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Introductory remarks:

We greatly appreciate the comments from the reviewer. We have taken his/her suggestions for
improvements into account when preparing the revised version of the manuscript. In the
following we respond to the reviewer's comments point by point.

We have marked the changes in the tracked version of the manuscript. Author responses are
in italics. Line numbers refer to the first paper version. In the new tracked version deleted
sequences are marked red. New text is marked in blue.

We want to thank the reviewer for the detailed review with many useful ideas and suggestions
which, we think, have significantly increased the quality of the manuscript.

GENERAL COMMENTS: This is an interesting and generally well written article dealing
with probability density functions of various noctilucent cloud (NLC) parameters such as
particle radius, cloud backscatter, ice particle density and ice mass density. While the
backscatter is found to follow an exponential distribution, this is not the case for the other
parameters considered. The NLC parameter database employed is based on the well-known
Alomar LIDAR dataset. | do not have major objections against the publication of this article
but ask the authors to consider the comments listed below. In addition, I have the following
general comment: The LIDAR backscatter measurements, like all other optical measurements,
are quite insensitive to particles with radii below a certain threshold. This is related to the
finding that radii below about 20 nm are very infrequent in the data set, despite the fact that
there are typically many more small particles than large particles. I think this aspect should be
discussed in the paper, because it also (qualitatively) explains some of the differences
between the PDFs of the different parameters.

The Referee #2 is correct that optical instruments can not observe the smallest particles in
PMC. However the cutoff at r > 20 nm is caused by the threshold of max beta > 3 and the fact
that the limit the analysisto the peak of the layer.

In this paper we discuss 3 maximum backscatter signals that relate to a certain height within
the PMC column (the height where backscatter maximizes). These are our measurements.
From these 3 measurements we derive some more ice parameters as mean ice radius,
standard deviation and ice mass density. These values refer exclusively to this specific height
where the PMC shines brightest. Assuming a threshold in max beta of 3 produce the
measured histograms in ice radius, ice mass density, and number density as shown in the
plots. So it is not the question that the lidars are insensitive to small ice particles, a case that
happens at the nucleation zone near the mesopause (87-90 km) where ice formation starts and
up to several thousand ice particles exist (r<10 nm). But our lidar analysis takes into account
only measurements from faint to strong brightness levels near the bottom (at height of beta
max, 83 km) of the vertical PMC ice column.



We have extended the description of the retrieval of particle sizes in section 2 ‘Discription of
ALOMAR lidar’:

...After separation of the ice particle and molecular backscatter signal, we extract three
vertical profiles of so-called backscatter ratios which are a measure of height dependent
brightness of the ice cloud. From each backscatter height profile we estimate three maximum
backscatter (MBS) values. We assume that at the altitude of MBS, typically located near 83
km, the actual shape of the ice particle distribution can be described by a Normal-
distribution. Then we derive from the three measured MBS values the characteristics of the
Normal-distribution with mean ice radius, ice number density and variance. Finally, we also
estimate from these ice parameters the actual ice mass density (IMD) at the MBS height...

This paper is well-written. Some suggestions and comments related to specific items
are provided below.

SPECIFIC COMMENTS

Page 1, line 1 and line 15: "of Polar Mesospheric Clouds (PMC) and noctilucent clouds
(NLC).”

This sounds like the two are different clouds. | suggest changing this sentence.

Done: The expression NLC was considered redundant and was removed everywhere. Now,
only the expression PMC is used throughout this paper.

Page 1, line 5: “previously statistical methods* -> "previous statistical methods” or
“previously used statistical methods”
Done

Page 1, line 6: “probability statistic*
Does "statistic* exist?
Done: replaced by ‘distributions’

Page 1, line 12: “that facilitate” -> "that facilitates”, because “facilitates” refers to
“assessment”,

right?

Done

Page 2, line 3: “many .. analysis” -> “many .. analyses”
Done

Page 2, line 8: “analysis have used” -> “analyses have used”
Done

Page 2, line 17 and line 18: “statistic” ?
Done: statistics

Page 2, line 31: “From each backscatter height profile we estimate a maximum

backscatter (MBS) signal which corresponds to mean height of maximum brightness”

I don’t fully understand this sentence. It mixes “signal” and “height” in a way, which

makes it difficult to understand. Can you clarify, please?

Done: ... From each backscatter height profile we estimate three maximum backscatter
(MBS) values. We assume that at the altitude of MBS, typically located near 83 km, the actual
shape of the ice particle distribution can be described by a Normal-distribution. Then we



derive from the three measured MBS values the characteristics of the Normal-distribution
with mean ice radius, ice number density and variance. Finally, we also estimate from these
ice parameters the actual ice mass density (IMD) at the MBS height.

Page 3, line 15: “exponential distributed* -> "exponentially distributed”
Done

Page 3, line 30: “mode” is not a really frequently used term and I suggest briefly
explaining it. It is explained on the next page and | suggest moving the explanation here.
Done

Page 4, line 19: “in a semi-logarithm scale”. I suggest replacing this by “in a semilogarithmic
diagram” (a scale can be linear or logarithmic, but not semi-logarithmic)
Done

Page 4, line 22: “Consequently, the relative error is rather small”

Please explain briefly how this relative error is determined.

Done: The good quality of the fit is characterized by a small relative error of 6.5 % that is
calculated as a sum of 100%- SUM(j,M) |E;j —X | for x >3 with theoretical exponential
frequencies E j and normalized frequencies X j of data x per class j with a total of M classes.

Page 5, line 5: . . . as expected”

It’s not entirely clear, what you consider to be expected. Do you expect that these other
parameters also follow an exponential distribution or do you not? Please clarify.

Done: ‘as expected’ has been deleted.

