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Abstract. Long-term exposure to particulate matter (PM) with aerodynamic diameters < 10 µm (PM10) and 2.5 µm (PM2.5) 

has negative effects on human health. Although station-based PM monitoring has been conducted around the world, it is still 

challenging to provide spatially continuous PM information for vast areas at high spatial resolution. Satellite-derived aerosol 

information such as aerosol optical depth (AOD) has been frequently used to investigate ground-level PM concentrations. In 

this study, we combined multiple satellite-derived products including AOD with model-based meteorological parameters (i.e. 20 

dew-point temperature, wind speed, surface pressure, planetary boundary layer height, and relative humidity) and emission 

parameters (i.e. NO, NH3, SO2, POA, and HCHO) to estimate surface PM concentrations over South Korea. Random forest 

(RF) machine learning was used to estimate both PM10 and PM2.5 concentrations with a total of 32 parameters for 2015-2016. 

The results show that the RF-based models produced good performance resulting in R2 values of 0.78 and 0.73, and RMSEs 

of 17.08 µg/m3 and 8.25 µg/m3 for PM10 and PM2.5, respectively. In particular, the proposed models successfully estimated 25 

high PM concentrations. AOD was identified as the most significant for estimating ground-level PM concentrations, followed 

by wind speed, solar radiation, and dew-point temperature. The use of aerosol information derived from a geostationary 

satellite sensor (i.e., GOCI) resulted in slightly higher accuracy for estimating PM concentrations than that from a polar-

orbiting sensor system (i.e., MODIS). The proposed RF models yielded better performance than the process-based approaches, 

particularly in improving on the underestimation of the process-based models (i.e., GEOS-Chem and CMAQ). 30 
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1 Introduction 

Epidemiological studies have consistently shown that negative human health effects including premature mortality can be 

caused by long-term exposure to atmospheric aerosols and particles, especially PM10 and PM2.5 (particulate matter (PM) with 

an aerodynamic diameter of less than 10 µm and 2.5 µm, respectively) (Pope III et al., 2009; Bartell et al., 2013; Jerrett et al., 

2017). Consequently, the monitoring and assessment of exposure to PM10 and PM2.5 are crucial for effective management of 5 

public health risks. In recent decades, East Asia has been significantly industrialized and urbanized through its rapid economic 

growth. The industrialization and urbanization have resulted in adverse effects on air quality not only in this region but also in 

neighbouring countries (Koo et al., 2012). 

The Public Health and Environment Research Institute in South Korea has been monitoring PM10 and PM2.5 concentrations at 

numerous sites all over its jurisdiction. Even though the distribution of the monitoring sites is relatively dense, there is a 10 

limitation in providing spatially continuous PM concentrations that focus on major urban areas. For example, Zang et al. (2017) 

studied the effect of a temperature inversion layer on the relationship between aerosol optical depth (AOD) and PM2.5. The 

aerosol robotic network (AERONET) AOD and radiosonde data were used to estimate ground PM2.5 concentrations through 

an optimized subset regression model. They found the temperature inversion layer to be a key factor in enhancing the accuracy 

of a ground-level PM2.5 estimation model with a coefficient of determination (R2) of 0.63 and a root mean square error (RMSE) 15 

of 35.45 µg/m3 (Zang et al., 2017). Their study suggested an inversion model to estimate PM2.5 but showed a limitation in that 

the model can only be used in areas near ground stations, which are required by the model to derive its parameters. Ground-

based data typically have uncertainty for spatial distribution of PM concentrations as they are point-based measurements 

requiring spatial interpolation. Satellite-based PM monitoring has the potential to provide information on air quality over vast 

areas at high spatial resolution. Many studies have examined the use of satellite-based products to estimate surface PM 20 

concentrations (Liu et al., 2005; Gupta and Christopher, 2009a,b; Van Donkelaar et al., 2010, 2015; Chudnovsky et al., 2014; 

Li et al., 2015; Xu et al., 2015a; You et al., 2015; Wu et al., 2016). AOD is the most widely used parameter that can be derived 

from satellite remote sensing to estimate ground-level PM concentrations. It represents the amount of light attenuation caused 

by atmospheric aerosol scattering and absorption in the vertical column. 

Early studies generally adopted simple linear regression to investigate the relationship between total column AOD and surface 25 

PM concentrations (Liu et al., 2005; Liu et al., 2007). Liu et al. (2005) estimated ground-level PM2.5 concentrations over the 

eastern United States using Multiangle Imaging Spectroradiometer (MISR)-derived AOD, Planetary Boundary Layer Height 

(PBLH) and Relative Humidity (RH) from the Goddard Earth Observing System (GEOS-3). Their results yielded an R2 of 

0.48 and an RMSE of 13.8 µg/m3 when the estimated PM2.5 concentrations were compared to in-situ measurements. Chemical 

transport models (CTM) have also been combined with satellite observations to estimate ground-level PM concentrations. To 30 

estimate global 6-year (2001-2006) averaged PM2.5 concentrations, Van Donkelaar et al. (2010) combined Moderate 

Resolution Imaging Spectroradiometer (MODIS) and MISR-derived AODs, and multiplied them by the ratio between PM2.5 
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and AOD simulated by the GEOS-Chem model (i.e., CTM). Their results showed a strong spatial agreement with in-situ PM2.5 

concentrations in North America (slope = 1.07; R2 = 0.59).  

