015). What is known from the GCM is usually the in-cloud grid-246 

mean values 〈𝑞'〉 and 〈𝑁'〉. As a result, instead of using Eq. (15), the autoconversion rate in GCMs 247 

is usually computed from the following equation 248 

 〈)"*
)+
〉 = 𝐸 ∙ 𝐶(〈𝑞'〉)/0(〈𝑁'〉)/1, 

(16) 

where 𝐸 is the enhancement factor defined as: 249 

 𝐸 = ∫ ∫ ("�)f0($�)f1
�
�

�
� �("�,$�)�"��$�

(〈"�〉)f0(〈$�〉)f1
. 

(17) 

The value of the enhancement factor depends on the subgrid variations of 𝑞'  and 𝑁'. If clouds 250 

are homogenous on the subgrid scale, then 𝐸	~	1. The more inhomogeneous the clouds are, the 251 

larger the 𝐸 is. In the special case where 𝑞'  and 𝑁'  are independent, then the joint PDF 𝑃(𝑞', 𝑁') 252 

becomes 𝑃(𝑞', 𝑁') = 𝑃(𝑞')𝑃(𝑁') , where 𝑃(𝑞') and 𝑃(𝑁') are the PDF of the subgrid 𝑞'  and 253 

𝑁'. Consequently, Eq. (15) reduces to  254 

 〈)"*
)+
〉 = 𝐶 ∫ (𝑞')/0𝑃(𝑞')𝑑𝑞'

R
S ∫ (𝑁')/1𝑃(𝑁')𝑑𝑁'

R
S , 

(18) 

and Eq.(17) to 255 
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 𝐸 = 𝐸" ∙ 𝐸$, 
(19) 

where 𝐸" is the enhancement factor due to the subgrid variation of cloud water which has the 256 

form, 257 

 𝐸" =
∫ ("�)f0
�
� �("�)�"�

(〈"�〉)f0
, 

(20) 

and the 𝐸$ is the enhancement factor due to the subgrid variation of CDNC which has the form, 258 

 𝐸$ =
∫ ($�)f1
�
� �($�)�$�

(〈$�〉)f1
. 

(21) 

Obviously, if 𝑃(𝑞') and 𝑃(𝑁') follow either Gamma or Lognormal distribution, then the above 259 

equations reduce to Eq. (8) or (14), respectively. 260 

If 𝑞'  and 𝑁'  both have significant subgrid variations and they are not independent, the 261 

enhancement factor should ideally be diagnosed from Eq. (17). However, the joint PDF 𝑃(𝑞', 𝑁') 262 

may not be known and the integration can be time-consuming. Some previous studies proposed 263 

to approximate the 𝑃(𝑞', 𝑁') as a bivariate lognormal distribution as follows: 264 

 

𝑃(𝑞', 𝑁') =
1

2𝜋𝑞'𝑁'𝜎"𝜎$�1 − 𝜌Z
exp ~−

𝜁
2� 

𝜁 =
1

1 − 𝜌Z ��
𝑙𝑛𝑞' − 𝜇"

𝜎"
�
Z

− 2𝜌 �
𝑙𝑛𝑞' − 𝜇"

𝜎"
� ~
𝑙𝑛𝑁' − 𝜇$

𝜎$
� + ~

𝑙𝑛𝑁' − 𝜇$
𝜎$

�
Z

�, 

(22) 

where 𝜌 is the correlation coefficient between 𝑞'  and 𝑁'  (Larson and Griffin, 2013; Lebsock et 265 

al., 2013). As such, both 𝑞'  and 𝑁'  follow a marginal lognormal distribution in Eq. (9). Substituting 266 

Eq. (22) into Eq. (17), we obtain the enhancement factor for the bivariate lognormal distribution 267 

that consists of three terms 268 

 𝐸 = 𝐸"z𝑃i, 𝑣", 𝛽"{ ∙ 𝐸$(𝑃i, 𝑣$, 𝛽$) ∙ 𝐸��^z𝜌, 𝛽", 𝛽$𝑣", 𝑣${, (23) 

where 𝐸"z𝑃i, 𝑣", 𝛽"{ = ~1 + L
U0
�
f0[�f0

[
 and 𝐸$(𝑃i, 𝑣$, 𝛽$) = m1 + L

U1
q
f1
[ �f1
[  correspond to the 269 

impacts of subgrid 𝑞'  and 𝑁'  variance, respectively (i.e., Eq. (14)), and the third term 270 

 𝐸��^z𝜌, 𝛽", 𝛽$, 𝑣", 𝑣${ = expz𝜌𝛽"𝛽$𝜎"𝜎${, (24) 
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corresponds to the impact of the co-variation of 𝑞'  and 𝑁'  on the enhancement factor. Obviously, 271 

Eq. (23) reduces to Eq. (19) when 𝑞'  and 𝑁'  are uncorrelated (i.e., 𝜌 = 0, 𝐸��^ = 1). If 𝑞'  and 𝑁'  272 

are negatively correlated (i.e., 𝜌 < 0 and 𝐸��^ > 1), clouds with larger 𝑞'  would tend to have 273 

smaller 𝑁'. The autoconversion rate in such a case would be larger than that in the case where 274 

𝑞'  and 𝑁'  are positively correlated (i.e., i.e., 𝜌 > 0	and	𝐸��^ < 1). A positive correlation would 275 

exist, for instance, if all droplets in cloud were the same size, but some parcels had more droplets 276 

than other parcels. 277 

 Most current GCMs do not have the capability to simulate the subgrid cloud property 278 

variations. They usually have to use pre-defined subgrid cloud variations in the computation of 279 

grid-mean autoconversion rate instead of using prognostic values. For example, in the MG 280 

scheme for the CAM5.3, the subgrid 𝑞'  is assumed to follow the Gamma distribution in Eq. (2) 281 

with a fixed 𝑣" = 1 and as a result constant 𝐸" = 3.2. Lately, advanced subgrid parameterization 282 

schemes, such as CLUBB, have been implemented in several GCMs, including CAM6 and GFDL 283 