Page 5, line 6: “in a semi-logarithmic scale” -> “in a semi-logarithmic diagram”
Done

Page 5, line 9: “significant smaller* -> "significantly smaller”
Done

Page 6, Caption Fig. 2, line 2: “least square fit” -> “least squares fit”
Done

Page 7, Fig. 3: | suggestion mentioning in the Figure caption what the dashed lines

are.

Done: The solid line shows the regression defined by regression points and corresponding
(c,d)-values. Dashed lines result from regression analysis of y(x) : x =y and x(y) : x =.

Page 7, line 7: “Linearity between maximum backscatter (MBS) and ice mass density
(IMD), ice radius r and ice number density n data is a necessary and sufficient condition
that also IMD, r and n data samples are exponentially distributed”

I’m not sure you would really expect that MBS scales linearly with, e.g. radius. The
intensity of the backscattered radiation does certainly not scale linearly with particle
radius, right? Why should the maximum backscatter depend linearly on radius? If there
are other indications etc. for that, please discuss. Considering that you use a power law
to describe the relationship between two parameters, you don’t really assume linearity,
right? I think the term “linearity” should be replaced and then all is fine.



This section is titled ‘Test on linearity between maximum backscatter and ice mass density,
ice radius, ice number density data’. Here we show in a first step that there exist no linearity
between (MBS, r), (MBS, n), (MBS,IMD), and also other pairs as e.g. (n,r).

This gives a first theoretical hint why IMD,n, and r do not follow an exponential distribution
as has been tested empirically in the section before (section 3.1.2.).

Or vice versus: In section 3.1.2 we plot exponential fit functions to all data samples
(IBS,IMD,r, and n) and see for IMD,n, and r large statistical uncertainties for exponential fits
that indicate that there is ‘something wrong’!. Section 3.2 investigates this hypothesis in a
different second way with the method of correlation and regression pairs.

Now we find a second reason for missing exponential fits of IMD,n, and r, since also linear
regression fails. These are two independent different ways, and both saying that a g-function
can’t be the universal pdf for all four ice parameters.

This is the motivation why we introduce in the following sections a new z-pdf which now fits
equally to ALL four parameters MBS,IMD,n, and r.

Page 8, line 1: . . . also relate to the half width of the angle”

Can you mention how the regression points “relate to* the half width of this angle? To me this
is not obvious, but perhaps I’m missing something.

Let us assume two data samples x and y. First, we calculate the means (x_mean, y_mean) and
standard deviaitons s_x and s_y of x andy, plus the Pearson correlation coefficient R
between x and y. Then a linear regression from x to y means to construct a linear fit with:

y =y mean + R*(s_y/s X) * (x-x_mean) -> dashed line y(x)

A linear regression from y to x means to construct a linear fit with:

X =x_mean + R*(s_x/s_y)* (y - y_mean)

This equation can be transformed toy asy =y_mean + 1/R * (s_y/s_x) * (x - x_mean)
and plotted as a second dashed line named x(y).

For R unequal to one the two regression lines are different. Then the best estimate is a
‘mean’ regression line as shown in Figure 3 (solid line) that cut the angle of the two classical
regression lines (y(x),x(y))in half. The Formula is y =y _mean + R* s_y/s_x *(x — x_mean)
setting R=1.

Page 8, line 5: “criteria” -> “criterion”
Done

Page 8, line 6: “which is far away from unity”

This is not surprising at all, because the backscatter does not scale linearly with radius.

But perhaps this is discussed below.

At this point we simply show (prove) that, in fact, our lidar measurements of radius and max.
backscatter do not scale linearly. Consequently, this non-linearity forces a modification of the
exponential distribution (g-function) called Z-approach in our paper. The derivation and the
characteristics of new Z-pdf and its connection to the former g-function are discussed in the
following sections 4,5, and 6.

Page 9, last line: Something is missing in this equation. “C” is not defined and it is
neither required here. The integral can be explicitly evaluated, but | find that b>1 is a
requirement for the integral being 1. Please check.



Done: “C” was the constant of integration that has been deleted. Instead we use a vertical
bar in order to show the integration boundaries of the antiderivative. This change has been
also applied in the appendix.

Page 10, line 10: Meaning of “Only, ” at beginning of sentence not clear, at least to me.
Without the comma it would make sense.
Done

Page 12, line 26: “should be here possible too” -> “should be possible here too”
Done

Page 13, line 15: Suggest replacing , and resulting” by “, resulting in “
Done

Page 16, line 8: “in turns” -> “in turn”
Done

Page 16, line 12: “of an practical example” -> “of a practical example”
Done

Page 16, line 25: “Now the Z-distribution approach offers a more general possibility
to derive artificial data samples without any knowledge of correlation and regression
coefficients.”

I’'m not sure I fully agree with this statement, because information on the power law
relationship between the two quantities is required, right?

No: no information on the relationship between the two quantities is required. This is
precisely the advantage of the new method. See text in section 6.1.

The statement suggests (or may suggest) that no prior information on the relationship between
the two quantities is needed, which is certainly not the case, because you assume that a_r and
b_r are known.

Sure this is true that a_r and b_r are assumed to be known. As we explain in detail in the text,
the constants a_r and b_r are calculated from a Z-analysis of the sole radius data sample. No
relationship between a pair of parameters is needed. We had already described these two
assumptions one sentence later:

First, we assume that a data sample of x=MBS of number N exists and also its Z-distribution
Z(x,a x ,b x) with a x =0.140 and b x = 0.931 is well known, see Figure 5a. Secondly, we
assume that we know a priori the form of the Z-distribution Z(r,ar ,br) ...

Page 18, line 19: “of an satellite* -> "of a satellite”
Done

Page 19, line 7: I think “for r 1> 37.5 nm* should be "for r 1 <37.5 nm”
Done, yes a typing error.

