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Abstract  

Volatile organic compounds (VOCs) play a key role in atmospheric chemistry. Emission and deposition on soil have been 

suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous 

chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube 

system to investigate the long-term variability of bidirectional air-soil exchange of 13 VOCs at ambient air conditions of an 5 

urban background site in Beijing. Sterilized soil was investigated to address physicochemical processes and 

heterogeneous/multiphase reactions independently from biological activity. Most VOCs revealed net deposition with average 

uptake coefficients (γ) in the range of 10-7 – 10-6 (referring to the geometric soil surface area), corresponding to deposition 

velocities (Vd) of 0.0013 – 0.01 cm s-1 and soil surface resistances (Rc) of 98 – 745 s cm-1, respectively. Formic acid, 

however, was emitted at a long-term average rate of ~ 6 × 10-3 nmol m-2 s-1, suggesting that it was formed and released upon 10 

heterogeneous oxidation of other VOCs. The soil-atmosphere exchange of one individual VOC species can be affected by 

both its surface degradation/depletion caused by surface reactions and by competitive uptake or heterogeneous 

formation/accommodation of other VOC species. Overall, the results show that physicochemical processing and 

heterogeneous oxidation on soil and soil-derived dust can act as a sink or as a source of atmospheric VOCs, depending on 

molecular properties and environmental conditions.  15 
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1 Introduction  

Volatile organic compounds (VOCs) are widely recognized to play a critical role in atmospheric chemistry and climate, 

because of their important impact on the atmospheric oxidation capacity and contribution to the formation of secondary 

organic aerosols (SOAs) (Andreae and Crutzen, 1997;Atkinson, 2000;Fuentes et al., 2000;Williams, 2004;Tunved et al., 

2006;Lelieveld et al., 2008;Zhang et al., 2008;Pöschl et al., 2010), and VOCs adsorbed on aerosol particles can have severe 5 

health implications (Glikson et al., 1995;Pöschl, 2005). The main sources of VOCs include the biosphere, biomass burning 

and anthropogenic activities, with emissions from the biosphere accounting for ~ 90% of global total atmospheric VOCs 

(Guenther et al., 1995). Once VOCs are emitted, they can be removed from the atmosphere by either direct wet or dry 

deposition to various surfaces including vegetation and soil (130 – 270 Tg C yr-1), or be transformed into SOAs (510 – 910 

Tg C yr-1), or be oxidized ultimately leading to the formation of CO2 and H2O (310 – 720 Tg C yr-1) (Goldstein and Galbally, 10 

2007). The reported discrepancies between field observations and model calculations, however, indicate many potential 

sources and sinks still need to be identified and quantified (Di Carlo et al., 2004;Heald et al., 2005;Volkamer et al., 

2006;Goldstein and Galbally, 2007;Warneck and Williams, 2012).  

 

Biogenic VOC emission from vegetation has long been the major focus of VOC exchange studies (e.g., Guenther et al., 15 

1994;Gershenzon, 1994;Fuentes et al., 1996;Fall et al., 1999;Schade and Goldstein, 2002). Early studies presumed that 

vegetation only emitted VOCs to the air. However, more recent studies have demonstrated that VOC exchange is 

bidirectional, and uptake of VOCs and their oxidation products are the rule rather than the exception in many cases 

(Kesselmeier, 2001;Fares et al., 2015;Guenther, 2015;Cappellin et al., 2017;Karl et al., 2005;Seco et al., 2007;Karl et al., 

2010;Park et al., 2013;Gordon et al., 2014b;Niinemets et al., 2014), similar to other trace gases such as NH3 or HONO (Su et 20 

al., 2011;Su et al., 2013). In fact, Park et al. (2013) expanded the number of  measured VOC species to an extremely large 

range covering 555 ions (with mass to charge ratios between 31 to 1263) using high–mass resolution proton-transfer-reaction 

mass spectrometry over an orange plantation, and found that 494 of VOC species showed bidirectional fluxes and 186 even 

exhibited net deposition.   

 25 

Compared to the research effort dedicated to atmosphere-vegetation interactions involving VOCs, the exchange between the 

atmosphere and soils has received relatively little attention (Lamb et al., 1987;Guenther et al., 1995;Asensio et al., 2008). 

Soils have been characterized as both a source and a sink for VOCs. Soil emissions of short-chain oxygenated VOCs (e.g., 

methanol, acetaldehyde and acetone) and terpenes have been observed in previous studies (Warneke et al., 1999;Schade and 

Goldstein, 2001;Hayward et al., 2001;Schade and Custer, 2004;Lin et al., 2007;Gray et al., 2014;Bourtsoukidis et al., 2018). 30 

In contrast, some species including alcohols, aldehydes, ketones, aromatic hydrocarbons, isoprene, monoterpenes and 

hexenal, etc. have been reported to be deposited on various types of soil in other studies (Asensio et al., 2007a;Asensio et al., 

2007b;Asensio et al., 2008;Aaltonen et al., 2013;Gray et al., 2014). Previous laboratory measurements have also indicated 
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that soil could serve as a temporary reservoir for formaldehyde, i.e., a large fraction (~ 70%) of formaldehyde adsorbed by 

soil at high mixing ratios could be re-emitted into the atmosphere at low ambient conditions, hence formaldehyde could 

cycle between the atmosphere and soil (Li et al., 2016). VOC emission from ground level can originate from the overlying 

soil litter (Gray et al., 2010;Warneke et al., 1999;Hayward et al., 2001;Schade and Goldstein, 2001), roots (Janson, 

1993;Chen et al., 2004;Lin et al., 2007) and soil dwelling microorganisms (Scholler et al., 2002), for which the relative 5 

contributions depend on the soil type and various environmental parameters such as ambient relative humidity (RH), soil 

water content, temperature (T), and VOC mixing ratio, etc.. Therefore, VOC formation from soils involves both biotic and 

abiotic mechanisms. The biotic processes include root exudation, degradation of soil organic matter and leaf litter by soil 

microorganisms. The abiotic mechanisms involve purely physicochemical reactions (e.g., heterogeneous and multiphase 

transformation, evaporation, desorption) and UV-light-enhanced emission from soil vegetation or decomposition of leaf litter 10 

(Riikka et al., 2002;Rinnan et al., 2003;Zepp et al., 2007;Derendorp et al., 2011). The main mechanisms contributing to the 

uptake of VOCs were reported to include adsorption and degradation by roots (Simonich and Hites, 1995;Newman et al., 

1997;Cho et al., 2005), biodegradation by microorganisms (van Roon et al., 2005) as well as physical/chemical adsorption 

by soil particles (Pignatello and Xing, 1996;Li et al., 2016).  

 15 

Thus, both biotic and abiotic mechanisms can contribute to the exchange of VOCs on soils. Under real world conditions, the 

biotic and abiotic processes in soil are highly coupled and the net flux is the result of many complex multiphase interactions 

that are difficult to resolve. Furthermore, emissions from the soil may be uptaken or transformed in overlying leaf litter. 

Resolving the key processes requires the system to be examined in separate components. Here by applying a new reactor 

system we examine the physicochemical effects of soil on VOC exchange in isolation, but under real world conditions. From 20 

the perspective of soil physicochemistry, VOCs can undergo reversible adsorption and irreversible surface reactions on soils 

and aerosol particles, coupling gas-surface transport (adsorption), surface-bulk transport (absorption/solvation), and chemical 

reactions in the bulk (Pöschl et al., 2007); and VOC oxidation/decomposition products can desorb immediately or further 

interfere with other reactants (Ammann and Pöschl, 2007). Heterogeneous processes at the gas–surface interface can be 

highly complex, and the individual steps controlling the reaction rates of heterogeneous processes are rarely known 25 

(Crowley et al., 2010;Chapleski et al., 2016). Parameterizations of heterogeneous processes still tend to be empirical and 

most are untested in natural outdoor settings, where surfaces are prone to interferences of competitively co-adsorbing trace 

gas species and radicals, which is specifically crucial in the case of reactive trace gases like VOCs. While laboratory-based 

trace gas uptake studies normally apply individual VOC species separately, only little attention is given to interfering effects. 

