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Abstract. NASA’s carbon dioxide mission, Orbiting Carbon Observatory-2, has been operating for three full years (2015—

2017). Here, we provide a global (60� S–60� N) view of the XCO2 anomalies along with their annual variations and seasonal

patterns. We show that the XCO2 anomaly patterns are robust and consistent from year-to-year. We compare these anoma-

lies to fluxes from anthropogenic, biospheric and biomass burning and to model-simulated local concentration enhancements.

We find that, despite the simplicity of the method, the anomalies describe the spatio-temporal variability of XCO2 (including5

anthropogenic emissions and seasonal variability related to vegetation and biomass burning) consistently with more complex

model-based approaches. We see, for example, that positive anomalies correspond to fossil fuel combustion over the major in-

dustrial areas (e.g., China, eastern USA, central Europe, India, and the Highveld region in South Africa), shown as large positive

XCO2 enhancements in the model simulations. Also, we find corresponding positive anomalies and fluxes over biomass burn-

ing areas during different fire seasons. On the other hand, the largest negative anomalies correspond to the growing season in10

the northern middle latitudes, characterized by negative XCO2 enhancements from simulations and high SIF values (indicating

the occurrence of photosynthesis). Finally, we show how XCO2 anomalies facilitate the detection of anthropogenic signatures

for several local scale case studies, both in the Northern and Southern Hemisphere. The results demonstrate the potential of

satellite-based XCO2 observations for understanding the role of man-made and natural contributions to the atmospheric CO2

levels.15

1 Introduction

The first operational measurements of atmospheric carbon dioxide (CO2) were started at Mauna Loa Observatory in 1958 by

Charles David Keeling. These measurements now form the iconic Keeling curve that shows, in addition to seasonal variations,

rapidly increasing levels of CO2 in the atmosphere due to the burning of fossil fuels. Now, 60 years later, the measured levels20

of CO2 are about 100 ppm higher than the original levels of about 315 ppm. Today, the atmospheric CO2 concentration is

measured all over the world. However, the measurement networks tend to be more dense in the Western world.
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One of the most important applications of CO2 measurements is to infer the surface CO2 fluxes, i.e., sources and sinks

(or emissions into and removal from the atmosphere). As the measurement networks tend to be unevenly distributed, one

natural way to extend the spatial distribution is to use space-based observations of the column-averaged CO2 dry air mole

fraction, XCO2. The main advantage of space-based observations is that they provide global measurements of CO2 obtained

with the same measurement device. On the other hand, because XCO2 is a vertically averaged quantity, it is less sensitive to the5

surface fluxes. Ideally, the inverse modeling systems that estimate CO2 fluxes from atmospheric measurements, can assimilate

measurements from all different types of sources.

One of the first instruments to measure greenhouse gases (GHGs) from space was SCIAMACHY (Scanning Imaging Ab-

sorption Spectrometer for Atmospheric Chartography), launched by the European Space Agency onboard the Envisat space-

craft in 2002 (Burrows et al., 1995). The first mission that provided XCO2 measurements at a precision better than 0.6%10

is the Japanese GOSAT (Greenhouse Gases Observing Satellite), which has produced GHG measurements since April 2009

(Yokota et al., 2009). In 2014, NASA launched its CO2 mission, the Orbiting Carbon Observatory-2 (OCO-2), which has been

providing CO2 measurements since September 2014 (Crisp et al., 2017; Eldering et al., 2017). An increasing number of CO2

measuring satellites, including the Chinese TanSat (Yang et al., 2018; Cai et al., 2014), Fen-Yun-3D and Gaofen 5 have been

launched since 2016 and other are being planned1.15

Although the current space-based CO2 missions were mainly driven by the need to better understand the biospheric carbon

fluxes (Nassar et al., 2017), satellite-based CO2 observations have been used also in anthropogenic CO2 studies. For example,

Reuter et al. (2014) analyzed the CO2-to-NO2 emission ratios with collocated SCIAMACHY data, Janardanan et al. (2016)

studied localized CO2 enhancements using GOSAT data, Kort et al. (2012) studied the CO2 signal from Los Angeles and

Mumbai megacities from GOSAT data, Nassar et al. (2017) estimated the CO2 emissions from individual power plants from20

OCO-2 data, Schwandner et al. (2017) analyzed localized carbon dioxide sources (e.g., Los Angeles) using OCO-2 data, and

Ye et al. (2017) evaluated the possibility to constrain the fossil fuel CO2 emissions from urban areas using OCO-2 observations.

