
List of changes: 

1. One co-author added  

2. Other modifications are all specific to the uncertainty estimation 

in the microphysical data and are highlighted in the revised 

manuscript. 



The paper is improved and most of the reviewers' comments have been addressed. However, 

one comment remains to be addressed and this is related to the uncertainties of the 

microphysical retrieval and the DRF impact of Canadian smoke.  

Specifically, the fact that the inversion provides reasonable estimates for dust, does not 

support its applicability to smoke particles which have different refractive index and shape. 

Even more so, the algorithm used (i.e. Veselovskii et al. 2010) provides reasonable estimates 

of volume and effective radius of dust, by reproducing the depolarization measurements along 

with the backscatter and extinction. This is not the case presented here, since the measured 

depolarization values are not reproduced.  

It is expected that the uncertainties are larger than the ones reported in the paper and that 

this uncertainties propagate to the DRF estimation as well. This is a serious concern that has 

to be addressed, otherwise the paper results are not sufficiently supported.  

 

I propose that the authors will clearly state the level of uncertainties in all aspects discussed 

(from the inversion to DRF). This statement should be present also in Abstract and 

Conclusions section. The paper should stick on the EARLINET observations presented and 

how these can be utilized for radiative transfer applications, stating though that this is just a 

demonstration of future potential application of EARLINET data and techniques on DRF 

studies, while we are still working on the uncertainties.  

 

Reply: Actually the observed particle linear depolarization ratios can be well reproduced by 

spheroid model. Assume that the mixture is composed of 85% spheroids and 15% spheres, 

and that the complex refractive index is 1.52-i0.025. The size distribution is taken from the 

retrieval based on sphere model (not shown in the paper, but close to N(0.3, 0.2) distribution). 

The derived particle linear depolarization ratios are: 21% at 355 nm, 19% at 532 nm and 

7.5% at 1064 nm (The real measurements are 23%, 18-19% and 5%). This simulation 

well reproduces the values and the spectrum of the depolarization ratio, which, to some 

extent, justifies the retrieved microphysical properties. 

The reason that prevented us from choosing spheroid model to invert altogether Lidar 

extinction, backscattering coefficient and depolarization ratio is that it tends to provide 

solutions with very low imaginary part as favorable solutions (because fitting the optical data 

with as low discrepancy as possible is the principle of inversion algorithm), while this low 

imaginary part is not realistic for smoke. This is the deficiency of the spheroid model. 

Based on this fact, we admit that the errors of the retrieval cannot be accurately provided. 



The errors we provide in Table 3 are used as a reference. The real errors could be larger or 

maybe smaller than those. More efforts in developing scattering model are needed. 

Ansmann et al., 2018 and Haarig et al., 2018 observed smoke layers from the same event and 

the observation time is close to ours. They inverted their lidar data with the same algorithm.  

The retrieved effective radius agrees very well with our results and their retrieved volume 

concentration is verified by comparing with AERONET product. It is a good example that 

justifies the retrieval of volume concentration. 

Although the errors of the complex refractive index cannot be quantitatively provided, values 

retrieved using sphere model (shown in the paper) are quite reasonable for smoke aerosols. In 

order to estimate the impact of error in the imaginary part on the DRF and heating ratio, we 

vary the imaginary part by +/- 50% and re-run the model. We derived up to 20% of error at 

the bottom of the atmosphere and up to 40% in the heating rate of the smoke plume. This 

estimation is based on Lille data on 24 August 2017. 

The above information is summarized and added to the revised version of the manuscript. 
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Abstract. Long-range transported Canadian smoke layers in the stratosphere over northern France were detected by three Lidar

systems in August 2017. The peaked optical depth of the stratospheric smoke layer exceeded 0.20 at 532 nm, which is compara-

ble with the simultaneous tropospheric aerosol optical depth. The measurements of satellite sensors revealed that the observed

stratospheric smoke plumes were transported from Canadian wildfires after being lofted by strong pyro-cumulonimbus. Case

studies in two observation sites, Lille (50.612�N, 3.142�E, 60 m a.s.l) and Palaiseau (48.712�N, 2.215�E, 156 m a.s.l), are5

presented in detail. Smoke particle depolarization ratios are measured at three wavelengths: over 0.20 at 355 nm, 0.18–0.19 at

532 nm and 0.04–0.05 at 1064 nm. The high depolarization ratios and its interesting spectral dependence are possibly caused

by the irregular-shaped aged smoke particles or/and the mixing with dust particles. Similar results are found by several Euro-

pean Lidar stations and an explanation that can fully resolve this question is not yet found. Aerosol inversion based on Lidar

2↵+3� data derived smoke effective radius about 0.33 µm for both cases. The retrieved single scattering albedo is in the10

range of 0.8 to 0.9, indicating that the smoke plumes are absorbing. The absorption can cause perturbations to the temperature

vertical profile, as observed by ground-based radiosonde, and it is also related to the ascent of the smoke plumes when exposed

in sunlight. A direct radiative forcing (DRF) calculation is performed using the obtained optical and microphysical properties.

The calculation revealed that the smoke plumes in the stratosphere can significantly reduce the radiation arriving at the surface,

and the heating rate of the plumes is about 3.5 K per day. The study provides a valuable characterization for aged smoke in15

the stratosphere, but efforts are still needed in reducing and quantifying the errors in the retrieved microphysical properties, as

well as radiative forcing estimates.

1 Introduction

Stratospheric aerosols play an important role in the global radiative budget and chemistry-climate coupling (Deshler, 2008;

Kremser et al., 2016; Shepherd, 2007). Volcanic eruption is a significant contributor of stratospheric aerosols because the ex-20

plosive force could be sufficient enough to penetrate the tropopause, which is regarded as a barrier to the convection between
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the troposphere and stratosphere. Besides volcanic eruption, biomass burning has been reported to be one important constituent

of the increasing stratospheric aerosols (Hofmann et al., 2009; Khaykin et al., 2017; Zuev et al., 2017). The pyro-cumulonimbus

clouds generated in intense fire activities have the potential to elevate fire emissions from the planetary boundary layer to the

stratosphere (Luderer et al., 2006; Trentmann et al., 2006). Stratospheric smoke plumes have been reported in many previous

studies (Fromm et al., 2000; Fromm and Servranckx, 2003; Fromm et al., 2005; Sugimoto et al., 2010).5

In the summer of 2017, intense wildfires spread in the west and north of Canada. By mid-August, the burnt area had grown to

almost 9000 km2 in British Columbia, which broke the record set in 1958 (see the link). The severe wildfires generatedstrong

pyro-cumulonimbus clouds, which were recorded by the satellite imaginary MODIS (Moderate Resolution Imaging Spectrom-

eter). The GOES-15 (Geostationary Operational Environmental Satellite) detected five pyro-cumulonimbus clouds in British

Columbia on 12 August 2017 (see https://pyrocb.ssec.wisc.edu). Smoke plumes in the troposphere and lower stratosphere were10

observed by several European Lidar stations in August and September 2017. Ansmann et al. (2018) and Haarig et al. (2018)

observed stratospheric and tropospheric smoke layers originated from Canadian wildfires on 21–23 August 2017 in Leipzig,

Germany. The maximum extinction coefficient of the smoke layers reached 0.5 km�1, about 20 times higher than the observa-

tion 10 months after the eruption of Pinatubo volcano in 1991(Ansmann et al., 1997). Khaykin et al. (2018) reported Canadian

smoke layers in the stratosphere over southern France in August 2017 and they found that the smoke plumes can travel the15

whole globe (at middlelatitudes) in about three weeks.