However, laboratory studies on binary organic compound mixtures in the ppm level has shown that the photo-catalytic 30 

oxidation on catalytic surfaces (TiO2) of one VOC species may promote or inhibit the oxidation rate of another (Lichtin et 

al., 1996). In contrast to laboratory conditions, ambient air is a complex composite of a vast variety of gases, aerosols and 

radicals, and some components may exert synergistic effects on the heterogeneous chemistry of individual or categories of 
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VOC species. Neglecting these synergistic effects may cause misleading results when extrapolating laboratory work to real 

world conditions.  

 

This study aims to investigate the uptake, potential heterogeneous conversion and emission of VOCs on soil under real world 

ambient conditions. A flow tube system coated with pre-treated sterilized soil was used to investigate the physicochemical 5 

background of VOC exchange on soil independently from biological activity. Recently, the flow tube technique has been 

adopted to study the kinetics and mechanisms of reactive trace gas uptake onto soils (Wang et al., 2012;Donaldson et al., 

2014a;Donaldson et al., 2014b;VandenBoer et al., 2015;Li et al., 2016). These investigations, however, have focused on 

laboratory experiments under controlled environmental conditions, where the dependence on single relevant parameters was 

investigated while all others were kept constant. Here, the coated-wall flow tube system was deployed at an urban field site, 10 

which allowed ambient air to pass through the flow tube and the coated soil sample to interact directly with ambient VOC 

species. VOC uptake coefficients (γ), which indicate the fraction of trace gas kinetic collisions with a reactive surface that 

lead to uptake by the surface (Ammann et al., 2013) are determined, and their dependencies on various environmental 

parameters are discussed. To the best of our knowledge, this is the first trial to deploy the flow tube technique for field 

observations to investigate uptake/emission kinetics of VOCs on soil under ambient conditions.  15 

2 Methods 

2.1 Soil sample preparation  

Soil samples were collected from a scrubland site near Weiminghu lake in Peking University, Beijing, China (39°59´N, 

116°18´E). Before collection, leaf litters were removed from the ground surface and only soil particles were obtained at a 

depth of 0-5 cm. The collected samples were air-dried in a shade place prior to grinding and sieving with a 120 mesh soil 20 

sieve. The soil pH was ~ 6.8 (1:2 soil/water (v/v), Thermo Scientific, OrionStar A211 pH meter). The soil texture comprised 

of 49% sand, 35% silt and 16% clay (wet sieving method) and the soil humus content was 8.8% (loss on ignition method) as 

analyzed by Guangdong Institute of Eco-Environmental and Soil Sciences (Guangzhou, China). Since the purpose of this 

study was to investigate the physicochemical interactions between VOCs and soil, the sieved soil was autoclaved for 20 min 

at 394 K (repeated twice with an incubation time of one day) right before the flow tube coating procedure as in the work of 25 

Li et al. (2016). Autoclaving has been reported as the most effective sterilization method for eliminating soil microorganisms 

compared with other methods such as fumigation, UV and microwave irradiation (Razavi darbar and Lakzian, 2007). The 

sterilization procedure and the autoclave time eliminated primary microbial impact on VOC exchange at the atmosphere-soil 

interface and minimized potential influence on soil physicochemical properties caused by the sterilization method itself 

(Berns et al., 2008).  Moreover, a PTFE membrane filter installed upstream of the flow tube system could prevent the 30 

bacteria in the ambient air from inhabiting on the soil sample during the field measurement (see Sect. 2.2).  
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Soil slurry was prepared by mixing dry soil with sterilized deionized water (18.2 MΩ·cm, Millipore Corporation, Darmstadt, 

Germany). The slurry was uniformly injected into a glass tube with sandblasted inner surface (100 mm length, 17 mm ID), 

which was then installed into an air-dried continuously rotating coating tool (ACRO). The design and performance of ACRO 

for soil coating had been described in the work of Li et al. (2016). The coated tube was rotated with a speed of 14 rpm and 

flushed overnight with pure N2 at a flow rate of ~ 0.5 L min-1 (purity ≥ 99.999%, RH = 0%). Note that the drying process 5 

with N2, to some extent, purges VOCs off the soil sample. The coating mass has been shown to affect the gas uptake 

(Donaldson et al., 2014a;Li et al., 2016). A relatively large coating mass of ~ 95 mg cm-2 (corresponding to a geometric 

coating thickness ~ 500 μm) was chosen for our experiments. The coating procedure and mass has been experimentally 

shown to guarantee fair homogeneity and reproducibility of the coating in our previous study (Li et al., 2016). 

 10 

Prior to the VOC exchange experiment under ambient conditions, the freshly coated tube was flushed with N2 (purity ≥ 

99.999%, RH= 0%) for 40 min to scrub potential VOC impurities from the soil which were either adsorbed/absorbed onto 

the soil during the coating preparation procedure or from the soil coating itself. Note that during flushing with VOCs-free N2, 

many VOC species were indeed emitted (Fig. S.1). These emitted VOC species might originate from the soil surface and/or 

the soil bulk (including soil particles and residues of the autoclaved microorganisms) through pore diffusion. To quantify the 15 

soil layer depth contributing to these observed emissions, the desorption curves (in Fig. S.1) were fitted using the function 

derived in our previous study (the first function in Table 1 in Li et al., 2016) assuming that the emissions were a first order 

decay process. The determined desorption rate coefficient and desorption lifetime of the detected VOCs are listed in Table 

S.1. The longest desorption lifetime is found for formaldehyde as ~ 22 min. Moreover, we estimated the time scale t for a 

VOC molecule diffusing through the entire soil coating thickness δg (~ 500 μm) using equation t = δg
2/Da, where Da is the 20 

macroscopic diffusion coefficient of VOCs within soil pores. Adopting the lower limit of a macroscopic diffusion coefficient 

which typically range 10-4 – 10-2 cm2 min-1 for clay minerals reported by Morrissey and Grismer (1999), a VOC diffusion 

time of ~ 25 min was obtained. This time scale is less than or comparable to our flushing time of 40 min, suggesting that the 

entire soil layer could contribute to the VOC emissions by means of soil surface desorption/reaction and soil bulk pore 

diffusion. In addition, the amount of soil-emitted VOCs was estimated by integration of the desorption curve of methanol 25 

(which shows the highest emission signals, an order of magnitude higher than the others in Fig. S.1) using the fitting 

functions derived by Li et al. (2016). The emitted methanol mass is ~ 1.71 g, which is far from being able to account for a 

monolayer coverage on the soil layer specific surface (see Sect. 2.3) when assuming an effective diameter of the methanol 

molecule of 4.2 Å according to Perera et al. (2007). Thus, the flushing procedure could provide adsorption-sites devoid of 

reversibly absorbed VOCs on the soil surface as well as within the soil pores, and therefore allow focus on uptake kinetics 30 

from the initial phase (VOCs-free soil) of the exchange experiment. 
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2.2 Measurement site, experimental setup and operation 

VOC exchange measurements were conducted within the campus of Tsinghua University, Beijing, China (40.00°N, 

116.20°E), from 25 August 2015 to 26 September 2015. This urban background site was 200 m east of a four-lane highway 

and 100 m west of a garbage station. There was a small mound nearby which was covered by grass land mixed with trees 

(mainly white poplars) on its northern side.  5 

 

The aim of this study was to investigate VOC exchange at the atmosphere-soil interface under ambient conditions, where air 

temperature (T), relative humidity (RH) and VOC mixing ratio, etc. all change in concert. A flow tube system was installed 

in a self-built sampling box, which was located on the roof of a 2.35 m high storage container. Two openings on the 

sampling box allowed for direct access of ambient air into the flow tube system. The sampling box was covered with a thin 10 

non-transparent PTFE film that functioned as both a reflector for sunlight and a shelter from rainwater. The flow tube system 

consisted of a sample channel and a reference channel. The sample channel was equipped with a soil-coated tube in front of 

which a pre-tube or entrance region (with the same dimensions as the soil-coated tube, i.e., 100 mm length, 17 mm ID, but 

without soil coating) was installed to ensure well-developed laminar flow in the soil-coated part (Li et al., 2018). The 

reference channel used a ¼ inch (i.e., 6.35 mm O.D.) PFA Teflon tube (200 mm length) without coated soil. As shown in 15 

Fig. 1, ambient air was introduced into the flow tube system prior to being analyzed by a proton-transfer-reaction mass 

spectrometer (PTR-MS). By using solenoid valves, VOCs from the sample and reference channels were alternately analyzed 

by the PTR-MS (with 60 min for each channel). While one channel was connected with the PTR-MS, the other was 

simultaneously flushed by ambient air with the same flow rate as of the PTR-MS (~ 0.1 L/min) to prevent potential 

accumulation/depletion of VOCs under otherwise static conditions. PTR-MS analysis was paused on the 4 - 8th of September 20 

2015, but the flow tube was continuously flushed with ambient air to ensure uninterrupted exposure of the soil sample to 

dynamic ambient conditions.  

