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Abstract. The long exposure to particulate matter (PM) with aerodynamic diameters < 10 µm (PM10) and 2.5 µm (PM2.5) has 

negative effects on human health. Although station-based PM monitoring has been conducted around the world, it is still 

challenging to provide spatially continuous PM information for vast areas at high spatial resolution. Satellite-derived aerosol 

information such as aerosol optical depth (AOD) has been frequently used to investigate ground-level PM concentrations. In 

this study, we combined multiple satellite-derived products including AOD with model-based meteorological parameters (i.e. 20 

dew-point temperature, wind speed, surface pressure, planetary boundary layer height, and relative humidity) and emission 

parameters (i.e. NO, NH3, SO2, POA, and HCHO) to estimate surface PM concentrations over South Korea. Random forest 

(RF) machine learning was used to estimate both PM10 and PM2.5 concentrations with a total of 32 parameters for 2015-2016. 

The results show that the RF-based models produced good performance resulting in R2 values of 0.78 and 0.73, and RMSEs 

of 17.08 µg/m3 and 8.25 µg/m3 for PM10 and PM2.5, respectively. In particular, the proposed models successfully estimated 25 

high PM concentrations. AOD was identified as the most significant for estimating ground-level PM concentrations, 

followed by wind speed, solar radiation, and dew-point temperature. The use of aerosol information derived from a 

geostationary satellite sensor (i.e., GOCI) resulted in slightly higher accuracy for estimating PM concentrations than that 

from a polar-orbiting sensor system (i.e., MODIS). The proposed RF models yielded better performance, particularly in 

improving on the underestimation of the process-based models (i.e., GEOS-Chem and CMAQ). 30 
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1 Introduction 

Epidemiological studies have consistently shown that negative human health effects including premature mortality can be 

caused by long-term exposure to atmospheric aerosols and particles, especially PM10 and PM2.5 (particulate matter with an 

aerodynamic diameter of less than 10 µm and 2.5 µm, respectively) (Pope III et al., 2009; Bartell et al., 2013; Jerrett et al., 

2017). Consequently, the monitoring and assessment of exposure to PM10 and PM2.5 are crucial for effective management of 5 

public health risks. In recent decades, East Asia has been significantly industrialized and urbanized through its rapid 

economic growth. The industrialization and urbanization have resulted in adverse effect on air quality not only in this region 

but also in neighbouring countries (Koo et al., 2012). 

The Public Health and Environment Research Institute in South Korea has been monitoring PM10 and PM2.5 concentrations 

at numerous sites all over its jurisdiction. Even though the distribution of the monitoring sites is relatively dense, there is a 10 

limitation in providing spatially continuous particulate matter (PM) concentrations that focus on major urban areas. For 

example, Zang et al. (2017) studied the effect of a temperature inversion layer on the relationship between aerosol optical 

depth (AOD) and PM2.5. The aerosol robotic network (AERONET) AOD and radiosonde data were used to estimate ground 

PM2.5 concentrations through an optimized subset regression model. They found the temperature inversion layer to be a key 

factor in enhancing the accuracy of a ground-level PM2.5 estimation model with a coefficient of determination (R2) of 0.63 15 

and a root mean square error (RMSE) of 35.45 µg/m3 (Zang et al., 2017). Ground-based data typically have uncertainty for 

spatial distribution of PM concentrations as they are point-based measurements requiring spatial interpolation. On the other 

hand, satellite-based PM monitoring has the potential to provide information on air quality over vast areas at high spatial 

resolution. Many studies have examined the use of satellite-based products to estimate surface PM concentrations (Liu et al., 

2005; Gupta and Christopher, 2009a,b; Van Donkelaar et al., 2010, 2015; Chudnovsky et al., 2014; Li et al., 2015; Xu et al., 20 

2015a; You et al., 2015; Wu et al., 2016). AOD is the most widely used parameter that can be derived from satellite remote 

sensing to estimate ground-level PM concentrations. It represents the amount of light attenuation caused by atmospheric 

aerosol scattering and absorption in the vertical column. 

Early studies generally adopted simple linear regression to investigate the relationship between total column AOD and 

surface PM concentrations (Liu et al., 2005; Liu et al., 2007). Liu et al. (2005) estimated ground-level PM2.5 concentrations 25 

over the eastern United States using Multiangle Imaging Spectroradiometer (MISR)-derived AOD, Planetary Boundary 

Layer Height (PBLH) and Relative Humidity (RH) from the Goddard Earth Observing System (GEOS-3). Their results 

yielded an R2 of 0.48 and an RMSE of 13.8 µg/m3 when the estimated PM2.5 concentrations were compared to in-situ 

measurements. More recent studies explored advanced statistical approaches to improve the prediction of ground-level PM 

concentrations such as mixed-effects models, geographically weighted regression (GWR), support vector machines (SVM), 30 

and artificial neural networks (ANN), as well as the use of chemical transport models (CTM). Van Donkelaar et al. (2010) 

combined Moderate Resolution Imaging Spectroradiometer (MODIS) and MISR-derived AODs, and multiplied them to the 

ratio between PM2.5 and AOD simulated by the GEOS-Chem model (i.e., CTM) to estimate global 6-year (2001-2006) 
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averaged PM2.5 concentrations. Their results showed a strong spatial agreement with in-situ PM2.5 concentrations in North 

America (slope = 1.07; R2 = 0.59). To estimate daily PM2.5 concentrations over the United States using random forest (RF), 

Hu et al. (2017b) incorporated MODIS AOD, simulated GEOS-Chem AOD, meteorological data, and land-use information. 

The developed RF model produced an R2 of 0.8 and an RMSE of 2.83 µg/m3 from 10-fold cross validation. 

Most previous studies have mainly used AOD produced from polar orbiting satellite sensor systems such as MODIS and 5 

MISR. They provide AOD worldwide but only make it available once a day because of the revisit time. A major problem 

with daily AOD is cloud contamination. In particular, as the cloud cover rate is high in Asia, it is difficult to obtain spatially 

continuous AOD over the region. Therefore, many studies have focused on the United States to estimate ground-level PM 

concentrations using polar orbiting satellite data. AOD produced from geostationary satellite sensor systems may be a better 

option for estimating ground level PM concentrations due to it having a higher temporal resolution than polar orbiting sensor 10 

systems. The Geostationary Ocean Colour Imager (GOCI) is the world’s first geostationary ocean color satellite sensor that 

provides multi-spectral aerosol data in Northeast Asia (included eastern China, the Korea peninsula, and Japan) (Park et al., 

2014; Xu et al., 2015a). GOCI provides hourly data at 500 m resolution 8 times a day from 9:00 to 16:00 Korean Standard 

time (KST). Xu et al. (2015a) examined PM2.5 concentrations in eastern China using GOCI-derived AOD, coupled with 

GEOS-Chem simulation data, resulting in a strong correlation (R2 = 0.66) with in-situ measurements in terms of annual 15 

mean concentrations. 