Page 19, line 10: “signal result* -> “signals result”
Done

Page 19, line 11: “of an spherical ice particle” -> “of a spherical ice particle”
Done



Page 19, line 11/12: you assume a fixed relationship between LIDAR backscatter signal

and particle radius. In reality, the power will decrease with increasing particle radius.

For your estimation this certainly does not have to be considered, but it’s perhaps worth
mentioning.

In reality, the power will sharply increase with increasing particle radius (~r**5.8). We use
this relationship explicitly in section 6.2 when calculating the integrals.

Page 21, last line: “We present two numericalLY stable ..”
Done

Page 21, line 6: “The Z-distribution approach offers a more general possibility to derive
artificial data samples without any knowledge of correlation and regression coefficients”
OK, but the approach requires a priori knowledge on the Z-distribution parameters,
right?

Comment: This sentence is related to a brief summary of section 6.1 (Construction of
artificial data). In section 6.1 we state clearly for several times the assumption of a priori
knowledge on the Z-distribution parameters.
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A new Description of Probability Density Distributions of Polar
Mesospheric Clouds (PMC)

Uwe Berger!, Gerd Baumgarten', Jens Fiedler', and Franz-Josef Liibken'
'Leibniz-Institute of Atmospheric Physics, Rostock University, Kiihlungsborn, Germany

Correspondence: Uwe Berger (berger @iap-kborn.de)

Abstract. In this paper we present a new description about statistical probability density distributions (pdfs) of Polar Mesosp-
heric Clouds (PMC) and-neectilacent-cloudsINEC). The analysis is based on observations of maximum backscatter, ice mass
density, ice particle radius, and number density of ice particles measured by the ALOMAR RMR-lidar for all Nl PMC seasons
from 2002 to 2016. From this data set we derive a new class of pdfs that describe the statistics of PMC/ANEE events which is
different from previousty statistical methods using the approach of an exponential distribution commonly named g-distribution.
The new analysis describes successfully the probability statistie distributions of ALOMAR lidar data. It turns out that the for-
mer g-function description is a special case of our new approach. In general the new statistical function can be applied to many
kinds of different PMC parameters, e.g. maximum backscatter, integrated backscatter, ice mass density, ice water content, ice
particle radius, ice particle number density or albedo measured by satellites. As a main advantage the new method allows to
connect different observational PMC distributions of lidar, and satellite data, and also to compare with distributions from ice
model studies. In particular, the statistical distributions of different ice parameters can be compared with each other on the

basis of a common assessment that facilitates, for example, trend analysis of PMC/ANEE.

Copyright statement. (will be included by Copernicus)

1 Introduction

First studies of probability distributions of Polar Mesospheric Clouds (PMC) and-nectilueent-elouds-INEC) were reported by
Thomas (1995) using data from the UVS instrument on board the Solar Mesosphere Explorer (SME) satellite and from the
Solar Backscatter Ultraviolet (SBUV) instrument on the Nimbus-7 satellite over the period 1978-1986, measuring scattered
limb albedo at 265 nm and nadir albedo at 273.5 nm, respectively. Thomas (1995) introduced empirical measures in the
statistical analysis of PMC brightness distributions. He showed that the frequency distribution of PMC albedo derived from
both SME and SBUYV satellite data can be approximated by a (normalized) exponential probability function, see Figure 3 in
Thomas (1995). Secondly, the author also proposed to use cumulative frequency numbers (the so-called g-function) of clouds

g(A) exceeding a certain albedo A, in order to better represent the exponential populations. Examples of g-distributions are
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plotted on a semi-logarithmic scale in Figure 4 in Thomas (1995), clearly indicating an approximately linear behavior of
cumulative frequencies in a logarithmic format.

In the following years many observational PMC analysies of seasonal statistics have been published frequently using the g-
function, e.g. reports from Wind Imaging Interferometer (WINDII) and Polar Ozone and Aerosol Measurement II data (Shettle
et al., 2002), SBUV data (Deland et al., 2003), Student Nitric Oxide Explorer (SNOE) data (Bailey et al., 2007), ice water
content data derived from SBUV (DeLand and Thomas, 2015), or ALOMAR lidar data (Fiedler et al., 2017). Also model
analysies have used the g-function investigating trends and long-term changes in PMC parameters (Liibken et al., 2013; Berger
and Liibken, 2015).

The g-function approach has been relatively successfully applied to many kinds of different PMC parameters as brightness,
albedo, maximum backscatter ratio, integrated backscatter, ice water content, ice mass densities, ice particle size, or ice particle
number density since frequency histograms of all these parameters have sometimes a nearly, at least piecewise exponential
shape. Furthermore, sometimes PMC data seem to fit almost perfectly to exponential distributions, particularly when using
cumulative standardizations of data (Thomas, 1995). An example of a good exponential fit is the frequency distribution of
ALOMAR backscatter data that are discussed in Sect. 3.1.1. On the other hand, in some statistical applications it is obvious
that the exponential approach describes the data rather insufficiently, see examples of ice mass density, ice radius and ice
number density in Sect. 3.1.2. Therefore it is a desirable task to provide some more aspects on the theory of PMC/ANEE
statistics.

This paper makes an attempt to investigate in more detail the statistics of probability density functions (pdf) of PMC/ANEE
climatology for various ice parameters. In the following we analyze a PMC/NEEC data record of maximum backscatter, ice mass
density, ice particle radius, and number density from the period 2002 — 2016 measured by the ALOMAR RMR lidar. From the
analysis of these ALOMAR data, we derive a new class of pdfs of PMC/NEE distributions that, as we will show, modifies and

improves the exponential (g-function) approach as introduced by Thomas (1995).