 

When the reference channel was connected to the PTR-MS, the detected VOC signals represented their mixing ratios in 

ambient air (VOC depletion within the PFA Teflon tube was negligible), denoted as Cr, which was also equal to the VOC 25 

mixing ratios at the sample tube inlet. When the sample channel was connected, the detected signals represented the VOC 

mixing ratios subject to interactions with the coated soil, designated as Cs. Considering the short residence time (~ 24 s) 

within the sample tube volume, gas-phase-reactions-induced depletion of VOCs only accounted for a small faction (~ 3% for 

very reactive species like isoprene and much less for the others, estimated basing on the measured gas oxidants mixing ratios 

(see Sect. 3.1) and assuming a background mixing ratio level of 1 ppt for OH radicals). Thus, the VOC mixing ratio 30 

difference between the reference channel and the sample channel, Cr – Cs, can be assumed to be mainly due to exchange of 

VOCs on soil. Note that the PTR-MS couldn’t detect Cr and Cs simultaneously, when one channel was connected to the 

PTR-MS the corresponding VOC mixing ratios of the other were determined afterwards by interpolating the adjacent 
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measured values. Before the start of field measurements, a PTFE membrane filter (Ф: 50 mm, pore size: 0.2 µm, Millipore 

Corporation, USA) was installed at the air inlet of the VOC exchange system to filter bacteria as well as other particles in the 

ambient air. Filters were replaced every three or four days.  

 

A commercial high sensitivity PTR-MS (Ionicon Analytik, Innsbruck, Austria), located in the aforementioned container, was 5 

used for the detection of a broad range of VOCs including isoprene, oxygenated VOCs, acetonitrile, and C6 – C7 aromatics 

with a time resolution of ~ 30 s (Table 1). PTR-MS is an analytical mass spectrometry technique that uses gas phase 

hydronium ions (H3O+) as ion source reagents (Lindinger et al., 1998;Yuan et al., 2017). Inside the PTR-MS drift tube, VOC 

species with greater proton affinity than that of water are soft-ionized by reactions with H3O+ and then detected by a 

quadruple mass spectrometer (Lindinger et al., 1998). This PTR-MS has been validated and utilized in previous field 10 

campaigns (Yuan et al., 2012;Chen et al., 2014;Yuan et al., 2013). During the field measurement, the system was running in 

multiple ion mode. Most of the masses were recorded for 1 s in every cycle, except for m/z 21 (0.2 s). Background signals 

were measured for 30 minutes every 4 hours by diverting the ambient air into a platinum catalytic converter at 370 °C 

(Shimadzu Inc., Japan). Aromatics, oxygenated VOCs, isoprene and acetonitrile were calibrated by a pressurized gas 

standard (Spectra Gases Inc., USA). Formaldehyde (m/z = 31), formic acid (m/z = 47) and acetic acid (m/z = 61) were 15 

calibrated by permeation tubes (VICI Inc., USA). Calibrations were conducted before and after the measurement period, and 

a single-spot calibration was conducted every three or four days with response factors varying within 15%. Uncertainties of 

measured species except for formaldehyde, formic acid and acetic acid were about 5% - 15%. Limits of detection (LOD) for 

the measured species were in the sub-ppb level listed in Table 1.  

 20 

Formaldehyde detection is found to be significantly influenced by RH (Vlasenko et al., 2010;Warneke et al., 

2011;Baasandorj et al., 2015). Calibrations were conducted within a range of RH (0 - 30 mmol/mol) to fit the response 

curve, which was then applied in ambient measurement calculations and this procedure resulted in a measurement 

uncertainty within ± 20%. Measurements of formic acid by PTR-MS can potentially suffer interference from ethanol and 

dimethyl ether when they are present in significantly higher abundance than formic acid (Baasandorj et al., 2015). At the 25 

background urban site, however, the atmospheric abundance of ethanol and dimethyl ether is supposed to be low (Good et 

al., 1998;Monod et al., 2003;Jia et al., 2012), giving rise to a measurement uncertainty within ± 30%. Influences from ethyl 

acetate on acetic acid have been found in field campaigns (Fortner et al., 2009;Baasandorj et al., 2015;Derstroff et al., 2017). 

The influences were corrected by introducing the m/z = 89 in the calculations (Yuan et al., 2013). However, this introduced a 

measurement uncertainty up to > 40 %.  30 

2.3 Uptake coefficient and deposition velocity 

The uptake coefficients (γ) of measured VOC species under ambient conditions were determined using a CKD method 

(CKD-B in Li et al., 2016). This CKD-B method is based on the commonly used CKD solution for correction of radial 
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diffusion effect (Murphy and Fahey, 1987), and has been shown to have a much better accuracy than CKD interpolation 

method, as CKD-B directly solves a governing differential equation with numerical methods.  The CKD-B can establish the 

relation between the sample tube penetration (i.e., Cs/Cr) and γ of the measured VOC species, which is shown in Fig. 2 

derived at an average ambient temperature of 25 °C as an example. For details of the CKD-B method, see our previous study 

(Li et al., 2016). Note that the uncertainty of the determined γ depends on the uncertainty of Cs/Cr as well as the relation 5 

between Cs/Cr and γ (as in Fig.2), here with the derived γ range of 10-7- 10-6 (see Sect 3.3 and 3.4) the estimated uncertainty 

of γ for each VOC species was within one order of magnitude. The Reynolds number (Re) in our experiment was ~10, which 

ensured laminar flow conditions requiring Re < ~2000 (Murphy and Fahey, 1987;Knopf et al., 2015;Li et al., 2018). The pre-

tube/entrance region length was 10 cm, and full development of laminar flow was achieved within the first ~ 1 cm for our 

setup. When a geometric coating thickness δg is larger than a critical height δc, the coating surface roughness may potentially 10 

distort the well-developed laminar flow and introduce uncertainties in the calculated uptake coefficients corrected for 

molecular diffusion effects using conventional diffusion correction methods (Li et al., 2018). According to this δc criterion, 

the geometric coating thickness of our soil sample (~ 500 μm) was much smaller than the calculated δc (~ 2400 μm) based on 

our experimental configuration, ensuring that the soil coating surface roughness effect was negligible. The uptake 

coefficients reported here are based on the geometric surface area of the soil sample, considering that in atmospheric models 15 

soil microstructure is likewise not taken into account (Donaldson et al., 2014a). The specific surface area of the soil, 

however, was also measured using a water vapor adsorption method based on the Brunauer-Emmett-Teller (BET) adsorption 

theory (Brunauer et al., 1938) being 15 ± 1.5 m2 g-1. To calculate the BET surface area, the mass of the adsorbed water on 

soil sample after equilibrium with pre-defined RH levels was determined by a non-dispersive infrared (NDIR) gas analyzer 

(type: Li-6262, LI-COR Biosciences Inc.) operated in differential mode. This BET surface area is comparable to that in other 20 

reports on similar soil types, e.g., 12-15 m2 g-1 (Kahle et al., 2002)  and 8 - 19 m2 g-1 (Punrattanasin and Sariem, 2015). 

Accounting for the BET results, the specific surface area would reduce γ by a factor of 104 in our case. 

