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Abstract. Atmospheric chemistry transport models (ACTMs) are extensively used to provide scientific support for the 

development of policies to mitigate against the detrimental effects of air pollution on human health and ecosystems. Therefore, 

it is essential to quantitatively assess the level of model uncertainty and to identify the model input parameters that contribute 10 

the most to the uncertainty. For complex process-based models, such as ACTMs, uncertainty and global sensitivity analyses 

are still challenging and are often limited by computational constraints due to the requirement of a large number of model runs. 

In this work, we demonstrate an emulator-based approach to uncertainty quantification and variance-based sensitivity analysis 

for the EMEP4UK model (regional application of the European Monitoring and Evaluation Programme Meteorological 

Synthesizing Centre-West). A separate Gaussian process emulator was used to estimate model predictions at unsampled points 15 

in the space of the uncertain model inputs for every modelled grid cell. The training points for the emulator were chosen using 

an optimised Latin hypercube sampling design. The uncertainties in surface concentrations of O3, NO2, and PM2.5 were 

propagated from the uncertainties in the anthropogenic emissions of NOx, SO2, NH3, VOC, and primary PM2.5 reported by the 

UK National Atmospheric Emissions Inventory. The results of the EMEP4UK uncertainty analysis for the annually averaged 

model predictions indicate that modelled surface concentrations of O3, NO2, and PM2.5 have the highest level of uncertainty in 20 

the grid cells comprising urban areas (up to ± 7%, ± 9%, and ± 9% respectively). The uncertainty in the surface concentrations 

of O3 and NO2 were dominated by uncertainties in NOx emissions combined from non-dominant sectors (i.e. all sectors 

excluding energy production and road transport) and shipping emissions. Additionally, uncertainty in O3 was driven by 

uncertainty VOC emissions combined from sectors excluding solvent use. Uncertainties in the modelled PM2.5 concentrations 

were mainly driven by uncertainties in primary PM2.5 emissions and NH3 emissions from the agricultural sector. Uncertainty 25 

and sensitivity analyses were also performed for five selected grid sells for monthly averaged model predictions to illustrate 

the seasonal change in the magnitude of uncertainty and change in the contribution of different model inputs to the overall 

uncertainty. Our study demonstrates the viability of a Gaussian process emulator-based approach for uncertainty and global 

sensitivity analyses, which can be applied to other ACTMs. Conducting these analyses helps to increase the confidence in 

model predictions. Additionally, the emulators created for these analyses can be used to predict the ACTM response for any 30 
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other combination of perturbed input emissions within the ranges set for the original Latin hypercube sampling design without 

the need to re-run the ACTM, thus allowing fast exploratory assessments at significantly reduced computational costs.  

1 Introduction 

Air pollution has a wide range of detrimental impacts. Exposure to air pollutants such as nitrogen dioxide (NO2), ozone (O3), 

and particulate matter (PM2.5) is associated with increased risk of stroke, cardiovascular disease, and chronic and acute 5 

respiratory diseases (WHO, 2006, 2013). Additionally, particulate matter and O3 contribute to climate change through radiative 

forcing and aerosol-cloud interactions (for PM) (IPCC, 2013; Stevenson et al., 2013) and O3 has an adverse impact on natural 

and semi-natural vegetation and crop yields (Teixeira et al., 2011).  

To reduce the harmful impact of air pollution, various policies and directives have been implemented. For example, in the 

European Union, the Ambient Air Quality Directive (EC Directive, 2008) sets limit values on ambient concentrations of air 10 

pollutants, whilst other directives set source-specific emissions limits. Atmospheric Chemistry Transport Models (ACTMs) 

play an essential role in the evaluation of the potential outcomes of different management options aimed at improvement of 

future air quality. 

The majority of existing ACTMs are deterministic, meaning that the output variables are presented as a single value without 

any indication of the expected uncertainty around this value. The uncertainty estimate for the modelled value is critical because 15 

it provides an assessment of confidence in the model predictions and the confidence range may encompass different 

recommendations that can be drawn from the model (Frost et al., 2013; Rypdal and Winiwarter, 2001). There are various 

sources of uncertainty in a model; the sources range from structural or conceptual uncertainties about how well a given model 

represents reality to uncertainties in the model input data and physical and chemical constants, which have an effect on 

calculation results of the model. It has been previously found that uncertainties in input emissions are major contributors to 20 

the uncertainty in the ACTM outputs (Hanna et al., 2007; Rodriguez et al., 2007; Sax and Isakov, 2003). Therefore, this study 

concentrates on implementing a systematic approach for ACTM output uncertainty quantification and on determining the 

extent to which different input emissions drive the uncertainty in the output variables.  

Analytical uncertainty propagation is not feasible for complex models such as ACTMs because it requires an exact function 

for input-output mapping. Consequently, Monte Carlo based methods for uncertainty assessment have to be used. Uncertainty 25 

analysis should be performed in tandem with sensitivity analysis to maximise the knowledge gained. The main distinction 

between uncertainty and sensitivity analysis is that uncertainty analysis is performed to quantify model output uncertainty 

arising from the uncertainty in a single or multiple inputs, whilst sensitivity analysis is performed to investigate input–output 

relationships and to apportion the variation in model output to the different inputs. Hence the sensitivity analysis allows 

conclusions to be drawn on the extent to which the overall variation in the modelled values is driven by variation in different 30 

inputs (Saltelli, 2002).  
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For computationally demanding models, such as ACTMs, a local one-at-a-time (OAT) sensitivity analysis is the most 

commonly used approach (Ferretti et al., 2015). However, unlike global sensitivity analysis, the local OAT approach does not 

take into account the non-linearities in the model response and the interactions between the input parameters (Aleksankina et 

al., 2018; Saltelli and Annoni, 2010).  

The computational cost of running ACTMs to explore the entire parameter space of the uncertain inputs using Monte Carlo 5 

based uncertainty and sensitivity analyses is typically prohibitively high because the analyses require a large number of points 

in parameter space which translates to thousands of model simulations. To tackle this issue, the use of meta-models has been 

increasing in recent years (Gladish et al., 2017; Iooss and Lemaître, 2015; Ratto et al., 2012; Yang, 2011). A meta-model (or 

emulator) is a statistical approximation of the original simulation model that can be evaluated many times at a lower 

computational cost relative to the original model (Castelletti et al., 2012; O’Hagan, 2006). This approach allows the output of 10 

an ACTM for a large number of points in parameter space to be estimated efficiently making uncertainty and sensitivity 

analyses feasible.  