2 Discription of ALOMAR lidar data

The data set obtained by the ground-based Rayleigh/Mie/Raman (RMR)-lidar, located at the Arctic station ALOMAR (69°N
16°E), consists of occurrence frequency, brightness and altitude of NEE PMC (noectilueentelouds). The RMR-lidar is in opera-
tion on a routine basis during the summer seasons (NEPMC season: 20 May to 20 August) since 1997. Since summer 2002
the lidar system has the general capability to run in a multiple wavelength (3-color) mode. We shortly summarize the 3-color
lidar technique: laser pulses at three separated wavelengths (355 nm, 532 nm, 1064 nm) are emitted, scattered back by air
molecules and ice particles in the atmosphere and collected by telescopes. The received light is recorded by single photon
counting detectors with an integration time of 15 minutes. After separation of the ice particle and molecular backscatter signal,
we extract three vertical profiles of so-called backscatter raties coefficients which are a measure of height dependent bright-

ness of the ice cloud. Ffeffreaeh%aek%e&&eﬁhetgh’rpmﬁ}eﬂ#&e%&ma{e At the height of maximum backscatter (MBS) at 532

nm we calculate three MBS values st
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We assume that at the altitude of MBS, typically located near 83 km, the actual shape of the ice particle distribution can be
described by a Normal-distribution. Then we derive from the three measured MBS values the characteristics of the Normal-
distribution with mean ice radius, ice number density and variance (Baumgarten et al., 2007). Finally, we also estimate from
these ice parameters the actual ice mass density (IMD) at the MBS height. Such a Gaussian assumption has been widely used
in PMC/NEE data processing of lidar and satellite data, e.g. ALOMAR lidar (Baumgarten et al., 2010) and AIM satellite with
SOFIE/CIPS instruments (Hervig and Stevens, 2014; Bailey et al., 2015). Also microphysical model studies show a strong
evidence of Gaussian distributed ice particles at the height of maximum brightness of PMC, e.g. Berger and von Zahn (2002),
Rapp and Thomas (2006).

In this paper we will analyze the climatology of all ice seasons from 2002 until 2016 merging all 15 seasons to one data
record. Within this combined data set we then get a total number N of 8,597 observations which is sufficiently numerous in

order to avoid too large statistical irregularities in a frequency histogram of the data.

3 The exponential probability distribution (g-function)

In general, the seasonal climatology of PMC events with measured ice parameters as e.g. integrated backscatter, maximum
backscatter, column ice mass, albedo or ice mass density, has been supposed to follow an exponential distribution which
we name £(x) with ice parameter variable x. In the following we summarize the general characteristics of the exponential
distribution which allows to compute a numerical test for exponentially distributed data. The properties of the exponential
probability distribution will be also compared with the characteristics of our new probability distribution approach introduced
in Sect. 4.

The general form of the exponential distribution £ () with scale parameter «« > 0 is defined as a probability density function
(pdf) given by £(z) = aexp(—ax) which fulfills the normalization condition of a pdf with [ £(x)dx = 1. Thomas (1995)
defined the g-function g(z) as the cumulative probability &, with

o0

9(x) = Eeum(x) = / ae” P dx' =e” " . )
Taking the logarithm of £ yields a straight line In(€) = Ina — «x. For a given class of values [z1;x2] the likeliness of this
class is proportional to the area enclosed by the continuous probability distribution and is obtained by integrating £ on the
segment length (bin size) Ax = x5 — x as fzf Edx = —e %2 4701,

A statistical analysis of ice parameters has to take into account the aspect of specific sensitivities of different instruments. For
example the ALOMAR lidar is generally sensitive to a backscatter signal larger than a threshold about 23 -10710m~1sr~1
(Fiedler et al., 2017). When considering a threshold (x5,) the exponential pdf £(«) is normalized according to A f;; E(x)dx =
1 with a scaling factor A = exp(axt). We summarize the properties of the exponential distribution taking into account a
threshold in Appendix A.

For a threshold of zero (z;;,= 0) we get the regular exponential distribution £(z) which has the mean = 1/«, median

v =1In(2)/a, mode n = 0 which is the value that occurs most frequently in the data sample, variance 0> = 1/a? and standard
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deviation o = 1/a. Note that the exponential distribution has the unique property that the mean p and standard deviation o are
identical, see also Eq. (A1) and Eq. (A4). In combination with the median (Eq. A2), these equations form a simple statistical

constraint, namely
w—xy=0=Ww—x)/In(2) . (2)

This allows to test whether a given observational data sample shows good conformity with an exponential (g-function) distri-
bution.

For a given data sample x; (: =1,...,N) assuming a threshold x; > x4, we use the common estimates of mean m and
variance s? (standard deviation s) with

1 N 1 N
_ ) 2 _ - )2
m = N E,» x, , §° = N_1 E (x; —m)" , x>z . 3

%

In addition we also calculate the median /m and mode

Hence testing a data sample to be exponentially distributed means that mean, median and standard deviation of the sample

have to fulfill the following identity:

V — Tth _ m — Ttp
W—Teh =0 m(2) m— Ty, =8 m(2) “)

We will use this condition to analyze the ALOMAR data with respect to possible exponential (g-function) distributions.
3.1 Analysis of ALOMAR data on exponential distributions (g-function)
3.1.1 Analysis of maximum backscatter data

We investigate the frequency distribution of maximum backscatter (MBS) data at 532 nm in units of 10719 ~1sr~1. We
assume a threshold of 3 that corresponds to the instrumental sensitivity of the ALOMAR lidar. Then we sort the z=MBS data
to a bin size of one per class starting from the threshold value and calculate a frequency histogram. Finally, we normalize the
histogram so that the sum of all frequency classes equals one.