Reoccurring aerosol layers in the troposphere and lower stratosphere were detected by the Lidar systems in northern France

during 19 August and 12 September 2017. In this study, we present the stratospheric smoke observations from two French

Lidar stations: Lille (50.612�N, 3.142�E, 60 m a.s.l) and Palaiseau (48.712�N, 2.215�E, 156 m a.s.l), and a mobile Lidar sys-

tem. Satellite measurements from multiple sensors, including UVAI (Ultraviolet aerosol index) from the OMPS NM (Ozone20

Mapping and Profiler Suite, Nadir Mapper), CO (carbon monoxide) concentration from AIRS (Atmospheric Infrared Sounder),

backscatter coefficient and depolarization ratio profiles from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations) help identify the source and the transport pathway of the smoke layers. This study is focused on the retrieval of

the aerosol optical and microphysical properties using Lidar measurements. Further, the radiative effect of the smoke layer is

presented.25

2 Methodology

2.1 Lidar data processing

In this subsection, we present the method for processing Lidar measurements and the error estimation is presented in the

Appendix. Raman Lidar technique (Ansmann et al., 1992) allows an independent calculation of extinction and backscatter30

coefficients. When the nitrogen Raman signal is not available, Klett method (Klett, 1985) is used to calculate the extinction

and backscatter coefficient, based on an assumption of aerosol Lidar ratio. In this study, the stratospheric aerosol layers are

at high altitudes where the signal-to-noise ratio of Raman channels is not sufficient to obtain high quality extinction profile,
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therefore, we choose Klett method. To reduce the dependence of Klett inversion on the assumption of Lidar ratio, we use a

pre-calculated optical depth of the stratospheric aerosol layer as an additional constraint. We test a series of Lidar ratios in the

range of 10–120 sr, and apply independent Klett inversion with each Lidar ratio at a step of 0.5 sr. The integral of the extinction

coefficient over the stratospheric layer, expressed below, is compared with the pre-calculated optical depth.
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u is the optical depth of the stratospheric smoke layers. P
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We use this method to estimate the optical depth of the stratospheric layer for LILAS and IPRAL measurements. The Lidar

ratio leading to the best agreement of ⌧

i and ⌧

u is accepted as the retrieved Lidar ratio of the stratospheric aerosol layer.15

We apply Klett inversion only to the stratospheric aerosol layer, from 1 km below the layer base to 1 km above the layer

top. Therefore, the impact of tropospheric aerosols is excluded. Compared to Raman method, the extinction and backscatter

coefficients calculated from Klett method are not independent because of the assumed vertically constant aerosol lidar ratio.

But in this study, the smoke particles are well mixed, so the vertical variation of lidar ratio is expected to be not significant.

Additionally, using Klett method avoids the effects of vertical smoothing that occur to the Raman derived extinction profile.20

The particle linear depolarization ratio, �
p

, is written as:
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where R is the backscatter ratio, �
v

is the volume linear depolarization ratio and �

m

is the molecular depolarization ratio.

R is defined as the ratio of the total backscatter coefficient to the molecular backscatter coefficient. �
m

= 0.004 is used in

the calculation of particle linear depolarization ratio. �
v

is the ratio of the perpendicularly backscattered signal to the par-

allel backscattered signal, multiplied by a calibration coefficient. The depolarization calibration is designed to calibrate the25

electro-optical ratio between the perpendicular and parallel channel and is performed following the procedure proposed by

Freudenthaler et al. (2009). The particle linear depolarization ratio is a parameter related to the shape of aerosol particles, and
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it is usually used in the Lidar community for aerosol typing. The particle linear depolarization ratio of spherical particles is

zero. For irregular-shaped particles, for example ice particles in cirrus clouds, the measured particle linear depolarization is

about 0.40 (Sassen et al., 1985; Veselovskii et al., 2017).

2.2 Aerosol inversion and radiative forcing estimation5

The 3�+2↵ from Lidar observations can be inverted to obtain particle microphysical parameters. The regularization algorithm

is used to retrieve size distribution, wavelength-independent complex refractive indices, particle number, surface and volume

concentrations (Müller et al., 1999; Veselovskii et al., 2002). We apply GRASP (Generalized Retrieval of Aerosol and Sur-

face Properties) to calculate the DRF (Direct Radiative Forcing) effect of the stratospheric aerosol layer. GRASP is the first

unified algorithm developed for characterizing atmospheric properties gathered from a variety of remote sensing observations.10

Depending on the input data, GRASP can retrieve columnar, vertically resolved aerosol properties and surface reflectance

(Dubovik et al., 2014). As a branch of GRASP algorithm, GARRLiC (Generalized Aerosol Retrieval from Radiometer and

Lidar Combined data, called GARRLiC/GRASP hereafter) algorithm was developed for the inversion of coincident single-

or multi-wavelength Lidar and sun photometer measurements (Lopatin et al., 2013; Bovchaliuk et al., 2016). The two main

modules of GARRLiC/GRASP are the forward model and numerical inversion module. The forward module simulates the15

atmospheric radiation by using radiative transfer and by accounting for the interaction between light and trace gases, aerosols

and underlying surfaces. The aerosol scattering properties in the atmosphere are represented by 1 or 2 aerosol components,

whose optical properties can be described using a mixture of spheres and spheroids and are vertically independent. The verti-

cally resolved optical properties, such as the extinction and backscatter coefficients etc., measured by Lidar, are described by

varying the aerosol vertical concentration. The forward model includes a radiative transfer model in order to simulate multiple20

types of observations. The radiative transfer equation in GARRLiC/GRASP is solved using this parallel plane approximation.

The atmosphere is divided into a series of parallel planes and the optical properties of each parallel plane can be represented

by the input parameters. The radiative transfer model is based on the study of Lenoble et al. (2007). The numerical inversion

module follows the multi-term least squares method strategy and derives several groups of unknown parameters that fit the

observations.25

In this study, we apply the forward model of GARRLiC/GRASP to estimate the forcing effect of the observed stratospheric

plume in contrast to a standard Rayleigh atmosphere. The input parameters for DRF are the retrieved aerosol microphysical

properties from regularization algorithm, including the size distribution, the complex refractive indices as well as the assumed

sphere fraction; the aerosol vertical distribution of the stratospheric plume and surface BRDF (Bidirectional Reflectance Dis-

tribution Function) parameters. The forward model of GARRLiC/GRASP can produce downward and upward broadband flux,30

covering the 0.2–4.0 µm spectrum, at vertical levels specified by the users. Hence, we can calculate the DRF and the heating

rate specific to smoke plume.
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3 Ground-based and satellite observations

3.1 Simultaneous Lidar and sun photometer observations

LILAS (LIlle Lidar Atmospheric Study) is a multi-wavelength Raman Lidar (Bovchaliuk et al., 2016; Veselovskii et al., 2016)

operated at LOA (Laboratoire d’Optique Atmosphérique, Lille, France). LILAS system is transportable and has three elastic

channels (355, 532 and 1064 nm), with the capability of measuring the depolarization ratios at these wavelengths. Further it5

has three Raman channels at 387, 408 and 530 nm. IPRAL system (IPSL Hi-Performance multi-wavelength RAman Lidar,

Bravo-Aranda et al. (2016); Haeffelin et al. (2005)) is a multi-wavelength Raman Lidar operated at SIRTA (Site Instrumental

de Recherche par Télédétection Atmosphérique, Palaiseau, France). The distance between the two systems is around 300 km.

Lidar IPRAL has the same elastic channels with LILAS, but the three Raman channels are 387, 408 and 607 nm. In IPRAL

system, the depolarization ratio is only measured at 355 nm. The two Lidar systems were operated independently and both10

observed reoccurring smoke layers in the lower stratosphere during the period of 19 August to 12 September 2017. In addition,

sun photometer measurements are available at Lille and Palaiseau, which are both affiliated stations of AERONET (AEROsol

RObotic NETwork). LILAS and IPRAL Lidar systems are affiliated to EARLiNET (European Aerosol Research Lidar NET-

work) (Bösenberg et al., 2003; Böckmann et al., 2004; Matthais et al., 2004; Papayannis et al., 2008; Pappalardo et al., 2014).

Both systems perform regular measurements and follow the standard EARLiNET data quality check and calibration procedures15

(Freudenthaler et al., 2018).