More recent studies explored advanced statistical and machine learning approaches to improve the prediction of ground-level 

PM concentrations by deploying mixed-effects models, geographically weighted regression (GWR), support vector machines 

(SVM), or artificial neural networks (ANN) (Gupta et al., 2009b; You et al., 2015; Li et al., 2017a; Chen et al., 2018). Machine 5 

learning approaches have been widely used in various remote sensing studies thanks to their flexibility with classification and 

regression (Im et al., 2009; Lu et al., 2011a, Liu et al., 2015; Ke et al., 2016; Pham et al., 2017; Forkuor et al., 2018). In 

particular, random forest (RF) has proved to be useful for remote sensing-based regression tasks (Yoo et al., 2012; Jang et al., 

2017; Richardson et al., 2017; Yoo et al., 2018). To estimate daily PM2.5 concentrations over the United States, Hu et al. (2017b) 

incorporated MODIS AOD, simulated GEOS-Chem AOD, meteorological data, and land-use information in an RF model. The 10 

developed RF model produced an R2 of 0.8 and an RMSE of 2.83 µg/m3 from 10-fold cross validation.  

Most previous studies have mainly used AOD produced from polar orbiting satellite sensor systems such as MODIS and MISR. 

They provide AOD worldwide but only make it available once a day because of the revisit time. A major problem with daily 

AOD is cloud contamination. Therefore, it is difficult to obtain spatially continuous AOD over cloudy regions such as East 

Asia in summer monsoon. AOD produced from geostationary satellite sensor systems may be a better option for estimating 15 

ground level PM concentrations due to it having a higher temporal resolution than polar orbiting sensor systems. The 

Geostationary Ocean Colour Imager (GOCI) is the world’s first geostationary ocean colour satellite sensor that provides multi-

spectral aerosol data in Northeast Asia (included eastern China, the Korea peninsula, and Japan) (Park et al., 2014; Xu et al., 

2015a). GOCI provides hourly data at 500 m resolution 8 times a day from 9:00 to 16:00 Korean Standard time (KST). Xu et 

al. (2015a) examined PM2.5 concentrations in eastern China using GOCI-derived AOD, coupled with GEOS-Chem simulation 20 

data, resulting in a strong correlation (R2 = 0.66) with in-situ measurements in terms of annual mean concentrations. 

In addition, recent studies have used PBLH, RH, wind speed, and other meteorological variables and land use information 

because these factors are related to PM concentrations, and thus can be used to improve estimation models (Gupta and 

Christopher, 2009a; Liu et al., 2009; Wu et al., 2012; Chudnovsky et al., 2014; You et al., 2015; Wu et al., 2016; Li et al., 

2017b; Yeganeh et al., 2017). In this study, we adopted the machine learning approach, RF, to develop models estimating 25 

ground level PM10 and PM2.5 concentrations using satellite-derived products, numerical and emission model output, and 

ancillary spatial data over South Korea. Aerosol products retrieved from GOCI including AOD were used as key input variables. 

The objectives of this study are to (1) estimate ground-level PM10 and PM2.5 concentrations based on GOCI aerosol products 

and meteorological and emission model output data using RF; (2) validate the estimated PM concentrations using in-situ 

observation data; (3) compare the results to those when MODIS aerosol products were used instead of GOCI products, and (4) 30 

evaluate the proposed remote sensing-based models in comparison with the results from physical models such as GEOS-Chem 

and the Community Multiscale Air Quality Modelling System (CMAQ). 
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2 Study area and data 

2.1 Study area 

The study area was South Korea (latitude: 33°N-39°N, longitude: 124°E-131.5°E), located in northeast Asia, a region known 

to have relatively poor air quality. Our study area is located in the mid-latitude region where the prevailing westerlies carry 

particulates from the two most rapidly developing countries in Asia (i.e., China and India). The annual mean temperature of 5 

South Korea ranges from 10 to 15°C, and the annual precipitation ranges from 1000 to 1900 mm. More than half of the 

precipitation occurs in summer during the Asian monsoon. Wind direction is seasonal, with north-westerly winds prevailing 

in winter and south-westerly winds in summer.  

 

Figure 1: Study area with particulate matter (PM) monitoring station sites in South Korea. Elevation is used as a background 10 
image. 
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2.2 Data 

Data used in this study are ground observations as the target variable, and remote sensing data, model-based data, and other 

ancillary spatial data as explanatory variables. We selected the explanatory variables considering the recent literature that 

estimated ground PM concentrations (He and Huang, 2018; Chen et al., 2018; Brokamp et al., 2018), which are explained in 

the following sections.  5 

2.2.1 Observation data 

PM observation data (i.e. PM10 and PM2.5) in South Korea were obtained from the AirKorea website 

(https://www.airkorea.or.kr/) for the period from 2015 to 2016. A total of 325 stations are distributed throughout the country 

with a concentration in metropolitan areas such as the Seoul Metropolitan Area (SMA) (Figure 1). Hourly concentrations of 

air pollutants such as PM10 and PM2.5 are provided as real time data. PMs at stations are measured based on a beta attenuation 10 

monitoring (BAM) technique which is widely used for automatic air monitoring (Zhan et al., 2017; Zhao et al., 2016). The 

measurement results are expressed as mass concentration per unit volume (i.e., µg/m3) converted to room temperature (20 °C, 

1 atm). Currently, PM10 data are provided at 316 stations while PM2.5 are measured at 194 stations. 

2.2.2 Remote sensing data 

Various remote sensing data were used in this study such as GOCI aerosol products, MODIS Normalized Difference 15 

Vegetation Index (NDVI), land cover product, Global Precipitation Measurement (GPM) 30-min precipitation data, and the 

Shuttle Radar Topography Mission (SRTM) elevation data. GOCI is a geostationary satellite imaging sensor onboard the 

Communication, Ocean, and Meteorological Satellite (COMS), which was launched in June 2010. It covers 2500 km x 2500 

km over the East Asia region and 8 images collected at 6 visible and 2 NIR bands per day provided hourly from 09:00 to 16:00 

in local time (KST). GOCI aerosol products are derived by GOCI Yonsei aerosol retrieval (YAER) version 2 algorithm (Choi 20 

et al., 2018). Four types of products were used in this study: AOD at 550 nm, fine-mode fraction (FMF) at 550m, single 

scattering albedo (SSA) at 440 nm, and Ångström exponent (AE) at 440 and 870 nm with 6 km x 6 km of spatial resolution 

(Table 1). 

