

Atmospheric Band Fitting Coefficients Derived from Self-Consistent Rocket-Borne

2 **Experiment**

3 Mykhaylo Grygalashvyly¹, Martin Eberhart⁵, Jonas Hedin⁴, Boris Strelnikov¹, Franz-Josef
4 Lübken¹, Markus Rapp^{1,2}, Stefan Löhle⁵, Stefanos Fasoulas⁵, Mikhail Khaplanov^{4†}, Jörg
5 Gumbel⁴, and Ekaterina Vorobeva³

⁷ Leibniz-Institute of Atmospheric Physics at the University Rostock in Kühlungsborn, Schloss-Str. 6, D-18225 Ostseebad Kühlungsborn, Germany

8 ²Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre,
9 Oberpfaffenhofen, Germany

10 ³Department of Atmospheric Physics, Saint-Petersburg State University, Universitetskaya
11 Emb. 7/9, 199034, Saint-Petersburg, Russia

¹² ⁴Department of Meteorology (MISU), Stockholm University, Stockholm, Sweden

13 ⁵University of Stuttgart, Institute of Space Systems, Stuttgart, Germany

14 [†]Deceased

15

16 Abstract

17 Based on self-consistent rocket-borne measurements of temperature, densities of atomic
 18 oxygen and neutral air, and volume emission of the Atmospheric Band (762 nm) we
 19 examined the one-step and two-step excitation mechanism of $O_2(b^1\Sigma_g^+)$ for night-time
 20 conditions. Following McDade et al. (1986), we derived the empirical fitting coefficients,
 21 which parameterize the Atmospheric Band emission $O_2(b^1\Sigma_g^+ - X^3\Sigma_g^-)(0,0)$ in terms of the
 22 atomic oxygen concentrations. This allows to derive atomic oxygen concentration from night-
 23 time observations of Atmospheric Band emission $O_2(b^1\Sigma_g^+ - X^3\Sigma_g^-)(0,0)$. The derived
 24 empirical parameters can also be utilised for Atmospheric Band modelling. Additionally, we
 25 derived fit function and corresponding coefficients for combined (one- and two-step)

26 mechanism. Simultaneous and true common volume measurements of all the parameters used
27 in this derivation, i.e. temperature and density of the background air, atomic oxygen density,
28 and volume emission rate, is the novelty and the advantage of this work.

29

30 **1. Introduction**

31

32 The mesopause region is essential to understand the chemical and physical processes in the
33 upper atmosphere, as well as coupling between atmospheric layers. This region is
34 characterised by different airglow emissions and, particularly, by emissions in the
35 Atmospheric Band that form the excited state of molecular oxygen $O_2(b^1\Sigma_g^+)$. Airglow
36 observation in the Atmospheric Band is a useful method to study dynamical processes in the
37 mesopause region. There have been a number of reports of gravity waves (GWs) detection in
38 this band (Noxon, 1978; Viereck and Deehr, 1989; Zhang et al., 1993). Planetary wave
39 climatology has been investigated by the Spectral Airglow Temperature Imager (SATI)
40 instrument (Lopez-Gonzales et al., 2009). In addition, the tides parameters have been reported
41 from SATI (Lopez-Gonzales et al., 2005) and High Resolution Doppler Imager (HRDI)
42 observations (Marsh et al., 1999). In numerous works Takahashi inferred the temperature by
43 Atmospheric Band observation (Takahashi et al., 1990; 1992; 2011). Furthermore, the
44 response of mesopause temperature and atomic oxygen during major sudden stratospheric
45 warming was studied utilising Atmospheric Band emission by Shepherd et al. (2010). Various
46 works have focused on Atmospheric Band emission modelling with respect to gravity waves
47 and tides (e.g. Hickey et al., 1993; Leko et al., 2002; Liu and Swenson, 2003). The specific
48 theory of the gravity wave effects on $O_2(b^1\Sigma_g^+)$ emission was derived in Tarasick and
49 Shepherd (1992). Moreover, Atmospheric Band observations have been widely utilised to
50 infer atomic oxygen, which is an essential chemical constituent for energetic balance in the
51 extended mesopause region (e.g. Hedin et al., 2009, and references there in), and ozone

52 concentration (Mlynczak et al., 2001). Although there is a large field of application of
53 Atmospheric Band emissions, there is a lack of knowledge on processes of the $O_2(b^1\Sigma_g^+)$
54 population. Two main mechanisms of population were proposed: the first is the direct
55 population from three-body recombination of atomic oxygen (e. g. Deans et al., 1976); the
56 second is the so-called two-step mechanism, which assumes an intermediate excited precursor
57 O_2^* (e. g. Witt et al., 1984; Greer et al., 1981). It has been shown by laboratory experiments
58 that the first mechanism alone has not explained observed emissions (Young and Sharpless,
59 1963; Clyne et al., 1965; Young and Black, 1966; Bates, 1988). The second mechanism
60 entails a discussion about the precursor excited state and additional ambiguities in their
61 parameters (e.g. Greer et al., 1981; Ogryzlo et al., 1984). Thus, Witt et al. (1984) proposed
62 hypothesis that the $O_2(c^1\Sigma_u^-)$ state is, possibly, precursor; López-González et al. (1992a)
63 suppose that the precursor could be $O_2(^5\Pi_g)$; Wildt et al. (1991) found by laboratory
64 measurements that it could be $O_2(A^3\Sigma_u^+)$. Hence, the problem of identification is still not
65 solved. The breakthrough has been done after the ETON 2 (Energy Transfer in the Oxygen
66 Nightglow) rocket experiment. ETON 2 mission yielded empirical fitting parameters that
67 allow to quantify the $O_2(b^1\Sigma_g^+)$ (and, consequently, volume emission) by known O or atomic
68 oxygen by known volume emission (McDade et al., 1986). Despite the significance of this
69 work, there was an ambiguity in the derived fitting parameters because the temperature and
70 density of air (necessary for derivation) were taken from CIRA-72 and MSIS-83 models,
71 which leads to the loss of self-consistency (e.g. Murtagh et al., 1990) and, consequently, to
72 essential biases. Thus, more solid knowledge on these fitting coefficients based on consistent
73 measurements of atomic oxygen, volume emission of Atmospheric Band, and temperature
74 and density of background atmosphere is desirable. In this paper we present real common
75 volume in-situ measurements of these parameters performed in the course of WADIS-2
76 sounding rocket mission. In the next chapter, we describe the rocket experiment and obtained

77 data relevant for our study. In chapter 3, to make the paper easier to understand, we repeat
78 some theoretical approximations from McDade et al. (1986). The obtained results of our
79 calculations are discussed in chapter 4. Concluding remarks and summary are given in the last
80 chapter.

81

82 **2. Rocket experiment Description**

83

84 The WADIS (Wave propagation and dissipation in the middle atmosphere: Energy budget and
85 distribution of trace constituents) sounding rocket mission aimed to simultaneously study the
86 propagation and dissipation of GWs and measure the concentration of atomic oxygen. It
87 comprised two field campaigns conducted at the Andøya Space Center (ASC) in northern
88 Norway (69°N, 16°E). The WADIS-2 sounding rocket was launched during the second
89 campaign on 5 March 2015 at 01:44:00 UTC, that is, night-time conditions. For a more
90 detailed mission description, the reader is referred to Strelnikov et al. (2017) and the
91 accompanying paper by Strelnikov et al. (2018).

92 The WADIS-2 sounding rocket was equipped with the CONE instrument to measure absolute
93 neutral air density and temperature with high spatial resolution, instrument for atomic oxygen
94 density measurements FIPEX (Flux Probe Experiment) and the Airglow Photometer for
95 atmospheric band (762 nm) volume emission observation.

96 CONE (COmbined measurement of Neutrals and Electrons), operated by IAP (Leibniz
97 Institute of Atmospheric Physics at the Rostock University), is a classical triode type
98 ionisation gauge optimised for a pressure range between 10^{-5} to 1 mbar. The triode system is
99 surrounded by two electrodes: Whilst the outermost grid is biased to +3 to +6 V to measure
100 electron densities at a high spatial resolution, the next inner grid (-15 V) is meant to shield the
101 ionisation gauge from ionospheric plasma. CONE is suitable for measuring absolute neutral
102 air number densities at altitude range between 70 and 120 km. To obtain absolute densities,

103 the gauges are calibrated in the laboratory using a high-quality pressure sensor, like a
104 Baratron. The measured density profile can be further converted to a temperature profile
105 assuming hydrostatic equilibrium. For a detailed description of the CONE instrument, see
106 Giebel et al. (1993) and Strelnikov et al. (2013).
107 The Airglow Photometer operated by MISU (Stockholm University, Department of
108 Meteorology) measures the emission of the molecular oxygen Atmospheric Band around 762
109 nm from the overhead column, from which volume emission rate is inferred by
110 differentiation. A suitable description and review of this measurement technique is given by
111 Hedin et al. (2009).
112 The aim of the FIPEX developed by the IRS (Institute of Space Systems, University of
113 Stuttgart) is to measure the atomic oxygen density along the rocket trajectory with high spatial
114 resolution. It employs two types of solid electrolyte sensors that differ in their electrode
115 material. Platinum electrodes are sensitive to both molecular and atomic oxygen, whilst gold
116 electrodes show a selective sensitivity to atomic oxygen. A low voltage is applied between
117 anode and cathode pumping oxygen ions through the electrolyte ceramic (yttria stabilised
118 zirconia). The current measured is proportional to the oxygen density. Sampling is realised
119 with a frequency of 100 Hz and enables a spatial resolution of ~10 m. Laboratory calibrations
120 were done for molecular and atomic oxygen. For a detailed description of the FIPEX
121 instruments and their calibration techniques see Eberhart et al. (2015, 2018).
122

123 **3. Theory**

124
125 Here, we are repeating the theory of $O_2(b^1\Sigma_g^+ - X^3\Sigma_g^-)(0,0)$ night-time emissions following
126 McDade et al. (1986) to make our paper more readable, saving all nomenclature as in the
127 original paper. All utilised reactions are listed in Table 1, together with corresponding
128 reaction rates, branching ratios, quenching rates and spontaneous emission coefficients. Some

129 components have been updated according to modern knowledge, thus, deviating from the
130 work of McDade et al. (1986).