On 29 August, three Lidar systems in northern France simultaneously observed a stratospheric aerosol layer. The three Lidar

systems are LILAS, IPRAL and a single wavelength (532 nm) CIMEL micro-pulse Lidar, which is set up in a light mobile

system, MAMS (Mobile Aerosol Monitoring System, Popovici et al. (2018)) to explore aerosol spatial variability. MAMS was

traveling between Palaiseau and Lille on 28 and 29 August. MAMS is equipped with a mobile sun photometer, PLASMA20

(Photomètre Léger Aéroporté pour la Surveillance des Masses d’Air, Karol et al. (2013)), capable to measure columnar aerosol

optical depth (AOD) along the route. The configuration of the three Lidar systems is summarized in Table 1.

Figure 1 shows the normalized Lidar range-corrected signals and columnar AOD at 532 nm derived from sun photometer

measurements on 29 August 2017. The aerosol layers in the lower stratosphere, stretching from 16 to 20 km, were detected

by the three Lidars. The IPRAL Lidar system in Palaiseau detected the aerosol layer in the range of 16–20 km on 29 August.25

The columnar AOD showed no significant variations, staying between 0.30 and 0.40, from 1000 UTC to 1600 UTC and started

decreasing from 1700 UTC. Along the route Palaiseau-Lille, MAMS Lidar observed a layer between 16 and 20 km consisting

of two well-separated layers. The columnar AOD was very stable, around 0.40, all along the route from Palaiseau to Lille.

Lidar LILAS in Lille observed a shallow layer between 18–20 km at about 0800 UTC on 29 August. The thickness of the layer

increased to 4 km until 1600 UTC. The columnar AOD increased from 0.20 to 0.40 from 0800 UTC to 1400 UTC. The Lidar30

quicklook indicated that the aerosol content in the lower troposphere did not show significant variations during 0800 UTC and

1200 UTC, so the increased optical depth, 0.2, came mainly from the contribution of the stratospheric aerosol layer.

Figure 2 shows the Lidar range corrected signal at 1064 nm on 24–25 August 2017. The plume between 17 and 18.5 km is the

smoke layer. Due to cirrus clouds and low clouds in the troposphere, the lidar signals in the plume are interrupted. In nighttime,
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the plume base is stable at about 17 km. Just starting from the sunrise time at 04:51 UTC, a gradual and obvious ascent is

observed. In 3–4 hours, the plume base ascended about 0.6 km. Between 10:00–16:00 UTC, the plume base stayed stable.

The ascent of smoke plume was also presented in Ansmann et al. (2018) and Khaykin et al. (2018). Khaykin et al. (2018)

mentioned that the plume ascended very fast during the first few days after being injected into the troposphere. Based on the

observation in Figure 2, we derived the ascent rate of approximately 2.1–2.8 km per day, considering that the sunshine duration5

is 13 hours (according to the latitude of Lille site) and that the vertical speed of the plume is constant. Ansmann et al. (2018)

explained that the ascent of the plume may be related to the absorption of soot-containing aerosols and the wind velocity in the

stratosphere. Figure 2 shows that the plume does not continuously ascend in the daytime. One possible explanation we infer

is that the self-heating and the wind shear reached an equilibrium point in the plume, so it moved neither upward nor downward.

10

3.2 Radiosonde measurements

We take the radiosonde measurements from two stations closest to the Lidar sites: Trappes (48.77�N, 1.99�E, France) and

Beauvechain (50.78�N, 4.76�E, Belgium). Trappes is about 20 km to Palaiseau and Beauvechain is 120 km to Lille. Consider-

ing the large spatial distribution of the stratospheric aerosols, it is obvious that the radiosonde passed through this stratospheric

smoke layer. Figure 3 shows the temperature at 0000, 1200 UTC, 29 August for Trappes and 2100 UTC, 29 August for Beau-15

vechain. To compare, we plot the temperature profile of Trappes at 1200 UTC, 21 August, when no stratospheric aerosol layers

presented. The temperature profiles show clearly an enhancement between 16 and 20 km, which coincides with the altitude at

which the stratospheric plumes appear. The spatial-temporal occurrence of this temperature enhancement and the stratosphere

plume in two independent stations indicate that they are directly correlated. Fromm et al. (2005, 2008) also presented temper-

ature increase in the stratospheric smoke layers.20

3.3 MODIS measurements

MODIS is a key instrument onboard the Terra and Aqua satellites. Terra MODIS and Aqua MODIS are viewing the entire

Earth’s surface every 1 to 2 days. Several episodes of Canadian wildfires have been observed by MODIS since early July 2017.

On 12 August, MODIS observed a thick, grey plume arising from the British Columbia in the west of Canada (not shown,25

please see the webpage of WorldView: https://worldview.earthdata.nasa.gov). Figure 4 shows the Earth’s true color image

overlaid with the fires and thermal anomalies on 15 August 2017 when the plumes have spread over a large area. The region

marked with the green dashed line is a huge visible smoke plume and in its southwest, MODIS detected a belt of fire spots.

Additionally, during the week of 13–19 August, MODIS (see WorldView) observed a widespread cloud coverage over Canada

and showed that clouds layers were overshadowed by the smoke plumes, meaning that the plumes were lofted above the cloud30

layers, as shown in Figure 4.
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3.4 OMPS NM UVAI maps

UVAI is a widely used parameter in characterizing UV-absorbing aerosols, such as desert dust, carbonaceous aerosols coming

from anthropogenic biomass burning, wildfires and volcanic ash. The UVAI is determined using the 340 and 380 nm wavelength

channels and is defined as:
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where I340 and I380 are the backscattered radiance at 340 and 380 nm channel. The subscript meas represents the measure-

ments and the calc represents the calculation using a radiative transfer model for pure Rayleigh atmosphere. The UVAI is

defined so that positive values correspond to UV-absorbing aerosols and negative values correspond to non-absorbing aerosols

(Hsu et al., 1999). The OMPS NM onboard the Suomi NPP (National Polar-orbiting Partnership) is designed to measure the

total column ozone using backscattered UV radiation between 300–380 nm. A 110� FOV (field-of-view) telescope enables10

full daily global coverage (McPeters et al., 2000; Seftor et al., 2014). Figure 5 shows the evolution of UVAI from OMPS NM

(Jaross, 2017) every two days during 11 and 29 August 2017. The evolution of the UVAI during this event has also been shown

in the study of Khaykin et al. (2018). A plume with relatively high UVAI first occurred over British Columbia on 11 August,

and the intensity of the plume was moderate. An obvious increase of UVAI from 11 August to 13 August was observed over

the north-west of Canada. It is a clear indication that the events on 12 August was responsible for the increase of UVAI. From15

13 to 17 August, the plume spread in the northwest-southeast direction and the UVAI in the centre of the plume reached 10. On

19 August, the plume centre reached the Labrador Sea and the forefront of the plume reached Europe. From 21 to 29 August,

the UVAI in the map was much lower than the previous week. During this period, we can still distinguish a plume propagating

eastward from the Atlantic to Europe, with the UVAI damping during the transport. Figure 5(e)–(f) show that Europe was

overshadowed by the high-UVAI plume during 19 and 29 August.20

3.5 AIRS CO maps

AIRS is a continuously operating cross-track scanning sounder onboard NASA’s Aqua satellite launched in May 2002. AIRS

covers the 3.7 to 16 µm spectral range with 2378 channels and a 13.5 km nadir FOV (Susskind et al., 2014; Kahn et al., 2014).

The daily coverage of AIRS is about 70% of the globe. AIRS is designed to measure the water vapor and temperature profiles.

It includes the spectral features of the key carbon trace gases, CO2, CH4 and CO (Haskins and Kaplan, 1992). The current CO25

product from AIRS is very mature because the spectral signature is strong and the interference of water vapor is relatively low

(McMillan et al., 2005). CO, as a product of the burning process, can be taken as a tracer of biomass burning aerosols (Andreae

et al., 1988) due to its relatively long lifetime of 1/2 to 3 months. CO can also be originated from anthropogenic sources, for

example engines of vehicles (Vallero, 2014). In August 2017, the wildfire activities were so intense that the CO plumes raise

from the fire region were much more significant than the background. This strong contrast makes CO a good tracer for the30

transport of the smoke plumes.