 

The primary controlling factors of VOC exchange at the soil-atmosphere interface include gas transport and the 

concentration gradient between the soil surface and the atmosphere. As depicted in Fig. 3,  the transport of a gas species to 25 

soil surfaces is governed by three resistances in series: the aerodynamic resistance Ra, the quasi-laminar layer resistance Rb, 

and the soil surface resistance Rc (Seinfeld and Pandis, 2016). The deposition or transfer velocity Vd is the inverse of the sum 

of these three resistances (Seinfeld and Pandis, 2016). With the coated-wall flow tube technique employed in this study, the 

derived γ reflects the reaction kinetics on soil and thus relates to Rc rather than Ra and Rb. Based on the calculated γ, Rc can 

be further derived according to equation Rc = 4/(ω×γ) (Donaldson et al., 2014b;Dentener et al., 1996), where ω denotes the 30 

mean molecular speed of the VOC species. Approximations of Ra and Rb  can be achieved using the methodology developed 

by Seinfeld and Pandis (2016), i.e., Ra and Rb can be derived based on Eqs. (19.14) and (19.17), respectively. For the basic 

assumptions and utilized parameters during derivations of Ra and Rb, see Sect. 3.2. Finally, vd can be estimated as Vd = 1/(Ra 

+ Rb + Rc).  
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3 Results and discussion 

3.1 Site specific characteristics of selected air quality indicators 

Figure 4 shows the time series of site specific ambient air pollutant mixing ratios observed during the whole measurement 

period (A) and respective mean diel courses (B). The range of mixing ratios of selected air quality indicators like ozone (O3), 

carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) are representative of polluted 5 

urban conditions (Bigi and Harrison, 2010). O3 reveals peak mixing ratios in the afternoon (13:00 – 17:00 local time), which 

corresponds to high sunlight intensities and temperatures at this time of the day. Coincident with this maximum in O3, 

reactive nitrogen species (NO2 and NO) show decreasing trends, which may be due to decreased local NOx emissions, and/or 

rapid photochemical oxidation or strong dilution in the boundary layer in the afternoon. Even though most of the selected air 

quality indicators reveal a significant diel cycle, CO, NO and NO2 do not show a typical urban rush-hour pattern with traffic-10 

associated peaks during morning and late afternoon. Rather, the site represents an urban background site without direct 

influences of strong nearby point sources. The relatively weak diel course of SO2 mixing ratios with maxima during daytime 

can also be assumed to stem from long-range advection or midday entrainment of high concentration air masses from aloft, 

instead of nearby presence of ground-level emission sources (Bigi and Harrison, 2010). 

3.2 Site specific characteristics and exchange of VOCs 15 

Figure 5 displays the time series of site specific ambient air mixing ratios of VOCs, temperature (T), relative humidity (RH) 

during the whole measurement period (A), and respective mean diel courses (B). Among the measured VOC species, 

methanol has the highest mixing ratios (Fig. 5A). Methanol is ubiquitous in the lower atmosphere with mixing ratios in 

remote regions reported to be ~ 1 ppb (Galbally and Kirstine, 2002;Jordan et al., 2009). The high mean daytime mixing 

ratios of 10 - 20 ppb at this urban background site suggest strong impact of anthropogenic emissions on the local methanol 20 

budget. High mixing ratios are also found for its oxidation products formaldehyde (~ 10 ppb) and formic acid (~ 5 ppb), 

respectively. Formaldehyde is a key reaction intermediate of the atmospheric oxidation cycle (Li et al., 2016), and hence an 

indicator of the total amount of OVOCs.  Its increasing trend during daytime (Fig. 5B) is indicative of strong photochemical 

formation.  In contrast, formic acid, which can be formed from ozonization of all terminal double-bonded molecules (Osamu 

et al., 1994), shows lower mixing ratios during daytime than during nighttime, and similar diel trends are also found for other 25 

species including toluene, methanol, acetonitrile and benzene. The daytime decrease of the latter may be due to dilution 

effects by increased daytime boundary layer mixing height and/or lower atmospheric photochemical formation rates during 

daytime, even though some of them (e.g., formic acid) have smaller photolysis and oxidation loss rates than those of 

formaldehyde. On the other hand, the most significant diel profile is observed for isoprene, with mixing ratios peaking at 

midafternoon (around 15:00, local time) followed by a decline at late afternoon stabilizing at ~ 0.5 ppb during night. 30 

Isoprene can have an important impact on the atmospheric oxidation capacity due to its high OH reactivity both in pristine 

and in polluted urban regions (Williams et al., 2016). Besides anthropogenic sources like gasoline and diesel traffic exhaust 
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(Borbon et al., 2001;Wang et al., 2013;Wagner and Kuttler, 2014), the major summertime source of isoprene can be assumed 

to be biogenic, i.e., being emitted from vegetation in a light and temperature dependent manner (Guenther et al., 1993). 

Thus, during daytime, high mixing ratios of biogenic isoprene are anticipated at our measurement site, which was 

surrounded by different types of vegetation cover (see Sect. 2.2). Following the diel trend of isoprene, the two primary 

photochemical oxidation products of isoprene, methyl vinyl ketone (MVK) and methacrolein (MACR), also exhibit higher 5 

mixing ratios during daytime than during night.  

 

Besides primary or secondary surface sources and sinks, the near-ground nighttime increase (or decrease) of atmospheric 

trace gas mixing ratios is favored by the development of a stable and shallow nocturnal boundary layer (NBL). Any 

nighttime emission (or deposition) of trace constituents is confined to the relatively small volume of the NBL where they 10 

accumulate (or get depleted). The growth of the atmospheric boundary layer (ABL) in the morning hours due to the influx of 

sensible and latent heat, and resulting upcoming convection, and the respective re-entrainment of air from the residual 

boundary layer aloft, being enriched with (or depleted of) atmospheric trace constituents, may confer a reasonable 

explanation for any increased (or reduced) daytime mixing ratios (Kuhn et al., 2002). 

 15 

The exchange properties of VOCs on soil can be reflected by comparing Cr (solid lines in Fig. 5A) and Cs (dotted lines in 

Fig. 5 A). As shown in Fig. 5A, during the whole measurement period most of the VOC species are taken up by the soil, 

especially for styrene, formaldehyde, toluene and acetic acid, indicated by the discernable differences between their Cr and 

Cs. Only formic acid shows a slightly higher Cs than Cr, suggesting this compound is likely emitted by the soil. The time 

series of the mixing ratio difference Cr – Cs of measured VOCs are further displayed in Fig. S.2. The integrated total amount 20 

and average surface flux of each absorbed or emitted VOC species on soil for the whole measurement period is listed in 

Table S.1.  

3.3 Time series and mean diel courses of VOC exchange 

Based on the measured Cr and Cs, the uptake coefficients of examined VOC species can be derived (see Sect. 2.3). To 

minimize potential impacts of measurement uncertainties (e.g., random noise of the instrument) on small Cr – Cs (or large 25 

Cs/Cr) and further on the derived uptake coefficients, the calculated hourly based uptake coefficients (basing on the measured 

hourly mixing ratio data) were averaged to a daily basis (i.e., daily mean uptake coefficients). Figure 6A shows the time 

series of daily mean VOC uptake coefficients, together with those of ambient temperature (T) and relative humidity (RH). 

Eight species (i.e., styrene, toluene, isoprene, MVK+MACR, acetaldehyde, MEK, acetone and acetonitrile) exhibit a 

relatively high initial uptake coefficient, followed by a significant decrease in the first few days, indicative of progressive 30 

saturation of absorption sites on the pre-treated soil sample. For styrene and acetonitrile, this decrease prevails for the whole 

one-month measurement period. Occasionally, some species show short-term swaps between deposition and emission (see 

Fig. S.3 for the complete time series of hourly averaged data). This bidirectional exchange can be caused by fast dynamics in 
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ambient air conditions like temperature, relative humidity and trace gas mixing ratio, and respective status of soil saturation. 

Interestingly, formaldehyde only rarely shows emission from soil, suggesting strong capacity of the soil sample for 

absorption under ambient conditions. This result to some extent challenges our previous laboratory-based observation that 

soil could also act as a source for formaldehyde, when it had been saturated with formaldehyde prior to back-flushing with 

pure N2, i.e., the uptake of formaldehyde by soil was shown to be reversible (Li et al., 2016). Indeed, the range of 5 

formaldehyde mixing ratios observed in Beijing was rather high for most of the time, and extremely rapid changes of mixing 

ratio to below a compensation point, as applied in the laboratory study, hardly occurred in the field.  On the other hand, the 

anticipated high levels of oxidants for heterogeneous reactions on the soil under field conditions may foster the chemical 

conversion/oxidation of formaldehyde, that could prevent its accumulation, saturation and subsequent release (see below). 

Given the poor understanding of formaldehyde’s budget (Jacob, 2000;Wagner et al., 2002), more research is needed to 10 

elucidate the exchange behavior of formaldehyde on various types of soils under ambient conditions. In addition, the 

variability of uptake coefficients of some species (e.g., isoprene, MVK+MACR, acetaldehyde, and formic acid) closely 

follow the trend of ambient relative humidity and temperature, suggesting that these environmental parameters influence the 

exchange of respective VOC species.  