The MODIS satellite instrument, onboard the Terra and Aqua satellites, acquires data in 36 spectral bands ranging from 0.4 to 

1.4 µm in wavelength. The 16-days NDVI with 1 km resolution (MYD13A2; Solano et al., 2010), Aerosol 5-min L2 swath 25 

data with 3km resolution (MYD04_3K; Levy et al., 2013) products from 2015 to 2016, and the yearly land cover type product 

with 500 m resolution (MCD12Q1; Friedl et al., 2010) in 2013 were obtained from Reverb Echo 

(https://reverb.echo.nasa.gov/reverb/). Urban area ratios were calculated using land cover data based on the 13 x 13 

neighbourhood pixels, which were similar to the spatial resolution of GOCI AOD products. MODIS Aerosol product was used 

for comparison with GOCI AOD data. 30 
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The GPM (Huffman et al., 2015) developed by the National Aeronautics and Space Administration (NASA) and the Japanese 

Aerospace Exploration Agency (JAXA) was launched in February 2014 to provide observations of rain and snow worldwide. 

Half-hourly precipitation data with 0.1-degree resolution (3IMERGHH) were obtained from Goddard Earth Science Data and 

Information Service Centre (GES DISC; https://mirador.gsfc.nasa.gov/). Half-hourly precipitation data were provided as 

precipitation rates with mm/hr and used to calculate 24-hour accumulated precipitation data for every hour. 5 

The SRTM (Farr et al., 2007) was launched as a payload on the STS-99 mission of the Space Shuttle Endeavour to generate a 

global digital elevation model (DEM) of the Earth. SRTM DEM data were acquired using the radar interferometry based on 

the C-band Spaceborne Imaging Radar (SIR-C) and the X-band Synthetic Aperture Radar (X-SAR) hardware. The elevation 

data were provided at 1 arc-second (about 30 meters) and 3 arc-second (about 90 meters) of spatial resolution for global 

coverage from the U.S. Geological Survey (USGS) EarthExplorer website (https://earthexplorer.usgs.gov/). In this study, 3 10 

arc-second data were used and resampled to the same resolution as the MODIS data with 1 km of spatial resolution (Table 1). 

 

Table 1: Remote sensing data used to develop models estimating ground-level particulate matter concentrations in this study. 

Product 
Spatial 

resolution 

Temporal 

resolution 
Variables Description 

GOCI 

AOD_550nm 
6 km 8/day 

Aerosol Optical Depth 

(AOD) 

The measure of the extinction of the solar 

radiation by aerosols (e.g., dust, haze, and sea 

salt) 

GOCI 

FMF_550nm 
6 km 8/day 

Fine Mode Fraction 

(FMF) 

The ratio of small size aerosols (radii between 

0.1 and 0.25) to the total aerosols 

GOCI 

SSA_440nm 
6 km 8/day 

Single Scattering Albedo 

(SSA) 

The measure of the amount of aerosol light 

extinction due to scattering 

GOCI 

AE_440_870nm 
6 km 8/day Ångström Exponent (AE) 

The exponent related with particle size 

(The smaller the particles, the bigger the 

Ångström Exponent) 

MODIS 

MYD13A2 
1 km 16 days 

Normalized Difference 

Vegetation Index (NDVI) 
The indicator denoting vegetation quantification 

MODIS 

MCD12Q1 
500 m yearly 

Land Cover Type 

(Urban area ratio) 

The ratio of urban area to 6 km x 6 km 

neighbourhood of each pixel 
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2.2.3 Model-based data 

Along with satellite-based data, the outputs from three models were combined. The three models were: the Regional Data 

Assimilation and Prediction System (RDAPS), the Sparse Matrix Operator Kernel Emissions (SMOKE), and the Breathing 

Earth System Simulator (BESS). The RDAPS (Davies et al., 2005) is one of the numerical weather forecast models used by 5 

the Korea Meteorological Administration, which is based on the Unified Model (UM) developed by the United Kingdom Met 

Office. The spatial domain of the RDAPS is 77.38 ºE - 176.56 ºE and 9.59ºN - 61.27ºN. The RDAPS takes the information of 

initial and boundary conditions from UM - Global Data Assimilation and Prediction System (GDAPS) with the spatial 

resolution of 25 km x 25 km. The analysis-forecast products with about a hundred variables are generated with 12 km of spatial 

resolution and 70 vertical layers. They are provided four times a day (03:00, 09:00, 15:00, 21:00 KST) for 87-hour forecasts 10 

with 3-hour time steps. A total of 7 variables in UM RDAPS analysis data (i.e., temperature, dew-point temperature, RH, 

maximum wind speed, visibility at the height above the ground, and PBLH and surface pressure) were used as meteorological 

input variables in this study. These meteorological variables are commonly used to estimate ground-level PM concentrations 

(Lv et al., 2017; He and Huang, 2018). 

The SMOKE (Baek et al., 2009) is based on emission inventories generally provided as an annual total emission amount for 15 

each emission source. Hourly emission data with 9 km spatial resolution were obtained from the National Institute of 

Environmental Research (NIER). Among the 47 chemical composition parameters in SMOKE outputs, 14 PM-related emission 

data parameters (i.e., ISOPRENE, TRP1, CH4, NO, NO2, NH3, HCOOH, HCHO, CO, SO2, POA, PNO3, PSO4 and PMFINE) 

were used in this study. The selected parameters are mostly those defined by Aerosol Emission 5 (AE5) as major precursors 

forming the PM (Xu et al., 2015b; van Zelm et al., 2016; Gao et al., 2016).  20 

The BESS (Ryu et al., 2018) is the MODIS-based model that couples atmosphere and canopy radiative transfers, 

photosynthesis, transpiration, and energy balance. It includes an atmospheric radiative transfer model and an ANN approach 

with MODIS atmospheric products. Daily BESS shortwave radiation products with 5 km spatial resolution were obtained from 

the Environmental Ecology Lab at Seoul National University (http://environment.snu.ac.kr/bess_rad/). 