Figure 6 shows the evolution of the total column CO concentration (Texeira, 2013) every two days during the period of 11
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August to 29 August 2017. CO concentration strongly increased in the west and north of Canada from 11 to 13 August, as

the UVAI in Figure 5. The forefront of the CO plume has reached the west and north of Europe since 19 August. We find that

the spatial distribution and temporal evolution of CO are strongly co-related with the UVAI. This correlation is much evident

before 21 August. After 21 August, the correlation became weaker, for the UVAI in North America was decreasing fast while

the CO concentration remained almost unchanged or decreased much slower. It is possibly due to the longer lifetime of CO5

compared to UVAI. Combing the MODIS image, the UVAI and CO spatial-temporal evolution, we conclude that the aerosol

plumes observed in Europe were smoke transported from Canada.

3.6 CALIPSO measurements

CALIPSO measurements provide a good opportunity to investigate the vertical structure of the plumes and trace back the

transport of the plumes. CALIPSO measures the backscattered signal at 532 and 1064 nm. One parallel channel and one per-10

pendicular channel are coupled to derive particle linear depolarization ratio at 532 nm. Figure 7(a)–(f) present the profiles of

the backscatter coefficient and particle linear depolarization ratio at 532 nm, corresponding to the six locations a–f in Figure 4.

These data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. The six locations are

intendedly selected, falling in the region with elevated UVAI and CO concentration and following the transport pathway of the

plume (in Figure 5 and 6) from Canada to Europe. Figure 7 shows the enhancements of backscatter in the upper troposphere15

and lower stratosphere. Aerosol and cloud are both possible causes of the backscatter enhancements and can be distinguished

by using the particle depolarization ratio. We have examined the temperature profiles over several sites in North America in

August 2017 and found that, above 10 km, the temperature drops below -38�C, at this temperature clouds consist mainly of

ice crystals. The particle depolarization ratio is usually no less than 0.40 for ice cloud and from a few percent to about 0.40 for

mixed-phase cloud.20

Figure 7(a) and (b) show the aerosol layers observed on 14 and 15 August over the north of Canada, both locations lay in the

area where MODIS observed a smoke plume on 15 August (Figure 4) and the area with high UVAI and CO concentration. The

particle linear depolarization ratio is about 0.05 in Figure 7(a) and 0.10 in (b), meaning that it is an aerosol layer instead of

ice or mixed-phase cloud. Figure 7(c) and (f) show stratospheric layers detected at 10–20 km height, with the depolarization

varying from 0.10 to 0.18. The lower layer at about 9 km in Figure 7(d) has depolarization ratio between 0.20 and 0.45 (median25

0.32), which falls into the category of ice or mixed-phase clouds. Profiles in Figure 7(f) were captured over Berlin at 0129 UTC

on 23 August. About 150 km in the south-west, a Lidar in Leipzig measured stratospheric smoke layers (Haarig et al., 2018).

The particle depolarization ratio of CALIPSO at 532 nm on 23 August is consistent with ground based Lidar measurements in

Lille and Leipzig, which will be presented in Section 4. It should be noted that aerosol types of the plumes in Figure 7 are quite

uncertain in CALIPSO product. These layers are classified to scattered aerosol types, such as polluted dust, elevated smoke and30

volcanic ash. This mis-classification could introduce some extent of errors to the backscatter profile and particle depolarization

profiles.
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4 Results and analysis

4.1 Overview of retrieved optical parameters

We selected and averaged the Lidar measurement in 10 time intervals, among which five periods are from LILAS system in

Lille: 2200 (24 August) �0030 UTC (25 August), 1300�1600 UTC, 1600�1800 UTC (29 August), 2000�2300 (31 August)

and 2300 (31 August)�0200 UTC (01 September); two intervals from IPRAL system in Palaiseau: 1600� 1800 UTC and5

1920� 2120 UTC (28 August) and three intervals from the mobile Lidar in MAMS system (29 August): 1400� 1500 UTC

(corresponding spatially to 100 km distance from Palaiseau to Compiègne), 1500� 1545 UTC (100 km on the route from

Compiègne to Arras) and 1615� 1630 UTC at Lille.

Figure 8 shows the optical depth of the stratospheric layer varying from 0.05 to 0.23 (at 532 nm). The spectral dependence of

the optical depth of 355 nm and 532 nm is very weak. The maximal optical depth of the stratospheric layer was observed in10

the afternoon of 29 August, between 1600 and 1800 UTC. LILAS system observed aerosol optical depth of 0.20±0.04 at 355

nm and 0.21±0.04 at 532 nm. As discussed in Section 3.1, the columnar AOD at 532 nm from AERONET increased by about

0.20 after the presence of the stratospheric layer, which agrees well with the derived optical depth of the stratospheric layer.

The minimum of the optical depth appeared in the night of 31 August 2017, giving 0.04± 0.02 at 355 nm and 0.05± 0.02 at

532 nm. The optical depth of the stratospheric layer along the route, observed by MAMS, are as follows: 0.19 over a distance15

of 100 km North from Palaiseau, 0.23 along 100 km of the middle of the transect from Compiègne to Arras and 0.22 when

arriving at Lille.

Due to the insufficient signal-to-noise ratio above the stratospheric plume, the MAMS Lidar measurements are processed

using Klett method, constraint by the columnar AOD measured by PLASMA sun photometer. Klett inversion is performed to

the Lidar profile from the surface to the top of the stratospheric layer, assuming a vertically independent Lidar ratio. The optical20

depth of the stratospheric smoke layer is then calculated from the integral of the extinction profile. As a result, the error of

the estimated smoke optical depth from MAMS measurements is difficult to quantify. Here we present the optical depth from

MAMS Lidar for a comparison.

Table 2 summarizes the Lidar ratio and particle depolarization ratio in the stratospheric aerosol layer. Lidar ratios vary between

54± 9 sr and 58± 23 sr at 532 nm and between 31± 15 sr and 45± 9 sr at 355 nm. The results from two different Lidar25

systems and with different observation time agree well, indicating that the properties of the stratospheric layer are spatially

and temporally stable. We derived higher Lidar ratio at 532 nm than at 355 nm which is a characteristic feature of aged smoke

and has been observed in previous studies (Wandinger et al., 2002; Murayama et al., 2004; Müller et al., 2005; Sugimoto

et al., 2010). In the night of 31 August, the error of Lidar ratio is about 30� 35%, relatively higher than the other days

because of the low optical depth. Although the error varies, the mean values of derived Lidar ratio are relatively stable. The30

particle depolarization ratio decreases as wavelength increases. At 1064 nm channel, the particle linear depolarization ratio is

very stable, varying from 0.040± 0.01 from 0.05± 0.01. At 532 nm channel, the depolarization is also stable, varying from

0.18± 0.03 to 0.20± 0.03. The particle linear depolarization ratio at 355 nm increased from 0.23± 0.03 on 24 August to

0.28± 0.08 on 31 August. However, the increase is within the range of the uncertainties. The particle depolarization ratio at
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532 nm is in good agreement with CALIPSO observations shown in Figure 7(c)–(f). The particle depolarization ratio at 355

nm measured by LILAS is consistent with IPRAL system. (Haarig et al., 2018) measured 0.23 at 355 nm, 0.18 at 532 nm and

0.04 at 1064 nm in the stratospheric smoke layers on 22 August 2017, showing excellent agreements with our study.