 15 

Mean diel variations of VOC uptake coefficients as well as those of ambient relative humidity (RH) and temperature (T) are 

presented in Fig. 6B. In general, uptake coefficients are quite stable over the whole day. 

 

From a perspective of kinetic gas theory, the derived uptake coefficients can be further used to determine VOC surface 

reaction rates on soil which are only caused by reactions on soil surface instead of diffusion into soil pores under steady state 20 

conditions (i.e., after significant absorption saturation of the soil sample in the first few measurement days in Fig. 6A). The 

soil surface reaction rate is described as: (γ × ω)/4 × [VOC(g)]. γ and ω are the daily average uptake coefficients and mean 

molecular speed (at an average temperature of 298 K) of each VOC species, respectively. [VOC(g)] is the VOC mixing ratio 

in ambient air (i.e., Cr). Accordingly, the corresponding surface reaction (or wall loss) rate coefficient kw is (γ×ω)/4, 

equivalent to the inverse of Rc. Note that only formic acid shows negative uptake coefficients for most of the measurement 25 

time period, and its emission rate cannot be described by the above reaction rate expression accounting for surface uptake 

processes. Instead, the soil surface emission rate of formic acid is calculated from a flux point of view, which equates to F × 

(Cr – Cs)/S. F is the volumetric flow rate in the sample tube and S is the geometric surface area of the soil sample. The time 

series of surface reaction rates are shown in Fig. S.4. kw is shown in Table S.3 and further discussed in the following section.  

3.4 Exchange of VOCs interpreted in terms of long-term mean uptake coefficients and deposition velocities 30 

Figure 7 shows the averaged uptake coefficients for days with continuous instrumental operation (16 days within the one-

month field measurement) for each VOC species. The vast majority of VOC species reveal positive uptake coefficients, 

indicating that these species tend to be absorbed and retained or converted into other products in the soil (net soil influx). 
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Highest uptake coefficients are found for styrene and formaldehyde, with mean values in the order of 10-6. The uptake 

coefficient of formaldehyde is in the same range as reported earlier for laboratory experiments, where sterilized agricultural 

soil was flushed by pure N2 containing different mixing ratio levels of formaldehyde under varying RH conditions (Li et al., 

2016).  

 5 

In Fig. 7, only formic acid reveals a negative mean uptake coefficient, which is indicative of emissions from soil (Li et al., 

2018). This short-chain organic acid is regarded as one of the terminal products in the oxidation processes of many VOC 

species present in the atmosphere (Charbouillot et al., 2012). Therefore, the heterogeneous formation from previously 

adsorbed/absorbed VOCs may confer a reasonable explanation for its accumulation and subsequent release, as further 

discussed in following sections.  10 

 

As mentioned previously, the long-term mean uptake coefficients can be used to derive the soil surface reaction (or wall 

loss) rate coefficient kw of each VOC species, which reflects the soil surface exchange properties. Here kw has a unit of cm s-1 

and can be interpreted as a deposition velocity without gas transport resistance (i.e., Ra + Rb) effects (Pöschl et al., 1998). As 

the initial soil sterilization procedure eliminates potential impacts from soil bacteria, the observed exchange of these VOC 15 

species is primarily influenced by physicochemical factors. To have a general understanding of how different 

physicochemical factors may affect kw, the calculated kw of each VOC species are listed in Table S.3, together with the basic 

physicochemical parameters possibly related to the trace gas exchange (i.e., gas phase reaction rate coefficients with OH 

radicals and O3, Henry’s law constant, vapor pressure and octanol-water partition coefficient). In general, differences of kw 

found among these species cannot be explained by any of the physicochemical factors alone, which suggests that VOC 20 

exchange at the atmosphere-soil interface is a complex multifunctional process. 

 

Deposition velocity Vd is a key parameter used in models to describe trace gas uptake by soils and is the inverse of the sum of 

three resistances in series: the aerodynamic resistance Ra, the quasi-laminar layer resistance Rb, and the soil surface 

resistance Rc (Fig. 3). As described in Sect. 2.4, only Rc can directly be derived from the calculated uptake coefficients. Ra 25 

and Rb are calculated adopting the approach proposed by Seinfeld and Pandis (2016): In Table 2, the case of neutral stable 

temperature profiles is adopted for Ra calculation (Eq. 19.14 in Seinfeld and Pandis 2016). The season is set to autumn 

(cropland before harvest). To assess the impact of Ra and Rb on derived Vd, three types of land use categories including 

shrubs (category 1 in Table 2), urban (category 2) and barren land (category 3) are selected mimicking our field 

environmental conditions and soil type characteristics. The detailed parameters adopted for Ra and Rb derivation and the 30 

calculated Ra, Rb, Rc and Vd are shown in Table 2. As Rc >> Ra + Rb, the VOC uptake is not limited by atmospheric gas phase 

transport (Ra+Rb) or by land use type. Rather the uptake on the soil surface (Rc) is the primary rate-limiting step for dry 

deposition of these VOC species, even for the largest γ observed in our study. Note that Vd of formic acid intrinsically reveals 

negative values, as this organic acid is released from the soil. 
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Previous VOC exchange studies on various soil types such as agricultural soil, tropical soil, plantation floor and forest 

understory, etc., have spanned a huge range of Vd with three orders of magnitude  (0.01 – 1 cm s-1) for the VOC species 

investigated here (Hartmann et al., 1991;Karl et al., 2005;Sanhueza et al., 2004;Schade and Custer, 2004;Stickler et al., 

2007;Jordan et al., 2009;Schade et al., 2011;Gordon et al., 2014a;Cleveland and Yavitt, 1997). Our calculated Vd (0.001 – 5 

0.01 cm s-1) is at the very low end of previous studies. This can be due to a variety of reasons: on the one hand, our soil 

sample is bare soil without any vegetation cover while previous flux studies included different types of vegetation covers 

(grass, leaf litter, agricultural crops, etc.), which might significantly alter the measured deposition velocity. On the other 

hand, our soil sample is sterilized aiming to investigate the physiochemical processes on soil, yet the soil bacteria can 

significantly modify the VOC exchange as can be expected in the previous studies. In fact, several studies have demonstrated 10 

that soil bacteria can consume atmospheric VOCs (Misra et al., 1996;Cleveland and Yavitt, 1998;Stacheter et al., 

2013;Lynch et al., 2014). From the physicochemical point of view, low Vd may also arise from competitions among different 

VOC species for surface absorption sites, as has been observed in controlled laboratory studies by Lichtin et al. (1996) for 

photo-catalytic reactions of binary VOC mixtures on TiO2 surfaces. Likewise, interfering effects of O3, OH and NO3 radicals 

on VOC photo-catalytic TiO2 surface reactions could be demonstrated (Ao et al., 2004). We assume that this phenomenon is 15 

universal for catalytic surfaces and also applies for soil.  

 

To further validate the plausibility of our calculated γ and derived Vd, we calculate the surface resistance, Rc, using a 

regional-scale numerical model developed by Wesely (Seinfeld and Pandis, 2016;Wesely, 1989), which considered only 

physicochemical factors affecting gas deposition on ground surface for formaldehyde, acetic acid and acetaldehyde as typical 20 

VOC representatives. As a proxy for bare soil properties in the present study, the land use type is set to barren land (mostly 

desert), and the seasonal category is chosen as autumn (cropland before harvest).  All other input parameters are the same as 

used in the original literature (Wesely, 1989). The model outputs a Rc for formaldehyde of 167 s cm-1, which is in fair 

agreement with our results (98 s cm-1). Due to a very small effective Henry’s law constant adopted in the model (15 M atm-1 

for water with near-neutral pH) the derived Rc for acetaldehyde is even much higher than based on our measurements (66667 25 

s cm-1 versus 291 s cm-1), corroborating our relatively low range of observed VOC uptake. In contrast, acetic acid bears a 

much higher effective Henry’s law constant (4 × 106 M atm-1), revealing a much smaller Rc than based on our measurements 

(0.3 versus 214 s cm-1), underpinning the intense impact of VOC physicochemical characteristics on modelled uptake 

resistances.   