Figure 1a shows the frequency distribution of x=MBS data in a semi-logarithm seale diagram. The first impression is that
the data points are almost perfectly approximated by a linear regression besides some statistical noise. This indicates that a
exponential function describes the distribution of data with a high accuracy. Figure 1b shows the distribution histogram in a
original non-logarithmic representation. We see that the exponential fit matches the data histogram with a high precision. The
good quality of the fit is characterized by a small relative error of 6.5 % that is calculated as a sum of 100% - Z;u |E; — &5
for x >3 with theoretical exponential frequencies £; and normalized frequencies X; of data = per class j with a total of A
classes. The high quality of the fit is also supported by the fact that theoretical mean, median, mode, and standard deviation
(u, v, m, o) using Eq. (A1-A4) and estimates of mean, median, mode, and standard deviation (m, m, M, s) from the data
sample derived from Eq. (3) all coincide within their error bars. Now we perform the proposed exponential (g-function) test

with m—x¢p, = s = (M —xy,)/In(2), see Eq. (4), and insert the values from the data sample of mean (. = 12.040.3), median
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Figure 1. (a) Logarithm of frequency distribution of maximum backscatter (x=MBS) in units of 10~'° m~*sr~* (gray points x > 3; black
circles 0 < = < 3). The bin size is Ax = 1. The straight line (solid red) has been derived from a least squares fit to MBS data with = > 3. (b)
Same as panel a, but original, non-logarithmic frequency distribution (gray bars x > 3; black bars 0 < x < 3). The exponential fit derived
from panel a is shown as a red curve. Values of mean, median, standard deviation are given to compare fit and original data taking into

account a threshold of x;;, = 3. The relative error given in percent describes the quality of exponential fitting, see text for details.

(m = 9.0 4 0.4), and standard deviation (s = 9.2 4= 0.5). The error uncertainties have been estimated with bootstrap methods.
We find that m — x4, =12.0-3=940.3, s = 9.2+ 0.5, and (m — z4,)/1In(2) = (9.0 — 3)/0.69315 = 8.7 + 0.6. Hence the
identity is fulfilled when allowing for uncertainties introduced by statistical errors. We conclude that lidar MBS-data are very

likely exponentially distributed and follow a g-function, respectively.
3.1.2 Analysis of ice mass density, ice radius, and ice number density data

Now we investigate other ice parameters from the ALOMAR data set with respect to exponential distributions, namely the
frequency distributions of ice mass density (IMD) in units of mg - m~2 (threshold 20, bin size of 2), ice radius r in units of nm
(threshold 20, bin size of 1) and ice number density n in units of cm ™3 (threshold 30, bin size of 10). We will show that these
parameters do not follow an exponential distribution (g-function). as-expected- In Figure 2a we plot the frequency distribution
for y=IMD data in a semi-logarithmic seale diagram. Obviously; We show in the following that the data points have no
dominant linear shape. There exist systematic deviations between data and theoretical exponential fit. In comparison to the fit
curve, data points are systematically smaller at y =20—40. Vice versa, data points exceed substantially fit values in the range
y=40-90. Also, frequencies in all classes below the threshold are significantly smaller than a proposed exponential fit. Indeed,
the frequency histogram in the non-logarithmic frame shows these systematic deviations between data and exponential fit even
more pronounced, see Figure 2b. With a relative error of about 19 % the exponential curve fails to fit satisfactorily the data. Also
significant differences exist between fit and data parameter of mean, median, mode, and standard deviation (Figure 2b). Finally,

we apply the exponential (g-function) test for IMD data and get the following results: finding the mean (m = 62.5 £ 1.3),
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Figure 2. (a) Logarithm of frequency distribution of ice mass density (y=IMD) in units of mg/m® (gray points y > 20; black circles 0 < y <
20). The bin size is Ay = 2. The straight line (solid red) has been derived from a least squares fit to IMD data with y > 20. (b) Same as panel
a, but original, non-logarithmic frequency distribution (gray bars y > 20; black bars 0 < y < 20). The exponential fit derived from panel a is
shown as a red curve. Values of mean, median, standard deviation are given to compare fit and original data taking into account a threshold
of y:» = 20. The relative error given in percent describes the quality of exponential fitting. (c) and (d) Same, but for ice radius 7 in units of

nm with bin size Ar =1 and threshold 7, = 20. (e) and (f) Same, but for ice number density n in units of 1/cm® with bin size An =10 and

threshold n =30.
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Figure 3. (a) Maximum backscatter (z=MBS) versus ice mass density (y=IMD) in a logarithmic frame for all data with correlation coefficient
R and regression parameters ¢ and d, see text for more details. Regression points p1 /o = [m + Am;n + An] are calculated with m =
/NS> Nz, n=1/NXNny;, Am = \/1/N S N(lnz; —m)2, and An = \/l/N S ¥(Iny; —n)2. Mean and median are calculated

from original, non-logarithmic data. The solid line shows the mean regression defined by regression points and corresponding (c,d)-values.

Dashed lines result from simple regression analysis of y(z) : * = y and z(y) : © = y. (b) Same for z=MBS versus ice radius .

median (m = 53.5 4= 1.4), and standard deviation (s = 35.2 + 1.2) directly calculated from the data sample, we get m — y;p, =
62.5 — 20 = 42.5 unequal not equal to s = 35.2 unequal not equal to (M — y¢)/1n(2) = (53.5 — 20)/0.69315 = 48.3. Hence
the condition of identity is not satisfied even allowing for uncertainties introduced by statistical errors again calculated from
bootstrap methods. That is why we have to conclude that the lidar IMD data are very likely not exponentially distributed. When
we investigate a possible exponential distribution for ice radius r and ice number density n data, see Figure 2c—f, we even see
larger discrepancies between data and exponential fits with e.g. relative errors about 29 %, indicating that also both r and n are
very likely not exponentially distributed. This is supported by the fact that the test of mean, median, and variance fails again
and shows large inequalities.