Since the Paris Agreement in 2015, the focus has shifted more and more on anthropogenic CO2 research, and for example, the

European Space Agency is currently planning a dedicated anthropogenic CO2 monitoring mission.

Direct methods, i.e. the methods that do not involve atmospheric inverse modeling, have been recently developed to study25

anthropogenic CO2 emissions. These methods can be divided in two categories a) methods that study anthropogenic sources

from individual orbits (e.g., Nassar et al., 2017; Schwandner et al., 2017); and b) methods that average data from long periods of

time (e.g., Hakkarainen et al., 2016). One large obstacle limiting the quantification of anthropogenic CO2 flux from space, is the

limited mapping capability of current satellite missions. GOSAT provides single soundings with 10.5 km diameter resolution

that are separated by ⇠250 km. OCO-2 provides measurements with eight 2.25 km long footprints along a narrow (0.4 to30

1.29 km) swath, but the swaths are separated by ⇠1.5 degrees of longitude. In both cases the data coverage is quite sparse.

Figure 1 illustrates an example of the OCO-2 measurement locations during different periods of time: one day, one week, one

month and one year. In addition to the nominal measurements, special target mode measurements are performed in selected

measurement locations for anthropogenic and/or validation purposes (Wunch et al., 2017).

1See, e.g., https://en.wikipedia.org/wiki/Space-based_measurements_of_carbon_dioxide
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The aim of this paper is to extend the results presented in (Hakkarainen et al., 2016), and provide global (60� S–60� N) view

on XCO2 anomalies as seen by OCO-2 for three full years 2015–2017. In Section 2 we introduce the data sets and methods to

derive XCO2 anomalies. In Section 3, we analyse the annual and seasonal patterns of XCO2 anomalies, and we discuss them

in terms of anthropogenic, biospheric and biomass burning contributions. Finally, Section 4 concludes the paper.

2 Materials and Methods5

2.1 OCO-2 data

We use data from NASA’s OCO-2 satellite (Crisp et al., 2017). The satellite was launched on 2 July 2014, and now leads the

705 km Afternoon Constellation (also known as the A-Train). OCO-2 has provided science data since September 2014.

The instrument measures the backscattered solar light in three spectral regions: oxygen A-band at 0.765 microns and CO2

bands at 1.61 and 2.06 microns. It provides data with eight 2.25 km long footprints along a narrow (0.4 to 1.29 km) swath. The10

retrieved quantity is column-averaged dry air mole fraction of CO2, XCO2.

In this paper, we use the latest OCO-2 data version (V8r) available from the MIRADOR platform at http://mirador.gsfc.nasa.

gov. We use the lite files that include bias correction and data screening. We only use the data points where the quality flags

are set to zero. The validation of OCO-2 data against results from the Total Carbon Column Observing Network (TCCON)

indicates that the absolute median differences are less than 0.4 ppm and the RMS differences are less than 1.5 ppm. The bias15

appears to depend on latitude, surface properties, and scattering by aerosols (Wunch et al., 2017).

2.2 XCO2 anomalies

Because of the long lifetime of CO2 in the atmosphere, it is intrinsically difficult to derive information about the spatial

distribution of CO2 emission areas from satellite measurements of CO2 concentrations. CO2 accumulates in the atmosphere

with a growth rate of about 2-3 ppm per year. The overall background level is currently in the order of 400 ppm. Therefore, the20

approach used to map short-lived air pollutants, like nitrogen dioxide (NO2), based on averaging out the outflow downwind

from the emission sources, cannot be directly applied to space-based CO2 measurements. The large CO2 background and

seasonal variability must be removed before being able to highlight the emission areas.