131 Assuming direct one-step mechanism as a main one for population of $O_2(b^1\Sigma_g^+)$, we can write
132 its concentration as a ratio of production to the loss term:

$$[O_2(b^1\Sigma_g^+)] = \frac{\varepsilon k_1 [O]^2 M}{A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O]}, \quad (1)$$

133 where k_1 – reaction rate for three-body recombination of atomic oxygen, ε is the
134 corresponding fraction of recombination, A_2 represents the spontaneous emission coefficient,
135 and $k_2^{O_2}$, $k_2^{N_2}$, k_2^O are the quenching coefficients for reactions with O₂, N₂ and O, respectively.

136 The volume emission for transition $O_2(b^1\Sigma_g^+ - X^3\Sigma_g^-)(0,0)$ is a product of the concentration
137 of excited molecules and the spontaneous emission coefficient for the given transition:

$$V_{at} = A_1 [O_2(b^1\Sigma_g^+)] = \frac{A_1 \varepsilon k_1 [O]^2 M}{A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O]}, \quad (2)$$

138 where A_1 is spontaneous emission for reaction R5 (hereafter, nomenclature RX means the
139 reaction X from Table 1). In case of known temperature, volume emission and concentrations
140 of O, O₂, N₂, and M, the fraction of recombination can be calculated as follows:

$$\varepsilon = V_{at} \frac{A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O]}{A_1 k_1 [O]^2 M}. \quad (3)$$

141 In the case of the two-step mechanism, the unknown excited state O_2^* is populated at the first
142 step from the reaction R7. Then, it can be deactivated by quenching (R9), spontaneous
143 emission (R10) or producing $O_2(b^1\Sigma_g^+)$ by the reaction R8. The concentration of these excited
144 molecules is given by the following expression:

$$[O_2^*] = \frac{\alpha k_1 [O]^2 M}{A_3 + k_3^{O_2} [O_2] + k_3^{N_2} [N_2] + k_3^O [O]}, \quad (4)$$

145 where fraction of recombination α , spontaneous emission coefficient A_3 , quenching rates
146 $k_3^{O_2}$, $k_3^{N_2}$, k_3^O – are unknown values, as well as the precursor excited state.

147 In the second step, O_2^* is transformed into $O_2(b^1\Sigma_g^+)$, which, in turn, can be deactivated by
148 quenching (R2-R4) and by spontaneous emission (R6). Its concentration in the case of the
149 two-step mechanism is:

$$[O_2(b^1\Sigma_g^+)] = \frac{\gamma k_3^{O_2} [O_2] [O_2^*]}{A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O]} . \quad (5)$$

150 The volume emission in the case of $O_2(b^1\Sigma_g^+ - X^3\Sigma_g^-)(0,0)$ is:

$$V_{at} = \frac{A_1 \alpha k_1 [O]^2 M \gamma k_3^{O_2} [O_2]}{(A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O])(A_3 + k_3^{O_2} [O_2] + k_3^{N_2} [N_2] + k_3^O [O])} . \quad (6)$$

151 Collecting all known values on the right-hand side (RHS) and all unknown summands on the
152 left-hand side (LHS), equation (6) can be rearranged as follows:

$$\frac{A_3 + k_3^{O_2} [O_2] + k_3^{N_2} [N_2] + k_3^O [O]}{\alpha \gamma k_3^{O_2}} = \frac{A_1 k_1 [O]^2 M [O_2]}{V_{at} (A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O])} . \quad (7)$$

153 Omitting emissive summand A_3 as non-effective loss (McDade et al., 1986) we can transform
154 (7) into the following expression:

$$C^{O_2} [O_2] + C^O [O] = \frac{A_1 k_1 [O]^2 M [O_2]}{V_{at} (A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O])} , \quad (8)$$

155 where $C^{O_2} = (1 + k_3^{N_2} [N_2] / k_3^{O_2} [O_2]) / \alpha \gamma$ and $C^O = k_3^O / \alpha \gamma k_3^{O_2}$ are the fitting coefficients
156 that can be calculated by the least square fit (LSF) procedure. We calculated them based on
157 our measurements and will discuss the results in the following chapter.

158

159 **4. Results and Discussion**

160

161 Figure 1 shows input data for our calculations: temperature from CONE instrument (Fig. 1a),
162 number density of air (Fig. 1b), atomic oxygen concentration measured by FIPEX (Fig. 1c)
163 and volume emission at 762 nm from photometric instrument (Fig. 1d). A temperature
164 minimum of ~158 K was observed at 104.2 km. A local temperature peak was measured at

165 98.9 km with values of 204.5 K. The secondary temperature minimum was visible at 95.4 km
166 and amounted to \sim 173 K. Atomic oxygen concentration (Fig. 1c) had a peak of \sim 4.7 \cdot 10¹¹ [cm⁻
167 ³] at 97.2 km and approximately coincided with the secondary temperature peak. The peak of
168 volume emission was detected between 95 and 97 km with values of more than 1700
169 [phot \cdot cm⁻³ \cdot s⁻¹]; this is slightly beneath the atomic oxygen corresponding maximum and
170 slightly above the secondary temperature minimum. Note, this point to the competition of the
171 temperature and the atomic oxygen concentration in the processes of atomic oxygen excited
172 state $O_2(b^1\Sigma_g^+)$ formation. Independently of the mechanism of atmospheric band emission
173 (Eq. 2 or Eq. 6), the numerator is directly proportional to the square of atomic oxygen
174 concentration and inversely proportional to the third power of the temperature (via reaction
175 rate k_I and M , considering the ideal gas law). Our rocket experiment shows an essential
176 difference of emissions between ascending and descending flights (see Strelnikov et al.,
177 2018). It also demonstrates a significant variability in other measured parameters, including
178 neutral temperature and density as well as atomic oxygen density. This suggests that, in the
179 case of the ETON 2 experiments, the temporal extrapolation of atomic oxygen for the time of
180 the emission measurement flight (which was approximately 20 min earlier) may lead to
181 serious biases in estimations because, as one can see from Eq. 2 and Eq. 6, volume emission
182 depends on the atomic oxygen concentration quadratically. Since the best quality data were
183 obtained during the descent of the WADIS-2 rocket flight, we chose this data set for our
184 analysis (Strelnikov et al., 2018). The region above 104 km is subject to auroral
185 contamination. In the region below 92 km, negative values may occur in the volume emission
186 profile as the result of self-absorption in the denser atmosphere below the emission layer.
187 Hence, we considered the region near the peak of emission between 92 km and 104 km as
188 most appropriate for our study. The comparisons of our measurements with other
189 observations, as well as with the results of modelling are presented in several papers (e.g.
190 Eberhart et al., 2018; Strelnikov et al., 2018).

191

192 **4.1 One-step mechanism**

193

194 Figure 2 shows the fraction of recombination ε calculated according to Eq. (3), which is
195 necessary to form $O_2(b^1\Sigma_g^+)$ under the assumption that the direct three-body recombination of
196 atomic oxygen is the main mechanism. As is expected, ε is scattered approximately in the
197 range [0.07; 0.13], which is in good agreement with the values derived by McDade et al.
198 (1986). The averaged value amounts to 0.1. By the physical nature of this value, the fraction
199 of recombination should not depend on altitude, but Fig. 2 shows the strong altitude
200 dependence. Such behaviour of ε means that measured atmospheric emissions may not be
201 explained merely in light of direct excitation mechanism if ε is independent of temperature.