AM model (Bogenschutz et al., 2017; Guo et al., 2015; 2014), which provides information on the 284 

subgrid 𝑞'  variation to the host model. The information can then be used to dynamically diagnose 285 

the enhancement factor 𝐸", which will help the model simulate the cloud regime dependence of 286 

𝐸" (Guo et al., 2010; 2014). 287 

However, as explained above, not only the subgrid variation of 𝑞'  but the subgrid 288 

variation of 𝑁'  can also influence the enhancement factor. Unfortunately, this aspect has been 289 

ignored by almost all GCMs, even the latest CAM6 with CLUBB. Physically, provided the same 𝑞', 290 

a cloud with smaller 𝑁'  would have larger droplet size and therefore larger precipitation 291 

efficiency than the cloud with larger 𝑁'. Because the autoconversion rate depends nonlinearly 292 

on 𝑁', the grid-mean autoconversion rate computed based on a skewed PDF of 𝑁'  (i.e., 293 

∫ (𝑁')/1𝑃(𝑁')𝑑𝑁'
R
S ) would be different from that computed based on the mean of 𝑁'  (i.e., 294 

(〈𝑁'〉)/1). The autoconversion enhancement factor based on the Lognormal PDF 𝐸(𝑃i, 𝛽) for 295 

𝛽$ = −1.79 is given in Figure 2. Interestingly, at the same inverse relative variance 𝑣, the 296 

enhancement factor based on the same Lognormal PDF 𝐸(𝑃i, 𝛽) for 𝛽$ = −1.79 is actually 297 

larger than that for 𝛽" = 2.47 because of the formula of the exponent in Eq. (14) (i.e., /
[K/
Z

).  298 

Moreover, the correlation between 𝑁'  and 𝑞'  can also be important. Going back to Eq.(23), 299 



 13 

evidently, 𝐸 > 𝐸" if and only if 𝐸$ ∙ 𝐸��^ > 1. After some manipulation, we can show that if   300 

𝛽$ < 0 and 𝜎$ > 0, then 301 

 𝐸$ ∙ 𝐸��^ > 1, 𝑖𝑓	𝜌 < l1
l0
∙ (LK/1)

Z/0
. (25) 

This equation reveals that when 𝑞'  and 𝑁'  are weakly or negatively correlated (𝜌 ≤ 0), 302 

considering only 𝐸" would tend to underestimate 𝐸. On the other hand, however, if 𝑞'  and 𝑁'  303 

are highly positively correlated (𝜌~1) then considering 𝐸" only would tend to overestimate 𝐸. 304 

3. Data and Methodology  305 

To derive the above-mentioned enhancement factors , we will use 10 years (2007 ~ 2016) of 306 

the latest collection 6 (C6) daily mean level-3 cloud retrieval product from the Aqua-MODIS 307 

instrument (product name “MYD08_D3”), which contains the gridded statistics of cloud 308 

properties computed from pixel-level (i.e., level-2) retrievals. As summarized in Platnick et al. 309 

(2003; 2017), the operational level-2 MODIS cloud product provides cloud masking (Ackerman et 310 

al., 1998), cloud top height (Menzel et al., 1983), cloud top thermodynamic phase determination 311 

(Menzel et al., 2006), and COT, cloud effective radius (CER) and LWP retrievals based on the bi-312 

spectral solar reflectance method (Nakajima and King, 1990). All MODIS level-2 atmosphere 313 

products, including the cloud, aerosol and water vapor products, are aggregated to 1°×1° spatial 314 

resolution on a daily, eight-day, and monthly basis. Aggregations include a variety of scalar 315 

statistical information, including mean, standard deviation, max/min occurrences, as well as 316 

histograms including both marginal and joint histograms. For COT, CER and LWP, the MODIS 317 

level-3 product provides both their “in-cloud” grid-mean values (〈𝑥〉) and subgrid standard 318 

deviations (𝜎]). The inverse relative variance 𝑣 can then be derived from Eq. (5), i.e., 𝑣 =319 

〈𝑥〉Z/𝜎]Z. Note that the operational MODIS product provides two CER retrievals, one based on 320 

the observation from the band 7 centered around 2.1 µm and the other from band 20 at 3.7 µm. 321 

As discussed in several previous studies (Cho et al., 2015; Zhang and Platnick, 2011; Zhang et al., 322 

2012; 2016), the 3.7 µm band CER retrieval is more resilient to the 3-D effects and retrieval failure 323 

than the 2.1 µm band retrievals. For these reasons, it is used as the observational reference in 324 

this study. 325 

Given the COT and CER retrieval, the operational MODIS product estimates the LWP of cloud 326 
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using 327 

 𝐿𝑊𝑃 = Z
�
𝜌¡𝐶𝑂𝑇 ∙ 𝐶𝐸𝑅, (26) 

where 𝜌¡ is the density of water. Several studies have argued that a smaller coefficient of 5/9, 328 

instead of 2/3, should be used in estimation of LWP (Lebsock et al., 2011; Seethala and Horváth, 329 

2010; Wood and Hartmann, 2006). The choice of coefficient does not matter in this study because 330 

it is a common factor in the calculation of  𝑣. The choice of the coefficient has no impact on our 331 

study, because we are interested in the relative inverse variance 𝑣 = 〈𝑥〉Z/𝜎]Z. We note here that 332 

it is the LWC 𝑞� , instead of the LWP, that is used in the KK2000 scheme. So, the spatial variability 333 

of LWC is what is most relevant. However, the remote sensing of cloud water vertical profile from 334 

satellite sensor for liquid-phase clouds is extremely challenging even with active sensors. It is why 335 

most previous studies using the satellite observations analyzed the spatial variation of LWP, 336 

rather than LWC. In fact, even Lebsock et al. (2013), who used the level-2 CloudSat observations, 337 

had to use the vertical averaged LWC in their analysis. Airborne in situ measurement faces similar 338 

challenge. For example, Boutle et al. (2014) use the LWC observation along “horizontal flight 339 

tracks” to study the spatial variability of cloud water, which only samples the LWC at certain levels 340 

of MBL clouds. Ground-based observations are much better than satellite and airborne 341 

observation in this regard. Recently, Xie and Zhang (2015) analyzed the cloud water profiles 342 

retrieved using ground-based radars from the three ARM sites and found no obvious in-cloud 343 

vertical dependence of the spatial variability of LWC. Following these previous studies, we 344 

assume that the horizontal subgrid variation of LWC is not strongly dependent on height and its 345 

value can be inferred from the spatial variability of the vertical integrated quantity LWP. The 346 

uncertainty caused by this assumption will be assessed in future studies.         347 