In order to extract information about the anthropogenic signatures from OCO-2 retrievals, we use the concept of XCO2

anomaly (Hakkarainen et al., 2016), defined as the difference between the individual XCO2 value measured by OCO-2 and the25

background (i.e., the daily median XCO2 over a certain area):

XCO2(anomaly) =XCO2(individual)

�XCO2(daily median). (1)

This equation provides an anomaly value for each OCO-2 data point. Figure 1 shows a scatter plot of these XCO2 anomalies

for one day, one week, one month and one year. Using the daily median as background allows us to remove the seasonal30
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variability and the increasing trend of CO2 concentrations. Once we obtain the anomalies for each OCO-2 measurement point,

we define a spatial grid (e.g., 1�⇥1�, latitude-longitude) and calculate the mean at each grid point over a defined period of time.

This average essentially removes the effect of the different wind patterns and the resulting anomaly maps illustrate the areas

where CO2 is emitted (positive anomalies) into the atmosphere and those acting as sinks, where CO2 is absorbed at the surface

(negative anomalies). The strength of this approach is that it only uses satellite-based measurements and is not dependent on5

patterns in a priori fields, external data or other assumptions in atmospheric chemistry-transport models.

One question is how do we define the area over which we calculate the daily median. In Hakkarainen et al. (2016), we

focused on three large anthropogenic emission areas: 1) North America, 2) Europe, northern Africa and Middle East, and 3)

East Asia. In this paper, we use the Northern and Southern hemisphere (60� S–0� S and 0� N–60� N) over land as background

areas, because we aim to obtain comparable anomalies for different regions. Thus, we assume the hemispherical background10

(median) as representative of the seasonal variability at different latitudes. In Section 3.3, we discuss how the choice of the

background area (e.g., different latitude bands) affects the calculation of the XCO2 anomalies.

Another issue is related to the number of satellite measurements available for the calculation of the anomalies over different

regions and seasons. A lack of data is expected, for example, over areas frequently covered by clouds or with a large aerosol

load, as well as at middle-latitudes in autumn-winter when the Sun is too low for a successful XCO2 retrieval. In Section 3, we15

analyze the effect of the inhomogeneous distribution of OCO-2 data on the anomaly’s spatio-temporal patterns.

2.3 Auxiliary datasets

2.3.1 CarbonTracker CO2 fluxes

In order to better understand the spatio-temporal patterns in the XCO2 anomaly distribution, we analyze the NOAA Carbon-

Tracker (CT2016; Peters et al., 2007) flux maps2. In particular, we consider the biospheric fluxes as well as those associated20

with biomass burning emissions. As input information, CT2016 uses Global Fire Emissions Database (GFED) 4.1. that is based

on MODIS (Moderate Resolution Imaging Spectroradiometer) observations of fire counts. The a priori biospheric fluxes are

based on the Carnegie-Ames Stanford Approach (CASA) biogeochemical model, and their scaling factors are estimated using

CT2016.

2.3.2 Solar-induced chlorophyll fluorescence (SIF)25

We analyze solar-induced chlorophyll fluorescence (SIF) also measured by the OCO-2 instrument (Frankenberg et al., 2014)

at 757 nm and 772 nm. Here, we use the 757 nm data. SIF can be seen as a proxy for the vegetation gross primary production

(GPP) (Sun et al., 2017), defined as the synthesis of organic compounds from atmospheric CO2 and principally occurring

through the process of photosynthesis. Therefore, SIF data are expected to provide information on the effect of vegetation in

the distribution of the XCO2 anomalies and to complement their patterns.30

2See also https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/fluxes.php
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2.3.3 XCO2 enhancements from FLEXPART model

We use the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) (Stohl et al., 2005)

to simulate anthropogenic and biospheric XCO2 enhancements at OCO-2 measurements locations. We follow the approach

used by Janardanan et al. (2016), where the localized GOSAT CO2 enhancements are compared to the inventory-based CO2

estimates using the FLEXPART model outputs. As there are about 85 000 OCO-2 data points per day, for computational5

reasons we aggregate an average OCO-2 data points to one-second ( 24 soundings) averages, taken separately for OCO-2

footprints 1–4 and 5–8.