202 Hence, we plot values of ε depending on measured temperature in Figure 3. The values are
203 distributed not randomly and show clear functional dependence. This dependence has a
204 complex nonlinear form. The spiral shape points to the existence of a second parameter,
205 which is probably the pressure. The reaction rates in general cases are the functions of
206 temperature and pressure (e. g. Troe, 1979). Hence, ε , which represents the ratio of the
207 reaction rates of different branches, must depend, in general, on temperature and pressure.
208 Correct functional relation $\varepsilon = \varepsilon(T, p)$ can be obtained only through laboratory
209 measurements. In light of the analysis of our rocket experiment, we can only state that such
210 functional dependence may exist. Hence, an explanation of atmospheric band emission via
211 one-step mechanism is, generally speaking, possible. On the other hand, an existence of
212 functional dependence is the necessary but not sufficient condition to state that the one-step
213 mechanism populates $O_2(b^1\Sigma_g^+)$. Moreover, although the population via one-step mechanism
214 alone is possible, it is improbable because laboratory experiments show that the direct
215 excitation alone may not explain observed emissions (Young and Sharpless, 1963; Clyne at

216 al., 1965; Young and Black, 1966; Bates, 1988). This conclusion is partially in agreement
217 with the conclusion from McDade et al. (1986), which stated that the one-step excitation
218 mechanism is not sufficient to explain the $O_2(b^1\Sigma_g^+)$ population.
219 The reason of some inconsistency between our and McDade et al. (1986) formulation is that,
220 in the case of ETON 2 experiments it was not possible to correlate ε with the real temperature
221 at the place and in time of rocket launch. For their analysis, mean temperature profiles were
222 utilised from the models CIRA-72 and MSIS-83 (Hedin, 1983), which does not reproduce any
223 short-time dynamical fluctuations, solar cycle conditions, etc. Hence, the investigation of
224 correlation between temperature and ε was not possible. Therefore, just in frame of our
225 experiment, we may not decline that $O_2(b^1\Sigma_g^+)$ is populated via one-step or other
226 mechanisms, but taking into account the results of laboratory measurements Bates (1988) and
227 theoretical investigations Wright (1982), which infer too low ε (0.03 and 0.015, respectively)
228 we should conclude that one-step mechanism alone does not explain observed emissions.
229 Hence, in the following, we check the second energy transfer mechanism.

230

231 4.2 Two-step mechanism

232

233 Figure 4 depicts the altitude profile of the RHS of equation (8) and profile calculated by the
234 least-square fit (LSF). The fitting coefficients, C^{O2} and C^O , resulting from this fit, are amount
235 to 9.8 and 2.1, respectively. In such a way defined (Eq. 8) fitting coefficients do not have a
236 direct physical meaning. However, they have a physical meaning in several limit cases. If the
237 quenching coefficients of a precursor with molecular nitrogen are much smaller than those
238 with molecular oxygen ($k_3^{N_2} \ll k_3^{O_2}$), then $\alpha\gamma = 1/C^{O2}$. In our case $\alpha\gamma = 0.102$. In other
239 words, in the case of two-step formation of $O_2(b^1\Sigma_g^+)$ with energy transfer agent O₂, the total
240 efficiency $\alpha\gamma$ amounts to 10.2%, which is the lowest amongst known values. Based on rocket

241 experiment data analysis (ETON), Witt et al. (1984) obtained $\alpha\gamma = 0.12 - 0.2$. According to
242 McDade et al. (1986), for the case with $k_2^O = 8 \cdot 10^{-14}$, the total efficiencies are 0.15 and
243 0.21 for temperature profiles adopted from MSIS-83 and CIRA-72, respectively. The analyses
244 of López-González et al. (1992a, c), adopted O₂, N₂, and temperature profiles from the model
245 (Rodrigo et al., 1991), showed a total efficiency of 0.16. In contrast to our work, all
246 investigations mentioned above utilised the temperature and atmospheric density from models
247 which describe a mean state of the atmosphere. This is a possible reason for discrepancy in
248 the results. Total efficiency may serve as an auxiliary quantity to identify the precursor.
249 According to the physical meaning of efficiency, it may not be larger than 1. Hence, α, γ , as
250 well as the total efficiency are smaller than 1. Consequently, $\gamma = \text{tot. eff.}/\alpha < 1$, and we
251 can examine potential candidates for O₂^{*} with this criterion. From an energetic point of view,
252 only four bound states of molecular oxygen can be considered as an intermediate state for the
253 O₂($b^1\Sigma_g^+$) population: O₂(A³ Σ_u^+), O₂(A'³ Δ_u), O₂(c¹ Σ_u^-), and O₂(⁵ Π_g) (Greer et al., 1981;
254 Wright, 1982; Witt et al., 1984; McDade et al., 1986; López-González et al., 1992c). For
255 better readability, we will partially repeat a table from López-González et al. (1992b, c) with
256 known α in our work (Table 2). From Table 2, it can be seen that only O₂(A'³ Δ_u) and
257 O₂(⁵ Π_g) fit to the criterion of $\gamma = 0.102/\alpha < 1$.
258 The second expression that helps to clarify the choice of the precursor is the ratio of
259 quenching rates. In the limit of low quenching with molecular nitrogen ($k_3^{N_2} \ll k_3^O$), the ratio
260 of fitting coefficients equals the ratio of the quenching rates of atomic and molecular oxygens
261 ($C^O/C^{O2} = k_3^O/k_3^{O2}$). An analysis from the ETON 2 rocket experiment yields values of
262 quenching coefficients ratios of potential precursor are 3.1 and 2.9 for temperatures from
263 CIRA-72 and MSIS-83, respectively. This is close to the value from Ogryzlo et al. (1984),
264 who found $k_3^O/k_3^{O2} = 2.6$ by laboratory measurements; however, as was noted in their work,
265 substitution of these values into the equation for emission yields 16 % of the observed

266 emission (Ogryzlo et al., 1984). These findings point to the possibility of a too high measured
267 ratio $k_3^0/k_3^{O_2}$ as the result of too strong quenching of precursor by atomic oxygen. Our value
268 of quenching ratios $k_3^0/k_3^{O_2}$ amounts to 0.21. There is not enough information on measured
269 values for bound states of molecular oxygen. Laboratory measurements for $O_2(A^3\Sigma_u^+)(v =$
270 $0 - 4)$, $O_2(A^3\Sigma_u^+)(v = 2)$, and $O_2(c^1\Sigma_u^-)$ infer the values of $k_3^0/k_3^{O_2}$ ratio to be 30 ± 30 ,
271 100 ± 15 , and 200 ± 20 , respectively (Kenner and Ogryzlo, 1980; Kenner and Ogryzlo, 1983a,
272 1983b; Kenner and Ogryzlo, 1984). On the other hand, Slanger et al. (1984) found a lower
273 limit of $O_2(A^3\Sigma_u^+)(v = 8)$ quenching by O_2 must be $\geq 8 \cdot 10^{-11}$. If the results from Slanger et al.
274 (1984) were applied to the results from Kenner and Ogryzlo (1980, 1984) for $k_3^{O_2}$, then the
275 ratio of $k_3^0/k_3^{O_2}$ would be two orders lower. This short discussion illustrates a strong scattering
276 of this ratio. For our two potential candidates ($O_2(A'^3\Delta_u)$ and $O_2(^5\Pi_g)$), there is information
277 about $k_3^0/k_3^{O_2}$ ratio for only $O_2(A'^3\Delta_u)$. Through the comprehensive analysis of known rocket
278 experiments, López-González et al. (1992a, b, c) inferred that the upper limit of the ratio
279 amounts to 1. Hence, our value of $k_3^0/k_3^{O_2} = 0.21$ agrees with this result. Consistent
280 information from laboratory experiments on the ratio for $O_2(^5\Pi_g)$ is absent. Thus, we can
281 propose as potential candidates for precursor both $O_2(A'^3\Delta_u)$ and $O_2(^5\Pi_g)$; however, we are
282 not able to identify which of these two is more preferable.
283 In order to illustrate the application of the newly derived fitting coefficients we show Figure 5
284 with atomic oxygen concentration from FIPEX (black line), from NRL MSISE-00 reference
285 atmosphere model (Picone et al., 2002) (red line); calculated with McDade et al. (1986)
286 coefficients (blue line), and with our fitting coefficients for the two-step mechanism (green
287 line). In the region 90-98 km, i.e. beneath atomic oxygen peak (see Fig. 1d) fitting
288 coefficients from this paper better than McDade coefficients (MSIS-83 case). Our fitting
289 coefficients and fitting coefficients of McDade give similar approximation above atomic

290 oxygen peak (~98–104 km). The atomic oxygen retrieved with our fitting coefficients
291 satisfactorily reproduces measurements.