The current MODIS level-3 cloud product does not provide CDNC retrievals. Following 348 

previous studies (Bennartz, 2007; Bennartz and Rausch, 2017; Grosvenor and Wood, 2014; 349 

McCoy et al., 2017a), we estimate 𝑁'  of liquid-phase clouds from the MODIS retrieved COT (𝜏) 350 

and CER (𝑟¦) based on the classic adiabatic cloud model  351 
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 𝑁'(𝜏, 𝑟¦) =
√5
2𝜋𝑘

�𝑓_�Γ¡
�𝜌¡𝑄¦

𝜏
L
Z𝑟¦

K¨Z =
√15
2𝜋𝑘

�𝑓_�Γ¡
𝜌¡�2𝑄¦

𝐿𝑊𝑃
L
Z𝑟¦K�,	 (27) 

where 𝜌¡ is the density of water; 𝑄¦ ≈ 2 is the extinction efficiency of cloud droplets; 𝑘 is the 352 

ratio of 𝑟¦  to mean volume-equivalent radius; 𝑓_�  is the adiabaticity of the cloud; Γ¡ is the LWC 353 

lapse rate. Following previous studies, we assume 𝑘 = 0.8 and 𝑓_� = 1.0 to be constant and 354 

compute  Γ¡ from the grid mean liquid cloud top temperature and pressure.  The theoretical 355 

basis and main uncertainty sources of the CDNC estimation based on the adiabatic cloud model 356 

from MODIS-like passive cloud retrievals are nicely reviewed by Grosvenor et al. (2018).  357 

Ideally, the values of 𝐿𝑊𝑃 and CDNC should be estimated on pixel-by-pixel basis from the 358 

level-2 MODIS product. However, pixel-by-pixel estimation is highly time consuming, which 359 

makes it difficult to achieve a global perspective. Using an alternative method, many previous 360 

studies estimate the grid-level CDNC statistics from the joint histogram of COT vs. CER provided 361 

in the level-3 MODIS cloud products (Bennartz, 2007; McCoy et al., 2017a; 2017b). For a given 362 

1°×1° grid-box, the liquid-phase COT-CER joint histogram provides the counts of successful cloud 363 

property retrievals with respect to 108 joint COT-CER bins that are bounded by 13 COT bin 364 

boundaries, ranging from 0 to 150, and 10 CER bin boundaries, ranging from 4 µm to 30 µm. With 365 

the joint histogram, which is essentially the joint PDF of COT and CER 𝑃(𝜏, 𝑟¦), we can estimate 366 

the grid mean and variance of CDNC from the following equations 367 

 〈𝑥〉 = }}𝑥(𝜏, 𝑟¦)𝑃(𝜏, 𝑟¦)𝑑𝜏𝑑𝑟¦, (28) 

 𝑉𝑎𝑟(𝑥) = ∫∫(𝑥(𝜏, 𝑟¦) − 〈𝑁'〉)Z𝑃(𝜏, 𝑟¦)𝑑𝜏𝑑𝑟¦, (29) 

where 𝑥  can be either LWP or CDNC. Figure 3a shows the LWP in Eq. (26) as a function of the 13 368 

COT bins and 10 CER bins from the MODIS level-3 product. As expected, the largest LWP values 369 

are found when both COT and CER are large. Figure 3b shows the CDNC in Eq. (27) as a function 370 

of the COT and CER bins. As expected, the largest CDNC values are found when both COT is large 371 

and CER is small. Figure 3c shows an example of the COT-CER joint histogram from the Aqua-372 

MODIS daily level-3 product “MYD08_D3” on January 09th, 2007 at the grid box 1°S and 1°W. In 373 

this particular grid box, a combination of ~2-4 COT and ~10-12 µm CER is the most frequently 374 
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observed cloud value. Using the joint histogram in Figure 3c, we can derive the mean and variance 375 

of both LWP and COT using the Eqs. (28) and (29).    376 

The efficiency of using the level-3 MODIS product is accompanied by three important 377 

limitations. First of all, as mentioned earlier MODIS provides only LWP retrievals while LWC is 378 

needed in the KK2000 scheme. Second, the current level-3 MODIS cloud product has a fixed 1°x1° 379 

spatial resolution. Although this resolution is highly relevant to the current generation of GCMs, 380 

i.e., Coupled Model Intercomparison Project Phase 6 (CMIP5)  (Eyring et al., 2016), future GCMs 381 

may have significantly finer resolution. Third, it is difficult to sub-sample the pixels with the best 382 

retrieval quality. These limitations will have to be addressed in future studies.  383 

4. Grid-mean and subgrid variations of liquid-phase cloud properties 384 

In this study, we limit our analysis to tropical oceans only where warm rain is frequent and 385 

MODIS cloud retrievals have a relatively better quality than over land or over high latitude. The 386 

annual mean total cloud fraction (𝑓+«+), liquid-phase cloud fraction (𝑓¬"), in-cloud COT, CER from 387 

the 3.7 µm band, LWP and estimated CDNC over the tropical oceans based on 10 years Aqua-388 

MODIS retrievals are shown in Figure 4. The highest 𝑓¬" in the tropics is usually found in the 389 

stratocumulus (Sc) decks over the Eastern boundary of the ocean, e.g., SE Pacific off coast of Peru, 390 

NE Pacific off the coast of California and SE Atlantic off the coast of Namibia. The liquid-cloud 391 

fraction reduces significantly toward the open ocean trade wind regions, where the dominant 392 

cloud types are broken cumulus (Cu). Close to the continents, the Sc decks are susceptible to the 393 

influence of continental air mass with higher loading of aerosols in comparison with pristine 394 

ocean environment, which is probably the reason the SC decks have smaller CER and higher CDNC 395 

than the open-ocean trade cumulus (Figure 4 d and f). The in-cloud COT (Figure 4 c) and LWP 396 