As input information for anthropogenic emissions, we use the high-resolution ODIAC (Open-Data Inventory for Anthro-

pogenic Carbon dioxide) data set (Oda et al., 2018). In the ODIAC data set the anthropogenic CO2 emissions are estimated in

1 km⇥1 km resolution given the power plant emissions (intensity and geographical location) and satellite-observed nightlights.10

In the FLEXPART model simulations, from each aggregated OCO-2 data point, ten thousand virtual particles are released and

transported three days backward in time with the three-dimensional wind field using parameterizations for turbulence and

convection.

3 Results

3.1 Annual XCO2 anomalies15

Figure 2 illustrates the three-year average and the mean annual XCO2 anomalies for the years 2015–2017. We observe that

the largest anomalies correspond to the anthropogenic emission areas in China, North-East India, Middle East, central Europe,

and eastern USA, as noted also in (Hakkarainen et al., 2016). In the Southern Hemisphere, the largest anthropogenic emission

area, the Highveld region in South Africa, is clearly visible from the map. In the Northern Hemisphere, some smaller emission

areas (e.g., Mexico City) can be identified also at global scale.20

High positive XCO2 anomalies can be observed also where anthropogenic emissions from fossil fuels are not expected. For

example in northern and southern Africa, Indonesia, Indochina, and South America we see large emission areas. These mostly

correspond to large-scale biomass burning, and also to positive biospheric fluxes.

The largest negative anomalies are observed in the northern middle-latitudes (40� N–60� N). These are clearly connected

to the strong biospheric sink during the growing season. We note that this area is mainly sampled by OCO-2 during summer25

months and not during winter (when there is not enough sunlight to take the measurement). This produces particularly low

negative anomalies in the annual anomaly maps. We also observe a large area with negative anomalies in the Southern Cone in

South America.

The overall patterns observed in the annual maps are similar every year, i.e., the large areas with positive and negative

anomalies are quite consistent. Also smaller areas with large anomalies seem to be consistently visible in the different years30

(e.g, the Highveld region). Some differences in the XCO2 anomaly patterns between different years are, at least partly, related

to the sampling of the instrument and the number of data points available. These are most visible for example at northern mid-
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3.2 Seasonal XCO2 anomalies5

Figure 3 illustrates the mean seasonal XCO2

larger than those obtained for SON and MAM. No OCO-2 observations are available during winter months (DJF) over the

northern mid-latitudes.

In order to understand this seasonal variability, we analyze the seasonal distribution of the solar-induced chlorophyll fluo-

rescence (SIF, Fig. 4), also measured by OCO-2, as well as the fluxes from the NOAA CarbonTracker model (Fig. 5). Both SIF

and CT flux spatial distribution show how the negative anomalies observed during JJA are related to the biospheric sink (i.e.,15

high SIF and negative fluxes).

When comparing the XCO2 anomaly patterns in Africa in different seasons, we find the largest anomalies in the northern

biomass burning area during winter months (DJF) and relatively smaller anomalies during SON and MAM. During summer

months, we find mainly negative anomalies over the same area. These features correspond directly to those we observe in the

flux maps, i.e., strong emissions from biomass burning during winter and sink during summer (Fig. 5, right column). SIF is20

also higher during summer months, when anomalies are negative. Also, in the southern biomass burning area in Africa, we

observe the largest anomalies during JJA, when the biomass burning emissions are the strongest (Fig. 5, right column) and SIF

values relatively small. The largest negative anomalies are on DJF, when there are very little emissions from biomass burning.