292 **4.3 Combined mechanism**

293

294 In the most general case, the $O_2(b^1\Sigma_g^+)$ population passes through two channels: directly and
295 via precursor. In fact, theoretical calculations from Wraight (1982) and laboratory
296 measurements from Bates (1988) predicted a direct population with efficiencies of 0.015 and
297 0.03, respectively, which is not sufficient to explain the observed emissions (Bates, 1988,
298 Greer et al., 1981; Krasnopolsky, 1986). A similar value, $\varepsilon=0.02$, was shown in the analysis
299 by López-González et al. (1992b, c). We investigated a combined mechanism based on the
300 LSF calculation and fit function (derivation in Appendix):

$$\frac{[O_2] + D_1[O]}{D_2 + \tilde{\varepsilon}(1 + D_1[O]/[O_2])} = \frac{A_1 k_1 [O]^2 M [O_2]}{V_{at} (A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O])}, \quad (9)$$

301 where, hereafter, tildes denote that these are values for combined mechanism and do not equal
302 to the values for one-step or two-step mechanisms (Ch. 4.1 and 4.2); $D_1 = \tilde{k}_3^O / \tilde{k}_3^{O_2}$ and
303 $D_2 = \tilde{\alpha} \tilde{\gamma}$ are the fitting coefficients, which refer to the ratio of quenching rates and total
304 efficiency for two-step channel, respectively. The fitting coefficients were calculated for two
305 limit cases $\tilde{\varepsilon}=0.015$ (Wraight, 1982), $\tilde{\varepsilon}=0.03$ (Bates, 1988) and for the averaged case $\tilde{\varepsilon}=0.022$.
306 They are listed in Table 3. The altitude profile of the RHS of equation (9) and calculated fit-
307 function are plotted in Figure 6. The deviations of fit function between limits and averaged
308 values are negligible, hence, we only show the averaged case. Thus, we can recommend for
309 future investigations the values of averaged case (last column of Tab. 3). Analogously to the
310 two-step mechanism (Ch. 4.2), for the case of combined mechanism $\tilde{\gamma} = \text{tot. eff.} / \tilde{\alpha} < 1$.
311 Taking into account the lowest value for total efficiency, the precursor should satisfy $\tilde{\alpha} >$
312 0.073. Consequently, only $O_2(A'^3\Delta_u)$ and $O_2(^5\Pi_g)$ satisfy this criterion (see Tab 2). The
313 upper limit of the ratio $k_3^O / k_3^{O_2} < 1$ for $O_2(A'^3\Delta_u)$, derived by López-González et al. (1992a,

314 b, c), is in agreement with our calculations (~0.2-0.4). As it is noted above, the ratio for
315 $O_2(^5\Pi_g)$ is unknown.

316 Figure 7 illustrates volume emissions derived (black lines) with fitting coefficients of
317 McDade et al. (1986) for MSIS-83 (Fig. 7c) case and CIRA-72 case (Fig. 7d), and with our
318 newly derived fitting coefficients for two-step (Fig. 7a) and combined ($\xi = 0.022$)
319 mechanisms (Fig. 7b) in comparison with measured one (red lines). All of derived volume
320 emission profiles (black lines) were calculated based on the the temperature, concentration of
321 surrounding air, and concentration of atomic oxygen from our rocket launch. The calculations
322 with combined mechanism (Eq. 9) and two-step energy transfer mechanism (Eq. 8) give
323 almost identical results. The results obtained with new fitting coefficients are in satisfactory
324 agreement with the measured volume emissions at the peak and above, whereas the McDade
325 coefficients related to the temperature from CIRA-72 give better approximations below the
326 volume emission peak (92 km). The coefficients of McDade related to the temperature from
327 MSIS-83 are in better agreement with our results and are almost identical above the volume
328 emission peak. Note that both mechanisms with newly derived coefficients give three of five
329 points in the vicinity of uncertainties of measured values (see Fig. 7a and Fig 7b), whereas
330 McDade coefficients for MSIS-83 case (Fig. 7c) and for CIRA-72 (Fig. 7d) give just one and
331 two point, respectively. Hence, we can recommend our newly derived coefficients either for a
332 two-step energy transfer process or for combined mechanism. We consider combined
333 mechanism more preferable as it is more general.

334

335 **5. Summary and conclusions**

336

337 Based on the rocket-born true common volume observations of atomic oxygen, atmospheric
338 band emission (762 nm), and density and temperature of the background atmosphere, the one-
339 step, two-step and combined mechanisms of $O_2(b^1\Sigma_g^+)$ formation were analysed. Our

340 calculations show that in the case of the one-step mechanism, the fraction of atomic oxygen
341 recombination ε depends on altitude. The one-step mechanism inferred the functional
342 dependence of ε on temperature. It has a nonlinear character because the fraction of
343 recombination ε , in general, depends on temperature and pressure. Nevertheless, we consider
344 one-step direct excitation as less probable for the reasons discussed above (Ch.4.1). In the
345 context of the rocket experiment, we do not have a possibility to retrieve functional
346 dependence $\varepsilon = \varepsilon(T, p)$, which poses a task for future laboratory measurements.

347 For the case of the two-step mechanism, we found new coefficients for fit function in
348 accordance with McDade et al. (1986), based on self-consistent temperature, atomic oxygen
349 and volume emission observation. These coefficients amounted to $C^{O_2}=9.8$ and $C^O=2.1$. The
350 general implication of these results is parameterisation of volume emission in terms of known
351 atomic oxygen. This can be utilised either for atmospheric band volume emission modelling
352 or for estimation of atomic oxygen by known volume emission. We identified two candidates
353 for the intermediate state of O_2^* . Our results show that $O_2(A'^3\Delta_u)$ or $O_2(^5\Pi_g)$ may serve as a
354 precursor.

355 Taking into account both channels of $O_2(b^1\Sigma_g^+)$ formation, we proposed a combined
356 mechanism. In this case, atomic oxygen via volume emission or volume emission based on
357 known atomic oxygen can be calculated by equation (9). Recommended fitting coefficients
358 amounted to $D_1=0.231$ and $D_2=0.08$, with the efficiency of the direct channel as
359 $\tilde{\varepsilon} = 0.022$. These coefficients have a sense of total efficiency ($\tilde{\alpha}\tilde{\gamma}$) and a ratio of quenching
360 coefficients ($\tilde{k}_3^O/\tilde{k}_3^{O_2}$) for the two-step channel. The analysis of their values indicates that
361 $O_2(A'^3\Delta_u)$ and $O_2(^5\Pi_g)$ may serve as possible precursors for the two-step channel.
362 Unfortunately, in the context of our rocket experiment, we do not have the possibility to
363 figure out which mechanism is true. Nevertheless, we consider the combined mechanism as
364 more relevant to nature, because it has a higher generality. This conclusion does not

365 contradict to the current point of view that the two-step mechanism is dominant because $\tilde{\varepsilon}$ is
366 assumed to be 1.5-3 %. Moreover, it is possible that in the reality the mechanism much more
367 complex and it has multi-channel or more than two-step nature.

368

369 **Appendix.**

370

371 We consider photochemical equilibrium for the night-time $O_2(b^1\Sigma_g^+)$ concentration. If
372 $O_2(b^1\Sigma_g^+)$ is produced via both channels, the equilibrium concentration is given by the
373 following expression:

$$[O_2(b^1\Sigma_g^+)] = \frac{\tilde{\varepsilon} k_1 [O]^2 M + \tilde{\gamma} \tilde{k}_3^{O_2} [O_2] [O_2^*]}{A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O]}, \quad (A1)$$

374 where the tilde denotes the combined mechanism, $A_1, k_1, k_2^{O_2}, k_2^{N_2}, k_2^O, \tilde{k}_3^{O_2}$ are the ratios for
375 corresponding processes (see Tab. 1) and O_2^* is the unknown precursor.

376 Considering this precursor in photochemical equilibrium, we can obtain the following
377 expression for its concentration:

$$[O_2^*] = \frac{\tilde{\alpha} k_1 [O]^2 M}{\tilde{A}_3 + \tilde{k}_3^{O_2} [O_2] + \tilde{k}_3^{N_2} [N_2] + \tilde{k}_3^O [O]}, \quad (A2)$$

378 where efficiency $\tilde{\alpha}$, \tilde{A}_3 is the unknown spontaneous emission coefficient of O_2^* and
379 $\tilde{k}_3^{O_2}, \tilde{k}_3^{N_2}, \tilde{k}_3^O$ are the unknown quenching rates for O_2^* .

380 Substituting A2 into A1 and into expression for volume emission we obtain:

381 $V_{at} = A_1 [O_2(b^1\Sigma_g^+)] =$

$$= \frac{A_1 k_1 [O]^2 [O_2] M}{A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O]} \left(\frac{\tilde{\varepsilon}}{[O_2]} + \frac{\tilde{\alpha} \tilde{\gamma} \tilde{k}_3^{O_2}}{\tilde{A}_3 + \tilde{k}_3^{O_2} [O_2] + \tilde{k}_3^{N_2} [N_2] + \tilde{k}_3^O [O]} \right). \quad (A3)$$

382 We assume that, in analogy with two-step mechanism, a spontaneous emission \tilde{A}_3 of O_2^* is
383 much smaller than the quenching, and we utilised traditional assumption about low quenching

384 with molecular nitrogen ($\tilde{k}_3^{N_2} \ll \tilde{k}_3^{O_2}$), which is commonly used to analyse a potential
385 precursor. In this case, A3 can be rearranged as follows:

$$\frac{[O_2] + \frac{\tilde{k}_3^O}{\tilde{k}_3^{O_2}}[O]}{\tilde{\alpha}\tilde{\gamma} + \tilde{\varepsilon} \left(1 + \frac{\tilde{k}_3^O}{\tilde{k}_3^{O_2}}[O]/[O_2] \right)} = \frac{A_1 k_1 [O]^2 M [O_2]}{V_{at} (A_2 + k_2^{O_2} [O_2] + k_2^{N_2} [N_2] + k_2^O [O])}. \quad (A4)$$

386 We defined unknown fitting coefficients $D_1 \equiv \tilde{k}_3^O / \tilde{k}_3^{O_2}$ and $D_2 \equiv \tilde{\alpha}\tilde{\gamma}$. Expression A4 was
387 utilised to calculate them with LSF.