In addition, recent studies have used PBLH, RH, wind speed, and other meteorological variables and land use information 

because these factors are related to PM concentrations, and thus can be used to improve estimation models (Gupta and 

Christopher, 2009a; Liu et al., 2009; Wu et al., 2012; Chudnovsky et al., 2014; You et al., 2015; Wu et al., 2016; Li et al., 

2017b; Yeganeh et al., 2017). In this study, we adopted the machine learning approach, Random Forest (RF), to develop 20 

models estimating ground level PM10 and PM2.5 concentrations using satellite-derived products, numerical and emission 

model output, and ancillary spatial data over South Korea. Aerosol products retrieved from GOCI including AOD were used 

as key input variables. The objectives of this study are to (1) estimate ground-level PM10 and PM2.5 concentrations based on 

GOCI aerosol products and meteorological and emission model output data using RF, (2) validate the estimated PM 

concentrations using in-situ observation data, (3) compare the results to those when MODIS aerosol products were used 25 

instead of GOCI products, (4) evaluate the proposed remote sensing-based models in comparison with the results from 

physical models such as GEOS-Chem and the Community Multiscale Air Quality Modelling System (CMAQ). 

2 Study area and data 

2.1 Study area 

The study area was South Korea (latitude: 33°N-39°N, longitude: 124°E-131.5°E), located in northeast Asia, a region known 30 

to have relatively poor air quality. Our study area is located in the mid-latitude region where the prevailing westerlies carry 

particulates from the two most rapidly developing countries in Asia (i.e., China and India). The annual mean temperature of 
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South Korea ranges from 10 to 15°C, and the annual precipitation ranges from 1000 to 1900 mm. More than half of the 

precipitation occurs in summer during the Asian monsoon. Wind direction is seasonal, with north-westerly winds prevailing  

in winter and south-westerly winds in summer.  

 

Figure 1: Study area with particulate matter (PM) monitoring station sites in South Korea. Elevation is used as a background 5 
image. 

 

2.2 Data 

2.2.1 Observation data 

PM observation data (i.e. PM10 and PM2.5) in South Korea were obtained from the AirKorea website 10 

(https://www.airkorea.or.kr/) for the period from 2015 to 2016. A total of 325 stations are distributed throughout the country 

with a concentration in metropolitan areas such as the Seoul Metropolitan Area (SMA) (Figure 1). Hourly concentrations of 

air pollutants such as PM10 and PM2.5 are provided as real time data. Currently, PM10 data are provided at 316 stations while 

PM2.5 are measured at 194 stations. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



5 
 

2.2.2 Remote sensing data 

GOCI is a geostationary satellite imaging sensor onboard the Communication, Ocean, and Meteorological Satellite (COMS), 

which was launched in June 2010. It covers 2500 km x 2500 km over the East Asia region and 8 images collected at 6 visible 

and 2 NIR bands per day provided hourly from 09:00 to 16:00 in local time (KST). GOCI aerosol products are derived by 

GOCI Yonsei aerosol retrieval (YAER) version 2 algorithm (Choi et al., 2018). Four types of products were used in this 5 

study: AOD at 550 nm, fine-mode fraction (FMF) at 550m, single scattering albedo (SSA) at 440 nm, and Ångström 

exponent (AE) between 440 and 870 nm with 6 km x 6 km of spatial resolution (Table 1). 

MODIS, onboard the Terra and Aqua satellites, acquires data in 36 spectral bands ranging from 0.4 to 1.4 µm in wavelength, 

to observe the Earth’s environment. The 16-days Normalized Difference Vegetation Index (NDVI) with 1 km resolution 

(MYD13A2; Solano et al., 2010) and Aerosol 5-min L2 swath data with 3km resolution (MYD04_3K; Levy et al., 2013) 10 

products from 2015 to 2016, and the yearly land cover type product with 500 m resolution (MCD12Q1; Friedl et al., 2010) in 

2013 were obtained from Reverb Echo (https://reverb.echo.nasa.gov/reverb/). Urban area ratios were calculated using land 

cover data based on the 13 x 13 neighbourhood pixels, which were similar to the spatial resolution of GOCI AOD products. 

MODIS Aerosol product was used for comparison with GOCI AOD data. 

Global Precipitation Measurement (GPM; Huffman et al., 2015) developed by the National Aeronautics and Space 15 

Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) was launched in February 2014 to provide 

observations of rain and snow worldwide. Half-hourly precipitation data with 0.1-degree resolution (3IMERGHH) were 

obtained from Goddard Earth Science Data and Information Service Centre (GES DISC; https://mirador.gsfc.nasa.gov/). 

Half-hourly precipitation data were provided as precipitation rates with mm/hr and used to calculate 24-hour accumulated 

precipitation data for every hour. 20 

The Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) was launched as a payload on the STS-99 mission of the 

Space Shuttle Endeavour to generate a global digital elevation model (DEM) of the Earth. SRTM DEM data were acquired 

by using the radar interferometry based on the C-band Spaceborne Imaging Radar (SIR-C) and the X-band Synthetic 

Aperture Radar (X-SAR) hardware. The elevation data were provided at 1 arc-second (about 30 meters) and 3 arc-second 

(about 90 meters) of spatial resolution for global coverage from the U.S. Geological Survey (USGS) EarthExplorer website 25 

(https://earthexplorer.usgs.gov/). In this study, 3 arc-second data were used and resampled to the same resolution as the 

MODIS data with 1 km of spatial resolution (Table 1). 

 

Table 1: Remote sensing data used to develop models estimating ground-level particulate matter concentrations in this study. 

Product 
Spatial 

resolution 

Temporal 

resolution 
Variables Description 
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2.2.3 Model-based data 

The Regional Data Assimilation and Prediction System (RDAPS; Davies et al., 2005) is one of the numerical weather 

forecast models used by the Korea Meteorological Administration, which is based on Unified Model (UM) by the United 

Kingdom Met Office. The analysis-forecast products with about a hundred variables are generated with 12 km of spatial 5 

resolution and 70 vertical layers. They are provided four times a day (03:00, 09:00, 15:00, 21:00 KST) for 87-hour forecasts 

with 3-hour time steps. A total of 7 variables in UM RDAPS analysis data (i.e., temperature, dew-point temperature, RH, 

maximum wind speed, visibility at the height above the ground, and PBLH and surface pressure) were used as 

meteorological input variables in this study. These meteorological variables are commonly used to estimate ground-level PM 

concentrations (Lv et al., 2017; He and Huang, 2018). 10 

The Sparse Matrix Operator Kernel Emissions (SMOKE; Baek et al., 2009) is based on emission inventories generally 

provided as an annual total emission amount for each emission source. Hourly emission data with 9 km spatial resolution 

GOCI 

AOD_550nm 
6 km 8/day 

Aerosol Optical Depth 

(AOD) 

The measure of the extinction of the solar 

radiation by aerosols (e.g., dust, haze, and sea 

salt) 

GOCI 

FMF_550nm 
6 km 8/day 

Fine Mode Fraction 

(FMF) 

The ratio of small size aerosols (radii between 

0.1 and 0.25) to the total aerosols 

GOCI 

SSA_440nm 
6 km 8/day 

Single Scattering Albedo 

(SSA) 

The measure of the amount of aerosol light 

extinction due to scattering 

GOCI 

AE_440_870nm 
6 km 8/day Ångström Exponent (AE) 