The errors of particle depolarization ratio are calculated with the method in the Appendix. The estimated errors of the particle

depolarization ratio are generally below 15%, expect the 355 nm channel in the night of 31 August when the optical depth was5

the lowest in all the investigated observations in this study. On 31 August, the backscatter ratio, volume depolarization ratio

and molecular depolarization ratio at 355 nm are approximately: 3.5 (50%), 0.15 (10%) and 0.004 (200%). The values in the

parentheses are the relative errors of the quantity on their left. The resulting error of particle depolarization is about 28%. At

532 nm channel, we derive 12% of error for the particle depolarization ratio when the backscatter ratio, volume depolarization

ratio and molecular depolarization ratio are: 10 (50%), 0.15 (10%) and 0.004 (200%). In the same way, we derive less than10

11% of error for the particle depolarization ratio at 1064 nm. The error at 355 nm is estimated to be higher than 532 and 1064

nm as the interferences of molecular scattering is stronger at this channel. When the layer is optically thicker, for example,

24 August, the error of 355 nm is estimated to be less than 13%. Conservatively, we use 30% for the error of particle linear

depolarization ratio at 355 nm on 31 August and 15% for the error of the rest.

4.2 Case study15

4.2.1 Optical properties

We select the night measurements of 24 August in Lille and 28 August in Palaiseau as two examples. The two systems were

operating independently, so that the results from two different systems that measured at different time can be regarded as veri-

fications for each other.

24 August 2017, Lille20

Figure 9 shows the retrieved optical properties of the stratospheric smoke layer observed by LILAS system in the night of

24 August in Lille. The stratospheric aerosol layer is between 17 and 18 km, and we retrieved the extinction and backscatter

profiles by assuming that the Lidar ratios are 36 sr at 355 nm and 54 sr at 532 nm. The Lidar ratio at 1064 nm channel is

assumed to be 60 sr. The extinction coefficient within the layer is about 0.12� 0.22 km�1 at 355 nm and 532 nm. It should

be noted that the profile of the extinction coefficient is similar to the backscatter coefficient profile, because we assume the25

aerosol lidar ratio is vertically constant within the smoke layer. A comparison of backscatter coefficient profile has been made

(not shown) between Klett and Raman method. We found that the difference of the backscatter coefficient profiles from the

two methods are very consistent, indicating that our results are reliable. Assuming vertically constant aerosol Lidar ratio in the

smoke layer is not unrealistic, as one can see that the particle linear depolarization ratios in the smoke layer have no noticeable

vertical variation, indicating that the smoke particles are well mixed. The extinction-related Ångström exponent for 355 and30

532 nm is around 0.0± 0.5, the backscatter-related Ångström exponent at corresponding wavelengths is about 1.0± 0.5. The

particle depolarization ratios decrease as wavelength increases: 0.23±0.03 at 355 nm, 0.20±0.03 at 532 nm and 0.05±0.01 at

1064 nm. No parameters in Figure 9(b) exhibit noticeable vertical variations.
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28 August 2017, Palaiseau
Figure 10 shows the retrieved optical parameters from IPRAL observations at 1920�2120 UTC, 28 August 2017 in Palaiseau.

The thickness of the stratospheric layer is about 2.3 km, spreading from 17.2 km to 19.5 km. Klett inversion was applied

with estimated Lidar ratio of 36 sr at 355 nm and 58 sr at 532 nm. At 1064 nm the Lidar ratio was assumed to be 60 sr. The

maximum extinction coefficient in the layer reached 0.12 km�1 at 532 nm. The extinction-related Ångström exponent between5

355 nm and 532 nm is about -0.06±0.5. The corresponding backscatter Ångström exponent is about 1.2±0.5. The particle

linear depolarization ratio at 355 nm is about 0.27±0.05. The particle linear depolarization ratio at 355 nm, extinction and

backscatter-related Ångström exponent between 355 nm and 532 nm do not show evident vertical variations.

4.2.2 Microphysical properties10

Regularization algorithm is applied to the vertically averaged extinction coefficients (at 355 and 532 nm) and backscatter co-

efficients (at 355, 532 and 1064 nm) in Figure 9 and Figure 10. Treating non-spherical particles is a challenging task. Many

studies have been done to model the light scattering of non-spherical particles. The spheroid model was used to retrieved dust

properties (Dubovik et al., 2006; Mishchenko et al., 1997; Veselovskii et al., 2010). Both sphere and spheroid models are used

to retrieve particle microphysical properties. The retrievals using sphere and spheroid model are rather consistent except the15

imaginary part of the refractive index. The spheroid model tends to underestimate the imaginary part of the complex refractive

indices, whether the measured particle depolarization ratios are used. This demonstrates the deficiency of the spheroid mode

in retrieving high absorbing and irregular-shape smoke particles. The size of smoke particles is expected to be not very big

so that sphere model should be able to provide reasonable results. The particle linear depolarization ratio is not used in the

retrieval, and the spectral dependence of complex refractive indices is also ignored. The derived effective radius (R
eff

), volume20

concentration (V
c

), the real (m
R

) and imaginary (m
I

) part of the refractive indices are summarized in Table 3.

The retrieved particle size distributes in the range of 0.1 to 1.0 µm, with effective radius (volume-weighted sphere radius) of

0.33±0.10 for both Palaiseau data and Lille data. The volume concentration is 15±5 µm3cm�3 for Palaiseau data and 22±7

µm�3cm3 for Lille data. The real part of the complex refractive indices retrieved from Lille and Palaiseau data are also in good

agreement, giving 1.55± 0.05 and 1.52± 0.05 for the real part, and 0.028± 0.014 and 0.021± 0.010 for the imaginary part.25

The single scattering albedos are estimated to be 0.82–0.89 for Lille data and 0.86–0.90 for Palaiseau data. The derived aerosol

microphysical properties from Palaiseau and Lille data are consistent.

The errors of the retrieved parameters have been discussed in the relevant papers (Müller et al., 1999; Veselovskii et al., 2002;

Pérez-Ramírez et al., 2013). About 30% of relative error is derived for the effective radius and volume concentration; ± 0.05

(absolute value) is expected for the real part of refractive indices and 50% is derived for the imaginary part of refractive radius.30

In our case, one significant limitation is that using sphere model does not allow us to reproduce the particle depolarization

ratios. We input the retrieved size distribution (not shown) and complex refractive indices in Table 3 into the spheroid model,

and we found that spheroid model (85% spheroid and 15% sphere) can reproduce the spectral depolarization ratios with satis-

factory accuracy: 0.21, 0.19 and 0.07 at 355, 532 and 1064 nm, respectively. However, the argument is not enough to justify
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that the aforementioned uncertainty estimation from previous researchers is also applicable to our retrievals. We provide this

estimate as a reference, but at current stage, we are not able to provide more quantitative and accurate error estimation for the

retrieved microphysical properties.

4.2.3 Direct radiative forcing effect5

The stratospheric plumes observed on 24 and 28 August in Lille and Palaiseau are optically thick, with extinction coefficient

about 10 times higher than in the volcanic ash observed by Ansmann et al. (1997) in April 1992, 10 months after the eruption

of Mount Pinatubo. The radiative forcing imposed by the observed layers is a curious question. We input the retrieved mi-

crophysical properties into GARRLiC/GRASP to estimate the DRF effect of the stratospheric plumes in Lille and Palaiseau.

We assume the vertical volume concentration of aerosols follows the extinction profile in Figure 9 and 10. The surface BRDF10

parameters for Lille and Palaiseau are taken from AERONET. The upward and downward flux/efficiencies, as well as the net

DRF (�F , with respect to a pure Rayleigh atmosphere) of the stratospheric aerosol layers are calculated and Table 4 shows

the daily averaged net DRF (W/m2) at four levels: at the bottom of the atmosphere (BOA), below the stratospheric layer, above

the stratospheric layer and at the top of the atmosphere (TOA). For the layer observed in Lille on 24 August, the top and base

of the stratosphere are selected as: 18.4 km and 16.7 km and for Palaiseau observations, they are 20 km and 17.0 km.15

At the TOA, the net DRF flux is estimated to be -1.2 Wm�2 and -3.5 Wm�2 for Lille and Palaiseau data, respectively. The cor-

responding forcing efficiencies are -7.9 Wm�2
⌧

�1 and -21.5 Wm�2
⌧

�1 . At the BOA, the net DRF flux is estimated to -12.3

Wm�2 for Lille data and -14.5 Wm�2 for Palaiseau data. The corresponding forcing efficiencies are -79.6 Wm�2
⌧

�1 and -89.6

Wm�2
⌧

�1. We noticed that the difference in net DRF flux between the layer top and layer base is significant. For Lille data,

we obtained 9.9 W/m2 of difference between the top and the base of the stratospheric layer and for Palaiseau, we obtained 11.120

W/m�2. Because of the high imaginary part of refractive indices, the stratospheric aerosols have the capacity of absorbing the

incoming radiation, thus reducing the upward radiation at the top of the stratospheric layer and the downward radiation at the

base of the stratospheric aerosol layer. The heating rate of the stratospheric layer is estimated to be 3.3 K/day for Palaiseau data

and 3.7 K/day for Lille data. This qualitatively explains the increase of temperature within the stratospheric layer, as observed

by the radiosonde measurements shown in Figure 3. Due to high uncertainty in the retrieved particle microphysical properties,25

the uncertainty of the calculated DRF could be large.