388

389 **Acknowledgements.**

390

391 The authors are thankful to Prof. Dr. V. A. Yankovsky, Prof. Dr. W. Ward, and PD Dr. G. R.
392 Sonnemann for helpful suggestions and useful discussions. This work was supported by the
393 German Space Agency (DLR) under grant 50 OE 1001 (project WADIS). The authors thank
394 DLR-MORABA for their excellent contribution to the project by developing the complicated
395 WADIS payload and campaign support together with the Andøya Space Center, as well as H.-
396 J. Heckl and T. Köpnick for building the rocket instrumentation.

397 The rocket-borne measurements and calculated data shown in this paper are available via
398 IAP's ftp server at <ftp://ftp.iap-kborn.de/data-in-publications/GrygalashvylyACP2018>.

399

400 **References**

401

402 Bates, D. R.: Excitation and quenching of the oxygen bands in the nightglow, *Planet. Space*
403 *Sci.*, **36(9)**, 875-881, 1988.

404

405 Campbell, I. M. and Gray, C. N.: Rate constants for O(3P) recombination and association with
406 N($4S$), *Chem. Phys. Lett.*, **8**, 259, 1973.

407

408 Clyne, M. A. A., Thrush, B. A., and Wayne, R. P.: The formation and reactions of metastable
409 oxygen ($b^1\Sigma_g^+$) molecules, *J. Photochem. Photobiol.*, **4**, 957, 1965.

410

411 Deans, A. J., Shepherd, G. G., and Evans, W. F. J.: A rocket measurement of the $O_2(b^1\Sigma_g^+ -$
412 $X^3\Sigma_g^-)$ atmospheric band nightglow altitude distribution, *Geophys. Res. Lett.*, **3(8)**, 441-444,
413 1976.

414

415 Eberhart, M., Löhle, S., Steinbeck, A., Binder, T., and Fasoulas, S.: Measurement of atomic
416 oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes,
417 *Atmospheric Measurement Techniques*, **8**, 3701–3714, doi:10.5194/amt-8-3701-2015, 2015.

418

419 Eberhart, M., Löhle, S., Strelnikov, B., Fasoulas, S. and Lübken, F.-J. Hedin, J., Khaplanov,
420 M., Gumbel, J.: Atomic oxygen number densities in the MLT region measured by solid
421 electrolyte sensors on WADIS-2, *Atmospheric Measurement Techniques*, submitted, 2018.

422

423 Giebeler, J., Lübken, F.-J., and Nägele, M.: CONE – a new sensor for in-situ observations of
424 neutral and plasma density fluctuations, ESA SP, Montreux, Switzerland, ESA-SP-355, 311–
425 318, 1993.

426

427 Greer, R. G. H., Llewellyn, E. J., Solheim, B. H., and Witt, G.: The excitation of $O_2(b^1\Sigma_g^+)$ in
428 the nightglow, *Planet. Space Sci.*, **29**, 383, 1981.

429

430 Hedin, A. E.: A revised thermospheric model based on mass spectrometer and incoherent
431 scatter data: MSIS-83, *J. Geophys. Res.*, **88**, 10.170, 1983.

432

433 Hedin, J., Gumbel, J., Stegman, J., and Witt, G.: Use of O₂ airglow for calibrating direct
434 atomic oxygen measurements from sounding rockets, *Atmos. Meas. Tech.*, **2**, 801–812, 2009.

435

436 Hickey, M. P., Schubert, G., and Walterscheid, R. L.: Gravity wave-driven fluctuations in the
437 O₂ atmospheric (0–1) nightglow from an extended, dissipative emission region, *J. Geophys.*
438 *Res.*, **98**, 717–730, 1993.

439

440 Kenner, R. D. and Ogryzlo, E. A.: Deactivation of O₂(A³Σ_u⁺) by O₂, O and Ar, *Int. J. Chem.*
441 *Kinetics*, **12**, 501, 1980.

442

443 Kenner, R. D. and Ogryzlo, E. A.: Quenching of O₂(c¹Σ_u⁻, v = 0) by O(³P), O₂(a¹Δ_g) and
444 other gases, *Can. J. Chem.*, **61**, 921, 1983a.

445

446 Kenner, R. D. and Ogryzlo, E. A.: Rate constant for the deactivation of O₂(A³Σ_u⁺) by N₂,
447 *Chem. Phys. Lett.*, **103**, 209, 1983b.

448

449 Kenner, R. D. and Ogryzlo, E. A.: Quenching of O₂(A_{v=2} – X_{v=5}) Herzberg I band by O₂(a)
450 and O, *Can. J. Phys.*, **62**, 1599, 1984.

451

452 Krasnopol'sky, V. A.: Oxygen emissions in the night airglow of the Earth, Venus and Mars,
453 *Planet. Space Sci.*, **34**, 511, 1986.

454

455 Leko, J. J., M. P. Hickey, and Richards, P. G.: Comparison of simulated gravity wave-driven
456 mesospheric airglow fluctuations observed from the ground and space, *J. Atmos. Solar-Terr.*
457 *Phys.*, **64**, 397–403, 2002.

458

459 Liu, A. Z. and Swenson, G. R.: A modeling study of O₂ and OH airglow perturbations
460 induced by atmospheric gravity waves, *J. Geophys. Res.*, **108(D4)**, 4151,
461 doi:10.1029/2002JD002474, 2003.

462

463 López-González, M. J., López-Moreno, J. J., and Rodrigo, R.: Altitude profiles of the
464 atmospheric system of O₂ and of the green line emission, *Planet. Space Sci.*, **40(6)**, 783-795,
465 1992a.

466

467 López-González, M. J., López-Moreno, J. J., and Rodrigo, R.: Altitude and vibrational
468 distribution of the O₂ ultraviolet nightglow emissions, *Planet. Space Sci.*, **40(7)**, 913-928,
469 1992b.

470

471 López-González, M. J., López-Moreno, J. J., and Rodrigo, R.: Atomic oxygen concentrations
472 from airglow measurements of atomic and molecular oxygen emissions in the nightglow,
473 *Planet. Space Sci.*, **40(7)**, 929-940, 1992c.

474

475 Lopez-Gonzalez, M. J., Rodríguez, E., Shepherd, G. G., Sargoytchev, S., Shepherd, M. G.,
476 Aushev, V. M., Brown, S., García-Comas, M., and Wiens, R. H.: Tidal variations of O₂
477 Atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations,
478 *Ann. Geophys.*, **23**, 3579–3590, 2005.

479

480 Lopez-Gonzalez, M. J., Rodríguez, E., García-Comas, M., Costa, V., Shepherd, M. G.,
481 Shepherd, G. G., Aushev, V. M., and Sargoytchev, S.: Climatology of planetary wave type
482 oscillations with periods of 2-20 days derived from O₂ atmospheric and OH(6-2) airglow
483 observations at mid-latitude with SATI, *Ann. Geophys.*, **27**, 3645–3662, 2009.

484

485 McDade, I. C., Murtagh, D. P., Greer, R. G. H., Dickinson, P. H. G., Witt, G., Stegman, J.,
486 Llewellyn, E. J., Thomas, L., and Jenkins, D. B.: ETON 2: Quenching parameters for the
487 proposed precursors of $O_2(b^1\Sigma_g^+)$ and $O(^1S)$ in the terrestrial nightglow, *Planet. Space Sci.*,
488 **34**, 789–800, 1986.

489

490 Mlynczak, M. G., Morgan, F., Yee, J.-H., Espy, P., Murtagh, D., Marshall, B., Schmidlin, F.:
491 Simultaneous measurements of the $O_2(^1\Delta)$ and $O_2(^1\Sigma)$ airglows and ozone in the daytime
492 mesosphere, *Geophys. Res. Lett.*, **28**, 999-1002, 2001.

493

494 Murtagh, D. P., Witt, G., Stegman, J., McDade, I. C., Llewellyn, E. J., Harris, F., and Greer,
495 R. G. H.: An assessment of proposed $O(^1S)$ and $O_2(b^1\Sigma_g^+)$ nightglow excitation parameters,
496 *Planet. Space Sci.*, **38**, 1, 45–53, 1990.

497

498 Newnham, D. A. and Balard, J.: Visible absorption cross sections and integrated absorption
499 intensities of molecular oxygen (O_2 and O_4), *J. Geophys. Res.*, **103(D22)**, 28801-28815, 1998.

500

501 Noxon, J. F.: Effect of Internal Gravity Waves Upon Night Airglow Temperatures, *Geophys.*
502 *Res. Lett.*, **5**, 25–27, 1978.

503

504 Ogryzlo, E. A., Shen, Y. Q., and Wassel, P. T.: The yield of $O_2(b^1\Sigma_g^+)$ in oxygen atom
505 recombination, *J. Photochem.*, **25**, 389, 1984.