GPM 

3IMERGHH 
0.1° 30 min Precipitation 

The 24-h accumulated precipitation produced 

using 30 minutes 3MERGHH precipitation data 

from GPM 

SRTM 

Void Filled 
90 m - 

Digital Elevation Model 

(DEM) 
The 2D representation of topographic surface 
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2.2.4 Other input variables 

Population density by region (obtained from the Statistical Geographic Information Service (SGIS; https://sgis.kostat.go.kr/)) 

and Day of Year (DOY) were used as additional input variables together with remote sensing and model-based meteorological 

and emission variables. Population density was calculated for each administrative division, in which a unit is the number of 

people per square kilometre, and then converted to raster with a 1 km grid. In this study, DOY was converted to values ranging 5 

from -1 to 1 with a one-year period using a sine function considering seasonality (i.e., setting the middle of summer as 1 and 

the middle of winter as -1; Stolwijk et al., 1999). Road network data were not used in this study, as the use of the road data 

often yielded inaccurate results over non-urban areas in our preliminary analyses. 

2.2.5 Data pre-processing 

A total of 32 input variables from satellite and model-based data were used for the estimation of ground-level PM 10 

concentrations in the RF machine learning. All data collected at 13:00 KST were used to develop PM estimation models to 

match the acquisition time of MODIS Aqua aerosol products over the study area. The observed PM concentrations (i.e., target 

variables) were log-transformed because the concentration range is large and has a positively skewed distribution. To ensure 

the reliability of GOCI-derived aerosol products, the four rule-based filters used in Choi (2017) were applied: buddy check, 

local variance check, sub-pixel cloud fraction check, and diurnal variation check. The same NDVI values during the interval 15 

of MODIS 16-days NDVI were used in the models. GPM precipitation data were converted into 24-hour accumulated 

precipitation data using 48 half-hourly data prior to the target time (i.e., hourly). UM RDAPS reanalysis data were linearly 

interpolated using analysis fields at 09:00 and 15:00 KST. DEM, urban area ratio and population density data were used as 

constant variables during the study period. Input data with different spatial resolutions were resampled to a 1 km MODIS grid 

using bilinear interpolation. A total of 32 input variables and their abbreviations are summarized in Table 2. 20 

Table 2: List of input variables (and their abbreviations) used to estimate ground-level particulate matter concentrations. 

Data Variables Abbreviations 

Satellite-based remote 

sensing data 

Aerosol Optical Depth AOD 

Fine Mode Fraction FMF 

Single Scattering Albedo SSA 

Ångström Exponent AE 

Normalized Difference Vegetation Index NDVI 

Urban area ratio Urban_ratio 

24-hour Accumulated Precipitation Precip 

Digital Elevation Model DEM 
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3 Methodology 

The process flow diagram for the estimation of ground-level PM concentrations is shown in Figure 2. The constructed data 

were divided into two groups by date: 80% of the data were used for model development and the remaining 20% were used 

for hindcast validation considering data distribution by PM concentration levels. The data for model development were again 

randomly divided into training (80%) and test (20%) datasets. Since PM reference data had a skewed distribution (i.e., a 5 

Model-based 

meteorological data 

Temperature at the height above ground Temp 

Dew-point temperature at the height above ground Dew 

Relative humidity at the height above ground RH 

Pressure surface P_srf 

3-hour maximum wind speed at the height above ground MaxWS 

Planetary Boundary Layer Height PBLH 

Visibility at the height above ground Visibility 

Solar Radiation RSDN 

Model-based emission data ISOPRENE (C5H8) ISOPRENE 

Monoterpene (C10H16) TRP1 

Methane (CH4) CH4 

Nitric oxide (NO) NO 

Nitrogen dioxide (NO2) NO2 

Ammonia (NH3) NH3 

Formic acid (HCOOH) HCOOH 

Formaldehyde (HCHO) HCHO 

Carbon monoxide (CO) CO 

Sulfur dioxide (SO2) SO2 

Primary organic aerosol POA 

Primary nitrate PNO3 

Primary sulfate PSO4 

Other primary PM2.5 PMFINE 

Ancillary data Population density PopDens 

Converted Day of Year DOY 
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number of low concentration samples and a few high concentration samples), oversampling and subsampling approaches were 

conducted only for the training dataset to avoid over- or under-estimation due to biased sample distribution. Then, the RF 

machine learning method was applied to the training datasets to develop the models for estimating ground-level PM 

concentrations.  

 5 

 

Figure 2: Process flow diagram of the estimation of ground level particulate matter concentrations proposed in this study. 

3.1 Oversampling and Subsampling 

Many of the in-situ observation data used in this study showed low concentrations, while there were a relatively small number 

of observations of high concentrations. This imbalance in samples could result in biased estimation with a significant 10 

underestimation of high concentration data. Thus, over- and sub-sampling approaches were conducted for the training datasets 

to overcome the problem caused by the unbalanced samples (Table 3).  