(Figure 4 e) generally increase from the Sc decks to the open-ocean Cu regime, although less 397 

dramatically than the transition of cloud fraction. The Sc decks and the Sc-to-Cu transition are 398 

the most prominent features of liquid-phase clouds in the tropics. However, as mentioned in the 399 

introduction, simulating these features in the GCMs proves to be an extremely challenging task, 400 

and most GCMs suffer from some common problems, such as the “too few too bright” problem 401 

and the abrupt Sc-to-Cu transition problem (Kubar et al., 2014; Nam et al., 2012; Song et al., 402 

2018a).   403 
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 Switching the focus now from grid-mean values to subgrid variability, we will show the 404 

grid-level inverse relative variances 𝑣 = 〈𝑥〉Z/𝑉𝑎𝑟(𝑥)) for several key cloud properties. Here, we 405 

first derive the daily mean 𝑣 and then aggregate the result to monthly mean values. Therefore, 406 

for each grid box we have 120 samples (i.e., 10 years x 12 months) of monthly mean 𝑣 for analysis 407 

and visualization. Because the value of 𝑣 can be ill-behaved when 𝑉𝑎𝑟(𝑥) approaches zero, 408 

instead of the mean value, we plot the median value of 𝑣® based on 120 months of MODIS 409 

observations in Figure 5. There are several interesting and important features in Figure 5. First of 410 

all, the 𝑣® of all four sets of cloud properties (i.e., COT, CER, LWP and CDNC) all exhibits a clear 411 

and similar Sc-to-Cu transition, with larger values in the Sc region and smaller value in the broken 412 

Cu regions. This indicates that cloud properties, including both optical and microphysical 413 

properties, are more homogenous, in terms of spatial distribution within the grid, in the Sc region 414 

than in the Cu region. Secondly, the value of 𝑣®  of CER (i.e., 10~100 in Figure 5b) is larger than 415 

that of the other properties (i.e., 1~10) by almost an order of magnitude, indicating that the 416 

subgrid variability of CER is very small. On the other hand, however, it is important to note that 417 

the 𝑣® of CDNC (Figure 5d) is comparable with that of COT (Figure 5a) and LWP (Figure 5c). The 418 

reason is probably in part because the highly nonlinear relationship between CDNC and CER (i.e., 419 

𝑁'~𝑟¦
K¯[ ) leads to a stronger variability of CDNC than CER, and also in part because the variability 420 

of CDNC is also contributed by the subgrid variation of COT.  In some regions, the Gulf of Guinea, 421 

East and South China Sea, and Bay of Bengal for example, the 𝑣® of CDNC is close to unity, 422 

indicating the subgrid standard deviation of CDNC is comparable to the grid-mean values in these 423 

regions. As discussed in the next section, the significant subgrid variability of CDNC in these 424 

regions should be taken into account when modeling the nonlinear processes, such as the 425 

autoconversion, in GCM to avoid systematic biases due to the nonlinearity effect.    426 

 The values of 𝑣® in Figure 5 from this study are in reasonable agreement with previous 427 

studies. Barker (1996) selected a few dozens of cloud scenes, each about 100 ~ 200 km in size, 428 

from the Landsat observation and analyzed their spatial variability of COT. It is found that the 429 

typical value of 𝑣 for “overcast stratocumulus”, “broken stratocumulus” and “scattered cumulus” 430 

is 7.9, 1.2, and 0.7, respectively (see their Table 3), which is consistent with the Sc-to-Cu transition 431 

pattern seen in Figure 5. Oreopoulos and Cahalan (2005) derived the subgrid inhomogeneity of 432 



 18 

COT on a global scale from the level-3 Terra-MODIS retrievals. Although using a different metric 433 

(i.e., their inhomogeneity parameter is defined as 𝜒 = exp(ln〈𝜏〉) /〈𝜏〉), they also found 434 

systematic increase of inhomogeneity (decreasing value of 𝜒) from the Sc region to cu region. 435 

Also using the MODIS cloud property retrievals, Wood and Hartmann(2006) investigated the 436 

meso-scale spatial variability of LWP in the NE Pacific and SE Pacific region. The 𝑣 of LWP is found 437 

to increase systematically with meso-scale cloud fraction and the relationship between the two 438 

can be reasonably explained by a simple PDF cloud thickness model in Considine et al. (1997). 439 

See also Kawai and Teixeira (2010).  440 

 As explained in section 2, the correlation between cloud water and CDNC can also 441 

influence the computation of enhancement factor and thereby the grid-mean autoconversion 442 

rate. Figure 5e shows the median value of the LWP and CDNC correlation coefficient 𝜌®. Similar to 443 

the derivation of median 𝑣®, we first compute the monthly mean 𝜌 from daily MODIS observations 444 

and then derive the median value of  𝜌®  for each grid from the 120 months of observation. As 445 

shown in Figure 5e, at the subgrid level, the LWP and CDNC tend to be positively correlated 446 

almost over all tropical oceans. Mathematically, this is not surprising because as shown in Figure 447 

5b and c, the subgrid variability of 𝑟¦  is order of magnitude smaller than that of LWP. Since CDNC 448 

is proportional to 𝐿𝑊𝑃
±
[𝑟¦K� according to Eq. (27), the subgrid variability of CDNC is mainly 449 

determined by the variability of LWP, leading to the positive correlation. Physically, the 450 

correlation can be explained by several mechanisms. For example, Wood et al. {*Wood:2018cx} 451 

and O et al. {*O:2018to} found that a large amount of low-level water clouds over the 452 

stratocumulus to cumulus transition are “optically thin veil clouds”. These clouds are usually 453 

associated with low LWP and low CDNC (therefore positive correlation) and probably caused by 454 

the strong precipitation scavenging process in the active cumulus. Note that our definition of 𝜌	is 455 

the subgrid spatial correlation of LWP and CDNC.  It may be different from the definition used in 456 

many aerosol indirect effect studies where the temporal correlation of monthly mean LWP and 457 