Different meta-modelling approaches have been used for uncertainty and sensitivity analysis; these techniques include 

regression smoothers (Storlie et al., 2009; Storlie and Helton, 2008), Gaussian process emulator (Oakley and O’Hagan, 2004), 

high-dimensional model representation (Rabitz and Alış, 1999; Ziehn and Tomlin, 2009), and polynomial chaos expansion 15 

(Sudret, 2008). Meta-models have been applied for uncertainty and sensitivity analyses in earth science fields such as 

ecological modelling (Luo et al., 2013; Parry et al., 2013), hydrological modelling (Asher et al., 2015; Gladish et al., 2017), 

and atmospheric aerosol modelling (Carslaw et al., 2013; Chen et al., 2013; Christian et al., 2017; Lee et al., 2011). 

In this study, a Gaussian process is used for emulation because of its desirable properties and available implementations (i.e. 

Matlab based software UQLab or R package DiceKriging). Gaussian process emulators are non-parametric statistical models 20 

that use the principles of conditional probability to estimate model outputs. The beneficial properties are the curve that fits 

through the training points (for deterministic models) and a measure of the uncertainty for the estimated points when using an 

emulator in place of the original model for the estimation of new points.   

The efficiency of the emulator compared to the original model is determined by how smooth and continuous the model response 

is to input perturbations. For a smooth and continuous input-output relationship, the high correlation between the inputs and 25 

the simulated points means a lower uncertainty in predictions made using the emulator further away from the training points 

(i.e. resulting in a good emulator performance with a small number of training points) (Lee et al., 2011).   

The design of computer experiments for deterministic models differs from the designs for physical experiments. As there is 

no random error involved in computer experiments, replication is not required (Jones and Johnson, 2009). Hence sampling 

techniques that have good space-filling properties and the ability to maintain uniform spacing when projected into a lower-30 

dimensional space are used (Dean et al., 2015; Jones and Johnson, 2009). Latin hypercube sampling (LHS) introduced by 

(McKay et al., 1979) meets these desirable criteria. Additionally, advances have been made to optimise the space filling 

properties of LHS including maximin sampling (Johnson et al., 1990; Morris and Mitchell, 1995) and the ability to add extra 
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design points to the parameter space if necessary (Sheikholeslami and Razavi, 2017) which makes it well suited for multi-

dimensional designs that may require the addition of extra points. 

The aim of this study is to demonstrate the method for uncertainty assessment and global sensitivity analysis for 

computationally demanding ACTMs. The ACTM to which the method is applied here is the WRF-EMEP4UK model (Vieno 

et al., 2010, 2014, 2016a), and the outputs of interest are  the modelled surface concentrations of O3, NO2, and PM2.5, but the 5 

methodology is generic for model and output variable. The analyses described here investigated sensitivities and uncertainties 

of model output to emissions from UK land-based sources and from surrounding shipping. Additionally, we identify which 

model inputs drive uncertainty in the output variables, and to what extent; as well as discuss how the uncertainty ranges that 

are obtained affect current predictions/scenario analysis outcomes (i.e. confidence in model outputs). 

2 Methods 10 

2.1 Model description 

The EMEP4UK model is a regional application of the EMEP MSC-W (European Monitoring and Evaluation Programme 

Meteorological Synthesizing Centre-West) open source ACTM (www.github.com/metno/emep-ctm, version rv4.8, last access: 

11 June 2018). The detailed description of EMEP MSC-W is available from Simpson et al. (2012), and the EMEP4UK model 

is described by (Vieno et al., 2010, 2014, 2016a).  15 

EMEP4UK is a 3-D one-way nested Eulerian model with a horizontal resolution of 5 km × 5 km over the British Isles nested 

within an extended European domain with 50 km × 50 km resolution. The extent of the inner domain is shown in Figure 1. 

The model has 20 vertical levels, extending from the ground to 100 hPa with the lowest vertical layer of ~90 m. The model 

time-step is 20 s for chemistry, 5 min for the advection in the inner domain, and 20 min for the advection in the outer domain. 

The meteorological fields were computed using Weather Research and Forecast model version 3.1.1 (www.wrf-model.org, 20 

last access: 15 November 2017) (Skamarock et al., 2008).  The WRF model initial and boundary conditions are derived from 

the US National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Global 

Forecast System (GFS) at 1◦ resolution, including Newtonian nudging every 6 h (NCEP, 2000). 

The anthropogenic emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), fine and coarse primary 

particulate matter (PM2.5, PMcoarse), carbon monoxide (CO), and non-methane volatile organic compounds (NMVOC) for the 25 

UK were derived from the National Atmospheric Emissions Inventory (http://naei.beis.gov.uk/, last access: 15 October 2015). 

For the outer domain, the emissions are provided by the Centre for Emission Inventories and Projections (CEIP, 

http://www.ceip.at/, last access: 15 October 2017). All emissions are split across a set of emission source sectors defined by 

the Selected Nomenclature for Air Pollutants (SNAP) described in Table 1. The hour-of-day, day-of-week and monthly 

emission factors are used to distribute the annual total emissions temporally to hourly resolution as described in Simpson et 30 

al. (2012). The international shipping emissions were derived from ENTEC UK Ltd. (now Amec Foster Wheeler). Biogenic 

emissions of dimethyl sulfide in addition to monthly in-flight aircraft, soil, and lightning NOx emissions are included as 
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described in Simpson et al. (2012). Biogenic emissions of monoterpenes and isoprene are calculated by the model for every 

grid cell and time step according to the methodology of  Guenther et al. (1993, 1995), using near-surface air temperature and 

photosynthetically active radiation as well as aggregated land-cover categorisations, as described in Simpson et al. (2012). The 

emissions of sea salt and wind-blown dust are also included. The details of the sea salt generation parameterisation scheme 

used in the model are presented in Monahan et al. (1986) and Mårtensson et al. (2003). The boundary condition monthly 5 

average concentrations of fine and coarse dust are calculated with the global chemical transport model of the University of 

Oslo (Grini et al., 2005); the detailed parametrisation of dust mobilisation is presented in Simpson et al. (2012). 

The chemistry, aerosol formation, and wet and dry deposition schemes are as described in Simpson et al. (2012). The chemistry 

scheme has 72 species, 137 reactions, and the gas/aerosol partitioning is described by the MARS formulation. A detailed 

evaluation of model performance is discussed elsewhere (Dore et al., 2015; Lin et al., 2017; Vieno et al., 2010, 2016b). In our 10 

study, all model runs were executed using meteorology and emissions data for the year 2012. 