The oversampling approach is based on the assumption that the PM concentration of a training sample (i.e., at a pixel) is not 

significantly different from those of its neighbouring pixels. The pixels within a circular window with a radius of 3 pixels (i.e., 

37 pixels including the focus cell) were considered as potential neighbouring pixels (see Supplementary Figure 1). Those 37 15 

neighbouring pixels were numbered based on the proximity to the centre (i.e., the closer the pixel is to the centre, the lower 

the number considering the direction from the focus). In order to perform oversampling, the intervals of 30 µg/m3 and 20 

µg/m3 were first applied to the PM10 and PM2.5 samples, respectively (i.e., 0-30 µg/m3, 30-60 µg/m3,…, 360-390 µg/m3, and 

>390 µg/m3 for PM10, and 0-20 µg/m3, 20-40 µg/m3, …, 100-120 µg/m3, > 120 for PM2.5). The second groups (i.e., 30-60 



11 
 

µg/m3 for PM10 and 20-40 µg/m3 for PM2.5) had the largest sample sizes, and thus the subsampling approach based on simple 

random sampling (i.e., 50%) was applied to the second groups. For the other groups, we multiplied an integer value ranging 

from 1 to 37 by the sample size of each group to produce a more balanced sample distribution (i.e., the smaller the sample size, 

the larger the integer). Oversampling was then performed based on the order of the neighbouring pixels was performed. Input 

variables in the adjacent pixels of high concentration samples were extracted with the corresponding target variables (i.e., 5 

PM2.5 and PM10) that were randomly perturbed within 5% of the focus pixel concentrations. This oversampling approach can 

effectively reduce the underestimation of high PM concentrations that results from the small training sample size of high 

concentration data. 

Table 3: The number of samples for training, test, and hindcast validation datasets. The adjusted sample size for training data was 
determined through the over-/sub-sampling approaches. 10 

 Training dataset 
Test dataset 

 Hindcast validation 
dataset Original Adjusted  

PM10 7919 14201 1545  3906 

PM2.5 3038 5738 776  1364 

 

 
Supplementary Figure 1: The pixels within the circular neighbouring window with a radius of 3 pixels considered for oversampling. 
The number in each pixel indicates the order of inclusion of the pixel for oversampling. For example, oversampling for pixels of an 
interval might be conducted for first three pixels following the order, while oversampling for pixels of another interval might be 15 
conducted for up to the 13th pixel within the window. 
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3.2 Machine learning approach (Random Forest; RF) 

RF is an ensemble model based on classification and regression trees (CART) with randomized node optimization and 

bootstrap aggregating (aka bagging; Breiman, 2001). RF generates numerous independent trees to overcome the limitations of 

a single decision (or regression) tree method, such as the dependency on a single tree and the problem of overfitting the training 5 

data, resulting in better performance than single CARTs (Kim et al., 2015; Lee et al., 2016; Liu et al., 2018). A multitude of 

independent trees are ensembled to reach a solution by majority voting for classification or averaging for regression (e.g., 

Amani et al., 2017; Im et al., 2016; Latifi et al., 2018). RF provides information on how a variable contributes to model 

development using out-of-bag (OOB) data that are not used in training a model (Sonobe et al., 2017; Park et al., 2017). When 

a variable from OOB data is randomly permuted, the change in mean square error in percentage is calculated (Breiman, 2001). 10 

The larger the increase in the error for a variable, the more contributing the variable is. RF was applied to the training data to 

develop the models for estimating ground-level PM concentrations. The models were evaluated using the test and hindcast 

validation data. 

 

3.3 Model evaluation 15 

Accuracy assessment of the developed models were conducted using the test and hindcast validation datasets based on the five 

metrics—coefficient of determination (R2), RMSE, relative RMSE (rRMSE), mean bias (MB), and mean error (ME). rRMSE, 

MB, and ME are calculated as: 

rRMSE = '()*
+,

× 100	%,           (1)  

MB = 3
4
∑ (𝑓8 − 𝑦8)4
8<3            (2) 20 

ME = 3
4
∑ |𝑓8 − 𝑦8|4
8<3              (3) 

where 𝑦8 is the observed data, 𝑦, is the mean of the observed data, 𝑓8 is an estimated value, and N is the number of observations. 

The rRMSE is the RMSE normalized by the mean value of observed data, which is useful for comparing results with different 

scales. The MB and ME are the averages of variation between the model-derived and observed values, with the exception that 

ME uses only absolute difference. The MB presents a tendency of overestimation or underestimation by a given model. The 25 

ME is the difference between observation and estimation (Boylan and Russell, 2006). 
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3.4 Comparison with other approaches 

MODIS AOD is one of the widely used satellite-based aerosol products, and has often been used to estimate PM concentrations. 

The developed RF models were compared with those using MODIS AOD instead of GOCI aerosol products. Unlike GOCI, 

MODIS only provides AOD with 3 km resolution (i.e., MYD04_3K) over land. AOD was used for developing MODIS-based 

models without incorporating other aerosol-related variables (i.e., AE, FMF and SSA). In order to compare the performance 5 

between MODIS- and GOCI-based RF models, 50 % of the samples that were commonly included in both MODIS and GOCI 

datasets were used to develop the models, while the remaining samples were used to validate the models.  

In addition, the ground-level PM concentrations predicted using the GOCI-based RF models were compared to the simulated 

and predicted results by GEOS-Chem and CMAQ models. The GEOS-Chem v10-01 was utilized with the Global Forecast 

System (GFS; produced by the National Centres for Environmental Prediction (NCEP)) as meteorological fields, and MIX 10 

Asian emission inventory as emissions. The nested domain for the GEOS-Chem simulation is 70ºE - 150ºE and 15ºN - 55ºN, 

which covers East Asia. The horizontal resolution of the nested model is 0.25º x 0.3125º. The boundary conditions for the 

nested model are from the GEOS-Chem global simulation at 2º x 2.5º horizontal resolution. The CMAQ model version 4.7.1 

was used to simulate the ground-level PM10 and PM2.5 concentrations. Meteorological fields simulated by the Weather 

Research and Forecasting (WRF) model and emission data from the SMOKE model were utilized to run the CMAQ model. 15 

The comparison among the GOCI-based model, GEOS-Chem, and CMAQ to in situ measurements, was conducted using the 

hindcast validation dataset. For comparison to in situ measurements, the results from the GOCI-based models were resampled 

to the GEOS-Chem grid with 0.25° x 0.3125° from January to September 2016, and to the CMAQ grids with 9 km x 9 km for 

2015-2016. The approach by van Donkelaar et al. (2010) that uses the ratio between the ground-level data and total column of 

AOD to satellite-based AOD (i.e., here GOCI AOD) using the vertical profile of AOD from GEOS-Chem was adopted to 20 

predict ground-level PM concentrations (i.e., GOCI-GEOS-Chem fused PM estimation). 

