Sampling period	Size	WSOC	OC	WSOC/OC	OC method [*]	Reference	
2017 Winter (haze)	PM_1	14.7 ± 8.2	23.4 ± 12.0	0.63 ± 0.10		This study	
	PM _{2.5}	29.2 ± 18.4	44.1 ± 25.5	0.65 ± 0.14			
	PM_{10}	33.4 ± 19.7	52.1 ± 28.7	0.63 ± 0.08	IMPROVE (TOR)		
	PM_1	6.3 ± 1.8	9.0 ± 3.2	0.75 ± 0.20			
2017 Spring (haze)	PM _{2.5}	9.0 ± 3.0	12.8 ± 4.5	0.72 ± 0.12			
	PM_{10}	10.9 ± 3.5	16.6 ± 6.1	0.69 ± 0.16			
2013 Autumn		Not mentioned	Not mentioned	0.70 ± 0.27			
2013 Winter				0.49 ± 0.11			
2014 Spring	PM _{2.5}			0.56 ± 0.07	IMPROVE (TOR)	Zhao et al. (2018)	
2014 Summer				0.58 ± 0.10			
2013 Winter	DM	10.8 ± 3.1	32.9 ± 16.8	0.39 ± 0.16	IMPROVE A (TOT)	Yan et al. (2015)	
2013 Summer	r 1 v1 _{2.5}	6.4 ± 2.2	9.7 ± 2.9	0.66 ± 0.06	$\operatorname{IMF} \operatorname{KOVE-A}(101)$		
	PM _{1.1}	13.9 ± 4.5^{a}	23.4 ± 6.2^{a}	0.59 ^a			
		$7.7 \pm 1.9^{\rm b}$	15.7 ± 3.0^{b}	0.49 ^b			
		$3.4 \pm 1.6^{\rm c}$	$7.9\pm4.1^{\rm c}$	0.43 ^c			
	PM _{2.1}	$21.9\pm8.5^{\rm a}$	39.1 ± 12.1^{a}	0.56 ^a	-		
2013 Winter		$10.2\pm2.7^{\text{b}}$	21.7 ± 4.3^{b}	0.47 ^b	Not mentioned	Tian et al. (2014)	
		$4.4\pm2.9^{\rm c}$	$9.5\pm5.1^{\rm c}$	0.46 ^c			
	PM _{2.1-9}	$7.7\pm2.7^{\mathrm{a}}$	$13.7\pm5.7^{\rm a}$	0.56 ^a			
		$2.9\pm1.3^{\text{b}}$	$5.4\pm2.2^{\text{b}}$	0.54 ^b			
		$1.8\pm0.7^{\rm c}$	$5.0\pm3.2^{\rm c}$	0.36 ^c			
2011-2012 Winter	PM _{2.5}	Not mentioned	Not mentioned	0.36 ± 0.05^{d}		Cheng et al. (2015)	
				0.44 ± 0.05^{e}	IMPROVE-A (TOT)		
				$0.47\pm0.05^{\rm f}$			
2011 Summer		4.48	13.55	0.33			
2011 Autumn	PM _{2.5}	5.82	25.42	0.25		Xiang et al. (2017)	
2011 Winter		5.53	28.16	0.20	IMPROVE (TOR)		
2012 Spring		3.90	16.57	0.27			
2012 Summer		5.81	16.54	0.34			
2011 Summer	PM _{2.5}	7.8 ± 4.4	12.0 ± 6.3	0.65	IMPROVE-A (TOT)	Cheng et al. (2013)	

Table S1. Comparison of WSOC, OC concentrations (µg m⁻³) and WSOC/OC ratios in Beijing in recent years.