From the anomaly maps (Fig. 3) we find that the anomalies over the Highveld industrial area in South Africa are the largest

during JJA and SON, when the draw-down effect is minimum.25

When looking at XCO2 anomalies in South America, one evident problem is related to the number of data points available

over Amazonia. The XCO2 anomaly values seem to be positive throughout the year, although, the SIF is also positive. Signa-

tures from biomass burning and positive biospheric fluxes are visible also in the anomalies during SON. In the Southern Cone,

the anomalies are most negative during SON and DJF, which is in line with the SIF and biospheric flux maps.

In Indochina, the anomalies are positive throughout the year. From the biospheric flux maps we would expect positive fluxes30

during MAM and JJA. On the other hand, the largest SIF values are observed during JJA. During DJF and MAM we, see the

signature of strong emission from fires in the anomalies and flux maps (Fig. 5, right column). We would expect however to

see negative anomalies during SON due to the strong biospheric sink, but we find only slightly smaller positive anomalies. In

the Indian peninsula during SON and DJF we see negative anomalies in the southern part of India where we would expect to

6

anomalies calculated from the period September 2014 to December 2017. The

different seasons are defined as September-October-November (SON), December-January-February (DJF), March-April-May

(MAM) and June-July-August (JJA). The large-scale patterns on SON, DJF, MAM look very similar to each other and to the

annual mean, while in JJA the anomaly distribution looks quite different, with strong negative anomalies over the Northern

10 Hemispheric mid-latitudes and relatively high anomalies over the whole tropical latitudinal band. The negative anomalies are

latitudes where we can still identify the “satellite tracks” from the map. In the Figure S1 of the supplementary material, we

present the maps of the number of data points that was used to calculate the mean in Fig. 2. In addition to northern latitudes, the

number of data points is also lower in places with high cloud density and/or large aerosol load (Himalaya, Amazonia, central

Africa and China).
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see signs of anthropogenic emissions. These correspond to biospheric sink that we see in the flux map. During MAM, we find

positive XCO2 anomalies as expected from anthropogenic emissions when the biospheric flux is low.

Interesting seasonal patterns can be observed when looking at the largest anthropogenic emission areas, i.e., China, central

Europe and eastern USA. For example China and central Europe show positive anomalies during all seasons, and eastern USA

in all seasons but JJA (when there is very strong biospheric sink). Also, positive anomalies in China and central Europe are5

lower during JJA. All three areas have largest anomalies during DJF when also the biospheric flux is positive.

3.3 Latitudinal effects

When calculating the XCO2 anomaly, one critical point is how we define the background region from which we obtain the

daily median in Eq. 1. Figure 6 illustrates the daily median XCO2 time series calculated from different latitude bands (every

20� in latitude in the range 60� S–60� S). We observe that the hemispheric (0� N–60� N and 60� S–0�S) seasonal cycles (black10

lines in Fig. 6) are clearly different from each others and we cannot use the same background areas (i.e., median values) for

the Northern and Southern hemisphere.

In the Southern Hemisphere, the seasonal cycles are very similar for all 20-degrees latitude bands. The hemispheric (60� S–

0� S) daily median provides a stable estimate of the background, which is mostly driven by the 40� S–20� S seasonal cycle

in the terrestrial biosphere. In the Northern Hemisphere, the seasonal cycle is more variable in different latitude bands. In15

particular, the seasonal cycle for the 40� N–60� N latitude band shows higher daily medians compared to the hemispheric

values during winter months and much smaller values during spring and summer months, due to the strong biospheric sink in

the Northern Hemisphere. The hemispheric (0� N–60� N) daily median is usually closer to the 0� N–20� N and 20� N–40� N

seasonal cycles, however, it becomes closer to those from the 40� N–60� N latitude band during summer months, when more

observations are available from this area.20

Figure S2 in the supplementary material illustrates how the seasonal XCO2 anomalies would change if calculated using

the 20-degrees latitude bands as background. When comparing to Fig. 3, we observe very similar patterns except for the

Northern Hemispheric summer months. During JJA, we notice the sharp change in the background at 40� N and less strong

negative anomalies for the 40� N–60� N latitude band, because of the smaller daily median values. Vice versa, the positive

anomalies that we see on Europe and western North America are now stronger. For the 0� N–40� N latitude band, we find that25

the anomalies are generally lower and closer to those from the other seasons. In particular, the strong positive anomalies that

we observed in Northern and Central America are not evident anymore.