2.2 Input variables and their uncertainty ranges 

For this study, emissions of five pollutants (NOx, SOx, VOC, NH3, primary PM2.5) were split into 13 model input variables 

based on the contributions from different emission source sectors to total annual emissions; the emissions from the dominant 

sector (the sector with the highest relative contribution to total emissions) for every pollutant were treated as a separate variable, 15 

while the emissions from the rest of the sectors were grouped and treated as another input variable. Shipping emissions were 

treated as a separate variable and were not split by the pollutant type. The description of the Selected Nomenclature for Air 

Pollution (SNAP) sectors is shown in Table 1, and the definitions of the input variables for the uncertainty and sensitivity 

analyses in this work are presented in Table 2, where variables marked with D represent emissions from a single dominant 

sector (D1 and D2 in case of multiple dominant sectors) and variables marked with O indicate the grouped ‘other’ emissions 20 

from the rest of the sectors. Emissions from ‘natural’ sources (e.g. lightening, soil, ocean) were not part of the uncertainty and 

sensitivity analyses.  

Uncertainty ranges for the input emissions from UK anthropogenic land-based sources were assigned according to data in the 

UK Informative Inventory Report (IIR) (Wakeling et al., 2017). In the IIR, uncertainties are defined as upper and lower limits 

of the 95% confidence interval relative to the central estimate. There is no information on uncertainty ranges for different 25 

source sectors available for the emissions for 2012 because uncertainties split by the emission source sector were first presented 

in the IIR that included 2014 emissions (Wakeling et al., 2016). Hence, for this study, the most recently published data for the 

uncertainty ranges of pollutants split by source sector were used.  

Equation 1 was used to aggregate uncertainties for multiple emission source sectors for the grouped-source input variables, 

where x is the quantity of interest and U is the uncertainty of that quantity, taken from the EMEP/EEA air pollutant emission 30 

inventory guidebook (Pulles and Kuenen, 2016).  
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𝑈𝑡𝑜𝑡𝑎𝑙 =  
√(𝑈1 𝑥1)2 +  (𝑈2 𝑥2)2 + ⋯ + (𝑈𝑛 𝑥𝑛)2  

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛
 (1) 

 

The shipping emission variable in this study combines all emissions of all relevant pollutants, hence a ‘best estimate’ range 

for the uncertainty was chosen. The range was estimated based on the available published information. Some recently published 

sources (Corbett, 2003; Scarbrough et al., 2017) state that the uncertainty in shipping emissions is significant, but do not 

provide quantitative estimates. The most recent source of quantitative information on the uncertainty in shipping emissions is 5 

the report for the European Commission (Entec, 2002) which presents the estimates of uncertainties for emission factors of 

NOx, SO2, PM, VOC, for the ships’ emissions ‘at sea’, ‘manoeuvring’, and ‘in port’. The uncertainties are presented for the 

emissions for the year 2000 as 95% CI with the lowest values of uncertainty presented for ‘at sea’ emission factors (± 10-20%) 

and highest values for ‘manoeuvring’ emission factors (± 30-50%). For the total pollutant emissions for the year 2000 the 

percentage uncertainties around the estimates are ± 21% for NOx, ± 11% for SO2, ± 11% for CO2, ± 28% for VOC and ±45% 10 

for PM. Additionally, in Moreno-Gutiérrez et al. (2015) the uncertainty in the emission factors for all pollutant compounds 

was estimated to be ± 20%. Using the above data, an overall uncertainty of ± 30% was assigned to the shipping emissions 

variable in this study (Table 2). It was applied to all shipping emissions within the inner British Isles domain of the EMEP4UK 

model.    

2.3 Gaussian process emulator for EMEP4UK 15 

A Gaussian Process emulator was used to estimate model predictions at unsampled points in the space of the uncertain model 

inputs. The UQLab, a MATLAB-based software framework for uncertainty quantification (Lataniotis et al., 2017; Marelli and 

Sudret, 2014), was implemented to build the emulators for the uncertainty propagation and the following sensitivity analysis. 

The comprehensive description of the statistical theory of Gaussian process applied to uncertainty and sensitivity analysis with 

full mathematical details can be found in O’Hagan (2006) and Oakley and O’Hagan (2002, 2004). 20 

The uncertainty values and sensitivity indices were calculated for three EMEP4UK model outputs (O3, NO2, and PM2.5 surface 

concentrations) with annual and monthly temporal resolution. For the annually-averaged outputs, an emulator was created for 

each modelled grid cell in the EMEP4UK domain (n = 59 400). The first and total-order sensitivity indices were calculated 

for the land-based grid cells only (n > 10 000). For the monthly mean model outputs, uncertainty and sensitivity analysis were 

performed for five selected grid cells. The five grid cells were selected to contain a UK national-network air pollution 25 

monitoring station to aid classification according to the environment (i.e. rural background, urban background, and urban 

traffic) and also to provide geographically representative coverage across the UK.  

LHS maximin design, which maximises the minimum distance between the points in the parameter space to provide the 

optimum space-filling properties was used.  The design was previously demonstrated suitable for Gaussian process emulators 

by Jones and Johnson (2009). The design with 84 data points was created for the scaling coefficients that were subsequently 30 
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applied to the input emissions. This means that emissions corresponding to a particular input variable were perturbed 

homogeneously throughout the whole of the UK model domain. The ranges of scaling coefficient used for the sampling design 

are presented in Table 2.   

In this study, the surface concentration of O3, NO2, and PM2.5 for every grid cell is defined as a scalar output Y = f(X) where 

X is the vector of input values {X1, … , X13}.  5 

A Gaussian process emulator utilises a Bayesian approach; the training data is used to update the selected prior to produce 

posterior mean and covariance functions. The Gaussian process is specified by its mean function and covariance function. The 

mean function is given by Eq. 2: 

 

𝔼[𝑓(𝒙)|𝜷] = 𝒉(𝒙)𝑻𝜷 (2) 

 10 

where h(∙) is a vector of regression functions and β is a vector of unknown coefficients. The choice of h(∙) incorporates any 

prior beliefs about the form of f(∙). In this study, the mean function was chosen to have a linear form 𝛽𝑜 + ∑ 𝛽𝑖𝑥𝑖
13
𝑖=1  on the 

basis that the response of the surface concentration to changes in input emissions is expected to be smooth with no 

discontinuities or fluctuations.  