4 Results and discussion 

4.1 Performance of the RF models 

The evaluation results of the developed models for estimating PM10 and PM2.5 concentrations using the test datasets over South 

Korea are presented in Table 4. The models (the improved models hereafter) based on the balanced training samples through 25 

over-/sub-sampling, resulted in R2 values of 0.78 and 0.73, and RMSEs of 17.08 µg/m3 and 8.25 µg/m3 for PM10 and PM2.5, 

respectively. There was a significant improvement in using the balanced training samples instead of the original samples 

(decrease of RMSE ~30% and rRMSE ~10%). MB and ME also confirmed that the balanced samples improved the models 

estimating ground level PM concentrations (Table 3; Figure 3). In particular, high concentration data (over 150 µg/m3 for PM10 

and 50 µg/m3 for PM2.5) were well estimated by the improved models. The slopes of the trends were also improved from 0.46-30 

0.48 to 0.77-0.78. The slopes were still lower than 1, which is due to the slight overestimation of low PM concentration data 
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(Figure 3). This significant improvement in the estimation performance was mainly due to the proposed sampling strategies in 

order to use more balanced training data. The use of the balanced training data resulted in the huge increase of the estimation 

accuracy of ground-level PM concentrations especially for high concentration samples at the compensation of slight accuracy 

decrease for low concentrations.  

Although it is not possible to directly compare the present results with those from other studies, the results from this study 5 

agreed well with those from recent literature that used machine learning approaches for estimating PM concentrations (Gupta 

et al., 2009b; Wu et al., 2012; Li et al., 2017a; Yeganeh et al., 2017; Hu et al., 2017b; Chen et al., 2018). Hu et al. (2017b) 

estimated surface PM2.5 concentrations using RF, resulting in the cross validation R2 of 0.8 and RMSE of 2.83 µg/m3. Similarly, 

Chen et al. (2018) compared three different methods (i.e., RF, generalized additive model (GAM), and non-linear exposure-

lag-response model (NEM)) to estimate surface PM2.5 concentrations over China during 2014-2016. Their daily estimation 10 

results show cross validation R2 of 0.83, 0.55, and 0.51 for RF, GAM, and NEM, respectively, implying the robustness of 

machine learning compared to traditional statistical models. A geographically adjusted deep belief network (Geoi-DBN) was 

used to estimate PM2.5 over China and showed a good correlation with observation data (R2 = 0.88 and RMSE = 13.68 µg/m3; 

Li et al., 2017a). The literature shows that empirical models using statistical and machine learning approaches often 

underestimate high PM concentrations (Wu et al., 2012; Li et al., 2017a). However, the RF-based models developed in our 15 

study has proved to be effective for modelling high ground-level PM concentrations. 

Table 4: Accuracy assessment results of the RF-based models for estimating PM concentrations using the test datasets during 2015-
2016.  

 R2 RMSE a 
(µg/m3) 

rRMSE b  
(%) 

MB c 
(µg/m3) 

ME d 
(µg/m3) Slope Intercept 

Model (with original training samples) 
PM10 0.58 24.34 36.96 -5.24 15.41 0.48 28.94 
PM2.5 0.59 10.53 36.46 -2.30 7.37 0.46 13.30 

Improved model (with balanced training samples) 
PM10 0.78 17.08 25.94 2.93 12.78 0.78 17.16 
PM2.5 0.73 8.25 28.58 1.71 6.18 0.77 8.30 

a Root Mean Square Error; b Relative Root Mean Square Error; c Mean Bias; d Mean Error 
 20 

In addition, the seasonal variation of model performance for 2015 and 2016 is shown in Table 5. The R2 values for PM10 

estimations are the highest (0.87) in winter with an RMSE of 12.78 µg/m3 and the lowest (0.50) in summer with an RMSE of 

12.62 µg/m3, as compared to R2 values of 0.77 and 0.74 with RMSEs of 16.61 µg/m3 and 13.07 µg/m3 in fall and spring, 

respectively. The summer season resulted in relatively high rRMSE for estimating ground-level PM concentrations compared 

to the other seasons. This is mainly because ground-level PM concentrations are typically low in summer in South Korea. The 25 
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cloud contamination and the relatively small sample size in summer, might lead to estimation errors (Shi et al., 2014; 

Sogacheva et al., 2017). 

Table 5: Seasonal variation of model performance for estimating particulate matter (PM) concentrations. Spring, summer, fall, and 
winter correspond to March to May, June to August, September to November, and December to February, respectively.  

  R2 RMSE a 
(µg/m3) 

rRMSE b  
(%) 

MB c 
(µg/m3) 

ME d  
(µg/m3) Slope Intercept Sample 

sizes (N) 
PM10 Annual 0.76 13.04 19.32 3.09 9.83 0.75 19.78 18466 

Spring 0.74 13.07 17.77 3.08 9.98 0.70 25.06 13132 

Summer 0.50 12.62 28.88 0.33 9.23 0.48 22.95 928 

Fall 0.77 16.61 26.69 7.76 11.81 0.87 15.76 1564 

Winter 0.87 12.78 19.22 3.71 9.20 0.87 12.29 2842 

PM2.5 Annual 0.82 5.92 18.90 1.36 4.42 0.81 7.21 7188 

Spring 0.82 5.90 19.01 1.14 4.47 0.75 8.77 4510 

Summer 0.63 7.79 30.98 3.15 6.20 0.61 12.97 712 

Fall 0.85 8.12 27.50 3.89 6.53 0.88 7.30 961 

Winter 0.79 7.94 20.99 0.72 5.56 0.82 7.65 1005 
a Root Mean Square Error; b Relative Root Mean Square Error; c Mean Bias; d Mean Error;  5 
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Figure 3: The model test results of daily PM10 and PM2.5 estimations. The colour scheme from blue to red indicates the point density: 
The blue point means low density while the red point shows high density. 