5 Discussion

The measurements revealed high particle depolarization ratios in the stratospheric smoke at 355 and 532 nm. In particular, the

particle depolarization ratio at 355 nm is 0.23±0.03 to 0.28±0.08, while at 532 nm it is about 0.19±0.03. The depolarization

ratio at 1064 nm is significantly lower, about 0.05± 0.01. Similar spectral dependence of depolarization ratio3: 0.20, 0.09 and30

0.02 at 355, 532 and 1064 nm, respectively, were observed by Burton et al. (2015) in a smoke plume at 7–8 km altitude (on

17 July 2014) in North American wildfires. Particle depolarization ratio of 0.07 and 0.02 at 532 and 1064 nm, respectively,
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were observed in a Canadian smoke plume at 6 km (on 02 August 2007) over the US (Burton et al., 2012). In Burton et al.

(2012) and Burton et al. (2015), the smoke traveled approximately 3 days 6 days, respectively. The travel time in both cases

are shorter than in our study. The light scattering process leading to high particle depolarization ratio of smoke particles is not

well revealed yet. In previous studies, smoke mixed with soil particles was suggested to be the explanation (Fiebig et al., 2002;

Murayama et al., 2004; Müller et al., 2007a; Sugimoto et al., 2010; Burton et al., 2012, 2015; Haarig et al., 2018). Strong con-5

vections occurred in fire activities, in principle are capable to lift soil particles into the smoke plume (Sugimoto et al., 2010).

High depolarization ratio with similar spectral dependence has been observed in fine dust particles. Miffre et al. (2016) mea-

sured the particle depolarization ratio of two Arizona Test Dust samples at backscattering angle. The radii of the dust samples

are mainly below 1 µm. They obtained higher depolarization ratio at 355 nm than at 532 nm, and the depolarization ratios at

both wavelengths are over 0.30. The sharp edges and corners in the artificial dust samples are a possible reason for the mea-10

sured high particle depolarization ratio. In the study of Järvinen et al. (2016), over 200 dust samples were used to measure the

near-backscattering (178�) properties and it is found that, for fine-mode dust, the particle depolarization ratio has a strong size

dependence. Järvinen et al. (2016) obtained about 0.12–0.20 and 0.25–0.30 for the depolarization ratio for equivalent particle

size parameters at 355 and 532 nm in this study. Sakai et al. (2010) measured the depolarization of Asian and Saharan dust in

the backscattering direction and obtained 0.14–0.17 at 532 nm for the samples with only sub-micrometer particles and 0.39 for15

the samples with high concentration of super-micrometer particles. Mamouri and Ansmann (2017) concluded that the depolar-

ization spectrum of fine dust is: 0.21 ±0.02 at 355 nm, 0.16 ±0.02 at 532 nm and 0.09 ±0.02 at 1064 nm. This spectrum is

very similar to the Canadian stratospheric plume presented in this study and Haarig et al. (2018).

However, Murayama et al. (2004) suggested that the coagulation of smoke particles to the clusters with complicated morphol-

ogy is a more reasonable explanation because they found no signature of mineral dust after analyzing the chemical compositions20

of the smoke samples. Mishchenko et al. (2016) modeled the spectral depolarization ratios observed by Burton et al. (2015)

and found that such behavior is resulted from complicated morphology of smoke particles. Kahnert et al. (2012) modeled

the optical properties of light absorbing carbon aggregates (LAC) embedded in a sulfate shell. It was found that the particle

depolarization ratio increases with the aggregate radius (volume-equivalent sphere radius). For the case of 0.4 µm aggregate

radius and 20% LAC volume fraction, the computed depolarization ratios are 0.12–0.20 at 304.0 nm, 0.08–0.18 at 533.1 nm25

and about 0.015 at 1010.1 nm, which are comparable with the results in this study and Haarig et al. (2018). In this study, we

are not able to assess which is the dominant factor leading to the high depolarization ratios, possibly both soil particles and

smoke aging process are partially responsible.

The derived Lidar ratios are from 31±15 sr to 45±9 sr for 355 nm and from 54±12 sr to 58±9 sr for 532 nm. Considering the

uncertainties of the Lidar ratio, the derived values and the spectral dependence agree well with previous publications (Müller30

et al., 2005; Sugimoto et al., 2010; Haarig et al., 2018) about aged smoke observations. Haarig et al. (2018) obtained about 40

sr at 355 nm and 66 sr at 532 nm, using Raman method. The retrieved effective radius is about 0.33±0.10 µm, consistent with

the particle size obtained by Haarig et al. (2018). The particle size is larger than the values of fresh smoke observed near the

fire source (O’Neill et al., 2002; Nicolae et al., 2013). In particular, the retrieved particle size agrees well with the observed

smoke transported from Canada to Europe (Wandinger et al., 2002; Müller et al., 2005). Müller et al. (2007b) found that the35
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effective radius increased from 0.15� 0.25 µm (2� 4 days after the emission) to 0.3� 0.4 µm after 10� 20 days of transport

time, which is consistent with our results. But it is worthy to be noted that Müller et al. (2007b) investigated only tropospheric

smoke and it is not clear if this effect of aging process is applicable on stratospheric smoke.

The real part of the refractive indices obtained in this study is 1.52±0.05 for Palaiseau data and 1.55±0.05 for Lille data,

without considering the spectral dependence. The values are consistent with the results for tropospheric smoke (Dubovik et al.,5

2002; Wandinger et al., 2002; Taubman et al., 2004; Müller et al., 2005). As to the imaginary part, we derived 0.021± 0.010

from Palaiseau data and 0.028± 0.014 from Lille data. The imaginary part of refractive indices of smoke in previous studies

is diverse. Müller et al. (2005) reported the imaginary part varying around 0.003 for non-absorbing tropospheric smoke orig-

inated from aged Siberian and Canadian forest fires. Wandinger et al. (2002) obtained 0.05� 0.07 for the imaginary part of

Canadian smoke in the troposphere over Europe. Dubovik et al. (2002) derived about 0.01 to 0.03 for the imaginary part of10

biomass burning using photometer observations. The retrieved imaginary part in our study falls into the range of previously

reported values. Using sphere model in the inversion is potentially an important error source, as spheres cannot fully represent

the scattering of irregular aged smoke particles. The application on dust particles (Veselovskii et al., 2010) demonstrated that

retrieved volume concentration and effective radius are still reliable and the main error is attributed to the imaginary part of

refractive index. Errors in the optical data is also a potential source error of the retrieved microphysical parameters.15

The relative humidity in the smoke layer is one factor that impacts the refractive indices, the particle depolarization ratio and

Lidar ratio of smoke particles. While in some studies, the relative humidity is not mentioned, thus making the comparison

difficult. Special attention should be paid to the relative humidity when comparing the complex refractive indices. Mixing

with other aerosol types during transport is also a potential cause of the modification of aerosol properties, and its impact is

not limited to the refractive indices. In this study, the smoke layers we observed were lofted to the lower stratosphere in the20

source region and then transported to the observation sites. They were isolated from other tropospheric aerosol sources and not

likely to mix with them during the transport. The relative humidity in the stratospheric layer is below 10%, according to the

radiosonde measurements. Our study provides a reference for aged smoke aerosols in a dry condition.