We summarize that ice mass density, ice radius, and ice number density do not follow an exponential distribution in contrast
to maximum backscatter. In the following section we will show that this is reasonable and is based on the fact that a functional

link between MBS to the other data sets of IMD, r and n does miss a linear relationship.
3.2 Test on linearity between maximum backscatter and ice mass density, ice radius, ice number density data

Linearity between maximum backscatter (MBS) and ice mass density (IMD), ice radius r and ice number density n data is a
necessary and sufficient condition that also IMD, r and n data samples are exponentially distributed, see also next section. In
the following we will test this constraint. Figure 3a shows a scatter plot in a logarithmic frame for simultaneously measured

MBS and IMD data. In order to test a linear relationship between x=MBS and y=IMD we introduce a general fit function
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described by a power law condition as

y(z) = ca? & a(y) = (y/c)/* (5)

with the two constants ¢ (linear constant) and d (power constant). Only for d = 1 we expect a perfect linear dependence between
x and y. First of all, the logarithmic values of « and y do not yet have a high linear correlation (R = 0.54), see Figure 3a. Since
the correlation coefficient R is unequal one, the two regression lines resulting from y(x) : Inz — Iny and z(y) : Iny — Inx
differ from each other. This means that the best choice of a regression fit is determined by a straight line through the two
regression points which are defined by the means plus/minus standard deviations of logarithmic = and y data. Note that the
positions of regression points also relate to the half width of the angle which is spanned by the two regression lines y(x) and
z(y). For our mean regression line we estimate d=0.873. The statistical error for d is Ad = £0.012 with a confidence level
of 95 % which indicates a significant non-linearity. Hence we conclude that the pdf describing the distribution of IMD data is
very likely not an exact exponential function and its cumulative distribution does not follow precisely a g-function description
because the criteriaon of ’linearity’ is violated. In Figure 3b we show a second example for the correlation between MBS and
ice radius n. Again the correlation is about R = 0.55, but now the power constant is even much smaller with d=0.497 which
is far away from unity. Finally, we investigated the linearity between MBS and ice number density n where we find a weak
negative correlation of R = —0.15 (not shown here). A best fit analysis yields a power value of d=-0.534 which again fails
significantly the constraint of unity. Hence we conclude that also ice radius and ice number densities distributions should not

follow exponential (g-function) distributions.

4 A new probability density function for PMC parameters

In this section we will present the major part of the new statistical approach in order to describe frequency distributions of
different PMC/ANEE parameters.

There exists a general mathematical method (’integration by substitution’) that provides the opportunity to transform between
probability density functions (pdf) with different statistical variables. This is done by the following procedure: Assuming a

given pdf P(x) with variable x, then the transformation from z to a new variable y(x) with a new pdf Q(y) is specified by

Qy) = [0x/0yll- P(x(y)) (©)

with z(y) being the inverse function of y(z). Here the absolute value of the derivative dx /0y has to be calculated so that
the new pdf @ is defined positively everywhere. In order to apply this approach one needs generally two requirements: (1)
Any transformation between the two pdfs P and () needs an initial guess in one of the two pdfs, either P or Q. (2) An
analytic formula of a forward and backward model must be available that describes the functional dependence between the two
statistical ice variables = and y. In the following we discuss how we satisfy these two requirements.

We apply this method for two ice parameters, namely MBS with variable x and an unknown ice parameter named u (e.g.

this unknown ice parameter might be ice particle radius). For condition (1) we use the hypothesis that the distribution of
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maximum backscatter data (MBS) is perfectly represented by an exponential pdf and its cumulative distribution is described
by a g-function according to Eq. (1). For condition (2) we assume a power form of a fit function used in Eq. (5) that also allows
us to calculate analytically the inverse function. We discuss a suitable justification of this assumption in Sect. 6.2. Hence the
forward model is u(z) = cx?® and the backward model is x(u) = (u/c)'/%. Then the new distribution ¢/ for the arbitrary ice
parameter u using Eq. (6) is given by

]. 1/d 1/d
U) = [[0z/9ull-E@@w) = || 2= (£) " [[-ae/a" ™

du \c

Equation (7) can be simplified to a more general form with
_ 1/d
o _ 1 =1
Uu) = ablu’ e ™ | a=a <> =2 ®)

In a next step we introduce in an arbitrary manner a third ice parameter named z, for which we assume again the same power

law (Eq. 5) now valid between z and u as

2(u) = &t e uiz) = (z/é)l/‘i.

Again we apply Eq. (6) and calculate the unknown pdf Z(z):

”é ’ (%)1/6[” - ab ((2/5)1/(2)’)—167&(2:/5)5/&

Z(2) = [|0u/9z|| - U(u(z))

ab, 1/d b —a(z/&)b?
117 (/2 ) e .

At first glance the algebraic expression for Z looks particularly complex, but Z can be transformed to a general form with
a= &(1/5)13/(2 and b=b/d as

Z(2) = alp|P e (a>0, b£0). ©)

Equation (9) represents our final result. The pdf Z(z) describes the general form of the new statistical distribution. Note that
the algebraic expressions of Eq. (8) and Eq. (9) formally coincide. This means that any probability distribution of a new ice
parameter that is connected to other ice parameters through our functional power law (Eq. 5), can be described by the general
pdf given by Eq. (9). The constants a and b represent two free parameters in the Z-distribution which we name the scale
parameter a and the shape parameter b. Obviously, the Z-pdf is identical with an exponential pdf (or g-function) in the limit
b = 1. This shows the close interconnection of the new Z-pdf to the commonly used exponential (g-function) approach. We
will show in the following that any distribution from so different ice parameters as maximum backscatter, ice mass density,
ice radius, and number density of ice particles can be described on a uniform basis with a high accuracy by Z. Vice versa this
indicates that these ice parameters are connected depending on each other by the uniform power law relation (Eq. 5), more

details are discussed in Sect. 6.2.
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5 Application of the Z-distribution to real data
5.1 General properties of the Z-distribution