3.5 VOC exchange dependence on environmental parameters 30 

In order to explore potential effects of environmental factors on the exchange of these VOC species at the atmosphere-soil 

interface, the relation between uptake coefficients and ambient relative humidity (RH), temperature (T) and mixing ratio (C) 

is further examined, and those VOC species showing significant dependencies are shown in Fig 8. RH affects the amount of 
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surface-adsorbed water and can accelerate or slow down trace gas uptake rates (Crowley et al., 2010). On the one hand, high-

RH induced condensed water may attract water-soluble or hydrophilic gas species and hence enhance their uptake (Pei and 

Zhang, 2011), or decrease their net emission. This mechanism applies, e.g., to hydrophilic formaldehyde and formic acid 

(see Table S.3 for respective Henry’s law constants). On the other hand, more water molecules on soil surfaces tend to repel 

the hydrophobic species more strongly or reduce gas uptake by means of competitive adsorption effects between water 5 

molecules and gas species (Ruiz et al., 1998;Goss et al., 2004;Donaldson et al., 2014a;Li et al., 2016). This can provide a 

reasonable explanation for the negative RH dependence of hydrophobic acetaldehyde in Fig. 8. However, the uptake 

coefficients of hydrophobic isoprene and its primary degradation products (i.e., MVK+MACR) also increase at high RH. 

 

From the physical perspective of vapor pressure, increased temperature leads to decreased trace gas uptake and increased 10 

emission. This is in line with the decreased uptake of isoprene, MVK+MACR and formaldehyde, and enhanced emission of 

formic acid at higher temperatures shown in Fig. 8. Note that in the natural environment all environmental variables change 

in concert, and the diel courses of RH and T are intrinsically anti-correlated. As a result, the dependencies of VOC exchange 

on RH and T in Fig. 8 show opposite trends. Consequently, the governing parameter among each other cannot individually 

be inferred from field measurements, and both dependencies can further be masked by the dependence on gas mixing ratio 15 

changing simultaneously in the ambient air. 

 

Even though the calculation of uptake coefficients intrinsically accounts for the gas phase mixing ratios, higher mixing ratios 

have been shown to reduce uptake coefficients (Sassine et al., 2010;Wang et al., 2012). A negative effect of increased 

mixing ratios on uptake coefficients is also observed for isoprene and MVK+MACR in Fig. 8. Our previous laboratory 20 

experiments on formaldehyde (Li et al., 2016) showed that this trend was more pronounced under dry conditions (RH = 0%) 

than under humid conditions (RH = 40%), in agreement with the formaldehyde pattern shown here. On the contrary, 

increased mixing ratios lead to enhanced uptake coefficients for acetaldehyde. The negative effect of mixing ratios on uptake 

coefficients (as for isoprene and MVK+MACR) can be understood as competition among the individual VOC molecules for 

reactive uptake sites, or with other VOCs whose mixing ratios show a simultaneous increase (Li et al., 2016). However, the 25 

observed positive effect of mixing ratios on uptake coefficients of acetaldehyde remains unexplained. Other processes like 

acetaldehyde heterogeneous degradation/depletion may be involved, as high acetaldehyde uptake coefficients are observed 

preferentially during daytime (Fig. 6B) when the atmospheric oxidation capacity is high (see ozone mixing ratios in Fig. 4B).  

3.6 VOC exchange correlation analysis 

As discussed above, the uptake dynamics of one individual VOC species may be biased, either (i) by competitive co-30 

absorption of other VOCs or trace gases from ambient air (Lichtin et al., 1996;Ao et al., 2004), or (ii) by formation on the 

soil through heterogeneous conversion of precursor compounds that have been absorbed earlier (Ammann and Pöschl, 

2007;Pöschl et al., 2007), or (iii) by depletion of the individual VOC species due to heterogeneous degradation. To explore 
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potential interactions/interferences of VOC species among each other, correlation analyses of the exchange rates (i.e., the 

concentration difference between the reference channel and the sample channel Cr – Cs times the volumetric flow rate F) of 

measured VOC species are conducted for each pair of species. The results are presented in Fig. 9 in terms of Pearson 

correlation coefficients, together with the molecular structure of each investigated species. The interplay of sorption, 

heterogeneous reactions and desorption kinetics of VOCs is complex, and heterogeneous reactions may require time periods 5 

from milliseconds to weeks or even months to reach equilibrium (Xing and Pignatello, 1996;Ammann and Pöschl, 2007). 

Hence, to also account for slow kinetics, the correlation analysis in Fig. 9 is based on daily integrals. VOC exchange rates 

instead of uptake coefficients are used to allow for a budget approach. Positive correlations are indicated in red colors, and 

some pairs of VOC species show high positive correlation (deep red color code in Fig. 9), suggesting they have similar 

exchange characteristics. For example, MVK and MACR are the first generation oxidation products of isoprene (Jordan et 10 

al., 2009). Thus, the observed high correlation coefficient between MVK+MACR and isoprene can be explained by their 

similar molecular structures shown in Fig. 9. The same holds for the strong correlation between methanol and formaldehyde, 

methanol and acetone, as well as for MEK and acetone: similar molecular structures and functional groups result in 

analogous exchange and reaction mechanisms on soil. 

 15 

Negative correlations in Fig. 9 are indicated in blue colors. As aforementioned, formic acid is at the very end of the VOC 

oxidation chain, and is exclusively emitted from the soil sample while all other VOCs tend to be taken up. Thus, correlations 

of formic acid with other VOCs are negative as such (blue in Fig. 9). High negative correlation coefficients are obtained 

between formic acid and some species (i.e., acetone, isoprene, formaldehyde, styrene and methanol), indicative of possible 

generation and emission of formic acid due to heterogeneous transformation of these deposited compounds. In the 20 

atmosphere, photo-oxidation of acetone contributes to the abundance of formic acid, and the dominant pathway for formic 

acid formation via acetone photo-oxidation is the reaction of OH radical with acetone-derived formaldehyde (Chattopadhyay 

et al., 2015). Formic acid production through photo-oxidation of isoprene has been found under high NOx circumstances 

(Paulot et al., 2009). Under ambient conditions, gas phase reactions of styrene with OH radical and O3 can occur 

respectively, with formaldehyde and benzaldehyde as major products and formic acid as the minor (Tuazon et al., 1993). 25 

Methanol has been reported to play an important role in upper tropospheric photo-oxidation chemistry via its contribution to 

the HOx budget after its oxidation to formaldehyde (Tie et al., 2003;Singh et al., 1995;Singh et al., 2000;Singh et al., 

2004;Colomb et al., 2006). Notably, formaldehyde is an important intermediate of VOC oxidation and a direct precursor of 

formic acid (e.g, Adewuyi et al., 1984;Chameides, 1984). All these studies suggest the existence of one or several pathways 

for formic acid formation through heterogeneous reactions of these VOC precursors.  30 
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4. Implications for atmospheric chemistry 

4.1 Formic acid formation through heterogeneous transformation of formaldehyde 

We know from the above discussions that: (1) formaldehyde uptake reveal a relatively high correlation with formic acid 

emission; (2) formaldehyde is an important intermediate of VOC oxidation and a direct precursor of formic acid; (3) 

formaldehyde shows continuous and even increasing uptake during the whole field measurement (see Fig. 6A). All these 5 

results evidence formaldehyde may act as the best candidate for heterogeneous formation of formic acid on soil.  

 

In terms of physicochemistry, formaldehyde is much less stable than formic acid (~ 1 day versus ~ 25 days of mean 

atmospheric chemical lifetime, see Millet et al., 2015), which indicates its faster turnover rates also on soil surfaces. 

Moreover, the mean retention coefficient of formaldehyde has been shown to be considerably higher than for formic acid in 10 

cloud/ice water (Jost et al., 2017), inferring a reasonable explanation for the preferential release of the organic acid from the 

soil. Furthermore, aldehydes in general undergo accretion reactions (i.e., aldol condensation type reactions) in acidic media 

and similar chemistry has been shown to occur on mineral oxides (Li et al., 2001), therefore mineral-rich bare soils can serve 

as a sink for these compounds. We know from controlled laboratory experiments on individual trace gas mixtures that the 

presence of nitric oxide (NO) promotes the conversion of formaldehyde on photocatalytic surfaces, and also the yield of 15 

formic acid was found higher under the presence of NO (Ao et al., 2004). In contrast, sulfate ions formed from the presence 

of SO2 competed with formaldehyde for adsorption sites on the catalytic surfaces, and the conversion of formaldehyde and 

the yield of formic acid were lower under the presence of SO2; and also other VOC species were shown to inhibit 

heterogeneous conversion of formaldehyde (Ao et al., 2004). According to our results, formaldehyde is a relatively reactive 

short-term intermediate for formic acid production, rather than being directly released to the atmosphere under authentic 20 

ambient air oxidizing conditions in Beijing city. In general, a catalytic effect of soil can be anticipated by its composition of 

a variety of mineral oxides (silicon oxide, iron oxide and titanium oxide, etc.). Therefore, our soil sample may serve as a 

catalytic surface for degradation of the deposited precursors with formaldehyde as the most important intermediate, which 

can be further oxidized to build up formic acid by heterogeneous reactions on the soil, followed by formic acid emission. 