The covariance function between f(x) and f(x´) is given by Eq. 3: 15 

 

𝑐𝑜𝑣{𝑓(𝒙), 𝑓(𝒙′)|𝜎2} =  𝜎2𝑐(𝒙, 𝒙′) (3) 

 

where σ2 is the hyperparameter that represents the variance of the Gaussian process and c(x, x´) is the correlation function. 

The correlation function increases as the distance between x and x´ decreases and equals one when x = x´. In this study Matérn 

5/2 (Eq. 4) was used, where h is the absolute distance between x and x´ and θ is a vector of range parameters or length-scales, 20 

which define how far one needs to move along a particular axis in the input space for the function values to become 

uncorrelated.  

𝑐(𝑥, 𝑥′) = (1 +
√5|ℎ|

𝜃
+

5 ℎ2

3𝜃2 ) exp (−
√5|ℎ|

𝜃
) (4) 

 

A number of emulators were built with the EMEP4UK simulation data using other available covariance functions; however, 

little difference was found in the performance of the emulators.  The hyperparameters β, σ2, and θ were estimated using a 25 

cross-validation approach.  

The emulator error was estimated by implementing k-fold cross-validation (Gladish et al., 2017; Urban and Fricker, 2010). 

The original sample was randomly partitioned into k = 10 sized subsamples which allowed approximately 90% of data to be 
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used as a training set and 10% as a validation set. Spatial distribution of cross-validation errors is presented in the 

supplementary information (Figure S1).  

2.4 Uncertainty and sensitivity analysis 

2.4.1 Uncertainty propagation 

The uncertainties for the EMEP4UK output variables were estimated using a Monte Carlo approach (also described in the 5 

IPCC guidelines (IPCC, 2006) as a Tier 2 approach). The specific uncertainty ranges assigned to the input emission variables 

were used to constrain the input sampling space. All inputs were assigned normal distributions with baseline value as the mean 

and the standard deviation derived from the corresponding confidence interval (Table 1). For every grid cell, the emulator was 

used to predict model values of surface concentrations of O3, NO2, and PM2.5 at the new set of input points (n = 5,000). The 

resulting probability distributions for each grid cell were evaluated, and the resulting uncertainty was estimated as a half of the 10 

95% confidence interval relative to the central estimate (i.e. the mean for normally distributed values) of the output value, as 

described in the EMEP/EEA and IPCC Guidebooks (IPCC, 2006; Pulles and Kuenen, 2016). The uncertainty for the monthly 

average modelled surface concentrations of O3, NO2, and PM2.5 was calculated for five grid cells using the same approach as 

above. The locations of the grid cells within the UK are shown in Figure 1. The five grid cells selected were assigned the 

following environment types – the names and environment type reflect those of the national-network monitoring site within 15 

that grid cell: Auchencorth Moss and Harwell - rural background, Birmingham Acocks Green and London N. Kensington - 

urban background, and London Marylebone Road - urban traffic.  

2.4.2 Global sensitivity analysis; first- and total-order indices 

A variance-based global sensitivity analysis was conducted to apportion overall uncertainty in modelled variables to the 

uncertainty in the input emissions. Sobol’ first and total-order sensitivity indices were estimated (Homma and Saltelli, 1996; 20 

Janon et al., 2014; Sobol’, 2001, 1993). The first-order indices represent the fraction of total variance of the output (i.e. the 

proportion of the overall uncertainty in Y) explained by the variance in an input Xi while total-order indices show the sum of 

the effects due to an input Xi and all of its interactions with other inputs (X~i). Therefore, the values of first and total-order 

indices can be compared to identify the presence of interactions between input Xi and all other model inputs.  

Unlike an OAT sensitivity coefficient, a first-order sensitivity index accounts for the non-linear response of a model output to 25 

a parameter across the specified parameter variation range. Sensitivity indices in this context are also indicators of importance 

for the input variables.  

The first-order sensitivity index is defined as the ratio of the variance of the mean of Y when one input variable is fixed, 

VXi(EX∼i(Y |Xi)), to the unconditional variance of Y, V(Y ) (Eq. 5). 

 30 
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𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑿~𝑖
(𝑌|𝑋𝑖))

𝑉(𝑌)
 

 
(5) 

The total order sensitivity index measures the total effect of a variable, which includes its first-order effect and interactions 

with any other variables (Eq. 6). 

 

𝑆𝑇𝑖 = 1 −
𝑉𝑿~𝑖

(𝐸𝑋𝑖
(𝑌|𝑿~𝑖))

𝑉(𝑌)
=  

𝐸𝑋~𝑖
(𝑉𝑋𝑖

(𝑌|𝑿~𝑖))

𝑉(𝑌)
 (6) 

 

where X∼i denotes the matrix of all variables but Xi. In EX∼i (V Xi(Y | X∼i)) the inner variance of Y is taken over all possible 5 

values of Xi while keeping X∼i fixed, while the output expectation E is taken over all possible values X∼i  (Ghanem et al., 2017).  

The first and total-order sensitivity indices were estimated following the methods described by Sobol’ (1993) and Janon et al. 

(2014) respectively.  

For the annual average modelled surface concentrations of O3, NO2 and PM2.5, the sensitivity indices were calculated for the 

UK land-based grid cells for the whole domain. For the monthly average modelled concentrations, sensitivity indices for five 10 

selected grid cells (discussed above) were estimated to determine whether seasonality affects the magnitude of the sensitivity 

indices. 

3 Results and discussion 

3.1 Uncertainty propagation  

Figure 2 shows the spatial distribution of annual average surface concentrations of O3, NO2, and PM2.5 modelled with 15 

EMEP4UK and their absolute and relative uncertainties given the uncertainties in UK pollutant emissions for each source 

sector shown in Table 2. The uncertainties are presented as a range of ± the baseline value and represent the 95% confidence 

interval. The maps represent the uncertainty in surface concentrations propagated from the uncertainties reported in the UK 

emissions (Wakeling et al., 2017) and estimated uncertainties in shipping emissions in the EMEP4UK model domain (Entec, 

2002; Moreno-Gutiérrez et al., 2015). The uncertainties in surface concentration do not incorporate any uncertainties in the 20 

spatial and temporal aspects of the input emissions because no data on these aspects of uncertainty are provided by the 

compilers of the emissions inventories.  