In this section we first show some general characteristics of the new Z-distribution. From these properties we derive conditions
and constraints that will allow to estimate the specific values of the two free constants in Z, the scale parameter a and shape
parameter b, for a given data sample.

oo
First we show that Z is a correct pdf satisfying the normalization condition [ Zdz =1:

0
/Zdz — /a\b|zb_1e_azbdz _ _L?e—azb .
0
0 0

The definition range of Z(z;a,b) is 2 > 0, a > 0, and b # 0 with Z(z < 0) = 0 and
Z = a|b|zbfle*a2b , In(Z2)=In(alb]) + (b—1)-In(z) —az® , b>0. (10a)
For a negative b the distribution Z is described by
[b—1]
! —a(1/2)" bl
Z = alb| 2 e , In(Z)=In(ald])+b—1]-In(1/2) —a(1/2)™ , b<0. (10b)
The cumulative form of Z for b > 0 is given by

Zeum(2) = /Zdz/ — e’ , In(Zeum) = —az’ | In(|In(Zeum)|) = In(a) + bln(z) . (11a)

For b < 0 we have to choose the cumulative calculation in reverse order starting the integration at zero. Naming the reverse

cumulative with index zero as Z0  we get
Z0m(2) = / Zdy = oW —oma" (20, )= a2’ |, In(|In(22,,)]) = In(a) + bln(z) . (11b)
0

Only; the cumulative descriptions from Eq. (11a,b) allow in principle to estimate roughly the constants ¢ and b for a given
data sample using the double logarithmic functional dependence, whereas the direct logarithm of Z (Eq 10a,b) offers no
possibility to solve for a and b. However, the method calculating the double logarithmic cumulative is not recommended.
Several numerical tests showed that a stable estimation of a and b from noisy data applying this double logarithmic approach
is an almost impossible task. Instead, we propose two different methods that rely on much more powerful principles (see next
Sect. 5.2). Additionally, we have to take care about a possible negative value of b that can be only identified using Eq. (11b).
In fact such a case occurs in the analysis of ALOMAR data. We will give in Sect. 5.3 an example that only a negative slope
parameter describes the distribution of number density of ice particles.

Generally, the Z-distribution has the ability to characterize many different types of distributions, see Figure 4. Especially, the
shape parameter b determines the shape of the Z-distribution describing non-linear exponential, exponential, right-skewed, left-

skewed or symmetric curves. For 0 < b < 1 the pdf increase is non-linear exponentially accelerated to infinity as z approaches

10
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zero. For b =1 the pdf is exactly an exponential distribution having a positive finite value for z equal zero. For b > 1, the
function tends to zero as z approaches zero. When b is between one and two, the function is right-skewed and rises to a peak
quickly, then decreases for large z. When b has approximately a value between three and four, the function becomes symmetric
and bell-shaped like a normal distribution. Note that exact symmetry is given for a skewness equal to zero which is true at
z = 3.60232. For b values larger than approximately five, the function becomes again asymmetric changing the skewness to
the left. For b < 0, the function is skewed to the right and decreases steeply towards zero as z approaches zero. Note that Z
is never negative and owns a local maximum described by the mode whenever b is negative or larger than one. Finally we see
that a double logarithmic presentation of cumulative functions describes linear shapes with slope b, see Figure 4j-1.

It is interesting to note that our new Z-distribution is closely related to a more general Weibull-distribution (Wilks, 1995).
Nevertheless there is a difference concerning the shape parameter b which in our case is not only defined for positive values
but also for negative values. Such a case is disregarded by a classical 2-d Weibull-distribution.

Now we shortly summarize the mathematical descriptions of median, mode, mean, variance, and standard deviation para-
meters of Z for the case of a zero threshold. The calculations are described in detail in Appendix B for the general case of a

non-zero threshold.

Median:
o\ 1/
. <n> (12a)
a
Mode:
b1\ /°
77< b) for b>1,b<0; n =0for 0<b<1 (12b)
a
Mean:
(ot
po= ( 2 ) (12)
ab
Variance and standard deviation:
T (bt2 T (bt2
2 (;)7u2’0: (gb),ug (12d)
ab ab

(oo}
The expressions of mean and variance use the Gamma-function I'(t) = [ 2~ e “dz. Notice that the Gamma-function is

0
defined for all real values of ¢ except t =0 and all negative integer values of t. Note also that median, mode, mean, variance,

and standard deviation parameters of Z coincide with those of an exponential distribution in the limit as b equals one.
5.2 Two computational methods to estimate the free parameters a and b of Z from a given data sample

In this section we present two numerical methods to calculate the scale parameter a and shape parameter b describing the

new Z-distribution. First of all, since any measurement depends on a specific instrumental sensitivity, we have to introduce a

11
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Figure 4. (a—c) Examples of Z(z)-function with different parameter values a and b, see Eq. (10). (d—f) same but for In(Z) from Eq. (10).
(g-1) Same but for Zcym, from Eq. (11). (j-1) Same but for In(|In(Zcyum)|) from Eq. (11).

threshold which we name z;;,. The remaining data sample consists of N observations z; with z; > z;,. Then we calculate the
mean m and standard deviation s of data z; using Eq. (3), and also the median value m from data z;.

Method (1): we investigate the corresponding theoretical moments from Z. In Appendix B we derive the theoretical mean 1
(Eq. B5) and median v (Eq. B3) for the Z-distribution with a threshold constraint. Taking the estimates of mean m and median

m from the sample as best proxies for the theoretical mean o and median v values of Z, we get the following equations:

n?2 1/b In2

v = <n+;h> — a= (15
a m= — Zipb
Ab|T (2L a2zl b+1

oo AR g (M) "

12
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Note that the use of a threshold constraint involves the introduction of a scaling factor A = exp(azl,) which is present in
Eq. (13b). Inserting the algebraic term of a (right side of Eq. (13a) into the right side zero-equation (Eq. 13b) and using the
threshold value of z;j, yields an equation only for b which has to be computed iteratively. Once a numerical value of b has been
estimated with a sufficient accuracy, we insert this b value into the upper right equation to get the numerical value for a.