This catalytic effect may be further enhanced by the co-existence of other deposited oxidants (O3, OH radical, NO2 and 25 

peroxides, etc.) on the soil surfaces. 

4.2 Physicochemical reactions on bare soil and soil-derived dust may act as a potential source of formic acid 

The only VOC that have been observed to be released from the soil sample investigated here is formic aid, which represents 

a final organic product of the VOC oxidation cascade. Formic acid is one of the most abundant organic acids in the 

atmosphere, existing in gas phase, cloud and rain water as well as snow and even polar ice (Chebbi and Carlier, 30 

1996;Sanhueza and Andreae, 1991;Maupetit and Delmas, 1994;Sempére and Kawamura, 1994;Löflund et al., 2002;van 

Pinxteren et al., 2005;Mungall et al., 2018). In remote regions like the Amazon forest, short-chain organic acids have been 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-683
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 25 July 2018
c© Author(s) 2018. CC BY 4.0 License.



18 

 

shown to be responsible for 60 - 80% of rainwater acidity (Galloway et al., 1982;Stavrakou et al., 2012), and also over boreal 

forests and in urban areas they contribute significantly to the free acidity in precipitation (Khare et al., 1999;Stavrakou et al., 

2012), and hence can regulate pH-dependence of aqueous reactions in clouds (Vet et al., 2014) and can contribute to 

acidification of soil.  

 5 

Gas phase photochemical oxidation of biogenic VOCs is considered to be the dominant global atmospheric source of formic 

acid. Modelled budget analyses implicate the existence of one or more large missing sources for formic acid, i.e., the 

annually produced formic acid (100 - 120 Tg yr-1) is two to three times larger than can be explained based on the current 

understanding of primary and secondary (gas phase) atmospheric processes and aqueous-phase cloud/rain chemistry (Barth 

et al., 2007;Paulot et al., 2011;Veres et al., 2011;Le Breton et al., 2012;Stavrakou et al., 2012;Cady-Pereira et al., 10 

2014;Schobesberger et al., 2016;Millet et al., 2015), even when using a Master Chemical Mechanism (MCM) that was 

updated with recently proposed additional photochemical formation pathways for formic acid, like OH oxidation of isoprene 

and aromatics (Yuan et al., 2015). This suggests the existence of either a key gap in current understanding of hydrocarbon 

oxidation or large and widespread, yet unidentified sources for formic acid (Millet et al., 2015).  

 15 

Previous model estimations of soil emissions of formic acid were based on a few available field measurements (Paulot et al., 

2011;Millet et al., 2015). These ambient studies found formic acid emissions from dry savanna soil (Sanhueza and Andreae, 

1991) and coniferous forest soil (Enders et al., 1992), respectively, to be an important source of the local formic acid budget. 

The former study reported daily average emission rate of 1.4 × 10-1 nmol m-2 s-1, which is much larger than the estimated 

long-term mean emission rate of 6 × 10-3 nmol m-2 s-1 (see Table S.2) in the present study. This large discrepancy can be due 20 

to different emission/formation mechanisms of formic acid. For the dry savanna soil, emissions of formic acid may be 

caused by soil bacteria or physicochemical partitioning between the soil reservoir and the atmosphere. In our case, emissions 

are rather attributed to physicochemical processes on soil (more specifically, heterogeneous oxidation processes) instead of 

microbial activities and reservoir of the soil itself, due to the applied sterilization and flushing procedures on the soil sample 

prior to field experiment. To the best of our knowledge, this study is the first trial to evaluate the potential contribution of 25 

physicochemical processes on soil under real ambient conditions to the atmospheric budget of formic acid.  Assuming the 

heterogeneous formation of formic acid also applies to other bare soil types around the globe, a global formic acid source 

strength of ~ 0.24 Tg yr-1 can be estimated using the average emission rate obtained here and a global barren land (i.e., bare 

soil  and land with very sparse vegetation) surface area of ~ 2.8 × 107 km2 (Roser and Ritchie, 2018). This source strength 

due to heterogeneous reactions on bare soils is comparable to that from anthropogenic and biofuel emissions (0.4 Tg yr-1 by 30 

Millet et al., 2015) but still much less than the missing source strength. Note that the magnitude of the emission rate here 

used for calculation also depends on the mixing ratio levels of ambient VOC precursors and other environmental parameters 

such as temperature and relative humidity. As our measurement site is an urban background site with high VOC mixing 

ratios, the estimated source strength can be considered as an upper limit. Considering the still poorly understood budget of 
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formic acid (Millet, 2012;Paulot et al., 2011), more investigations are needed to quantify the contributions of different types 

of soil as a potential source of formic acid.  

 

Wind erosion of soil is an important pathway to generate mineral dust aerosols (Zender et al., 2011).  Thus, our soil-based 

formic acid formation mechanism may also apply to soil-derived dust. Indeed, field measurements have identified formic 5 

acid to be among the most abundant carboxylic acids in collected mineral dust (Falkovich et al., 2004;Khare et al., 1998). 

However, dust was treated as a sink of gaseous formic acid in recent model simulations (with a simulated dust uptake of 1.2 

Tg yr-1 in Millet et al., 2015;Paulot et al., 2011) based on laboratory-observed uptake of formic acid on clay minerals 

followed by fast surface saturation (Hatch et al., 2007). Here, we may predict heterogeneous transformations of other co-

adsorbed VOCs in the ambient air (e.g., formaldehyde) followed by emission of formic acid on dust, preferentially under low 10 

relative humidity conditions (Fig. 8). Based on our observed emission rate, a global emission strength can be roughly 

estimated by assuming that dust particles have a mean diameter of 2 m and a density of 2.2 g cm-3 as adopted by Hatch et 

al. (2007). Using an average atmospheric dust loading of 18 Tg (Kok et al., 2017) would result in a formic acid source of ~ 

2.4 × 10-5 Tg yr-1. Note that estimating the emission of dust aerosol particles, a 10000 times lower emission rate for formic 

acid should be applied to account for the real available surface (versus the geometric surface used here for soil, to reflect 15 

common model input needs). Clearly, this additional formic acid source on dust is much smaller and can be considered 

negligible. However, our observed formic acid emission to some extent challenges model applications of high initial uptake 

coefficients on clay minerals derived from laboratory experiments; and previous model simulation may need to be re-

constrained.   

 20 

Aging of organic aerosols by heterogeneous reactions with OH radicals has been proposed as an important secondary source 

of formic acid (Molina et al., 2004;Paulot et al., 2011), and formic acid heterogeneous production was indeed observed 

during organic aerosol aging in the laboratory (Eliason et al., 2003;Molina et al., 2004;Walser et al., 2007;Vlasenko et al., 

2008;Malecha and Nizkorodov, 2016). Stavrakou et al. (2012) modelled the heterogeneous oxidation of organic aerosols as a 

source of formic acid assuming that one molecule of formic acid is formed per molecule of OH lost. They calculated an extra 25 

global annual formic acid flux of 27 Tg, which is still less that the missing source invoked to explain their remote sensing 

total column observations (see also Millet et al., 2015). However, based on high concentrations of reactive oxygen species 

(ROS) prevailing in atmospheric aerosol particles (Chung et al., 2006;Verma et al., 2015;Tong et al., 2016), we may 

consider more VOC precursors being oxidizing to formic acid than has been adopted in the model.  