For O3 and NO2 the areas with the highest uncertainty coincide with the location of the shipping lanes. This is due to assigning 

all shipping emissions an uncertainty of ± 30%, which causes high variability in the corresponding NOx emissions. The 

uncertainty in O3 surface concentrations for the land-based grid cells is generally low (median relative uncertainty is ± 0.6%) 25 

with values of uncertainty up to ± 7% or ± 1.4 ppb occurring in the grid cells containing major UK cities. The overall low 

uncertainty in the modelled O3 concentrations can be attributed to the combination of a low uncertainty in precursor emissions 
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and the substantial contribution of hemispheric background O3 to UK ambient concentrations, the concentrations of which are 

not part of this analysis of uncertainty with respect to the UK-only emissions (Simpson et al., 2012).  

The relative uncertainty of NO2 has a homogeneous spatial pattern (median relative uncertainty for all land-based grid cells is 

± 7.4%) while absolute uncertainty is found to be higher (up to ± 3.5 μg m-3 or ± 9%) in the areas with the major UK cities. 

The magnitude of uncertainty in NO2 is determined by the combination of two factors: i) NO2 uncertainty is driven by NOx 5 

emission inputs which have low levels of uncertainty associated with them; ii) low overall variation in O3 surface 

concentrations affects the reactions between NO, NO2 and O3 that are linked through the photolysis of NO2 to give NO and 

the reaction of NO with O3 to produce NO2. 

The spatial pattern of PM2.5 surface concentrations and the corresponding absolute and relative uncertainties differ from those 

for O3 and NO2. The concentration gradient indicates the presence of transboundary PM2.5 transport into the UK. This is 10 

consistent with findings reported by AQEG (2013) that only about half of the PM2.5 annual average concentrations have a UK 

origin. The spatial pattern of uncertainty in PM2.5 concentrations shows higher uncertainty, both relative and absolute, in the 

grid cells with major cities; median relative uncertainty for all land-based grid cells is ± 4.6% with up to ± 9% (± 0.9 μg m-3) 

in the grid cells with major cities. The surface concentrations of PM2.5 are dominantly comprised of primary PM2.5 emissions 

and inorganic aerosols resulting from chemical reactions between SO2, NOx, and NH3. Hence the spatial pattern of uncertainty 15 

can be explained by the fact that the main contribution to primary PM2.5 comes from emissions from sources such as stationary 

combustion (e.g. residential heating) and road transport. The pattern of decreasing uncertainty from the land-based grid cells 

(centre) towards the edges of the domain indicates the change in variation due to the transport of PM2.5 away from the sources 

of emitted pollutants. 

The overall uncertainty in the output variables (O3, NO2, and PM2.5) was found to be lower compared to the uncertainty of the 20 

model input emissions. This can be explained by the overall weak response of surface concentrations to changes in the emission 

originating from the UK which leads to the conclusion that the surface concentrations are affected by the transport of pollutants 

from elsewhere. Another explanation is the ‘so-called compensation of errors’ whereby a positive effect of one or multiple 

input variables on the output is compensated by a negative effect of another input variable(s). This leads to the narrower 

confidence intervals associated with the EMEP4UK outputs.  25 

An important observation from this uncertainty analysis is that the areas with the highest uncertainty coincide with the most 

populated areas. Given that O3, NO2, and PM2.5 are associated with adverse health effects, it is particularly important to have 

an estimate for the confidence level of the modelled values in the more densely-populated regions. This work has shown that 

the highest uncertainty is precisely in these regions. The reason for the increased levels of uncertainty in the grid cells 

coinciding with urban areas is discussed below. 30 
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3.2 Sensitivity analysis  

In addition to quantitative uncertainty estimates, it is of interest to know how the uncertainty of each input contributes to the 

overall uncertainty and whether there are interactions between inputs that potentially affect the magnitude of overall 

uncertainty. This was achieved by conducting a variance-based sensitivity analysis. 

Figures 3, 4, and 5 show the spatial distribution of the first-order sensitivity indices that represent the fractional contribution 5 

of the uncertainty of each input variable to the overall uncertainty in the output. Only the variables with Si > 0.03 are presented 

here. First-order indices with values less than 0.03 were omitted as the method used for computation of sensitivity indices is 

prone to numerical errors when the analytical sensitivity index values are close to zero (Saltelli et al., 2006). The threshold 

was estimated by examining the noise in first-order sensitivity indices calculated for unimportant input variables. Excluding 

Si < 0.03 does not have an effect on the results presented because a relative contribution of less than 3% to the overall 10 

uncertainty can be considered negligible.  

Difference between total and first-order sensitivity is used to highlight interactions between variable Xi and all other input 

variables. For the sensitivity coefficients computed for the annual-averaged model outputs, there was no substantial difference 

found between first and total- order sensitivity indices, hence no between-input interactions were identified on the annual 

timescale (Fig. S2). 15 

Figure 3 shows the spatial distribution of first-order sensitivity indices for the input variables affecting modelled O3 

concentrations. It is predominantly the NOx input emissions that drive the uncertainty in modelled O3 surface concentrations.  

The greatest contribution to O3 surface concentration uncertainty in the areas with higher levels of overall uncertainty is from 

the input variable NOx_O, which represents NOx emissions from all the other SNAP sectors apart from SNAP 1 (combustion 

in energy and transformation industries) and SNAP 7 (road transport). The NOx emissions combined into this input variable 20 

account for 27% of total NOx emissions and the uncertainty range for this variable is ± 19%. The input variable NOx_D1 

(emissions from combustion in energy and transformation industries) does not contribute substantially to output uncertainty 

despite making up 41% of total NOx emissions, with a relative uncertainty of ± 7%. This is explained by the height at which 

these emissions occur; the emissions are injected into the vertical layers at heights of >184 m above ground level. This leads 

to NOx being dispersed and transported away from these elevated sources without affecting ground-level O3 concentrations 25 

locally. The NOx emissions from input variable NOx_D2 (road transport) account for the remaining 32% of total NOx 

emissions. The spatial distribution of corresponding sensitivity indices indicates that uncertainty in road transport emissions 

affects overall uncertainty in O3 surface concentrations in the grid cells closest to the emission sources (i.e. major roads).  A 

large proportion (>80%) of overall uncertainty in O3 concentrations in areas adjacent to the south and south-east coasts of 

England is apportioned to the uncertainty in shipping emissions.  30 

In Scotland, most of the overall uncertainty in O3 surface concentration is apportioned to the variables VOC_D and VOC_O 

that respectively represent VOC input emissions from the dominant VOC source sector (solvent and other product use) and 

emissions from the rest of the source sectors grouped into a single input. A small proportion is apportioned to the variable 
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NH3_D that represents NH3 emissions from agricultural sources. The effect of these input variables manifests in Scotland 

because of low levels of locally-emitted NOx. The overall uncertainty in this area is very low.  