The exponent related with particle size 

(The smaller the particles, the bigger the 

Ångström Exponent) 

MODIS 

MYD13A2 
1 km 16 days 

Normalized Difference 

Vegetation Index (NDVI) 
The indicator denoting vegetation quantification 

MODIS 

MCD12Q1 
500 m yearly 

Land Cover Type 

(Urban area ratio) 

The ratio of urban area to 6 km x 6 km 

neighbourhood of each pixel 

GPM 

3IMERGHH 
0.1° 30 min Precipitation 

The 24-h accumulated precipitation produced 

using 30 minutes 3MERGHH precipitation data 

from GPM 

SRTM 

Void Filled 
90 m - 

Digital Elevation Model 

(DEM) 
The 2D representation of topographic surface 
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were obtained from the National Institute of Environmental Research (NIER). Among the 47 chemical composition 

parameters in SMOKE outputs, 14 of PM-related emission data (i.e., ISOPRENE, TRP1, CH4, NO, NO2, NH3, HCOOH, 

HCHO, CO, SO2, POA, PNO3, PSO4 and PMFINE) were used in this study. The selected parameters are mostly those 

defined by Aerosol Emission 5 (AE5) which is one of the PM2.5 chemical mechanisms (Jimenez et al, 2013) and major 

precursors forming the PM (Xu et al., 2015b; van Zelm et al., 2016; Gao et al., 2016).  5 

The Breathing Earth System Simulator (BESS; Ryu et al., 2018) is the MODIS-based model that couples atmosphere and 

canopy radiative transfers, photosynthesis, transpiration, and energy balance. It includes an atmospheric radiative transfer 

model and an ANN approach with MODIS atmospheric products. Daily BESS shortwave radiation products with 5 km 

spatial resolution were obtained from the Environmental Ecology Lab at Seoul National University 

(http://environment.snu.ac.kr/bess_rad/). 10 

2.2.4 Other input variables 

Population density by region (obtained from the Statistical Geographic Information Service (SGIS; https://sgis.kostat.go.kr/)) 

and Day of Year (DOY) were used as additional input variables together with remote sensing and model-based 

meteorological and emission variables. Population density was calculated for each administrative division, in which a unit is 

the number of people per square kilometre, and then converted to raster with a 1 km grid. In this study, DOY was converted 15 

to values ranging from -1 to 1 with a one-year period using a sine function considering seasonality (i.e., setting the middle of 

summer as 1 and the middle of winter as -1; Stolwijk et al., 1999). Road network data were not used in this study, as the use 

of the road data often yielded inaccurate results over non-urban areas in our preliminary analyses. 

2.2.5 Data pre-processing 

A total of 32 input variables from satellite and model-based data were used for the estimation of ground-level PM 20 

concentrations in the RF machine learning. All data collected at 13:00 KST were used to develop PM estimation models to 

match the acquisition time of MODIS Aqua aerosol products over the study area. The observed PM concentrations (i.e., 

target variables) were log-transformed because high concentration data were relatively small. To ensure the reliability of 

GOCI-derived aerosol products, the four rule-based filters used in Choi (2017) were applied: buddy check, local variance 

check, sub-pixel cloud fraction check, and diurnal variation check. The same NDVI values during the interval of MODIS 16-25 

days NDVI were used in the models. GPM precipitation data were converted into 24-hour accumulated precipitation data 

using 48 half-hourly data prior to the target time (i.e., hourly). UM RDAPS reanalysis data were linearly interpolated using 

analysis fields at 09:00 and 15:00 KST. DEM, urban area ratio and population density data were used as constant variables 

during the study period. Input data with different spatial resolutions were resampled to a 1 km MODIS grid using bilinear 

interpolation. A total of 32 input variables and their abbreviations are summarized in Table 2. 30 
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Table 2: List of input variables (and their abbreviations) used to estimate ground-level particulate matter concentrations. 

Data Variables Abbreviations 

Satellite-based remote 

sensing data 

Aerosol Optical Depth AOD 

Fine Mode Fraction FMF 

Single Scattering Albedo SSA 

Ångström Exponent AE 

Normalized Difference Vegetation Index NDVI 

Urban area ratio Urban_ratio 

24-hour Accumulated Precipitation Precip 

Digital Elevation Model DEM 

Model-based 

meteorological data 

Temperature at the height above ground Temp 

Dew-point temperature at the height above ground Dew 

Relative humidity at the height above ground RH 

Pressure surface P_srf 

3-hour maximum wind speed at the height above ground MaxWS 

Planetary Boundary Layer Height PBLH 

Visibility at the height above ground Visibility 

Solar Radiation RSDN 

Model-based emission data ISOPRENE (C5H8) ISOPRENE 

Monoterpene (C10H16) TRP1 

Methane (CH4) CH4 

Nitric oxide (NO) NO 

Nitrogen dioxide (NO2) NO2 

Ammonia (NH3) NH3 

Formic acid (HCOOH) HCOOH 

Formaldehyde (HCHO) HCHO 

Carbon monoxide (CO) CO 

Sulfur dioxide (SO2) SO2 

Primary organic aerosol POA 

Primary nitrate PNO3 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



9 
 

3 Methodology 

The process flow diagram for the estimation of ground-level PM concentrations is shown in Figure 2. The constructed data 

were divided into two groups by date: 80% of the data were used for model development and the remaining 20% were used 

for hindcast validation considering data distribution by PM concentration levels. The data for model development were again 

randomly divided into training (80%) and test (20%) datasets. Since PM reference data had a skewed distribution (i.e., a 5 

number of low concentration samples and a few high concentration samples), oversampling and subsampling approaches 

were conducted only for the training dataset to avoid over- or under-estimation due to biased sample distribution. Then, the 

RF machine learning method was applied to the training datasets to develop the models for estimating ground-level PM 

concentrations.  

 10 

 

Figure 2: Process flow diagram of the estimation of ground level particulate matter concentrations proposed in this study. 

Primary sulfate PSO4 

Other primary PM2.5 PMFINE 

Ancillary data Population density PopDens 

Converted Day of Year DOY 
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3.1 Oversampling and Subsampling 

Many of the in-situ observation data used in this study showed low concentrations, while there were a relatively small 

number of observations of high concentrations. This imbalance in samples could result in biased estimation with a significant 

underestimation of high concentration data. Thus, over- and sub-sampling approaches were conducted for the training 

datasets to overcome the problem caused by the unbalanced samples (Table 3).  5 

The oversampling approach is based on the assumption that the PM concentration of a training sample (i.e., at a pixel) is not 

significantly different from those of its neighbouring pixels. Input variables in the adjacent pixels of high concentration 

samples were extracted using 3 x 3 or 5 x 5 windows with the corresponding target variables (i.e., PM2.5 and PM10) randomly 

perturbed within 5% of the focus pixel concentrations. The subsampling approach was applied to the low concentration data 

(e.g., 30-60 µg/m3 for PM10) that had too many samples compared to the other levels of concentrations.  10 

Table 3: The number of samples for training, test, and hindcast validation datasets. The adjusted sample size for training data was 
determined through the over-/sub-sampling approaches. 