5 Conclusions 30 

VOC heterogeneous chemistry at the gas-surface interface of soils play a central role in regulating atmospheric trace gas 

mixing ratios. In the present study, a coated-wall flow tube system coupled with a PTR-MS analysis was adopted to 
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investigate the exchange of common VOC species at the atmosphere-soil interface at real-world ambient air conditions of an 

urban background site in Beijing. Almost all VOCs show an average net deposition on the pre-treated sterilized soil, 

examined over an extended exposure of one month. The derived deposition velocities are found to be at the lower end of 

ranges reported for natural soil habitats, but were in fair agreement with models based on pure physicochemistry. Only 

formic acid displays a long-term emission. The emission of formic acid is solely due to physicochemical processes (i.e., 5 

heterogeneous transformations of absorbed VOC precursors) on soil, which represents an additional ground-based source of 

this organic acid.  

 

At ambient atmospheric conditions, both the relatively low uptake coefficients derived for the majority of VOC species and 

the emission of formic acid from the soil to some extent challenge the applicability of models using uptake coefficients 10 

derived from laboratory-based uptake measurements, where single VOC species or simple mixtures are supplied using 

purging air devoid of oxidizing agents. Field measurements as presented here, with all relevant parameters changing in 

concert, may call attention for the existence of yet unknown interferences or synergetic effects. Considering the potential 

relevance of biotic processes in natural soils, follow-up studies are needed to explore its contribution to VOC exchange at the 

soil-atmosphere interface.  15 
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Table 1. List of reported VOC species along with their protonated m/z, and 5-minute limits of detection (LOD). 

Protonated 

(m/z) 

Species LOD (ppt) Protonated 

(m/z) 

Species LOD  

(ppt) 

21 H3
18O+  69 isoprene 70 

39 H3
18O+ (H2O)  71 MVK+MACR 109 

31 formaldehyde 101 73 MEK 198 

33 methanol 355 79 benzene 78 

42 acetonitrile 87 93 toluene 93 

45 acetaldehyde 112 105 styrene 55 

47 formic acid 277    

59 acetone 77    

61 acetic acid 243    

                    MVK: methyl vinyl ketone; MACR: methacrolein; MEK: methyl ethyl ketone. 
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Table 2. Parameters used for resistance calculations to infer the relative importance of Rc versus Ra and Rb, and the resulting deposition 

velocities (Vd) of measured VOC species. 

VOCs species 
γ  

(×10-7) 

ω  

(cm s-1) 

D  

(cm2 s-1) 

u⁎ (cm s-1)              z0 (cm)       Rc         Ra (s cm-1)                                Rb (s cm-1)  Vd (cm s-1) 

1 2 3 1 2 3        (s cm-1) 1 2   3 1 2 3                 1     2      3 

Styrene 12.30 24636 0.08 30 45 20 10 100 4 132 0.67 0.32 1.12 0.27 0.18 0.40 0.008 0.008 0.007 

Formaldehyde 8.92 45870 0.17 30 45 20 10 100 4 98 0.67 0.32 1.12 0.15 0.10 0.23 0.01  0.01 0.01 

Toluene 6.74 26194 0.08 30 45 20 10 100 4 227 0.67 0.32 1.12 0.26 0.17 0.38 0.004 0.004 0.004 

Isoprene 6.06 30468 0.09 30 45 20 10 100 4 217 0.67 0.32 1.12 0.24 0.16 0.36 0.005 0.005 0.005 

Acetic acid 5.77 32435 0.12 30 45 20 10 100 4 214 0.67 0.32 1.12 0.20 0.13 0.30 0.005 0.005 0.005 

MVK+MACR 4.80 30029 0.10 30 45 20 10 100 4 278 0.67 0.32 1.12 0.23 0.15 0.35 0.004 0.004 0.004 

Acetaldehyde 3.63 37876 0.13 30 45 20 10 100 4 291 0.67 0.32 1.12 0.19 0.12 0.28 0.003 0.003 0.003 

Methanol 3.43 44414 0.16 30 45 20 10 100 4 263 0.67 0.32 1.12 0.16 0.11 0.24 0.004 0.004 0.004 

MEK 2.27 29609 0.09 30 45 20 10 100 4 595 0.67 0.32 1.12 0.23 0.16 0.35 0.002 0.002 0.002 

Acetone 2.16 32990 0.11 30 45 20 10 100 4 561 0.67 0.32 1.12 0.21 0.14 0.32 0.002 0.002 0.002 

Acetonitrile 2.12 39237 0.16 30 45 20 10 100 4 480 0.67 0.32 1.12 0.17 0.11 0.25 0.002 0.002 0.002 

Benzene 1.89 28448 0.09 30 45 20 10 100 4 745 0.67 0.32 1.12 0.24 0.16 0.36 0.001 0.001 0.001 

Formic acid -2.15 37044 0.15 30 45 20 10 100 4 -502 0.67 0.32 1.12 0.17 0.12 0.26 -0.002 -0.002 -0.002 

γ: uptake coefficient; ω: mean molecular speed at 25 °C; D: molecular diffusion coefficient at 25 °C; u⁎: friction velocity, the listed values are averaged 

between the day and night cases by Zhang et al., (2003); z0: aerodynamic surface roughness length, the listed values are referred to Zhang et al., (2002); Rc: 

soil surface resistance; Ra: aerodynamic resistance, calculated using the equation (19.14) in (Seinfeld and Pandis, 2016), where the reference height z is set 5 

as 300 m; Rb: quasi-laminar layer resistance, calculated using the equation (19.17) in (Seinfeld and Pandis, 2016), where the air kinematic viscosity ν is 0.16 

cm2 s-1; Vd: deposition velocity; The numbers in the table header denote different land use categories adopted from Zhang et al., (2002; 2003): 1 shrubs; 2 

urban; 3 barren land (mostly desert).   
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Figure 1. Schematic illustration of the experimental setup.  
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Figure 2. Schematic of the uptake coefficients versus the penetrations of measured VOC species. Derivation of the uptake coefficients are 

based on the experimental parameters: volumetric flow rate F = 0.1 L min-1 at 1 atm and 298 K; coated-wall flow tube dimension, d = 1.6 

cm, L = 10 cm.  5 
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Figure 3. Schematic of the resistance model for VOC species dry deposition on soil 
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                                                   (A)                                                                                                      (B) 

 

Figure 4.  Time series of observed ambient air mixing ratios of prominent gas phase pollutants (A) and respective mean diel courses (B). 

In (B), symbols denote individual hourly averaged data, and the thick solid lines respective mean diel profile. Thin dashed lines represent 5 

one standard deviation (± 1 SD) from the mean value.  
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Figure 5. (A) 
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Figure 5. (B) 

Figure 5.  Time series of observed ambient air mixing ratios of VOCs and air temperature and relative humidity (A), and respective mean 

diel courses (B). Solid lines in (A) denote ambient air mixing ratios at the outlet of the reference tube, and dotted lines at the outlet of the 5 

sample tube. In (B), symbols denote individual hourly averaged data, and the thick solid lines respective mean diel profile. Thin dashed 

lines represent one standard deviation (± 1 SD) from the mean value.  
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Figure 6. (A) 
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Figure 6. (B) 

Figure 6. Time series of the uptake coefficients of measured VOC species and air temperature and relative humidity (A), and respective 

mean diel courses (B). In (A), each symbol represents daily averaged data and the yellow shaded areas indicate the days when 5 

measurements were not continuously running all day long. In (B), symbols denote individual hourly averaged data, and the thick solid 

lines respective mean diel profiles. Thin dashed lines represent one standard deviation (± 1 SD) from mean values.  
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Figure 7. Box-and-whisker plots of the uptake coefficients of measured VOC species, based on daily averaged data. Minimum, 25th, 50th, 

75th percentile and maximum are indicated by bars, and mean values by squares. 5 
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Figure 8. Dependence of daily averaged uptake coefficients on ambient relative humidity (RH), temperature (T) and mixing ratios (C). 

Minimum, 25th, 50th, 75th percentile and maximum of the box-and-whisker plots are indicated by bars, and mean values by squares. The 

uptake coefficient dependence is based on the days when measurements were continuously running all day long. Note that negative uptake 30 

coefficients (for formic acid) indicate emission. 
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Figure 9. Correlation of the exchange of measured VOC species (upper left) and their molecular structures (lower right). Correlation 

between each pair of VOCs is reflected by the correlation coefficient, shown in the plot. The correlation coefficient between each 5 

individual species itself is 1, a correlation coefficient of 0 means no correlation, and -1 implies complete anti-correlation.  
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