In summary, the uncertainty in modelled surface concentrations of O3 in the densely populated areas can be apportioned to the 

uncertainty in NOx emissions from non-dominant sources and uncertainty in shipping emissions.  

The uncertainty in surface concentration of NO2 was found to be driven mostly by uncertainty in NOx emissions (variables 5 

NOx_D1, NOx_D2, NOx_O) and shipping emissions (Fig. 4). Similarly to O3, NO2 is most sensitive to NOx emissions combined 

from all SNAP sectors apart from SNAP 1 (combustion in energy and transformation industries) and SNAP 7 (road transport). 

There is almost no sensitivity to NOx emissions from SNAP 1, for the same reason given above that these are elevated 

emissions. The sensitivity to NOx emissions from SNAP 7 is most pronounced close to the source of emissions (i.e. major 

roads and cities).  10 

The similarity in spatial distribution of sensitivity indices for O3 and NO2 model outputs results from the concentrations of 

these pollutants being inversely correlated, as their chemical transformation reactions are interlinked. In the same way as for 

O3, uncertainty in the NO2 concentrations along the south and south-east coasts of England is mostly driven by the uncertainty 

in the shipping emissions. In fact, uncertainty in shipping emissions contributes approximately 30% of uncertainty in NO2 

concentrations even well inland, in areas away from major roads and cities.   15 

Figure 5 shows the spatial distribution of first-order sensitivity indexes for the model inputs that contribute to the uncertainty 

in modelled surface concentrations of PM2.5. Modelled PM2.5 is sensitive to all emissions of NH3 (dominant sector is 

agriculture) and to primary PM2.5 (dominant sectors D1 is residential combustion and D2 is road transport), and to shipping 

emissions. In the areas with lower surface PM2.5 concentrations such as Scotland, Wales, northern England and south-west 

England the uncertainty is mainly driven by NH3 emissions from agriculture (NH3_D). The spatial pattern of emissions 20 

sensitivity indices for PM2.5 mirrors the spatial distribution of PM2.5 emission sources. From Figure 2 and Figure 5 it can be 

seen that in the areas with the highest levels of uncertainty the model output is most sensitive to the emissions of primary 

PM2.5. Similar to the results for O3 and NO2, the areas with the highest uncertainty coincide with the most populated areas.  

The pattern in calculated sensitivity indices partially agrees with a previous study of changes in PM2.5 surface concentrations 

in response to 30% reduction in emissions of PM2.5, NH3, SOx, NOx, and VOC by Vieno et al. (2016). In the study by Vieno 25 

et al. (2016) surface concentrations of PM2.5 were found to be sensitive to reductions in each of the five pollutants individually 

(the same reduction was applied to a pollutant’s emissions from all SNAP sectors simultaneously), with highest sensitivity to 

NH3 and PM2.5 emissions (up to ~6% reduction in surface concentration in response to 30% reduction in emissions). In 

comparison, our study the uncertainty in PM2.5 surface concentrations is not affected by the perturbations of SOx, NOx, and 

VOC. This is likely to be due to i) the difference in ranges of variation (i.e. uncertainty ranges) in this study (SOx, NOx and 30 

VOC input variables have narrower ranges of variation compared to PM2.5 and NH3), and ii) the presence of non-additivity 

and non-linearity in the model response to perturbations in the inputs. 
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3.3 Uncertainty propagation and sensitivity analysis for monthly averaged model outputs 

The uncertainty assessment and sensitivity analysis for monthly averaged surface concentrations of NO2, O3, and PM2.5 were 

performed for five different grid cells that were assigned the following environment types based on the national-network 

monitoring site within that grid cell: Auchencorth Moss and Harwell - rural background, Birmingham Acocks Green and 

London N. Kensington - urban background, and London Marylebone Road - urban traffic.  5 

Monthly average concentrations with error bars representing the absolute uncertainty values (as a 95% CI) are presented in 

Figure 6. Figure 7 shows corresponding values of the relative uncertainty. Figure 8 shows how the magnitude of first-order 

sensitivity indices estimated for five different grid cells changes on a monthly timescale. If all first-order sensitivity coefficients 

add up to 1 then there are no interactions between inputs and all model variance can be apportioned to the variance in the 

individual inputs.  10 

The NO2 surface concentrations show a seasonal trend of lower concentrations occurring during summer months with the 

exception of the Auchencorth Moss grid cell where NO2 concentrations are low throughout the year. The magnitude of 

uncertainty in NO2 is proportional to the modelled concentration and changes relative to the concentration, which can be seen 

from the monthly relative uncertainty values (Fig. 7). The first-order sensitivity indices for NO2 show that only NOx emissions 

(across all sectors) and shipping emissions influence the modelled surface NO2 concentrations. Hence it can be concluded that 15 

the uncertainty in modelled concentrations of NO2 directly depends on the uncertainty in NOx emissions and is not affected by 

the uncertainties in the emissions of any other pollutant. The change in the magnitude of sensitivity coefficients for the Harwell 

grid cell indicates increasing influence of shipping emissions on NO2 concentrations during the summer months. Potential 

explanation for this is seasonal change in the wind direction which results in more NOx from shipping emissions being 

transported to the grid cell during the summer months.  20 

The uncertainties in the O3 modelled surface concentrations show an inverse seasonal trend compared to the uncertainties in 

modelled NO2. Unlike the uncertainty in NO2 concentration, the uncertainty in O3 concentration is influenced by the grid cell 

environment type; the highest level of uncertainty is observed for the London Marylebone Road grid cell (urban traffic). The 

relative uncertainty in O3 concentrations for the Auchencorth Moss grid cell (rural background) is small and close to the median 

relative uncertainty in O3 for annual average concentrations, which as discussed above is ± 0.6%. This indicates that 25 

perturbations in the input emissions do not substantially affect O3 concentration in this grid cell. Although the magnitude of 

uncertainty in O3 is very small in this grid cell, the inputs that drive it differ noticeably throughout the year; during May-

August the variance is mostly explained by VOC emissions (explains 77% of uncertainty for July) and during November-

February NOx emissions drive the uncertainty. The magnitude of O3 concentrations and corresponding uncertainties in the 