Figure 4 depicts the top 10 input variables that were identified as the most contributing variables by the improved RF models 

for estimating PM10 and PM2.5 concentrations. The results indicate that AOD, DOY, MaxWS, RSDN, and Dew (i.e., dew-point 5 

temperature) were commonly identified as contributing variables by the RF models to estimate both ground-level PM10 and 

PM2.5 concentrations. The AOD was identified as the most significant factor, which agreed well with the existing literature 
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(Yu et al., 2017; Zang et al., 2017; Chen et al., 2018). Although most high PM concentration samples had high AOD values, 

some high PM samples had low AOD values. Careful examination of the samples shows that there were Asian dust events at 

low altitudes in those cases, which were not effectively included in the AOD derived from satellite sensor systems. In other 

words, the satellite-derived AOD has a weak sensitivity in capturing aerosols at low altitudes (Choi et al. 2018). This could be 

an error source, implying that altitude information of such dust events can be used to further improve the models for estimating 5 

ground-level PM concentrations. 

Some meteorological variables indicating the atmospheric conditions also contributed to the estimation of ground-level PM 

concentrations in the improved models. There is a relationship between solar radiation and aerosols in which solar radiation 

reaching the surface increases with decreasing aerosol concentration (Préndez et al., 1995; Hu et al., 2017a; Borlina and Rennó, 

2017). Prior studies noted that there is an inverse relationship between wind speed and both PM10 and PM2.5 (Gupta et al., 10 

2006; Maraziotis et al., 2008; Krynicka and Drzeniecka-Osiadacz, 2013). This relationship causes an increase in PM 

concentrations under low wind speed conditions but a decrease under high wind speed conditions, which is also confirmed in 

the present study. This means that atmospheric conditions such as air stagnation have significant impacts on surface PM 

concentrations. The results correspond to previous studies (e.g., You et al., 2015; Yeganeh et al., 2017; Hu et al., 2017b; Yu 

et al., 2017) showing that meteorological factors are strongly effective in improving PM estimation models. Interestingly, the 15 

anthropogenic factors such as LC_ratio (urban ratio), PopDens (population density), NH3, and SO2 were more important for 

PM2.5 estimation than PM10. This implies that the sources of PM2.5 are mainly anthropogenic in South Korea (Moon et al., 

2011; gon Ryou et al., 2018). 
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Figure 4: Variable importance of the top 10 input variables identified by the random forest models for estimating ground-level 
PM10 and PM2.5 concentrations. 

 

4.2 Spatial distribution of PM concentrations using the improved RF models 5 

Figure 5 illustrates the spatial distribution of 2-year (2015-2016) averaged surface PM10 and PM2.5 concentrations at 1 km 

resolution with station-based in-situ PM10 and PM2.5 concentrations over South Korea. The pixels that have concentration 

values for more than 5 % of the period (> 36 days for the two years) were used to produce the spatial distribution maps to 

secure the reliability of the distribution. The predicted PM10 and PM2.5 have similar spatial patterns with relatively high 

concentrations for urban areas especially around metropolitan areas, and agree well with observed concentrations (Figure 5).  10 

The seasonal maps of PM10 and PM2.5 concentrations are also shown in Figure 6. South Korea has the rainy season usually in 

June and July. For this reason, cloud contaminants are much more significant in the summer than the other seasons, which 

resulted in many no data pixels for the summer maps (Figure 6). The ground-level PM concentrations in the spring and winter 

are much higher than in summer and fall for PM10. The results agree well with the general seasonal patterns of PM10 

concentrations of South Korea, where PM concentrations are much higher in spring due to Asian dust inflow carried by 15 
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westerly winds (Park and Shin, 2017). In addition, anthropogenic emissions generally increase PM concentrations in winter 

(Lu et al., 2011b; Li et al., 2016). The seasonal distribution of PM2.5 concentrations is similar to that of PM10. However, high 

concentrations were predominantly found in fall for PM2.5. The cold Siberian high pressure might explain this. When warm 

air from the south flows into the study area, and while the force of the Siberian anticyclone stops, an inversion layer is formed. 

Then, PM is trapped because the atmospheric circulation becomes stagnant. Another reason can be explained by the relative 5 

overestimation of PM2.5 by the RF model in the fall season (Table 5). MB was greatest for the fall season among the four 

seasons indicating overestimation of PM2.5. A more careful data configuration between training and test samples with larger 

sample size may mitigate such an overestimation. 
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Figure 5: Maps of two-year averaged particulate matter concentrations: PM10 and PM2.5 by the RF model (left column), and in situ 
PM10 and PM2.5 (right column). 

 

Figure 6: Spatial distributions of seasonal mean particulate matter concentrations (first row for PM10 and second row for PM2.5). 