CDNC is more interested. 458 

 459 
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5. Implications for warm-rain simulations in GCM 460 

5.1. Influence of subgrid variation of cloud water  461 

 As discussed in Section 2.2, most current GCMs only considers the impact of subgrid cloud 462 

water variation on autoconversion rate but ignore the impact of subgrid CDNC variation. To make 463 

our analysis relevant to the current GCMs, we first analyze 𝐸" in Eq. (20) based on observation. 464 

The impacts of subgrid CDNC variation (i.e., 𝐸$) and its correlation with cloud water (i.e., 𝐸��^) 465 

will be analyzed in the next section.  466 

We derive 𝐸" using two approaches. First, we derive it from the observed LWP PDF based on 467 

Eq. (20). As such, we do not have to make any assumption about the shape of LWP PDF although 468 

solving the integration in Eq. (20) is time-consuming. In the second approach, we first derive the 469 

relative inverse relative variance 𝑣  of LWP and then derive the enhancement factor by assuming 470 

the subgrid PDF to be either Gamma or Lognormal. This approach is more efficient, but it may be 471 

subject to error if the true PDF deviates from the assumed PDF shape. Figure 6a shows the annual 472 

mean enhancement factor 𝐸" in the tropical region derived based on Eq. (20) (i.e., the first 473 

approach) from 10 years of MODIS observation. Figure 6 b and c show the annual mean 474 

enhancement factor 𝐸" derived by assuming the subgrid cloud water follows the Lognormal (i.e., 475 

Eq. (14)) and Gamma distribution (i.e., Eq. (8)), respectively. There are a couple of interesting and 476 

important points to note. First of all, similar to the grid-mean quantities in Figure 4, the 477 

enhancement factor 𝐸" also shows a clear Sc-to-Cu transition. Over the Sc decks, because clouds 478 

are more homogeneous (𝑣® > 5), the enhancement factor 𝐸" is only around 1 ~ 2.5, while over 479 

the Cu regions, the more inhomogeneous clouds with  𝑣® < 1 leads to a larger enhancement 480 

factor 𝐸" around 3~5. As aforementioned, in the current CAM5.3, 𝐸" is assumed to be a constant 481 

of 3.2. While this value is within the observational range, it obviously cannot capture the Sc-to-482 

Cu transition. In fact, the constant value 3.2 overestimates the 𝐸" over the Sc region and 483 

underestimates the 𝐸" over the Cu region, which could lead to unrealistic drizzle production in 484 

both regions and to consequential impacts on cloud water budget, radiation and even aerosol 485 

indirect effects on the model. The second point to note is that the 𝐸" based on the Lognormal 486 

PDF assumption in Figure 6 b agrees well with the results in Figure 6 a derived directly from the 487 

observation. In contrast, the 𝐸" based on the Gamma PDF assumption in Figure 6 c tends to be 488 
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smaller, especially in the Cu regions. This result seems to suggest that the Lognormal distribution 489 

provides a better fit to the observed subgrid cloud water variation than the Gamma distribution, 490 

which has rarely been noted and reported in the previous studies.   491 

 A flexible, cloud-regime dependent 𝐸" could help improve the simulation of Sc-to-Cu 492 

transition in the GCM. If a GCM employs an advanced cloud parameterization scheme, such as 493 

CLUBB, that is able to provide regime-dependent information on subgrid cloud variation, i.e., 𝑣, 494 

then the enhancement factor 𝐸" could be diagnosed from 𝑣 . However, most traditional cloud 495 

parameterization schemes do not provide information on subgrid cloud variation. In such case, if 496 

one does not wish to use a constant 𝐸", but a varying regime-dependent scheme, then either 𝑣 497 

or 𝐸" need to be parameterized as a function of some grid-mean cloud properties resolved by 498 

the GCM. In fact, several attempts have been made along this line. Based on the combination air-499 

borne in situ measurement and satellite remote sensing product, Boutle et al. (2014) 500 

parameterized the “fractional standard deviation” (which is equivalent to 1/√𝑣 in our definition) 501 

of liquid-phase cloud as a function of grid-mean cloud fraction. This scheme was later updated 502 

and tested in a host GCM in Hill et al. (2015), and was found to reduce the shortwave cloud 503 

radiative forcing biases in the model. In a recent study, Xie and Zhang (2015) derived the subgrid 504 

cloud variations from the ground-based observations from three Department of Energy (DOE) 505 

Atmospheric Radiation Measurement (ARM) sites, and then parameterize the inverse relative 506 

variance 𝑣 as a function of the atmospheric stability.  507 

Figure 7a shows the variation of inverse relative variance 𝑣 as a function of the grid-mean 508 

liquid-phase cloud fraction 𝑓¬". In general, the value of 𝑣 increases with the increasing 𝑓¬", which 509 

is expected from the Sc-to-Cu increase of 𝑓¬"in Figure 4b and the Sc-to-Cu decrease of  𝑣 in Figure 510 

5c. The 𝑣(𝑓¬") pattern in Figure 7a is also consistent with the results reported in Wood and 511 

Hartmann (2006) and Lebsock et al. (2013). In the hope of obtaining a simple parameterization 512 

scheme for 𝑣(𝑓¬") that can be used in GCMs, we fit the median value of 𝑣 as a simple 3rd order 513 

polynomial of 𝑓¬" as follows: 514 

 𝑣(𝑓¬") = 2.38−4.95𝑓¬" + 8.74𝑓¬"Z − 0.49𝑓¬"� , 𝑓¬" ∈ [0,1]. (30) 
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To test the performance of this simple parameterization, we first substitute the 𝑓¬" from MODIS 515 

daily mean level-3 product into the above equation and then use the resultant 𝑣 to compute the 516 

enhancement factor 𝐸". Unfortunately, the enhancement factor 𝐸" computed based on the 517 

parameterized 𝑣(𝑓¬") as shown in Figure 8a substantially underestimate the observation-based 518 

results in Figure 6, especially over the Cu regions. The deviation is probably because the 519 

relationship between 𝐸" and 𝑣 is highly nonlinear (e.g., Eq. (8) and (14)) and therefore the above 520 

parameterization scheme that only fits the = value of 𝑣 is not able to capture the variability of 521 