Birmingham Acocks Green and Harwell grid cells are very similar. The trends in sensitivity indices are also similar; during 30 

the April-September period some variance in the model output is explained by uncertainty in VOC emissions. However, in the 

Harwell grid cell shipping emissions play a more important role. For the London-based grid cells, the level of uncertainty is 

the highest and it is mainly driven by the uncertainty in NOx and shipping emissions.  
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For the PM2.5 monthly average concentrations, London-based grid cells show the highest values of absolute uncertainty and 

Auchencorth Moss - the lowest. The relative uncertainty in London based grid cells is also the highest. From Figure 7 it can 

be seen that the contribution to the overall uncertainty from the uncertainty due to NH3 emissions for these grid cells is not as 

important as for other three, the majority of uncertainty is explained by the uncertainty in the primary PM2.5 emissions with 

PM2.5 from road transport being the dominating variable. In Birmingham Acocks Green and Harwell, the effect of NH3 5 

emissions from agricultural sources is more pronounced; from 30% to 70% of overall uncertainty in PM2.5 can be apportioned 

to uncertainty coming from agricultural emissions of NH3 during spring and summer months.  

3.4 Wider implications of our study 

There are published studies that apply global sampling-based uncertainty and sensitivity analyses as well as derivative based 

methods (methods that do not have limitations of local OAT, i.e. linearity assumption) to ACTMs. However, the results 10 

reported by these studies are mostly of use for model development and calibration purposes and not the assessment of 

confidence in the model predictions/outputs. This is mainly because the simulations are performed for a short period ranging 

from days  (Beddows et al., 2017; Chen and Brune, 2012; Rodriguez et al., 2007) to weeks (Cohan et al., 2010; Shrivastava et 

al., 2016).  

Additionally, in some studies, commercial software or packages with a graphical user interface (GUI) are used for global 15 

sensitivity and uncertainty analysis (Chen and Brune, 2012; Christian et al., 2017; Lee et al., 2011). These tools are well 

designed for a specific purpose but lack the option to scale up and to automate the analysis, i.e.  ability to calculate sensitivity 

indices and uncertainty ranges for thousands of grid squares automatically.  

Our study addresses both of the shortcomings. We demonstrate sensitivity and uncertainty analyses for the ACTM for a whole 

year for the UK domain as well as investigate variations in sensitivity and uncertainty on the monthly timescale for multiple 20 

locations with different environmental characteristics. Additionally, the package used to create Gaussian process emulators 

and to conduct uncertainty and sensitivity calculations is fully customisable and can be adapted for any application.  

The model runs generated for the global sensitivity and uncertainty analysis can be utilised for other purposes provided that 

the sampling range for all inputs of interest is wide enough. For example, in our study the training points for the Gaussian 

emulator were selected to cover a wider range of input perturbations compared to the corresponding uncertainty range (Table 25 

2). For all input emissions of SOx, NOx, VOC, and NH3 the ranges of variation for the LHS design were set to ± 40% of their 

baseline value, for primary PM2.5 emissions the range was set to ± 75% and for shipping emissions from – 40% to + 100%. 

Hence the emulators created in this study using the model runs within the aforementioned input space can be used to investigate 

other scenarios of the model response to input emission perturbations with no extra computational cost. Hence, alternative 

ranges and probability distributions can be assigned to the model inputs to estimate the resulting output uncertainty or the 30 

emulator can be used for various emission reduction scenario analyses.   
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4 Conclusions 

In this study, we have conducted global sensitivity and uncertainty analyses for the EMEP4UK Eulerian atmospheric chemistry 

transport model to quantify the uncertainty in surface concentrations of O3, NO2, and PM2.5 and to identify the input emission 

variables that contribute the most to the uncertainty in each of the outputs. The uncertainty for model outputs was estimated 

from the uncertainties assigned to the UK emissions of SO2, NOx, NH3, VOC, and primary PM2.5 and documented in the UK 5 

National Atmospheric Emissions Inventory. The benefit of conducting global sensitivity analysis in addition to uncertainty 

assessment is that it allows to determine how a model responds to the input perturbations within the ranges set by the input 

uncertainty estimates and consequently to identify the inputs which cause the variation in the model outputs (i.e. drive the 

uncertainty). The median values of the overall uncertainty calculated for the UK land-based grid cells for annual average 

surface concentrations of O3, NO2, and PM2.5 were found to be in the ranges of ±0.6%, ±7.4%, and ±4.6% respectively. This 10 

indicates that the variation in the input data (i.e. emissions) does not cause a substantial variation in the outputs. Our results 

indicate, that this can likely be explained by variations in the other model input parameters such as chemical reaction rates, 

deposition velocities or physical constant values which might cause more variation in the model outputs. Alternatively, surface 

concentrations of the modelled pollutants in the UK may be dominated by the precursor emissions and long-range transport 

from outside the UK and are therefore relatively insensitive to changes in the UK emissions. 15 

As a consequence, our results can provide more clarity about the confidence in modelled surface concentrations of pollutants 

that affect human health, especially in densely-populated urban areas. The results of our analysis indicate that modelled surface 

concentrations of O3, NO2, and PM2.5 have the highest level of uncertainty in the grid cells comprising dense urban areas. The 

uncertainties of O3, NO2, and PM2.5 in these grid cells reach ± 7%, ± 9%, and ± 9% respectively.  

In addition to obtaining a quantitative estimate of the overall uncertainty, the input emissions that have the greatest influence 20 

on the uncertainty in the modelled outputs were identified by performing a global variance-based sensitivity analysis. It was 

found that in urban areas uncertainty in PM2.5 concentrations are driven by the uncertainty in primary PM2.5 emissions. In 

contrast, in more remote areas NH3 emissions had a stronger influence. Emissions of NOx combined from non-dominant sectors 

(i.e. all sectors excluding energy production and road transport) were found to contribute the most to the uncertainty in both 

O3 and NO2 surface concentrations. Along the south and east coasts of England the uncertainty in shipping emissions 25 

contributed the most to the overall uncertainty in O3 and NO2 concentrations.  

The comparison between first and total-order sensitivity indices did not indicate substantial interactions between the input 

variables for the model response on the annual timescale.  