 
Training dataset 

Test dataset 
 Hindcast validation 

dataset Original Adjusted  

PM10 7919 14201 1545  3906 

PM2.5 3038 5738 776  1364 

 

3.2 Machine learning approach (Random Forest; RF) 

Machine learning approaches have been widely used in various remote sensing studies with classification and regression 15 

(Liu et al., 2015; Ke et al., 2016; Lee et al., 2016; Hu et al., 2017b; Jang et al., 2017). Since RF has proved to be useful for 

remote sensing-based regression tasks (Jang et al.,2017; Chen et al., 2018; Yoo et al., 2018), it was used to develop models 

to estimate ground-level PM concentrations in this study. RF is an ensemble model based on classification and regression 

trees (CART) with randomized node optimization and bootstrap aggregating (aka bagging; Breiman, 2001). RF generates 

numerous independent trees to overcome the limitations of a single decision (or regression) tree method, such as the 20 

dependency on a single tree and the problem of overfitting the training data. A multitude of independent trees are ensembled 

to reach a solution by majority voting for classification or averaging for regression. RF provides information on how a 

variable contributes to model development using out-of-bag (OOB) data that are not used in training a model (Breiman, 

2001). When a variable from OOB data is randomly permuted, the change in mean square error in percentage is calculated. 

The larger the increase in the error for a variable, the more contributing the variable is. RF was applied to the training data to 25 

develop the models for estimating ground-level PM concentrations. The models were evaluated using the test and hindcast 

validation data. 
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3.3 Model evaluation 

Accuracy assessment of the developed models were conducted using the test and hindcast validation datasets based on the 

five metrics—coefficient of determination (R2), RMSE, relative RMSE (rRMSE), mean bias (MB), and mean error (ME). 

rRMSE, MB, and ME are calculated as: 

,           (1)  5 

           (2) 

             (3) 

where  is the observed data,  is the mean of the observed data,  is an estimated value, and N is the number of 

observations. The rRMSE is the RMSE normalized by the mean value of observed data, which is useful for comparing 

results with different scales. The MB and ME are the average of variation between the model-derived and observed values, 10 

with the exception that ME uses only absolute difference. The MB presents a tendency of overestimation or underestimation 

by a model. The ME is the difference between observation and estimation (Boylan and Russell, 2006). 

3.4 Comparison with other approaches 

MODIS AOD is one of the widely used satellite-based aerosol products, which has often been used to estimate PM 

concentrations. The developed RF models were compared with those using MODIS AOD instead of GOCI aerosol products. 15 

Unlike GOCI, MODIS only provides AOD with 3 km resolution (i.e., MYD04_3K) over land, AOD was used for 

developing MODIS-based models without incorporating other aerosol-related variables (i.e., AE, FMF and SSA). In order to 

compare the performance between MODIS- and GOCI-based RF models, 50 % of the samples that were commonly included 

in both MODIS and GOCI datasets were used to develop the models, while the remaining data were used to validate the 

models.  20 

In addition, the ground-level PM concentrations predicted using the GOCI-based RF models were compared to the simulated 

and predicted results by GEOS-Chem and CMAQ models. The comparison among the GOCI-based model, GEOS-Chem, 

and CMAQ to in situ measurements was conducted using the hindcast validation dataset. The results from the GOCI-based 

models were resampled to the GEOS-Chem grid with 0.25° x 0.3125° from January to September 2016 and CMAQ grids 

with 9 km x 9 km for 2015-2016 for comparison to in situ measurements, respectively. The approach by van Donkelaar et al. 25 

(2010) that uses the ratio between the ground-level data and total column of AOD to satellite-based AOD (i.e., here GOCI 

AOD) using the vertical profile of AOD from GEOS-Chem was adopted to predict ground-level PM concentrations (i.e., 

GOCI-GEOS-Chem fused PM estimation). 
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4 Results and discussion 

4.1 Performance of the RF models 

The evaluation results of the developed models for estimating PM10 and PM2.5 concentrations using the test datasets over 

South Korea are presented in Table 4. The models (the improved models hereafter) based on the balanced training samples 

through over-/sub-sampling resulted in R2 values of 0.78 and 0.73, and RMSEs of 17.08 µg/m3 and 8.25 µg/m3 for PM10 and 5 

PM2.5, respectively. There was a significant improvement in using the balanced training samples instead of the original 

samples (decrease of RMSE ~30% and rRMSE ~10%). MB and ME also confirmed that the balanced samples improved the 

models estimating ground level PM concentrations (Table 3; Figure 3). In particular, high concentration data (over 150 

µg/m3 for PM10 and 50 µg/m3 for PM2.5) were well estimated by the improved models. The slopes of the trends were also 

improved from 0.46-0.48 to 0.77-0.78. The slopes were still lower than 1, and it is due to the slight overestimation of low 10 

PM concentration data (Figure 3).  

Although it is not possible to directly compare the present results with those from other studies, the results from this study 

agreed well with those from recent literature that used machine learning approaches for estimating PM concentrations (Gupta 

et al., 2009b; Wu et al., 2012; Li et al., 2017a; Yeganeh et al., 2017; Hu et al., 2017b; Chen et al., 2018). Hu et al. (2017b) 

estimated surface PM2.5 concentrations using RF, resulting in the cross validation R2 of 0.8 and RMSE of 2.83 µg/m3. 15 

Similarly, Chen et al. (2018) compared three different methods (i.e., RF, generalized additive model (GAM), and non-linear 

exposure-lag-response model (NEM)) to estimate surface PM2.5 concentrations over China during 2014-2016. Their results 

for daily estimation show cross validation R2 of 0.83, 0.55, and 0.51 for RF, GAM, and NEM, respectively, implying the 

robustness of machine learning compared to traditional statistical models. A geographically adjusted deep belief network 

(Geoi-DBN) was used to estimate PM2.5 over China and showed a good correlation with observation data (R2 = 0.88 and 20 

RMSE = 13.68 µg/m3; Li et al., 2017a). The literature shows that empirical models using statistical and machine learning 

approaches often underestimate high PM concentrations (Wu et al., 2012; Li et al., 2017a). However, the RF-based models 

developed in our study has proved to be effective for modelling high ground-level PM concentrations. 

Table 4: Accuracy assessment results of the RF-based models for estimating PM concentrations using the test datasets during 
2015-2016.  25 

 R2 RMSE a 
(µg/m3) 

rRMSE b  
(%) MB c (µg/m3) ME d (µg/m3) Slope Intercept 

Model (with original training samples) 

PM10 0.58 24.34 36.96 -5.24 15.41 0.48 28.94 
PM2.5 0.59 10.53 36.46 -2.30 7.37 0.46 13.30 

Improved model (with balanced training samples) 

PM10 0.78 17.08 25.94 2.93 12.78 0.78 17.16 
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PM2.5 0.73 8.25 28.58 1.71 6.18 0.77 8.30 
a Root Mean Square Error; b Relative Root Mean Square Error; c Mean Bias; d Mean Error 

 

In addition, the seasonal variation of model performance for 2015 and 2016 is shown in Table 5. The R2 values for PM10 

estimations are the highest (0.87) in winter with an RMSE of 12.78 µg/m3 and the lowest (0.50) in summer with an RMSE of 

12.62 µg/m3, as compared to R2 values of 0.77 and 0.74 with RMSEs of 16.61 µg/m3 and 13.07 µg/m3 in fall and spring, 5 

respectively. The summer season resulted in relatively high rRMSE for estimating ground-level PM concentrations 

compared to the other seasons. This is mainly because ground-level PM concentrations are typically low in summer in South 

Korea. The relatively small sample size in summer  and cloud contamination might lead to estimation errors (Shi et al., 2014; 

Sogacheva et al., 2017). 