The retrieved particle parameters allow an estimation of direct aerosol radiative forcing. We derived -79.6 Wm�2
⌧

�1 for the

DRF efficiency at the BOA for Lille data. And for Palaiseau data, we derived -89.6 Wm�2
⌧

�1. It indicates that the observed25

stratospheric aerosol layers reduce strongly the radiation reaching the terrestrial surface mainly by absorbing solar radiation.

Derimian et al. (2016) evaluated the radiative effect of several aerosol models, among which the daily net DRF efficiency of

biomass burning aerosols is estimated to be -74 Wm�2
⌧

�1 to -54 Wm�2
⌧

�1 at the BOA. Mallet et al. (2008) studied the

radiative forcing of smoke and dust mixture over Djougou and derived -68 Wm�2
⌧

�1 to -50 Wm�2
⌧

�1 for the DRF efficiency

at the BOA. Our results are still comparable with the values in the publications. Additionally, the mean heating rate of the30

stratospheric smoke layer is estimated to be about 3.5 K per day for Lille and for Palaiseau data, which qualitatively supports

the temperature increase within the stratospheric smoke layer. The warming effect in the layer is potentially responsible for

the upward movements of soot-containing aerosol plumes (Laat et al., 2012; Ansmann et al., 2018). The high uncertainty

in the retrieved microphysical properties, especially the imaginary part of the refractive indices will propagate into the DRF

estimation. At current stage, we are not able to accurately estimate the uncertainly in the microphysical properties and in the35
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DRF calculation. Varying the imaginary part by ±50%, we calculated the variability of the DRF efficiency at the BOA and the

heating rate, and we derived about 20% variation in the DRF efficiency at the BOA and 40% variation in the heating rate.

6 Conclusion

In the summer of 2017, large-scale wildfires spread in the west and north of Canada. The severe fire activities generated strong5

convections that lofted smoke plumes up to the high altitudes. After long-range transport, the smoke plumes spread over large

areas. Three lidar systems in northern France observed aged smoke plumes in the stratosphere, about 10–17 days after intense

fire emission. Unlike fresh smoke particles, the aged smoke particles showed surprisingly high particle depolarization ratios,

indicating the presence of irregular smoke particles. Lidar data inversion revealed that the smoke particles are relatively bigger

and very absorbing. The strong absorption of the observed smoke plumes is related to the perturbation of the temperature10

profile and the ascent of the plume when exposed to sunlight. In addition, the DRF estimation indicated that the stratospheric

smoke can strongly reduce the radiation reaching the bottom of the atmosphere.

This study shows the capability of multi-wavelength Raman Lidar in aerosol profiling and characterization. We reported impor-

tant optical and microphysical properties derived from Lidar observations, these results help to improve our knowledge about

smoke particles and aerosol classification, which is an important topic in the Lidar community. Future improvements in better15

quantifying the uncertainty in the optical and microphysical properties are highly anticipated. Moreover, this event is also a

good opportunity for the study of atmospheric model. The injection of smoke into upper troposphere and lower stratosphere by

strong convection needs to be considered in atmospheric models. The self-lifting of absorbing smoke is not yet considered in

any aerosol transport model. Additionally, this event provides a favorable chance for studying smoke aging process, the smoke

plumes stayed more than one month in the stratosphere and were observed by ground-based Lidars and CALIPSO. Much more20

efforts are needed in investigating these measurements.
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Appendix A: Error estimation

A1 Errors of optical depth

The errors in the Lidar signal at the top and the base of the stratospheric layers are considered as the major error sources in the

error estimation of the optical depth. We estimate the error of the Lidar signal P (�, r

top

) and P (�, r

base

) to be 3–5%, based

on the statistical error of photon distributions. According to Equation 2, the error of the optical depth, �⌧

u

⌧

u

, is written as:5
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where �⌧

u represents the absolute error of ⌧u. The calculation of molecular extinction and backscattering coefficient is based

on the study of Bucholtz (1995). The temperature and pressure profiles are taken from the closest radiosonde stations, Trappes

and Beauvechain, and the errors of molecular scattering are neglected.10

The error of optical depth propagates into Lidar ratio and vertically integrated backscatter coefficient. Additionally, the error of

the Lidar ratio also relies on the step width of Lidar ratio between two consecutive iterations and the fitting error of the optical

depth of the stratospheric aerosol layer, which can be limited by narrowing the step of the iteration. In our calculation, we use a

step of 0.5 sr and achieve the fitting error of optical depth less than 1% which is negligible compared to the contribution of the

error of optical depth to the error of Lidar ratio. However, we can basically estimate the error of the integral of the backscatter15

coefficient within the stratospheric aerosol layer, not the error of the backscatter coefficient profile.

A2 Errors of Ångström exponent

Ångström exponent ˚A is defined as follows:

x
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x

�2

= (

�1

�2
)

�Å (A3)

where x is usually the optical quantities such as optical depth ⌧ , extinction coefficient ↵ and backscatter coefficient �. The20

error of the Ångström exponent is resulted from the error of the optical quantities at two involved wavelengths:

(�

˚

A)

2
=

⇣

log(

�1

�2
)

⌘�2h

(

�x

�1

x

�1

)

2
+(

�x

�2

x

�2

)

2
i

(A4)

where �x is the error of the quantity x in absolute values. In our study, when the error is 15% in the optical depth at 355 and

532 nm. The resulting error in the Ångström exponent is about 0.5.
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A3 Errors of particle depolarization ratio

According to Equation 3, the error of particle depolarization ratio lies in three terms: the backscatter ratio R, volume depolar-

ization �

v

ratio and molecular depolarization ratio �

m

.
⇣

��

p

�

p

⌘2
= F

R

⇣

�R

R

⌘2
+F

�

v

⇣

��

v

�

v

⌘2
+F

�

m

⇣

��

m

�

m

⌘2
(A5)

F

X

=

⇣

X

�

p

@�

p

@X

⌘2
,X =R, �

v

, �

m

(A6)

As the backscatter ratio and the volume depolarization increase, the dependence of particle depolarization ratio on the backscat-5

ter ratio decreases. In the stratospheric smoke layer, the measured volume depolarization ratio is higher in the shorter wave-

length and the backscatter ratio is higher in the longer wavelength, the increased volume depolarization ratio or the backscatter

ratio allow us to conservatively assume a preliminary error level for the backscatter ratio R. The potential error sources of the

volume depolarization come from the optics and the polarization calibration. The optics have been carefully maintained and

adjusted to minimize the errors originated from misalignments. After long-term Lidar operation and monitoring of the depolar-10

ization calibration, we conservatively expect 10% relative errors in the volume depolarization ratio. The theoretical molecular

depolarization ratio is calculated to be 0.0036 with negligible wavelength dependence (Miles et al., 2001). In the historical

record since 2013, LILAS measured molecular depolarization ratios of approximately 0.008–0.013 at 532 nm channel, 0.012–

0.018 at 355 nm channel and 0.007–0.010 at 1064 nm channel. IPRAL measured molecular depolarization ratio about 0.020

at 355 nm in this study. Molecular depolarization ratios measured by both LILAS and IPRAL system exceed the theoretical15

value. In addition to the error in the polarization calibration, the error of molecular depolarization ratio rises mainly from the

optics, precisely, the cross-talks between the two polarization channels. The imperfections of the optics cannot be avoided,

but a careful characterization is helpful to eliminate the cross-talks as much as possible (Freudenthaler, 2016). In our study,

we simply assume 200% and 300% for the error of molecular depolarization ratio measured by LILAS and IPRAL system,

respectively. The total error of particle depolarization ratio is calculated according to Equation A5.20
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Table 1. Three involved lidar systems, their configuration and locations.