𝐸". Based on this consideration, we tried an alternative approach. Instead of parameterization 522 

of 𝑣, we directly parameterize the enhancement factor 𝐸" as a function of 𝑓¬". Figure 7b shows 523 

the variation of 𝐸" as a function of 𝑓¬". As expected, 𝐸" generally decreases with increasing 𝑓¬". 524 

The median value of 𝐸" is fitted with the following 3rd order polynomial of 𝑓¬" 525 

 𝐸"(𝑓¬") = 2.72+7.33𝑓¬" − 19.17𝑓¬"Z + 10.69𝑓¬"� , 𝑓¬" ∈ [0,1]. (31) 

As shown in Figure 8b, the value of 𝐸" based on the above equation clearly agrees with the 526 

observation-based values in Figure 6 better than that based on the parameterization of 𝑣(𝑓¬"). 527 

The elimination of the middle step indeed improves the parameterization results. While this is 528 

encouraging, it should be kept in mind that the Eq. (31) has very limited application, i.e., it is only 529 

useful for the autoconversion rate computation for a particular value of the autoconversion 530 

exponent beta, i.e., 𝛽" = 2.47. A good parameterization of 𝑣 could be useful for not only 531 

autoconversion, but also for accretion and radiation computations. Another caution is that, if 532 

applied to a GCM, the performance of the 𝐸"(𝑓¬") parameterization in Eq. (31) will be dependent 533 

on the simulated accuracy of 𝑓¬" in the model.  534 

 535 

5.2. Influence of subgrid variance of CDNC  536 

Now we will investigate the impacts of subgrid CDNC variation on the autoconversion rate 537 

simulation. For the moment, we will consider 𝐸$ only. The impact of CDNC and cloud water 538 

correlation will be discussed in the next section. Similar to 𝐸" we first derive 𝐸$ from the CDNC 539 

PDF based on Eq. (21). The annual mean result based on 10 years of MODIS observations is shown 540 

in Figure 9a. There are several intriguing points to note. First of all, the value of 𝐸$ is actually 541 
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larger than 𝐸" in Figure 9 such that we even have to use a different color scale for this plot. 542 

Secondly, 𝐸$ the regions with escalated 𝐸$ seem to coincide with the downwind regions of 543 

biomass burning aerosols (e.g., Gulf of Guinea, East Coast of South Africa), air pollution (i.e., 544 

Eastern China Sea), and, most interestingly, active volcanos (e.g., Kilauea Hawaii and Ambae 545 

Vanuatu). We have also checked the seasonal variation of the 𝐸$ and the results also support 546 

this observation. Another interesting feature to note is that, although the dust outflow regions 547 

such as Tropical East Atlantic and Arabian Sea, have heavy aerosol loading, the value of 𝐸$ there 548 

is only moderate. Figure 9b shows the value of 𝐸$ computed based on Eq. (14) from the inverse 549 

relative variance of 𝑣, assuming that the subgrid CDNC follows a Lognormal PDF. Although the 550 

overall pattern is consistent with Figure 9a, the assumption of Lognormal PDF seems to 551 

underestimate 𝐸$. A closer examination indicates that the Lognormal PDF tend to underestimate 552 

the population of clouds with small CDNC, and therefore underestimate the variance of CDNC as 553 

well as 𝐸$. We did not compute the 𝐸$  based on the Gamma distribution because of the singular 554 

value problem aforementioned in Section2.1.  555 

 We could not find any previous observation-based study on the global pattern of the 556 

subgrid variation of CDNC and the corresponding 𝐸$. So, it is difficult for us to corroborate our 557 

results. On one hand, the magnitude of 𝐸$ is surprisingly large. As explained in Section 3, the 558 

CDNC is estimated based on Eq. (27) from the MODIS retrieval of COT and CER. Several previous 559 

studies have shown that the sub-pixel level surface contamination, subpixel cloud 560 

inhomogeneity, and three-dimensional radiative transfer effects, can cause significant errors in 561 

the MODIS CER retrievals especially over broken cloud regions (Zhang and Platnick, 2011; Zhang 562 

et al., 2012; 2016). Given the fact that the CDNC retrieval is highly sensitive to CER error as a 563 

result of 𝑁�~𝑟¦
K¯[	, the influence of retrieval uncertainty on subgrid CDNC variation cannot be 564 

ruled out. On the other hand, the pattern of 𝐸$ in Figure 9a seems to suggest that there are some 565 

underlying physical mechanisms controlling the subgrid variation of CDNC, in which aerosols 566 

seem to play an important role. To achieve a better understanding, we analyzed the dependence 567 

of 𝐸$ on liquid cloud fraction and grid-mean CDNC in Figure 10, which reveals that 𝐸$ has a 568 

stronger dependence on CDNC than cloud fraction. This result seems to indicate that the pattern 569 

of 𝐸$ in Figure 9 is largely determined by physical mechanisms rather than retrieval 570 
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uncertainties. Interestingly, the largest 𝐸$ is usually found when liquid cloud fraction is small and 571 

CDNC is large and decreases with decreasing CDNC and increasing cloud fraction. This pattern 572 

leads us to the following hypothesis: In the regions where aerosol is limited, even weak updraft 573 

can activate most cloud condensation nuclei (CCN). As a result, even if there is significant subgrid 574 

variation of turbulence at cloud base, the subgrid variation of CDNC remains small. In contrast, 575 

in regions where aerosol is abundant, the subgrid variation of turbulence becomes important. 576 

The subgrid variation of updraft leads to subgrid variation CDNC and thereby large 𝐸$.    577 