506

507 Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of
508 the atmosphere: Statistical comparisons and scientific issues, *J. Geophys. Res.*, **107**, 1468,
509 doi:10.1029/2002JA009430, 2002.

510

511 Rodrigo, R., Lopez-Gonzalez, M. J., and Lopez-Moreno, J. J.: Variability of the neutral
512 mesospheric and lower thermospheric composition in the diurnal cycle, *Planet. Space Sci.*,
513 **39**, 803, 1991.

514

515 Shepherd, M. G., Cho, Y.-M., Shepherd, G. G., Ward, W., and Drummond, J. R.:
516 Mesospheric temperature and atomic oxygen response during the January 2009 major
517 stratospheric warming, *J. Geophys. Res.*, **115**, A07318, doi:10.1029/2009JA015172, 2010.

518

519 Slanger, T. G. and Black, G.: Interactions of $O_2(b^1\Sigma_g^+)$ with $O(^3P)$ and O_3 . *J. Chem. Phys.*, **70**,
520 3434-3438, 1979.

521

522 Slanger, T. G., Bischel, W. K., and Dyer, M. J.: Photoexcitation of O_2 at 249.3 nm, *Chem.*
523 *Phys. Lett.*, **108**, 472, 1984.

524

525 Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast J. C.: Temporal variation of atomic
526 oxygen in the upper mesosphere from SABER, *J. Geophys. Res.*, **115**, D18309,
527 doi:10.1029/2009JD013434, 2010.

528

529 Smith, I. W. M.: The role of electronically excited states in recombination reactions, *Int. J.*
530 *Chem. Phys.*, **16**, 423–443, 1984.

531

532 Strelnikov, B., Rapp, M., and Lübken, F.-J.: In-situ density measurements in the
533 mesosphere/lower thermosphere region with the TOTAL and CONE instruments, in: An
534 Introduction to Space Instrumentation, edited by: Oyama, K., Terra Publishers,
535 doi:10.5047/isi.2012.001, 2013. <http://www.terrapub.co.jp/onlineproceedings/ste/aisi/>

536

537 Strelnikov, B., Staszak, T., Strelnikova, I., Lübken, F.-J., Grygalashvily, M., Hedin, J.,
538 Khaplanov, M., Gumbel, J., Fasoulas, S., Löhle, S., Eberhart, M., Baumgarten, G., Höffner,
539 J., Wörl, R., Rapp, M., and Friedrich, M.: Simultaneous in situ measurements of small-scale
540 structures in neutral, plasma, and atomic oxygen densities during WADIS sounding rocket
541 project, *Atmos. Chem. Phys.*, submitted, 2018.

542

543 Takahashi, H., Sahai, Y., and Teixeira, N. R.: Airglow intensity and temperature response to
544 atmospheric wave propagation in the mesopause region, *Adv. Space Res.*, **10**, 77–81, 1990.

545

546 Takahashi, H., Sahai, Y., Batista, P. P., and Clemesha, B. R.: Atmospheric gravity wave
547 effect on the airglow O₂(0,1) and OH(9,4) band intensity and temperature variations observed
548 from a low latitude station, *Adv. Space Res.*, **12(10)**, 131–134, 1992.

549

550 Takahashi, H., Onohara, A., Shiokawa, K., Vargas, F., Gobbi, D.: Atmospheric wave induced
551 O₂ and OH airglow intensity variations: effect of vertical wavelength and damping, *Ann.*
552 *Geophys.*, **29**, 631–637, 2011.

553

554 Tarasick, D. W. and Shepherd, G. G.: Effects of gravity waves on complex airglow
555 chemistries. 2. OH emission, *J. Geophys. Res.*, **97**, 3195–3208, 1992.

556

557 Troe, J.: Predictive Possibilities of Unimolecular Rate Theory, *J. Phys. Chem.*, **83 (1)**, 114–
558 126, doi: 10.1021/j100464a019, 1979.

559

560 Viereck, R. A. and Deehr, C. S.: On the interaction between gravity waves and the OH Meinel
561 (6-2) and O₂ Atmospheric (0-1) bands in the polar night airglow, *J. Geophys. Res.*, **94**, 5397–

562 5404, 1989.

563

564 Wildt, J., Bednarek, G., Fink, E. H., Wayne, R. P.: Laser excitation of the $A^3\Sigma_u^+$, $A^3\Delta_u$ and
565 $c^1\Sigma_{u-}$ states of molecular oxygen, *Chem. Phys.*, **156**(3), 497-508, doi: 10.1016/0301-
566 0104(91)89017-5, 1991.

567

568 Witt, G., Stegman, J., Murtagh, D. P., McDade, I. C., Greer, R. G. H., Dickinson, P. H. G.,
569 and Jenkins, D. B.: Collisional energy transfer and the excitation of $O_2(b^1\Sigma_g^+)$ in the
570 atmosphere, *J. Photochem.*, **25**, 365, 1984.

571

572 Wraight, P. C.: Association of atomic oxygen and airglow excitation mechanisms, *Planet.*
573 *Space Sci.*, **30**(3), 251-259, 1982.

574

575 Yankovsky, V. A., Martysenko, K. V., Manuilova, R. O., and Feofilov, A. G.: Oxygen
576 dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower
577 thermosphere, *J. Mol. Spectrosc.*, **327**, 209–231, doi:10.1016/j.jms.2016.03.006, 2016.

578

579 Young, R. A. and Sharpless, R. L.: Chemiluminescence and reactions involving atomic
580 oxygen and nitrogen, *J. Chem. Phys.*, **39**, 1071, 1963.

581

582 Young, R. A. and Black, G.: Excited state formation and destruction in mixtures of atomic
583 oxygen and nitrogen, *J. Chem. Phys.*, **44**, 3741, 1966.

584

585 Zagidullin, M. V., Khvatov, N. A., Medvedkov, I. A., Tolstov, G. I., Mebel, A. M., Heaven,
586 M. C., and Azyazov, V. N.: $O_2(b^1\Sigma_g^+)$ Quenching by O_2 , CO_2 , H_2O , and N_2 at Temperatures
587 of 300–800 K, *J. Phys. Chem.*, **121** (39), 7343-7348, doi: 10.1021/acs.jpca.7b07885, 2017.

588

589 Zhang, S. P., Wiens, R. H., and Shepherd, G. G.: Gravity waves from O₂ nightglow during the
590 AIDA '89 campaign II: numerical modeling of the emission rate/temperature ratio, η , *J.*
591 *Atmos. Terr. Phys.*, **55**, 377–395, 1993.

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613 **Table 1.** List of reactions with corresponding reaction rates (for three-body reactions [cm⁶
 614 molecule⁻² s⁻¹] and for two-body reactions [cm³ molecule⁻¹ s⁻¹]), quenching coefficients, and
 615 spontaneous emission coefficients (s⁻¹) used in the paper.

	Reaction	Coefficient	Reference
R1	$O + O + M \xrightarrow{\varepsilon k_1} O_2(b^1\Sigma_g^+) + M$	$k_1 = 4.7 \cdot 10^{-33} (300/T)^2$ $\varepsilon - \text{unknown}$	Campbel and Gray (1973)
R2	$O_2(b^1\Sigma_g^+) + O_2 \xrightarrow{k_2^{O_2}} \text{products}$	$k_2^{O_2}$ $= 7.4 \cdot 10^{-17} T^{0.5} e^{-\frac{1104.7}{T}}$	Zagidullin et al. (2017)
R3	$O_2(b^1\Sigma_g^+) + N_2 \xrightarrow{k_2^{N_2}} \text{products}$	$k_2^{N_2} = 8 \cdot 10^{-20} T^{1.5} e^{\frac{503}{T}}$	Zagidullin et al. (2017)
R4	$O_2(b^1\Sigma_g^+) + O \xrightarrow{k_2^O} \text{products}$	$k_2^O = 8 \cdot 10^{-14}$	Slanger and Black (1979)
R5	$O_2(b^1\Sigma_g^+) \xrightarrow{A_1} O_2 + h\nu(762\text{nm})$	$A_1 = 0.0834$	Newnham and Ballard (1998)
R6	$O_2(b^1\Sigma_g^+) \xrightarrow{A_2} O_2 + h\nu(\text{total})$	$A_2 = 0.088158$	Yankovsky et al. (2016)
R7	$O + O + M \xrightarrow{\alpha k_1} O_2^* + M$	$\alpha - \text{unknown}$	
R8	$O_2^* + O_2 \xrightarrow{\gamma k_3^{O_2}} O_2(b^1\Sigma_g^+) + O_2$	$\gamma - \text{unknown}$	
R9	$O_2^* + O_2, N_2, O \xrightarrow{k_3^{O_2}, k_3^{N_2}, k_3^O} \text{prod.}$	$k_3^{O_2}, k_3^{N_2}, k_3^O - \text{unknown}$	
R10	$O_2^* \xrightarrow{A_3} O_2 + h\nu$	$A_3 - \text{unknown}$	

616

617 **Table 2.** Efficiencies α of the different excited states of O₂.