In our study we also demonstrated how the degree of uncertainty changes throughout the year by calculating uncertainty ranges 

for monthly-averaged surface concentrations of O3, NO2, and PM2.5 for five selected grid cells. The global sensitivity conducted 30 

for monthly-averaged values showed seasonal trends in the type of input emissions that drive uncertainty in the surface 

concentrations.  
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The ability to estimate uncertainty in the predictions produced by a model is vital, because even low levels of uncertainty could 

be important in areas where the model yields predictions of surface concentrations that are close to limit values. This can lead 

to instances of exceedance due to the binary nature of limit value exceedance calculations, i.e. concentration is either over or 

under the limit. The sensitivity analysis should be an integral part of the assessment process applied ex-ante for the 

implementation of policy interventions, as it is also important to know which of the inputs contribute to the uncertainty in 5 

model outputs the most.  

This work has demonstrated a global sensitivity and uncertainty analyses application for a Eulerian ACTM. The emulator-

based approach used here is applicable to any other complex model and any type of model inputs such as emissions, physical 

constants or chemical reaction rate constants. The results of the analyses provide useful insights into the level of confidence 

in modelled predictions. Additionally, the Gaussian process emulators created for this analysis can be used with very little 10 

computational cost for any other scenario exploration purposes or assessment of overall uncertainty given different uncertainty 

ranges and probability distributions assigned to the model inputs. 

 

Data availability. The EMEP MSC-W model code is available from www.github.com/metno/emep-ctm.  The uncertainty and 

sensitivity data presented in this paper are available from https://doi.org/10.5281/zenodo.2213633 together with the analysis 15 

scripts.  
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Figure 1 The inner shaded box illustrates the EMEP4UK model British Isles domain, which is modelled at 5 km× 5 km horizontal 

resolution. The location of five grid cells used for uncertainty quantification and sensitivity analysis for monthly average modelled 

concentrations of O3, NO2, and PM2.5 are shown. 
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Figure 2 Baseline surface concentrations of O3, NO2, and PM2.5, and their respective spatial distributions of the absolute and relative 

uncertainties (at the 5 km × 5 km model grid resolution, year 2012) for the specified uncertainties in UK emissions. The uncertainty 

values are represented as a range of ± the baseline value and represent the 95% confidence interval. 
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Figure 3 Spatial distributions (at the 5km×5km model grid resolution) of the first-order sensitivity indices for modelled surface 

concentrations of O3. D indicates emissions from a dominant sector and O indicates grouped emissions from the rest of the sectors. 

For NOx emissions dominant sectors are energy production (D1) and road transport (D2), for VOC emissions – solvent use, and for 

NH3 – agriculture. Shipping emissions variable combines emissions of all relevant pollutants. 5 
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Figure 4 Spatial distributions (at the 5km×5km model grid resolution) of the first-order sensitivity indices for modelled surface 

concentrations of NO2. D indicates emissions from a dominant sector and O indicates grouped emissions from the rest of the sectors. 

For NOx emissions dominant sectors are energy production (D1) and road transport (D2). Shipping emissions variable combines 5 
emissions of all relevant pollutants. 
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Figure 5 Spatial distributions (at the 5km×5km model grid resolution) of the first-order sensitivity indices for modelled surface 

concentrations of PM2.5. D indicates emissions from a dominant sector and O indicates grouped emissions from the rest of the sectors. 

For NH3 emissions dominant sector is agriculture, for PM2.5 dominant sectors are residential and non-industrial combustion (D1) 

and road transport (D2). Shipping emissions variable combines emissions of all relevant pollutants. 5 
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Figure 6 Monthly average surface concentrations of NO2, O3 and PM2.5 with error bars showing (absolute) uncertainty, for five grid 

cells across the UK representing a spread of geographical locations and environment types. The environment types are assigned as 

follows: Auchencorth Moss and Harwell - rural background, Birmingham Acocks Green and London N. Kensington - urban 

background, and London Marylebone Road - urban traffic. 5 
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Figure 7 Magnitude of relative uncertainty in monthly average surface concentrations of NO2, O3, and PM2.5 for five grid cells across 

the UK representing a spread of geographical locations and environment types. The environment types are assigned as follows: 

Auchencorth Moss and Harwell - rural background, Birmingham Acocks Green and London N. Kensington - urban background, 

and London Marylebone Road - urban traffic. 5 
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Figure 8 Monthly variation in the first-order sensitivity indices for five grid cells across the UK representing a spread of geographical 

locations and environment types. Based on the monitoring station classification grid squares are assigned the following environment 

types: Auchencorth Moss and Harwell - rural background, Birmingham Acocks Green and London N. Kensington - urban 

background, and London Marylebone Road - urban traffic. 5 
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Table 1 SNAP source sectors (Eurostat, 2004). 

SNAP 1 Combustion in energy and transformation industries  

SNAP 2 Residential and non-industrial combustion  

SNAP 3 Combustion in manufacturing industry  

SNAP 4 Production processes  

SNAP 5 Extraction and distribution of fossil fuels  

SNAP 6 Solvent and other product use  

SNAP 7 Road transport  

SNAP 8 Other mobile sources and machinery  

SNAP 9 Waste treatment and disposal  

SNAP 10 Agriculture 

 

Table 2 Input variable definitions for the EMEP4UK uncertainty propagation and apportionment. The quoted uncertainties for 

emission sources are for UK annual totals. See main text for information on the sources of these values. 

Variable used 

for sampling 

design 

SNAP source 

sector 

Contribution of 

source sector to 

total land-based 

emissions of that 

pollutant (%) 

Uncertainty  

(as a 95% CI) 

Ranges of scaling coefficients for 

the input emissions used in the 

LHS design 

SOx_D 1 80 ± 12 % 0.6 – 1.4 

SOx_O 2-10 20 ± 17 % 0.6 – 1.4 

NOx_D1 1 41 ± 7 % 0.6 – 1.4 

NOx_D2 7 32 ± 7 %  0.6 – 1.4 

NOx_O  2-6, 8-10 27 ± 19 % 0.6 – 1.4 

VOC_D 6 39 ± 22 % 0.6 – 1.4 

VOC_O 1-5, 7-10 61 ± 24 % 0.6 – 1.4 

NH3_D  10 88 ± 33 % 0.6 – 1.4 

NH3_O 1-9 12 ± 35 % 0.6 – 1.4 

PM2.5_D1 2 33 ± 59 % 0.25 – 1.75 

PM2.5_D2 7 21 ± 59 % 0.25 – 1.75 

PM2.5_O  1, 3-6, 8-10 46 ± 58 % 0.25 – 1.75 

Shipping  N/A N/A ± 30 % 0.6 – 2.0 
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