3.4 Modeling results

In this section, we analyze the XCO2 enhancements related to fossil fuel combustion and biospheric fluxes corresponding

to the OCO-2 pixels using the Lagrangian FLEXPART model. This allows us to account for the effect of OCO-2 sampling30

and transport by the wind. Figure 7 illustrates the modeled XCO2 enhancements for the year 2015 (the results for year 2016

are shown in Fig. S3 in the supplementary material). We illustrate the contribution from the ODIAC fossil fuel fluxes alone

(Fig. 7, upper panel) and together with the biospheric contribution (Fig. 7, lower panel). The anthropogenic component shows
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spatial patterns very similar to those observed from the XCO2 anomalies in Fig. 2, with the three region with high positive

enhancements in eastern USA, Europe and China. In the Southern Hemisphere, the Highveld region in South Africa shows the

strongest anthropogenic signal, together for example with the area around Sidney in Australia. When adding the biospheric

component, we also find negative values in northern mid-latitudes and in the Southern Cone in South America, as observed

from the anomalies in Fig. 2. In Europe, the large anthropogenic XCO2 enhancements are drawn down by the biospheric sink5

(Fig. 7 - lower panel).

Figure 8 illustrates the results of the FLEXPART seasonal simulations. We find that the Highveld region is clearly visible

during SON and JJA, while it is not detectable anymore during DJF due to effect of the biospheric sink. The same feature is

also visible in the seasonal anomalies in Fig 3. There are also differences between seasonal FLEXPART model simulations

and OCO-2 XCO2 anomalies, particularly during JJA when the anomalies show a strong latitudinal gradient as discussed in10

Section 3.3.

Finally, four local “case studies” for both FLEXPART enhancements and OCO-2 anomalies are illustrated in Fig. 9. The

first one is the Iberian peninsula, where OCO-2 XCO2 retrievals are available consistently throughout the year. We can clearly

observe the positive signal from different cities over the coastal areas in the XCO2 anomalies. The second one is the already

mentioned Highveld industrial region in South Africa. In this case, the anthropogenic signatures seem more localized in the15

FLEXPART simulations than in the anomaly maps, although positive anomalies are clearly visible over the area as well. The

third case study is India, where we can see clear positive signal in both OCO-2 and FLEXPART data, with some discrepancies

in the exact location of the anthropogenic signatures. The last case is Mexico City where we also see strong anthropogenic

signatures (i.e., positive enhancements and anomalies), related to the emissions from the city as well as power plants in the

area.20

In the supplementary material (Figs. S4–S8) we also illustrate similar case studies for the largest anthropogenic emission

areas.

4 Summary and remarks

In this paper, we analyzed the global (60� S–60� N) XCO2 anomalies for three full years 2015–2017. We describe the large-

scale features like the main anthropogenic emission areas, biomass burning regions, and biospheric sinks. We also see that the25

patterns observed in OCO-2 annual XCO2 anomalies are robust and consistent from year-to-year. The OCO-2 data were also

used to study the seasonal XCO2 anomalies. From the seasonal XCO2 anomalies we can identify the patterns in the Northern

Hemispheric growing season and also the different fire seasons in Africa. In addition to large-scale features, we also visualize

different local “case studies” with high anomalies associated with anthropogenic emissions in both the Northern and Southern

Hemispheres. These examples highlight the potential of space-based data for further local studies.30

The method proposed in this paper, i.e the hemispheric XCO2 anomalies, is quite different from many other approaches

where satellite CO2 data are used. In GHG research, inverse modeling is often used for estimating surface fluxes from atmo-

spheric measurements. Traditionally, this approach was designed for surface CO2 measurements, and most inverse modeling