 10 

Table 5: Seasonal variation of model performance for estimating particulate matter (PM) concentrations. Spring, summer, fall, 
and winter correspond to March to May, June to August, September to November, and December to February, respectively.  

  R2 RMSE a 
(µg/m3) 

rRMSE b  
(%) 

MB c 
(µg/m3) 

ME d  
(µg/m3) Slope Intercept 

PM10 Annual 0.76 13.04 19.32 3.09 9.83 0.75 19.78 

Spring 0.74 13.07 17.77 3.08 9.98 0.70 25.06 

Summer 0.50 12.62 28.88 0.33 9.23 0.48 22.95 

Fall 0.77 16.61 26.69 7.76 11.81 0.87 15.76 

Winter 0.87 12.78 19.22 3.71 9.20 0.87 12.29 

PM2.5 Annual 0.82 5.92 18.90 1.36 4.42 0.81 7.21 

Spring 0.82 5.90 19.01 1.14 4.47 0.75 8.77 

Summer 0.63 7.79 30.98 3.15 6.20 0.61 12.97 

Fall 0.85 8.12 27.50 3.89 6.53 0.88 7.30 

Winter 0.79 7.94 20.99 0.72 5.56 0.82 7.65 
a Root Mean Square Error; b Relative Root Mean Square Error; c Mean Bias; d Mean Error;  
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Figure 3: The model test results of daily PM10 and PM2.5 estimation: (a) PM10 estimation model using the original samples, (b) 
PM10 estimation using the balanced samples through over-/ sub-sampling, (c) PM2.5 estimation model using the original samples, 
and (d) PM2.5 estimation model using the balanced samples through over-/ sub-sampling. 

Figure 4 depicts the top 10 input variables that were identified as the most contributing variables by the improved RF models 5 

for estimating PM10 and PM2.5 concentrations. The results indicate that AOD, DOY, MaxWS, RSDN, and Dew (i.e., dew-

point temperature) were commonly identified as contributing variables by the RF models to estimate both ground-level PM10 
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and PM2.5 concentrations. The AOD was identified as the most significant factor, which agreed well with the exiting 

literature (Yu et al., 2017; Zang et al., 2017; Chen et al., 2018). Although most high PM concentration samples had high 

AOD values, some high PM samples had low AOD values. Careful examination of the samples shows that there were Asian 

dust events at high altitudes during the period of study, which did not affect ground-level PM concentrations. This could be 

an error source, implying that altitude information of such dust events can be used to further improve the models for 5 

estimating ground-level PM concentrations. 

Some meteorological variables indicating the atmospheric conditions also contributed to the estimation of ground-level PM 

concentrations in the improved models. There is a relationship between solar radiation and aerosols in which solar radiation 

increases with decreasing aerosol concentration (Préndez et al., 1995; Hu et al., 2017a; Borlina and Rennó, 2017). Prior 

studies noted that there is an inverse relationship between wind speed and both PM10 and PM2.5 (Gupta et al., 2006; 10 

Maraziotis et al., 2008; Krynicka and Drzeniecka-Osiadacz, 2013). This relationship causes an increase in PM 

concentrations under low wind speed conditions but a decrease under high wind speed conditions, which is also confirmed in 

the present study. This means that atmospheric conditions such as congestion have significant impacts on surface PM 

concentrations. The results correspond to previous studies (e.g., You et al., 2015; Yeganeh et al., 2017; Hu et al., 2017b; Yu 

et al., 2017) showing that meteorological factors are strongly effective in improving PM estimation models. Interestingly, the 15 

anthropogenic factors such as LC_ratio (urban ratio), PopDens (population density), NH3, and SO2 were more important for 

PM2.5 estimation than PM10. This implies that the sources of PM2.5 are mainly anthropogenic in South Korea (Moon et al., 

2011; gon Ryou et al., 2018). 
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Figure 4: Variable importance of the top 10 input variables identified by the random forest models for estimating ground-level (a) 
PM10 and (b) PM2.5 concentrations. 

 

4.2 Spatial distribution of PM concentrations using the improved RF models 5 

Figure 5 illustrates the spatial distribution of 2-year (2015-2016) averaged surface PM10 and PM2.5 concentrations at 1 km 

resolution with station-based in-situ PM10 and PM2.5 concentrations over South Korea. The pixels that have concentration 

values for more than 5 % of the period (> 36 days for the two years) were used to produce the spatial distribution maps to 

secure the reliability of the distribution. Thus, the maps have some no data pixels. The predicted PM10 and PM2.5 have 

similar spatial patterns with relatively high concentrations for urban areas especially around metropolitan areas, and agree 10 

well with observed concentrations (Figure 5).  

The seasonal maps of PM10 and PM2.5 concentrations are also shown in Figure 6. South Korea has the rainy season usually in 

June and July. For this reason, cloud contaminants are much more significant in the summer season than the other seasons, 

which resulted in many no data pixels for the summer maps (Figure 6). The ground-level PM concentrations in the spring 

and winter are much higher than in summer and fall for PM10. The results agree well with the general seasonal patterns of 15 
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PM10 concentrations of South Korea, where PM concentrations are much higher in spring due to Asian dust inflow carried by 

westerly winds (Park et al., 2017). In addition, anthropogenic emissions generally increase PM concentrations in winter (Lu 

et al., 2011; Li et al., 2016). The seasonal distribution of PM2.5 concentrations is similar to that of PM10. However, high 

concentrations were predominantly found in fall for PM2.5. The cold Siberian high pressure might explain this. When warm 

air from the south flows into the study area, and while the force of the Siberian anticyclone stops, an inversion layer is 5 

formed. Then, PM is trapped because the atmospheric circulation becomes stagnant. Another reason can be explained by the 

relative overestimation of PM2.5 by the RF model in the fall season (Table 5). MB was greatest for the fall season among the 

four seasons indicating overestimation of PM2.5. A more careful data configuration between training and test samples with 

larger sample size may mitigate such an overestimation. 

 10 
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Figure 5: Maps of two-year averaged particulate matter concentrations: (a) PM10 by the RF model, (b) in situ PM10 at stations, (c) 
PM2.5 by the RF model, and (d) in situ PM2.5 at stations. 