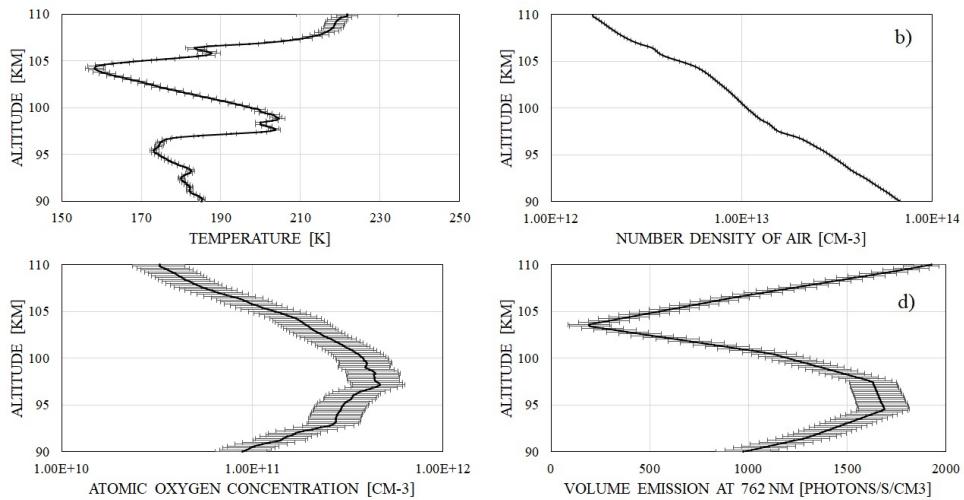
$O_2(c^1\Sigma_u^-)$	$O_2(A'^3\Delta_u)$	$O_2(A^3\Sigma_u^+)$	$O_2(^5\Pi_g)$	Reference
0.03	0.12	0.04	0.66	Wraight (1982), Smith (1984)
0.04	0.18	0.06	0.5	Bates (1988)
0.03	0.18	0.06	0.52	López-González et al. (1992a, b, c)

618

619 **Table 3.** Fitting coefficients for combined mechanism (Eq. 9) at different efficiencies.

	Low $\tilde{\varepsilon}$ Wraight (1982)	High $\tilde{\varepsilon}$ Bates (1988)	Averaged $\tilde{\varepsilon}$ (this work)
$\tilde{\varepsilon}$	0.015	0.03	0.022
$D_1 = \tilde{k}_3^O / \tilde{k}_3^{O_2}$	0.211	0.397	0.231
$D_2 = \tilde{\alpha} \tilde{\gamma}$	0.087	0.073	0.08

620


621

622

623 **Figures.**

624 Figure 1. Measurements of a) temperature (CONE), b) number density of air (CONE), c)
625 atomic oxygen concentration (FIPLEX), d) volume emission at 762 nm (photometer).