8
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algorithms do not yet utilize the space-based data in their fullest potential. For example, in such applications, chemistry trans-

port models still use spatial resolutions much lower than what OCO-2 is providing. In addition, typically, only the scaling

factors for a priori biospheric fluxes are estimated, and the sub-regional patterns seen in the flux maps come from external

modeling. Often the emissions from fossil fuel combustion and biomass burning are also imposed and not estimated. The ap-

proach taken here, is free from atmospheric modeling and a priori fluxes, and all of the features seen in the XCO2 anomaly5

maps come from satellite data alone. On the other hand, instrument sampling, background choice and bias correction do have

an impact on the OCO-2 XCO2 anomaly patterns.

The anomaly approach used here is very attractive for several reasons (e.g., simplicity, robustness and model-free), but it

also includes some challenges. One peculiar feature of the approach is that we calculate anomaly with respect to a certain

background. Thus, we have to define the background area from which we calculate the daily median from. We showed that the10

approach is not too sensitive to these assumptions and that hemispheric anomalies provide robust tool for global analysis. An

exception is the Northern Hemispheric summer months, when we have the strong biospheric sink that define the CO2 seasonal

cycle and OCO-2 measurements are only scarcely available during the other seasons. When studying local case studies on

regional scale, a different background region could be selected. Another feature of the anomaly approach is that the XCO2

anomalies (given in ppms) are not directly convertible to fluxes (given in ktons). The approach often taken with short-lived air15

pollutants is to use a statistical model that describes their spatial distribution near the emission sources as a function of wind

speed and direction(e.g., Beirle et al., 2011; Fioletov et al., 2016). In the future, a similar approach might also be possible with

XCO2 anomalies, for example using CO2 measuring satellites with wider swaths, such as the anthropogenic CO2 monitoring

mission planned by the European Space Agency.

Data availability. OCO-2 data can be downloaded using the MIRADOR platform (http://mirador.gsfc.nasa.gov). NOAA CarbonTracker20

CT2016 data is available from http://carbontracker.noaa.gov. ODIAC fossil fuel CO2 emissions dataset is available from http://db.cger.nies.

go.jp/dataset/ODIAC/. FLEXPART model simulation can be obtained from Shamil Maksyutov (shamil@nies.go.jp).
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Figure 1. Spatial distribution of OCO-2 measurements during one day, one week, one month and one year. The color code indicates the

XCO2 anomalies as derived in Eq. 1. All measurements are illustrated with the same marker size and do not correspond to OCO-2 pixel size.
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Figure 2. Global XCO2 anomalies as seen by OCO-2. The upper panel corresponds to the three-year average 2015–2017, while the second,

third and fourth panels include the annual mean anomalies for 2015, 2016 and 2017, respectively.
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Figure 3. Seasonal XCO2 anomalies 2014–2017 for September-October-November, December-January-February, March-April-May and

June-July-August (top to bottom panels, respectively).
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Figure 4. Seasonal OCO-2 solar-induced chlorophyll fluorescence (SIF) at 757 nm for different seasons (from September 2014 to August

2015).

Figure 5. Seasonal biospheric (BIO) and biomass burning (FIRE) fluxes from NOAA CarbonTracker from September 2014 to August 2015.
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Figure 6. XCO2 seasonal cycle as seen by OCO-2 over different latitude bands.

Figure 7. FLEXPART simulation results for the year 2015 with contribution from fossil fuel combustion (FF) only and also with biospheric

component (FF+BIO). Supplementary material includes also the simulations for year 2016.

16

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-649
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 30 July 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 8. FLEXPART seasonal XCO2 enhancement simulations from September 2014 to August 2015, including fossil fuel and biospheric

contribution (FF+BIO).
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Figure 9. Case studies for the year 2015. OCO-2 XCO2 anomalies and FLEXPART XCO2 enhancements are overlapped to the Google map

background.
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