 As far as we know, the results in Figure 9 and Figure 10 mark the first attempt based on 578 

satellite observations to unveil the global pattern of the subgrid variations of CDNC and 579 

investigate the consequential impacts on warm rain simulations in GCMs. Although obscured by 580 

satellite retrieval uncertainties, the results still provide valuable insights. First of all, the 581 

enhancement factor 𝐸$ due to the subgrid variations of CDNC is nonnegligible, even comparable 582 

the effect of subgrid cloud water variation (i.e., 𝐸"). Second, the global pattern of 𝐸$ in Figure 9 583 

provides a valuable map for future studies.  584 

5.3. The combined effect of subgrid variations of cloud water and CDNC 585 

 Finally, in this section we examine the combined effect of subgrid variations of cloud 586 

water and CDNC, as well as their correlation, on the autoconversion rate simulation. The annual 587 

mean combined enhancement factor 𝐸 derived based on Eq. (17) from 10 years of MODIS COT 588 

and CER observation  is shown in Figure 11a. Comparing to the 𝐸" in Figure 6 and 𝐸$ in Figure 9, 589 

the combined enhancement factor is generally larger. It is easy to see that the in some regions 590 

(e.g., Gulf of Guinea, East Coast of South Africa and Eastern China Sea) the combined 591 

enhancement factor 𝐸 resembles the 𝐸$ while in other regions (i.e., trade wind cumulus regions 592 

over open ocean) it resembles more of 𝐸". Interestingly, because both 𝐸" and 𝐸$ are small over 593 

the Sc decks, those regions have the smallest combined enhancement factor 𝐸. As discussed in 594 

Section 2.2, only when the subgrid variation of cloud water is uncorrelated with the subgrid 595 

variation of CDNC can the combined enhancement factor 𝐸 be decomposed into the simple 596 

product of 𝐸" and 𝐸$ (i.e., Eq. (19)). Figure 11b shows the annual mean value of the simple 597 

product 𝐸" ∙ 𝐸$, without considering the correlation between cloud water and CDNC. Evidently, 598 

the simple product substantially overestimates the combined enhancement factor derived from 599 
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the joint PDF of LWP and CDNC. This result can be explained by the mostly positive subgrid 600 

correlation between LWP and CDNC in Figure 5e. As explained in section 2.2, the positive 601 

correlation means that clouds with more water also tend to have more CDNC. The 602 

autoconversion rate of such configuration is lower than that when LWP and CDNC have no 603 

correlation.  604 

 Together, the 𝐸" in Figure 6, 𝐸$ in Figure 9 and the combined enhancement factor in 605 

Figure 11 lead us to the following important conclusion. It is not sufficient to consider only the 606 

impact of subgrid variation of cloud water (i.e., 𝐸") on the autoconversion rate simulation. The 607 

influences of subgrid CDNC variation, as well as the correlation between cloud water and CDNC, 608 

must also be taken into account to avoid significant error.  609 

 Finally, the combined enhancement factor derived based on Eq. (23) assuming that the 610 

LWP and CDNC follow the bi-variate lognormal distribution is shown in Figure 11c. Despite the 611 

tendency of overestimation, the result agrees reasonably well with that based on observed joint 612 

PDF in Figure 11a, clearly better than the simple product 𝐸" ∙ 𝐸$. This is encouraging as it 613 

suggests that the bi-variate lognormal distribution can be used in the future to model the 614 

combined effect of cloud water and CDNC on autoconversion rate simulation in GCMs. 615 

 616 

6. Summary and Outlook  617 

One of the difficulties in GCM simulation of the warm rain parameterization is how to 618 

account for the impact of subgrid variations of cloud properties, such as cloud water and CDCN, 619 

on nonlinear precipitation processes such as autoconversion. In practice, this impact is often 620 

treated by adding the enhancement factor term to the parameterization scheme. In this study, 621 

we derived the subgrid variations of liquid-phase cloud properties over the tropical ocean using 622 

the satellite remote sensing products from MODIS and investigated the corresponding 623 

enhancement factors for parameterizations of autoconversion rate. In comparison with previous 624 

work, our study is able to shed some new light on this problem in the following regards: 625 

1. A theoretical framework is presented to explain the importance of the subgrid 626 

variation of CDNC and its correlation with cloud water on the autoconversion rate 627 

simulation in GCMs.    628 
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2. The wide spatial coverage of the Level-3 MODIS product enables us to depict a 629 

detailed quantitative picture of the enhancement factor 𝐸", which shows a clear 630 

cloud regime dependence, i.e., a Sc-to-Cu increase. The constant 𝐸" = 3.2 used in 631 

the current CAM5.3 model overestimates and estimates the observed 𝐸" in the Sc 632 

and Cu regions, respectively.  633 

3. The 𝐸" based on the Lognormal PDF assumption performs significantly better than 634 

that based on the Gamma PDF assumption. A simple parameterization scheme is 635 

provided to relate 𝐸" to the grid-mean liquid cloud fraction, which can be readily 636 

used in GCMs. 637 

4. For the first time, the enhancement factor 𝐸$ due to the subgrid variation of CDNC 638 

is derived from satellite observation, and the results reveal several regions 639 

downwind of biomass burning aerosols (e.g., Gulf of Guinea, East Coast of South 640 

Africa), air pollution (i.e., Eastern China Sea), and active volcanos (e.g., Kilauea 641 

Hawaii and Ambae Vanuatu). The largest 𝐸$ is usually found where CDNC is large 642 

and liquid cloud fraction is small and decreases with decreasing CDNC and 643 

increasing cloud fraction.  644 

5. MODIS observations suggest that the subgrid LWP and CDNC are mostly positively 645 

correlated. As a result, the combined enhancement factor is significantly smaller 646 

than the simple product of 𝐸" ∙ 𝐸$ (i.e., assuming no correlation). The combined 647 

enhancement factor derived assuming LWP and CDNC to follow the bi-variate 648 

lognormal distribution agree with the observation-based results reasonably well.  649 

As noted in the previous sections, this study has several important limitations, most of 650 

which are a result of using the level-3 MODIS observations. The fixed 1°x1° spatial resolution of 651 

MODIS level-3 product makes it impossible for us to investigate the scale-dependence of subgrid 652 

cloud variation. Similar to previous studies, we have to make several assumptions when 653 

estimating the CDNC from level-3 MODIS product. Furthermore, the retrieval uncertainties 654 

associated with the optically thin clouds in MODIS product pose a challenging obstacle for the 655 

quantification of subgrid cloud property variations and the corresponding enhancement factors.  656 