Name Configuration Location

LILAS
Elastic + depolarizatiom: 355, 532, 1064 nm LOA, Lille

Raman: 387, 408 (water vapor), 530 nm

IPRAL
Elastic: 355 (depolarization), 532, 1064 nm SIRTA, Palaiseau

Raman: 387, 408 (water vapor), 608 nm

MAMS Lidar Elastic: 532 nm
from Palaiseau

to Lille (29 August)

(a) (b) (c)

Figure 1. Lidar range-corrected signal and columnar AOD from sun photometer at 532 nm, 29 August 2017. (a) IPRAL system in Palaiseau.

(b) MAMS Lidar on-route from Palaiseau to Lille. (c) LILAS in Lille. Columnar AOD measurements are interpolated from AERONET (Lille

and Palaiseau) and PLASMA (mobile system) measurements. MAMS started from Palaiseau at 1353 UTC and arrived in Lille at 1623 UTC.

The departure and arriving time are indicated in (a) and (c) with the white dashed lines.
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Figure 2. Lidar range-corrected signal at 1064 nm on 24–25 August 2017 measured by LILAS. The red solid line indicates the sunrise time.

The two red dashed lines point out the approximate layer base before and after the sunrise. The sunrise and sunset time are 04:51 UTC and

20:47 UTC, respectively. The corresponding daytime duration is about 14 hours.
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Figure 3. Temperature profiles from the radiosonde measurements. The green and cerulean lines are the temperature profiles of Trappes at

0000 and 1200 UTC, 29 August 2017. The red line shows the Beauvechain data at 2100 UTC 29 August 2017. The black line is for 1200

UTC, 21 August, Trappes. The horizontal black dashed line at 13 km represents the approximate position of the tropopause.
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Figure 4. The corrected surface reflectance overlaid with fire and thermal anomalies from MODIS (15 August 2017). The region marked with

green dashed line in the northwest indicated a plume generated by fire activities. Six locations (labeled as red stars) on the tracks of CALIPSO

are selected: a (61.47�N, 106.44�W), b (62.79�N, 91.54�W), c (46.97�N, 72.22�W), d (42.27�N, 42.08�W), e (55.97�N, 12.54�W) and f

(52.37�N, 13.47�E). The corresponding overpass date is 14, 15, 17, 19, 21 and 23 August 2017.
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Figure 5. OMPS NM daily UVAI products during 11 to 29 August 2017. The results are plotted every two days. Grey colour indicates areas

with no retrievals.
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Figure 6. Total CO concentration (molecules/cm2) retrieved from AIRS. The maps are plotted every two days during 11 and 29 August

2017.
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(b) b (62.79�N, 91.54�W), 15 August
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(c) c (46.97�N, 72.22�W), 17 August
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(d) d (42.27�N, 42.08�W), 19 August
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(e) e (55.97�N, 12.54�W), 21 August
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Figure 6. The profiles of backscatter coefficient and particle linear depolarization ratio (PLDR). Figure (a)-(f) correspond to the six locations

a – f in Figure 3. The corresponding CALIPSO tracks are (a) 09:50:19, 14 August 2017; (b) 08:54:37, 15 August 2017; (c) 07:03:13, 17

August 2017; (d) 06:50:44, 19 August 2017; (e) 03:20:25, 21 August 2017 and (f) 01:29:01, 23 August 2017. 20 profiles are averaged over

these six locations. The green and pink solid lines represent backscatter coefficient and particle linear depolarization ratio, respectively. The

red squares with error bars represent the mean particle linear depolarization ratio and the standard deviation within each layer.
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Figure 7. The profiles of backscatter coefficient and particle linear depolarization ratio (PLDR) at 532 nm from CALIPSO. Figure (a)-(f)

correspond to the six locations a – f in Figure 4. The corresponding CALIPSO tracks are (a) 09:50:19, 14 August 2017; (b) 08:54:37, 15

August 2017; (c) 07:03:13, 17 August 2017; (d) 06:50:44, 19 August 2017; (e) 03:20:25, 21 August 2017 and (f) 01:29:01, 23 August

2017. 20 profiles are averaged over these six locations. The green and pink solid lines represent backscatter coefficient and particle linear

depolarization ratio, respectively. The red squares with error bars represent the mean particle linear depolarization ratio and the standard

deviation within each layer.
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Figure 8. Optical depth of the stratospheric smoke layer at 355 and 532 nm estimated from Lidar signals in August 2017. The optical depth

estimated from LILAS (in Lille) is plotted with green (532 nm) and violet solid circles (355 nm). Optical depth calculated from IPRAL (in

Palaiseau) is plotted with dark green (532 nm) and magenta (355 nm) solid diamonds. The red stars represent the optical depth calculated

from the MAMS Lidar.

Table 2. Retrieved Lidar ratios (LR) and particle linear depolarization ratios (PLDR) from multi-wavelength Lidar systems LILAS in Lille

and IPRAL in Palaiseau. ↵̄ is the mean extinction coefficient in the stratospheric smoke layer. �L is the thickness of the stratospheric smoke

layer. The values after ‘±’ represent the errors. Error estimation is presented in the Appendix.

Lidar system LILAS, Lille IPRAL, Palaiseau

Date 24 August 29 August 31 August 28 August

Time 2200 – 1300 – 1600 – 2000 – 2300 – 1920 –

(UTC) 0030 1600 1800 2300 0200 2120

�L (km) 1.0 3.0 3.4 1.4 1.3 2.3

↵̄355 (km�1) 0.12 0.06 0.06 0.04 0.03 0.08

↵̄532 (km�1) 0.14 0.06 0.06 0.04 0.03 0.08

LR355 (sr) 35± 6 45± 9 41± 7 34± 12 31± 15 36± 6

LR532 (sr) 54± 9 56± 12 54± 9 58± 20 58± 23 58± 7

PLDR355 0.23± 0.03 0.24± 0.04 0.24± 0.04 0.28± 0.08 0.28± 0.08 0.27± 0.05

PLDR532 0.20± 0.03 0.18± 0.03 0.19± 0.03 0.18± 0.03 0.18± 0.03 –

PLDR1064 0.05± 0.01 0.04± 0.01 0.05± 0.01 0.05± 0.01 0.05± 0.01 –
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Figure 9. (a) Extinction and backscatter coefficient, (b) particle linear depolarization ratio (PLDR), the extinction-related Ångström exponent

(EAE) and backscatter-related Ångström exponent (BAE) retrieved from LILAS observations between 2200 UTC, 24 August 2017 and 0030

UTC, 25 August 2017, Lille. The errors of extinction, backscatter coefficient and corresponding Ångström exponent at 355 and 532 nm are

attributed to the error of the optical depth.
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Figure 10. (a) Extinction and backscatter coefficient, (b) the particle linear depolarization ratio (PLDR) at 355 nm, the extinction-related

Ångström exponent (EAE) and backscatter-related Ångström exponent (BAE) (between 355 nm and 532 nm) retrieved from IPRAL obser-

vations between 1920 and 2120 UTC, 28 August 2017, Palaiseau.
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Table 3. Retrieved microphysical properties using the Lidar data in Lille and Palaiseau. Extinction and backscatter coefficients shown in

Figure 9(a) and 10(a) are averaged in the range of 17–18.0 km and 17.5–19.5 km, respectively. The averaged extinction and backscatter

coefficients are used as the input of regularization algorithm to retrieve particle microphysical properties.

Reff (µm) Vc (µm3cm�3) mR mI

Lille, 24 August 0.33± 0.10 22± 8 1.55± 0.05 0.028± 0.014

Palaiseau, 28 August 0.33± 0.10 15± 5 1.52± 0.05 0.021± 0.011

Table 4. Daily averaged net DRF flux calculated by GARRLiC/GRASP. Aerosol microphysical properties in Table 3 and aerosol vertical

distributions in Figure 9(a) and 10(a) are used to calculate the DRF effect at the following four vertical levels.

�F (W/m2) TOA BOA layer top layer base

Lille, 24 August -1.2 -12.3 -2.1 -12.0

Palaiseau, 28 August -3.5 -14.5 -2.5 -13.6
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