 

Figure 6: Spatial distributions of seasonal mean particulate matter concentrations: (a) PM10 for spring, (b) PM10 for summer, (c) 
PM10 for fall, and (d) PM10 for winter, (e) PM2.5 for spring, (f) PM2.5 for summer, (g) PM2.5 for fall, and (h) PM2.5 for winter.  5 

 

4.3 Comparison of ground PM concentrations based on GOCI and MODIS AODs 

The existing studies have generally used MODIS-derived AOD to estimate surface PM concentrations for various countries 

because of its global coverage and high quality (Remer et al., 2006; Gupta et al., 2009a,b; Van Donkelaar et al., 2010; Wang 

et al., 2010; Chudnovsky et al., 2014; You et al., 2015; Hu et al., 2017b; Yu et al., 2017; He and Huang, 2018). In this 10 

section, the estimated ground-level PM10 and PM2.5 concentrations are compared based on GOCI AOD and MODIS AOD. 

Figure 7 displays the scatterplots showing the cross-validation results of the RF-based models using GOCI-derived and 

MODIS-derived AODs. Although there was no statistically significant difference between the two types of models through 

ANOVA tests, the GOCI-based RF models produced slightly better accuracy metrics (i.e., R2, RMSE, and rRMSE) than 

MODIS -based RF models for estimating ground-level PM concentrations. Considering the advantages of GOCI as a 15 

geostationary satellite sensor (i.e., high spatial and temporal resolutions; 8 times a day with a 500 m grid size), it is very 

promising to use GOCI-derived products as input to PM estimation models. It should also be noted that GOCI-2, which has 

enhanced sensor specifications (i.e., 10 data collection per day at 250 m spatial resolution) is planned to be launched in 2019. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



19 
 

 

Figure 7: Scatterplots between the estimated and observed particulate matter concentrations: (a) by the MODIS-based RF model 
for PM10, (b) by the GOCI-based RF model for PM10, (c) by the MODIS-based RF model for PM2.5, and (d) by the GOCI-based 
RF model for PM2.5. 

 5 
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4.4 Comparison with the process-based models 

The RF-based models for estimating ground-level PM10 and PM2.5 concentrations were further compared with process-based 

models, i.e., GEOS-Chem and CMAQ. Some studies investigated the GEOS-Chem simulated PM and AOD by integrating 

satellite-derived AOD to improve their results (Van Donkelaar et al., 2010; Van Donkelaar et al., 2015; Xu et al., 2015a). 

Figure 8 shows the comparison of the accuracy metrics of the three models: the GEOS-Chem simulated, GOCI-GEOS-Chem 5 

fused, and the RF-predicted PM concentrations using the hindcast validation datasets (Table 3). The GOCI-GEOS-Chem 

fused PM10 concentration have less errors than the GEOS-Chem simulated PM10 concentration, which agrees well with the 

existing literature. However, both tend to significantly underestimate the ground-level PM10 concentration when compared to 

the proposed RF model. Although the GOCI-GEOS-Chem fused PM2.5 concentration shows higher RMSE and mean error 

than GEOS-Chem PM2.5 concentration due to overestimation, the R2 and slope of the GOCI-GEOS-Chem fused PM2.5 10 

concentration improved when compared to those of the GEOS-Chem PM2.5 concentration. The RF models also produced 

better performance than CMAQ for estimating both PM10 and PM2.5 concentrations (Figure 9). Similar to the GEOS-Chem 

models, CMAQ tends to underestimate PM concentrations showing a large negative MB value.  

 

Figure 8: Comparison of the three models (i.e., GEOS-Chem based, GOCI-GEOS-Chem fused, and the present RF-based models) 15 
using the hindcast validation data for estimating particulate matter concentrations: (a) PM10 and (b) PM2.5 with Root Mean 
Square Error (RMSE), Mean Bias (MB), and Mean Error (ME). 
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Figure 9: Comparison between the RF-based and CMAQ models using the hindcast validation data for estimating particulate 
matter concentrations: (a) PM10 and (b) PM2.5 with Root Mean Square Error (RMSE), Mean Bias (MB), and Mean Error (ME). 

5 Conclusions 

In this study, machine learning (i.e., RF) based models were developed to estimate ground-level PM10 and PM2.5 5 

concentrations through the synergistic use of satellite data and model output over South Korea. The RF-based models 

developed using the balanced training samples produced good performance resulting in R2 values of 0.78 and 0.73, and 

RMSEs of 17.08 µg/m3 and 8.25 µg/m3 for PM10 and PM2.5, respectively. In particular, the proposed models estimated high 

PM concentrations well. GOCI-derived AOD was identified as the most significant input variable for estimating ground-

level PM concentrations. A few meteorological variables such as MaxWS, RSDN, and dew-point temperature were also 10 

revealed as contributing variables. In addition, the anthropogenic factors such as urban ratio, population density, emission of 

SO2 and NH3 were considered significant for estimating PM2.5 concentrations. Two-year and seasonal averaged maps of 

ground level PM concentrations agree with spatio-temporal patterns of PM concentrations reported in the literature.  

The proposed RF models were also compared to the two process-based models (GEOS-Chem and CMAQ) using the 

hindcast validation data. When GOCI-derived AOD was incorporated with the GEOS-Chem data, the estimation of PM 15 

concentrations improved. However, the incorporated approach still underestimated high concentrations, when compared to 

the proposed RF models. Similar results were found for the comparison between the RF models and CMAQ, which implies 

the robustness of the proposed approach.  

Although the proposed models performed better than the existing models, there are several ways to further improve the 

proposed models, which deserve further investigation. First, more input variables, especially those that are related to vertical 20 
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information of AOD, can be used to improve the models. In addition, other sophisticated approaches such as deep learning 

could be utilized to improve the estimation accuracy for ground-level PM concentrations. Although only two-year data were 

used in this study, longer archives can be used to further refine the models. The synergistic use of forthcoming geostationary 

satellite series of GEO-KOMPSAT (GK)-2A with Advanced Meteorological Imager (AMI) and GK-2B with GOCI-II and 

Geostationary Environment Monitoring Spectrometer (GEMS) sensors, will provide more accurate aerosol information with 5 

higher spatial and temporal resolutions than those of GOCI. Such a synergy is likely to improve the estimation of ground-

level PM concentrations in the near future. 

 

Acknowledgments 

This study was supported by a grant from the National Institute of Environmental Research (NIER), funded by the Ministry 10 

of Environment (MOE) of the Republic of Korea (NIER-2017-01-02-063), the Space Technology Development Program 

through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning 

(NRF-2017M1A3A3A02015981), and the National Strategic Project-Fine Particle of the National Research Foundation of 

Korea (NRF) funded by the Ministry of Science and ICT (MSIT), the Ministry of Environment (ME), and the Ministry of 

Health and Welfare (MOHW) (NRF-2017M3D8A1092021). 15 

References 

Baek, B. H., Seppanen, C., and Houyoux, M.: SMOKE v2. 6 User′ s manual [OL], 2009. 

Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., and Delfino, R. J.: Particulate air pollution, ambulatory heart rate 

variability, and cardiac arrhythmia in retirement community residents with coronary artery disease, Environmental health 

perspectives, 121, 1135, 2013. 20 

Borlina, C. S., and Rennó, N. O.: The Impact of a Severe Drought on Dust Lifting in California’s Owens Lake Area, 

Scientific Reports, 7, 1784, 2017. 

Boylan, J. W., and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-

dimensional air quality models, Atmospheric environment, 40, 4946-4959, 2006. 