These limitations have to be addressed using additional independent observations from, for 657 
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example, ground based remote sensing product and/or in situ measurement from air-borne field 658 

campaigns. Recently, a few novel methods have been developed to provide certain information 659 

on the subgrid cloud property variations to the host GCM. Most noticeable examples are the 660 

super-parameterization method (a.k.a. multi-scale modeling framework) (Wang et al., 2015) and 661 

the PDF-based higher-order turbulence closure methods (e.g., Cloud Layer Unified By Binormals, 662 

CLUBB (Golaz et al., 2002a; Guo et al., 2015; Larson et al., 2002) and Eddy-Diffusivity Mass-Flux 663 

(EDMF) (Sušelj et al., 2013)). The subgrid cloud property variations derived in this study provide 664 

the valuable observational basis for the evaluation and improvement of these schemes.  665 

  666 
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 686 

Figures: 687 

 688 
Figure 1 a) The probability density function (PDF) and cumulative distribution function (CDF) of 689 
cloud LWC (𝑞') that follow the Gamma (dashed) and Lognormal (solid) distribution. For the both 690 
distributions, 〈𝑞�〉 = 0.5𝑔/𝑘𝑔 and 𝑣" = 3.0. b) The PDF and CDF of autoconversion rate 691 
computed based on the KK2000 scheme in Eq.(15) and the PDF of 𝑞'. In the computation, the  𝑁'  692 
is kept at a constant of 50 𝑐𝑚KL. c) The PDF and CDF of 𝑁'	that follow the Gamma (dashed) and 693 
Lognormal (solid) distribution. For the both distributions, 〈𝑁'〉 = 50𝑐𝑚K� and 𝑣$ = 5.0. d) the 694 
PDF and CDF of the autoconversion rate computed based on the KK2000 scheme in Eq. (15) and 695 
the PDF of 𝑁'. The 𝑞'	is kept at 0.5𝑔/𝑘𝑔 in the computation.  696 

  697 
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 698 
Figure 2 Enhancement factors based on Lognormal 𝐸(𝑃i, 𝛽) and Gamma 𝐸(𝑃F, 𝛽) subgrid PDF 699 
for different 𝛽 as a function of the inverse relative variance 𝑣.   700 

  701 
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 702 

 703 
Figure 3 The (a) LWP and (b) CDNC as a function of COT and CER. (c) An exmaple of the COT-CER 704 
joint histogram observed by Aqua-MODIS on Jan. 09th, 2007 at 1°S and 1°W.  705 

  706 
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 707 
 708 

 709 
Figure 4 10-year (2007~2016) averaged annual mean a) total cloud fraction, b) liquid cloud 710 
fraction, c) cloud optical thickness, d) cloud effective radius retrieved from the 3.7 µm band, e) 711 
cloud wather path and f) cloud droplet concentration retrievals from Aqua-MODIS over the 712 
tropical (30° S-30° N) oceans. All quantaties are “in-cloud” mean that are averaged over the 713 
cloudy-part of the grid only.  714 

  715 
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 716 
Figure 5 Median value of the inverse relative variance (i.e., 𝑣 = 〈𝑥〉Z/𝑉𝑎𝑟(𝑥)) for a) COT, b) 717 
CER, c) LWP and d) CDNC, and e) median value of the correlation coefficient between LWP and 718 
CDNC derived from 10 years of MODIS observations. Note that the color scale of CER is 719 
different from others’.  720 

  721 



 33 

 722 

 723 
Figure 6 The annual mean factor for the KK2000 scheme due to subgrid variation of LWP 724 
computed a) directly from observation, i.e., 𝐸" in Eq.(20), b) from relative variance assuming 725 
Lognormal PDF of LWP, i.e., 𝐸" in Eq.(14) and c) from relative variance assuming the Gamma 726 
PDF of LWP i.e., 𝐸" in Eq.(8).  727 

  728 
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 729 

 730 

 731 

Figure 7 a) The inverse relative variance 𝑣 and b) autoconversion enhancement factor due to 732 
LWP subgrid variability assuming Log-normal PDF as a function of grid-mean liquid cloud 733 
fraction, where the solid line, dark shaded area, and light shaded area correspond to the 734 
median value, 25%~75% percentiles, and 10~90% percentiles, respectively. The dotted lines 735 
correspond to simple 3-rd order polynomial fitting.  736 

  737 
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 738 
Figure 8 Annual mean value of the enhancement factor 𝐸$ computed based on the a) 𝑣(𝑓¬") 	=739 
2.38−4.95𝑓¬" + 8.74𝑓¬"Z − 0.49𝑓¬"�  parameterization scheme in Eq. (30) and b) 𝐸"(𝑓¬") =740 
2.72+7.33𝑓¬" − 19.17𝑓¬"Z + 10.69𝑓¬"�  parameterization scheme in Eq. (31).  741 

  742 
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 743 
 744 
 745 

 746 
Figure 9 Annual mean value of the enhancement factor 𝐸$ derived from a) observation based 747 
on Eq. (21) and b) from Eq. (14) assuming Lognormal subgrid CDNC distribution.  748 

  749 
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 750 
Figure 10 Dependence of 𝐸$ on 𝑓¬" and 𝑁�. The color map corresponds to the mean value of 𝐸$ 751 
for a given 𝑁�  and 𝑓¬" bin. The white contour lines correspond to the relative sampling 752 
frequency of 𝑁�  and 𝑓¬" bins (i.e., the most frequently observed combination is 𝑁�	~	50𝑐𝑚K� 753 
and 𝑓¬"~0.1 ).  754 

 755 
 756 
  757 
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 758 

Figure 11 The combined enhancement factor derived a) based on Eq. (17) from the observed 759 
joint PDF of LWP and CDNC, b) assuming that subgrid variations of LWP and CDNC are 760 
uncorrelated, i.e., 𝐸" ∙ 𝐸$ only and c) based on Eq. (23) assuming that the subgrid LWP and 761 
CDNC following the bi-variate lognormal distribution.  762 

 763 
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