2011-2012 Winter		11.2 ± 8.2	24.6 ± 17.1	0.46			
2010 Fall		8.6 ± 6.4	20.4 ± 15.4	0.42			
2010 Winter		8.0 ± 6.7	20.6 ± 16.1	0.39			
2011 Spring	PM _{2.5}	4.7 ± 3.1	10.2 ± 6.8	0.46	IMPROVE (TOT)	Du et al. (2014)	
2011 Summer		6.7 ± 4.4	10.7 ± 6.2	0.61			
2011 Fall		8.6 ± 6.1	19.7 ± 15.4	0.44			
2010 Spring		9.6 ± 5.3	16.9 ± 8.6	0.57		Tang et al. (2016)	
2010 Summer	DM	8.1 ± 2.8	14.3 ± 4.0	0.56			
2010 Autumn	F 1 VI 10	9.5 ± 6.2	18.0 ± 9.0	0.52	IMPROVE-A (TOK)		
2010-2011 Winter		12.3 ± 8.8	27.9 ± 25.1	0.46			
2009 Spring		6.7 ± 1.8	13.7 ± 4.4	0.49		The stal (2016)	
2009 Summer	DM	3.2 ± 1.1	11.1 ± 1.8	0.29	Not mentioned		
2009 Autumn	F IVI _{2.5}	7.7 ± 5.0	17.8 ± 5.6	0.43		1 a0 et al.(2010)	
2010 Winter		7.7 ± 3.6	24.9 ± 15.6	0.31			
2009 Winter	РМ _{2.5} —		$27.7 \pm 15.4^{\text{g}}$	0.26	IMPROVE A (TOR)		
		7.28	$30.9\pm16.3^{\rm h}$	0.24	INI KOVE-A (TOK)		
			32.6 ± 18.6^{g}	0.22	IMDDOVE A (TOT)		
			$36.1\pm19.5^{\rm h}$	0.20	IWFKOVE-A(101)	Change at $al (2011)$	
		3.36	$7.2\pm2.4^{\mathrm{g}}$	0.48		Cheng et al. (2011)	
2009 Summer			$9.4\pm2.7^{\rm h}$	0.36	INFROVE-A (TOK)		
			$8.8\pm3.3^{\rm g}$	0.38	IMDDOVE A (TOT)	-	
			$11.4\pm3.6^{\rm h}$	0.30	$\operatorname{IIVIF} KOVE - A(IOI)$		

^{*} The thermal-optical reflectance (TOR) method and thermal-optical transmittance (TOT) method are two different charring correction methods to determine the split of OC and EC. The transmittance-defined EC is the carbon measured after the filter transmittance returns to its initial value in the He/O₂ atmosphere, whereas the reflectance-defined EC is the carbon measured after the filter the filter reflectance returns to its initial value (Cheng et al., 2011).

5

^{a,b,c} In Tian et al. (2014), "a" refers to the sampling period when $PM_{2.5} > 150 \ \mu g \ m^{-3}$, "b" refers to the sampling period when $PM_{2.5} < 150 \ \mu g \ m^{-3}$, and "c" refers to the sampling period when $PM_{2.5} < 75 \ \mu g \ m^{-3}$.

 d,e,f In Cheng et al. (2015), "d" refers to the constructed PM_{2.5} below 30 µg m⁻³, "e" between 30 µg m⁻³ and 90 µg m⁻³, and "f" above 90 µg m⁻³.

^{g,h} In Cheng et al. (2011), "g" was measured using the denuded quartz filter and "h" was measured using the un-denuded(bare) quartz filter.

Size	Method	Winter				Spring			
		OC-EC	WSOC-Levo	WSOC-PMF	OC-PMF	OC-EC	WSOC-Levo	WSOC-PMF	OC-PMF
PM ₁	OC-EC		0.89	0.89	0.89		0.79	0.63	0.72
	WSOC-Levo	0.89		0.94	0.94	0.79		0.75	0.81
	WSOC-PMF	0.89	0.94		1.00	0.63	0.75		0.95
	OC-PMF	0.89	0.94	1.00		0.72	0.81	0.95	
PM _{2.5}	OC-EC		0.93	0.91	0.91		0.64	0.40	0.47
	WSOC-Levo	0.93		0.97	0.97	0.64		0.79	0.81
	WSOC-PMF	0.91	0.97		1.00	0.40	0.79		0.96
	OC-PMF	0.91	0.97	1.00		0.47	0.81	0.96	*******
PM ₁₀	OC-EC		0.97	0.95	0.94		0.73	0.55	0.59
	WSOC-Levo	0.97		0.96	0.95	0.73		0.66	0.63
	WSOC-PMF	0.95	0.96		1.00	0.55	0.66		0.95
	OC-PMF	0.94	0.95	1.00		0.59	0.63	0.95	******

Table S2. Spearman correlations of SOC in PM_1 , $PM_{2.5}$ and PM_{10} estimated by different methods during the sampling periods in winter and spring.

Figure S1. Source profiles of OC in atmospheric particulate matter in Beijing resolved by PMF.

Figure S2. Source contributions to OC in PM₁, PM_{2.5} and PM₁₀ in Beijing during the sampling periods in winter and spring.