Breiman, L.: Random forests, Machine learning, 45, 5-32, 2001. 25 

Chen, G., Li, S., Knibbs, L. D., Hamm, N., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M. J., and Guo, Y.: A machine 

learning method to estimate PM 2.5 concentrations across China with remote sensing, meteorological and land use 

information, Science of the Total Environment, 636, 52-60, 2018. 

Choi, M.-j.: Retrieval of aerosol optical properties from GOCI: Algorithm Improvement, Analysis and Application to PM 

(Doctoral dissertation), Graduate School, Yonsei University, Seoul, 2017. 30 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



23 
 

Choi, M., Kim, J., Lee, J., Kim, M., Holben, B., Eck, T. F., Li, Z., and Song, C. H.: GOCI Yonsei aerosol retrieval version 2 

products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia, 

Atmospheric Measurement Techniques, 11, 385, 2018. 

Chudnovsky, A. A., Koutrakis, P., Kloog, I., Melly, S., Nordio, F., Lyapustin, A., Wang, Y., and Schwartz, J.: Fine 

particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals, Atmospheric Environment, 89, 5 

189-198, 2014. 

Davies, T., Cullen, M. J., Malcolm, A. J., Mawson, M., Staniforth, A., White, A., and Wood, N.: A new dynamical core for 

the Met Office's global and regional modelling of the atmosphere, Quarterly Journal of the Royal Meteorological Society, 

131, 1759-1782, 2005. 

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., and Roth, L.: 10 

The shuttle radar topography mission, Reviews of geophysics, 45, 2007. 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 

global land cover: Algorithm refinements and characterization of new datasets, Remote sensing of Environment, 114, 168-

182, 2010. 

Gao, M., Carmichael, G. R., Saide, P. E., Lu, Z., Yu, M., Streets, D. G., and Wang, Z.: Response of winter fine particulate 15 

matter concentrations to emission and meteorology changes in North China, Atmospheric Chemistry and Physics, 16, 11837, 

2016. 

gon Ryou, H., Heo, J., and Kim, S.-Y.: Source apportionment of PM 10 and PM 2.5 air pollution, and possible impacts of 

study characteristics in South Korea, Environmental Pollution, 2018. 

Gupta, A., Nag, S., and Mukhopadhyay, U.: Characterisation of PM10, PM2. 5 and benzene soluble organic fraction of 20 

particulate matter in an urban area of Kolkata, India, Environmental monitoring and assessment, 115, 205-222, 2006. 

Gupta, P., and Christopher, S. A.: Particulate matter air quality assessment using integrated surface, satellite, and 

meteorological products: Multiple regression approach, Journal of Geophysical Research: Atmospheres, 114, 2009a. 

Gupta, P., and Christopher, S. A.: Particulate matter air quality assessment using integrated surface, satellite, and 

meteorological products: 2. A neural network approach, Journal of Geophysical Research: Atmospheres, 114, 2009b. 25 

He, Q., and Huang, B.: Satellite-based mapping of daily high-resolution ground PM 2.5 in China via space-time regression 

modeling, Remote Sensing of Environment, 206, 72-83, 2018. 

Hu, B., Zhao, X., Liu, H., Liu, Z., Song, T., Wang, Y., Tang, L., Xia, X., Tang, G., and Ji, D.: Quantification of the impact of 

aerosol on broadband solar radiation in North China, Scientific Reports, 7, 44851, 2017a. 

Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating PM2. 5 Concentrations 30 

in the Conterminous United States Using the Random Forest Approach, Environmental Science & Technology, 51, 6936-

6944, 2017b. 

Huffman, G. J., Bolvin, D. T., and Nelkin, E. J.: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical 

documentation, NASA/GSFC Code, 612, 47, 2015. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



24 
 

Jang, E., Im, J., Park, G.-H., and Park, Y.-G.: Estimation of fugacity of carbon dioxide in the East Sea using in situ 

measurements and Geostationary Ocean Color Imager satellite data, Remote Sensing, 9, 821, 2017. 

Jerrett, M., Turner, M. C., Beckerman, B. S., Pope III, C. A., van Donkelaar, A., Martin, R. V., Serre, M., Crouse, D., 

Gapstur, S. M., and Krewski, D.: Comparing the health effects of ambient particulate matter estimated using ground-based 

versus remote sensing exposure estimates, Environmental health perspectives, 125, 552, 2017. 5 

Jimenez, M., Nopmongcol, U., and Yarwood, G.: Speciation Tool User’s Guide Version 3.1 [PDF file], 2013. Retrieved 

from https://www.cmascenter.org/help/model_docs/speciation_tool/3.1/Sptool_UG_V3.1.pdf 

Ke, Y., Im, J., Park, S., and Gong, H.: Downscaling of MODIS One kilometer evapotranspiration using Landsat-8 data and 

machine learning approaches, Remote Sensing, 8, 215, 2016. 

Koo, Y.-S., Kim, S.-T., Cho, J.-S., and Jang, Y.-K.: Performance evaluation of the updated air quality forecasting system for 10 

Seoul predicting PM10, Atmospheric environment, 58, 56-69, 2012. 

Krynicka, J., and Drzeniecka-Osiadacz, A.: Analysis of Variability in PM 10 Concentration in the Wrocław Agglomeration, 

Polish Journal of Environmental Studies, 22, 2013. 

Lee, S., Im, J., Kim, J., Kim, M., Shin, M., Kim, H.-c., and Quackenbush, L. J.: Arctic sea ice thickness estimation from 

CryoSat-2 satellite data using machine learning-based lead detection, Remote Sensing, 8, 698, 2016. 15 

Levy, R., Mattoo, S., Munchak, L., Remer, L., Sayer, A., Patadia, F., and Hsu, N.: The Collection 6 MODIS aerosol products 

over land and ocean, Atmospheric Measurement Techniques, 6, 2989, 2013. 

Li, K., Liao, H., Mao, Y., and Ridley, D. A.: Source sector and region contributions to concentration and direct radiative 

forcing of black carbon in China, Atmospheric Environment, 124, 351-366, 2016. 

Li, R., Gong, J., Chen, L., and Wang, Z.: Estimating ground-level pm 2.5 using fine-resolution satellite data in the megacity 20 

of Beijing, China, Aerosol Air Qual. Res, 15, 1347-1356, 2015. 

Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating Ground-Level PM2. 5 by Fusing Satellite and Station 

Observations: A Geo-Intelligent Deep Learning Approach, Geophysical Research Letters, 44, 2017a. 

Li, T., Shen, H., Zeng, C., Yuan, Q., and Zhang, L.: Point-surface fusion of station measurements and satellite observations 

for mapping PM2. 5 distribution in China: Methods and assessment, Atmospheric Environment, 152, 477-489, 2017b. 25 

Liu, T., Im, J., and Quackenbush, L. J.: A novel transferable individual tree crown delineation model based on Fishing Net 

Dragging and boundary classification, ISPRS Journal of Photogrammetry and Remote Sensing, 110, 34-47, 2015. 

Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., and Koutrakis, P.: Estimating ground-level PM2. 5 in the eastern United States 

using satellite remote sensing, Environmental science & technology, 39, 3269-3278, 2005. 

Liu, Y., Franklin, M., Kahn, R., and Koutrakis, P.: Using aerosol optical thickness to predict ground-level PM2. 5 30 

concentrations in the St. Louis area: A comparison between MISR and MODIS, Remote sensing of Environment, 107, 33-44, 

2007. 

Liu, Y., Paciorek, C. J., and Koutrakis, P.: Estimating regional spatial and temporal variability of PM2. 5 concentrations 

using satellite data, meteorology, and land use information, Environmental health perspectives, 117, 886, 2009. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



25 
 

Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–

2010, Atmospheric Chemistry and Physics, 11, 9839-9864, 2011. 

Lv, B., Hu, Y., Chang, H. H., Russell, A. G., Cai, J., Xu, B., and Bai, Y.: Daily estimation of ground-level PM2. 5 

concentrations at 4 km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations, Science of 

the Total Environment, 580, 235-244, 2017. 5 

Maraziotis, E., Sarotis, L., Marazioti, C., and Marazioti, P.: Statistical analysis of inhalable (PM10) and fine particles (PM2. 

5) concentrations in urban region of Patras, Greece, Global nest journal, 10, 123-131, 2008. 

Moon, K.-J., Park, S.-M., Park, J.-S., Song, I.-H., Jang, S.-K., Kim, J.-C., and Lee, S.-J.: Chemical Characteristics and 

Source Apportionment ofPM 2.5 in Seoul Metropolitan Area in 2010, Journal of Korean Society for Atmospheric 

Environment, 27, 711-722, 2011. 10 

Park, M., Song, C., Park, R., Lee, J., Kim, J., Lee, S., Woo, J.-H., Carmichael, G., Eck, T. F., and Holben, B. N.: New 

approach to monitor transboundary particulate pollution over Northeast Asia, Atmospheric Chemistry and Physics, 14, 659-

674, 2014. 

Park, S and Shin, H.: Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors, Journal of 

Environmental Policy and Administration, 25, 227-248, 2017. 15 

Pope III, C. A., Ezzati, M., and Dockery, D. W.: Fine-particulate air pollution and life expectancy in the United States, New 

England Journal of Medicine, 360, 376-386, 2009. 

Préndez, M. M., Egido, M., Tomas, C., Seco, J., Calvo, A., and Romero, H.: Correlation between solar radiation and total 

syspended particulate matter in Santiago, Chile—Preliminary results, Atmospheric Environment, 29, 1543-1551, 1995. 

Remer, L. A., Tanre, D., Kaufman, Y. J., Levy, R., and Mattoo, S.: Algorithm for remote sensing of tropospheric aerosol 20 

from MODIS: Collection 005, National Aeronautics and Space Administration, 1490, 2006. 

Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land products of shortwave radiation and diffuse 

and total photosynthetically active radiation at 5 km resolution from 2000, Remote Sensing of Environment, 204, 812-825, 

2018. 

Shi, Y., Zhang, J., Reid, J., Liu, B., and Hyer, E.: Critical evaluation of cloud contamination in the MISR aerosol products 25 

using MODIS cloud mask products, Atmospheric Measurement Techniques, 7, 1791-1801, 2014. 

Sogacheva, L., Kolmonen, P., Virtanen, T. H., Rodriguez, E., Saponaro, G., and De Leeuw, G.: Post-processing to remove 

residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer, Atmospheric 

Measurement Techniques, 10, 491, 2017. 

Solano, R., Didan, K., Jacobson, A., and Huete, A.: MODIS vegetation index user’s guide (MOD13 series), Vegetation 30 

Index and Phenology Lab, The University of Arizona, 1-38, 2010. 

Stolwijk, A., Straatman, H., and Zielhuis, G.: Studying seasonality by using sine and cosine functions in regression analysis, 

Journal of Epidemiology & Community Health, 53, 235-238, 1999. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



26 
 

Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and Villeneuve, P. J.: Global estimates of 

ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application, 

Environmental health perspectives, 118, 847, 2010. 

Van Donkelaar, A., Martin, R. V., Brauer, M., and Boys, B. L.: Use of satellite observations for long-term exposure 

assessment of global concentrations of fine particulate matter, Environmental health perspectives, 123, 135, 2015. 5 

van Zelm, R., Preiss, P., van Goethem, T., Van Dingenen, R., and Huijbregts, M.: Regionalized life cycle impact assessment 

of air pollution on the global scale: damage to human health and vegetation, Atmospheric Environment, 134, 129-137, 2016. 

Wang, Z., Chen, L., Tao, J., Zhang, Y., and Su, L.: Satellite-based estimation of regional particulate matter (PM) in Beijing 

using vertical-and-RH correcting method, Remote sensing of environment, 114, 50-63, 2010. 

Wu, J., Yao, F., Li, W., and Si, M.: VIIRS-based remote sensing estimation of ground-level PM2. 5 concentrations in 10 

Beijing–Tianjin–Hebei: A spatiotemporal statistical model, Remote Sensing of Environment, 184, 316-328, 2016. 

Wu, Y., Guo, J., Zhang, X., Tian, X., Zhang, J., Wang, Y., Duan, J., and Li, X.: Synergy of satellite and ground based 

observations in estimation of particulate matter in eastern China, Science of the Total Environment, 433, 20-30, 2012. 

Xu, J.-W., Martin, R., Van Donkelaar, A., Kim, J., Choi, M., Zhang, Q., Geng, G., Liu, Y., Ma, Z., and Huang, L.: 

Estimating ground-level PM 2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument, 15 

Atmospheric Chemistry and Physics, 15, 13133-13144, 2015a. 

Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. 

M., and Knote, C.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the 

southeastern United States, Proceedings of the National Academy of Sciences, 112, 37-42, 2015b. 

Yeganeh, B., Hewson, M. G., Clifford, S., Knibbs, L. D., and Morawska, L.: A satellite-based model for estimating PM2. 5 20 

concentration in a sparsely populated environment using soft computing techniques, Environmental Modelling & Software, 

88, 84-92, 2017. 

Yoo, C., Im, J., Park, S., and Quackenbush, L. J.: Estimation of daily maximum and minimum air temperatures in urban 

landscapes using MODIS time series satellite data, ISPRS Journal of Photogrammetry and Remote Sensing, 137, 149-162, 

2018. 25 

You, W., Zang, Z., Zhang, L., Li, Z., Chen, D., and Zhang, G.: Estimating ground-level PM10 concentration in northwestern 

China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count, 

Remote Sensing of Environment, 168, 276-285, 2015. 

Yu, W., Liu, Y., Ma, Z., and Bi, J.: Improving satellite-based PM 2.5 estimates in China using Gaussian processes modeling 

in a Bayesian hierarchical setting, Scientific reports, 7, 7048, 2017. 30 

Zang, Z., Wang, W., You, W., Li, Y., Ye, F., and Wang, C.: Estimating ground-level PM2. 5 concentrations in Beijing, 

China using aerosol optical depth and parameters of the temperature inversion layer, Science of the Total Environment, 575, 

1219-1227, 2017. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-647
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.