626

627

628

629

630

631

632

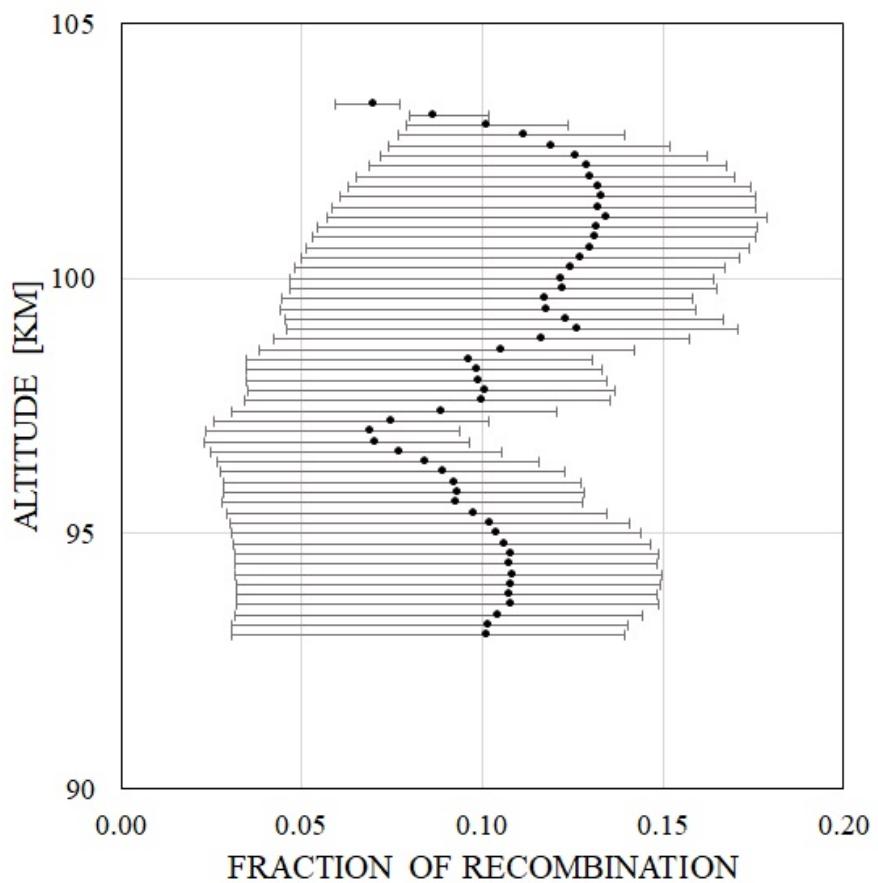
633

634

635

636

637


638

639

640

641 Figure 2. Fraction of recombination ε for the case of one-step mechanism.

642

643

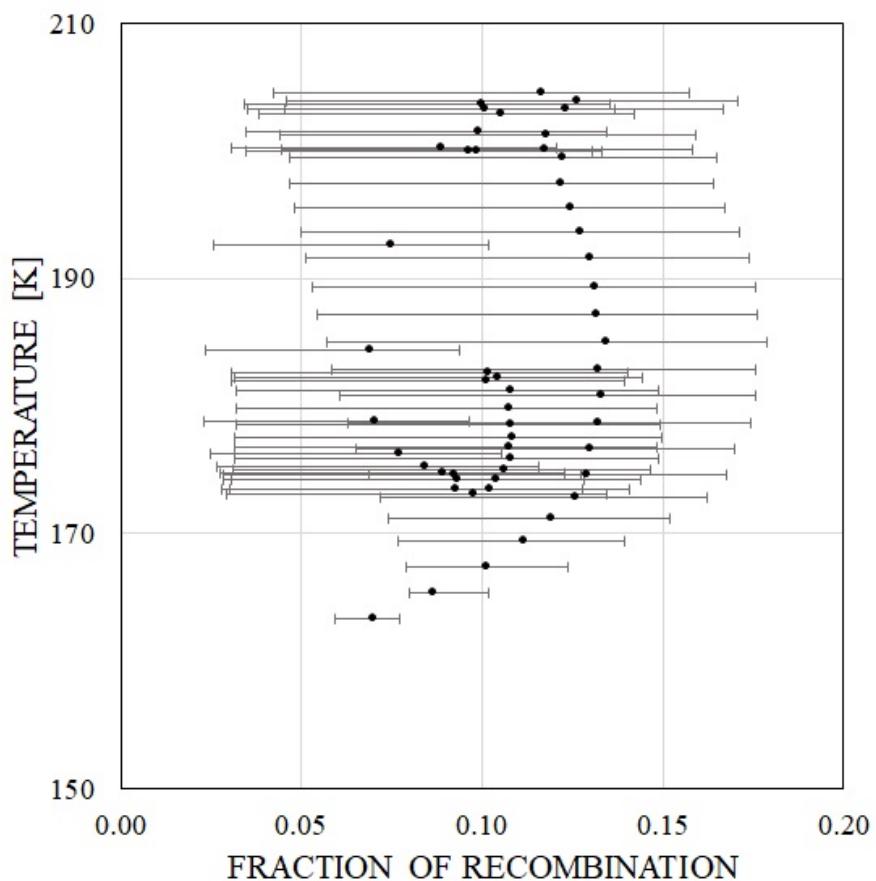
644

645

646

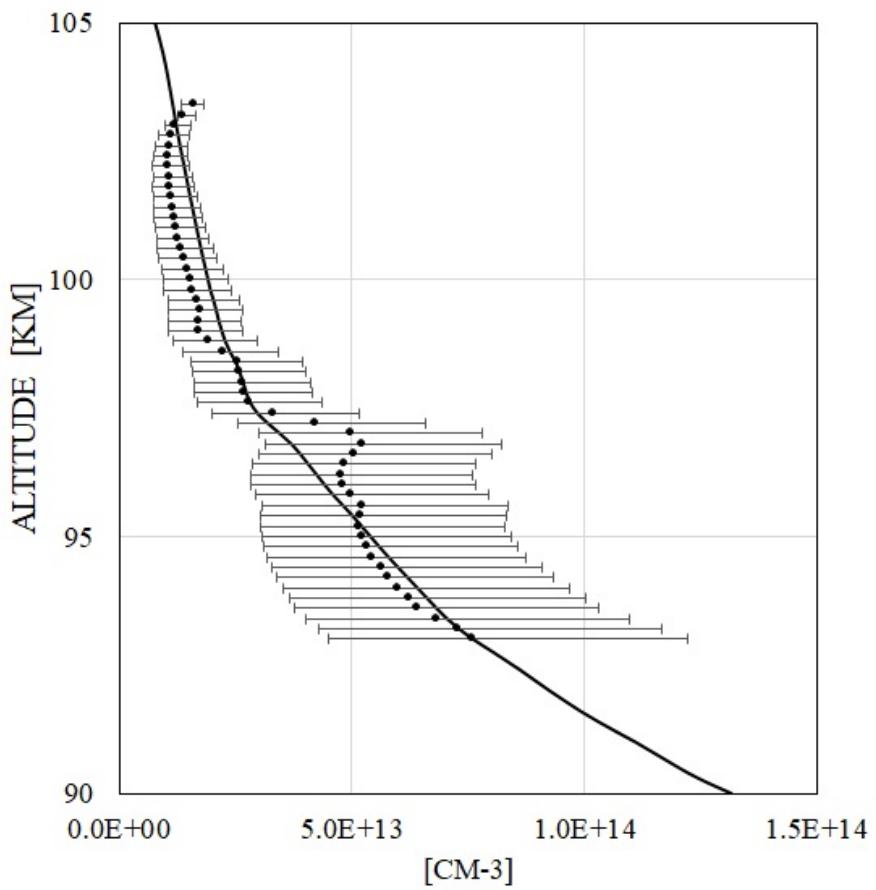
647

648


649

650

651


652 Figure 3. Correlation between fraction of recombination ε and T.

653
654
655
656
657
658
659
660
661
662

663 Figure 4. RHS of equation (8) and least-square fit of LHS of equation (8).

664

665

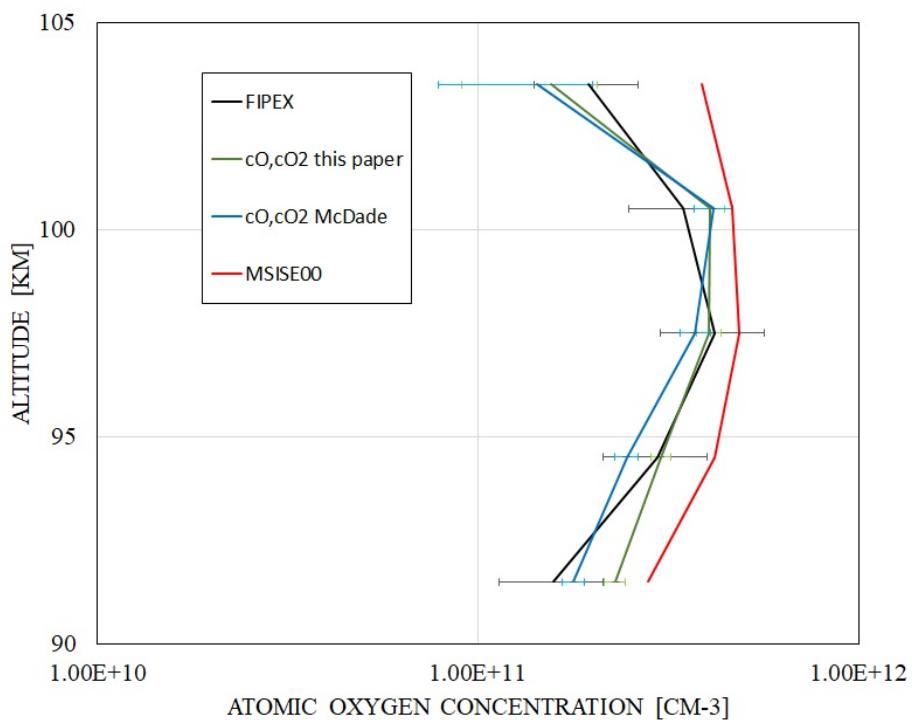
666

667

668

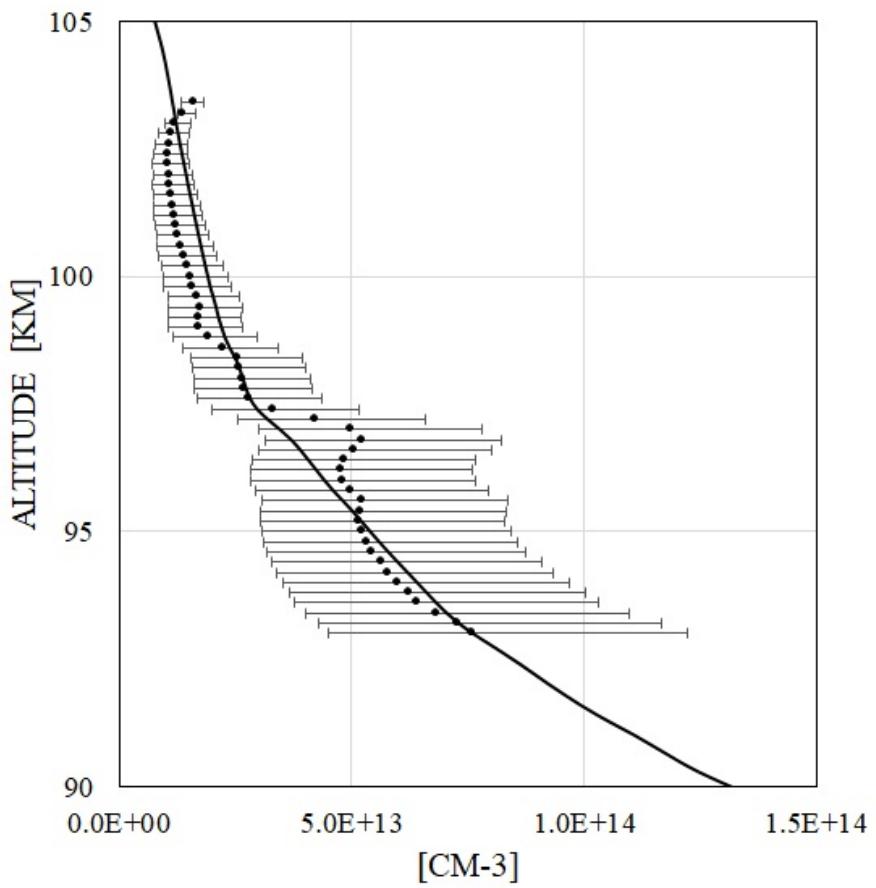
669

670


671

672

673



674 Figure 5. Atomic oxygen concentration: FIPEX (black line); model MSIS00 (red line);
675 derived from emission observation with McDade et al. (1986) coefficients (blue line);
676 calculated with newly derived fitting coefficients for the two-step mechanism (green line).

688 Figure 6. RHS and least-square fit of LHS of equation (9) for averaged case $\tilde{\epsilon}=0.0225$.

689

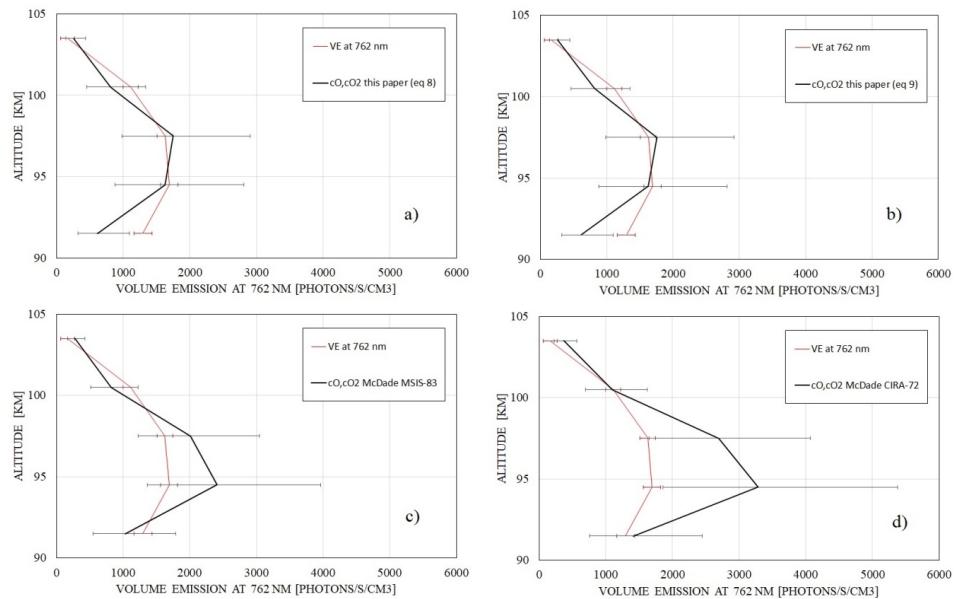
690

691

692

693

694


695

696

697

698 Figure 7. Volume emissions: photometer (red line); derived from atomic oxygen (black line)
699 with a) newly derived fitting coefficients for the two-step mechanism, b) with fitting
700 coefficients for combined mechanism, c) with McDade et al. (1986) coefficients, which
701 correspond to the MSIS-83 temperature, and with McDade et al. (1986) coefficients, which
702 correspond to the CIRA-72 temperatures.

703