 5 

4.3 Comparison of ground PM concentrations based on GOCI and MODIS AODs 

The existing studies have generally used MODIS-derived AOD to estimate surface PM concentrations for various countries 

because of its global coverage and high quality (Remer et al., 2006; Gupta et al., 2009a, b; Van Donkelaar et al., 2010; Wang 

et al., 2010; Chudnovsky et al., 2014; You et al., 2015; Hu et al., 2017b; Yu et al., 2017; He and Huang, 2018). In this section, 

the estimated ground-level PM10 and PM2.5 concentrations are compared based on GOCI AOD and MODIS AOD. Figure 7 10 

displays the scatterplots showing the cross-validation results of the RF-based models using GOCI-derived and MODIS-derived 

AODs. Although there was no statistically significant difference between the two types of models through ANOVA tests, the 

GOCI-based RF models produced slightly better accuracy metrics (i.e., R2, RMSE, and rRMSE) than MODIS-based RF 

models for estimating ground-level PM concentrations. When compared ground PM concentrations to AODs derived from the 

two sensor data (i.e., MODIS and GOCI), GOCI-derived AOD showed slightly higher correlation with the ground PM 15 

concentrations than MODIS-derived one (Supplementary Figure 2). Considering the advantages of GOCI as a geostationary 

satellite sensor (i.e., moderate spatial and temporal resolutions; 8 times a day with a 6 km grid size of the aerosol product), it 

is very promising to use GOCI-derived products as input to PM estimation models. It should also be noted that GOCI-2, which 
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has enhanced sensor specifications (i.e., 10 data collections per day at 3 km spatial resolution of the aerosol product) is planned 

to be launched in 2019. 

 

Figure 7: Scatterplots between the estimated and observed particulate matter concentrations when using MODIS- vs. GOCI-based 
models. The colour scheme from blue to red indicates the point density: The blue point means low density while the red point shows 5 
high density. 
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Supplementary Figure 2: Comparison of PM concentrations to MODIS-derived AOD (left column) and GOCI-derived 
AOD (right column). The colour scheme from blue to red indicates the point density: The blue point means low density 
while the red point shows high density. 

4.4 Comparison with the process-based models 5 

The RF-based models for estimating ground-level PM10 and PM2.5 concentrations were further compared with process-based 

models, i.e., GEOS-Chem and CMAQ. Figure 8 shows the comparison of the accuracy metrics of the three models: the GEOS-

Chem simulated, GOCI-GEOS-Chem fused, and the RF-predicted PM concentrations using the hindcast validation datasets 
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(Table 3). The GOCI-GEOS-Chem fused PM10 concentrations have less errors than the GEOS-Chem simulated PM10 

concentration, which agrees well with the existing literature. However, both tend to significantly underestimate the ground-

level PM10 concentrations when compared to the proposed RF models. Consequently, the proposed RF models have the lowest 

RMSE, MB, and ME among those models. Although the results of GOCI-GEOS-Chem fused PM2.5 showed that R2 (GEOS-

Chem PM2.5: 0.00, GOCI-GEOS-Chem fused PM2.5: 0.14) and slope (GEOS-Chem PM2.5: -0.02, GOCI-GEOS-Chem fused 5 

PM2.5: 1.41) improved more than those of GEOS-Chem PM2.5, the RMSE, MB, and ME of the fused model were higher than 

the GEOS-Chem model because the fused model overestimated PM concentrations. The RF models also produced better 

performance than CMAQ for estimating both PM10 and PM2.5 concentrations (Figure 9). Similar to the GEOS-Chem models, 

CMAQ tends to underestimate PM concentrations showing a large negative MB value.  

 10 

Figure 8: Comparison of the three models (i.e., GEOS-Chem based, GOCI-GEOS-Chem fused, and the present RF-based models) 
using the hindcast validation data for estimating particulate matter concentrations: PM10 and PM2.5 with Root Mean Square Error 
(RMSE), Mean Bias (MB), and Mean Error (ME). 
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Figure 9: Comparison between the RF-based and CMAQ models using the hindcast validation data for estimating particulate matter 
concentrations: PM10 and PM2.5 with Root Mean Square Error (RMSE), Mean Bias (MB), and Mean Error (ME). 

5 Conclusions 

In this study, machine learning (i.e., RF) based models were developed to estimate ground-level PM10 and PM2.5 concentrations 5 

through the synergistic use of satellite data and model output over South Korea. The RF-based models developed using the 

balanced training samples produced good performance resulting in R2 values of 0.78 and 0.73, and RMSEs of 17.08 µg/m3 

and 8.25 µg/m3 for PM10 and PM2.5, respectively. In particular, the proposed models estimated high PM concentrations well. 

GOCI-derived AOD was identified as the most significant input variable for estimating ground-level PM concentrations. A 

few meteorological variables such as MaxWS, RSDN, and dew-point temperature were also revealed as contributing variables. 10 

In addition, the anthropogenic factors such as urban ratio, population density, emission of SO2 and NH3 were considered 

significant for estimating PM2.5 concentrations. Two-year and seasonal averaged maps of ground level PM concentrations 

agree with spatio-temporal patterns of PM concentrations reported in the literature.  

The proposed RF models were also compared to the two process-based models (GEOS-Chem and CMAQ) using the hindcast 

validation data. When GOCI-derived AOD was incorporated with the GEOS-Chem data, the estimation of PM concentrations 15 

improved. However, the incorporated approach still underestimated high concentrations, when compared to the proposed RF 

models. Similar results were found for the comparison between the RF models and CMAQ, which implies the robustness of 

the proposed approach.  

Although the proposed models performed better than the existing models, there are several ways to further improve the 

proposed models, which deserve further investigation. First, more input variables, especially those that are related to vertical 20 
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information of AOD, can be used to improve the models. In addition, other sophisticated approaches such as deep learning 

could be utilized to improve the estimation accuracy for ground-level PM concentrations. Although only two-year data were 

used in this study, longer archives can be used to further refine the models. The synergistic use of forthcoming geostationary 

satellite series of GEO-KOMPSAT (GK)-2A with Advanced Meteorological Imager (AMI) and GK-2B with GOCI-II and 

Geostationary Environment Monitoring Spectrometer (GEMS) sensors, will provide more accurate aerosol information with 5 

higher spatial and temporal resolutions than those of GOCI. Such a synergy is likely to improve the estimation of ground-level 

PM concentrations in the near future. 
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