We note that in classical statistics the method of moments determines a and b from the mean and variance equations. In
principle this approach should be here possible here too, but in practise the algebraic structure of the variance equation is too
complicated, see Eq. (B6) in Appendix B. This means that the variance equation, if at all, is only iteratively solvable whereas the
use of the median equation offers an analytical transformation to a. Generally, we recommend to apply the proposed method
using the mean and median equations. This straight-forward method is easy to program and produces reliable estimates of
parameters a and b.

Method (2): we also present a second method using a maximum likelihood approach, see Appendix C. The parameters are

again calculated from two equations (Eq. C5) with

b . L ob
> 7 0:1 Zjl\rflzlia.zmzl % (14)

! +a-l b+
a-1Mzip - 2
’ b th th

— = -z +

Interestingly, the left equation includes a term 1/N " z? which is the mean of the sample values weighted by power b whereas
the right equation includes the mean 1/N " In z; of logarithmic data and 1/N 3" 2?In ;. This shows a similarity to the com-
putation of regression points used in Figure 3. We insert a into the right equation which yields a unique equation for b which
again can be solved iteratively. Once b is fixed, the left equation allows to determine a. In the following we will test our lidar

data samples with these two procedures and we will show that both methods produce almost identical results.
5.3 Z-distributions applied to ALOMAR data

Applications of the Z-distribution to ALOMAR data of maximum backscatter (x), ice mass density (y), ice particle radius (r)
and ice number density (n) are shown in Figure 5. Note that thresholds have been computed from the regression functions
(Eq. 5) described in Sect. 3.2 on the basis of z;,=3-10"19m~'sr™!, and resulting in y;, =22 mg/m?, ry, =22.3nm and
ngp =662cm ™3 . The values of scale parameter a and shape parameter b have been calculated with the method of mean
and median equations (method 1). Then the theoretical curves of Z and theoretical values of mean, median, mode and standard
deviation have been calculated by inserting the values of a, b and threshold z;;, into Eq. B1-B6. Obviously the pdf Z has
sometimes no simple exponential shape which is the case for ice mass density, ice radius and ice number density. As we see in
Figure 5 all Z-pdf curves (in blue) match the original data histograms with a high accuracy. The relative error is in a range about
6-10 percent except that ice number density has a relative error of 15 percent. When we compare the mean, median, mode, and
standard deviation derived from the theoretical distribution and corresponding estimates from data samples, we see a precise
coincidence of mean and median values. Not surprising this is due to the fact that the parameters ¢ and b have been computed by
the mean and median method which guarantees the preservation of mean and median values. Nevertheless standard deviation
and mode also show always a good agreement within the error range. A closer look to the maximum backscatter distribution

shows that MBS data are almost perfectly exponentially distributed with b=0.931 which is not too far away from b =1 for

13
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Figure 5. Frequency distributions and Z-function analysis of ALOMAR data. Parameter @ and b have been estimated with the mean and
median method. The relative error given in percent describes the quality of the Z-function fit. (a) Maximum backscatter data x. (b) Ice mass

density y. (c) Ice particle radius . (d) Ice number density n, see text for more details.

an exact exponential pdf. As we had already shown, see Sect. 3.1.1, MBS data are very likely exponentially distributed, now

the Z—distribution analysis confirms this result. Hence we conclude that the commonly used exponential (g-function) analysis
might be only a reasonable statistical method in case of analyzing MBS lidar data.

In contrast to MBS, the Z-distribution of IMD shows a function that converges rapidly to zero for small IMD values. The

5 distribution is described with b =1.355 which significantly deviates from b= 1 for a precise exponential function. Note that the

mode of the data sample at 40 mg/m? differs from the theoretical mode of 23 mg/m? because of a relatively large statistical

noise in the data. But mean, median and standard deviation values agree almost perfectly. Similar to IMD, the ice radius

distribution indicates a significant non-exponential behavior with b=1.833. The distribution converges to zero as the radius

approaches zero. The curve is skewed to the right and has a maximum at  =25.8 nm which differs only slightly from the mode

10 of the data sample at  =27.8 nm. Again mean, median and standard deviation values agree almost perfectly.
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Ice number density: gray bars indicate values smaller than the threshold, black bars indicate values larger than the threshold.

The sample of ice number density shows a completely different behavior with a slope parameter that is negative with b=-
0.819. The physical meaning is that the parameter ice number density is negatively correlated with all other ice parameters. For
example, large ice numbers n correspond to small ice radii, IMD and MBS values. As a consequence this leads to a threshold
of n in the reverse direction, that is from large values to small values defined by n < n;;, =662 cm™2. One can see this feature
in the right tale tail of Z(n) plotted as a dashed curve, see Figure 5d. The reversal behavior is also present for small values of
n. Small values of n are measured for very bright PMC events with large MBS that have small occurrence rates. Therefore, the
number of small ice particles has a relatively high uncertainty due to their low occurrence frequency, and it is this statistical
error which produces some deviations from the fit curve to the data in the range of n=0-80 cm~2. We note that the numerical

procedure computing the pair (a,b) from the method of mean/median (Eq. 13a,b) has automatically detected the existence of a

negative slope parameter b without any a priori information.
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Now we repeat the analysis using method 2. Figure 6 summarizes the (a,b)-values and statistical moments calculated from
the method of maximum likelihood estimators. As can be seen the maximum likelihood approach computes almost identical
results for all ice parameters. We have added in Figure 6a-c also the histogram bars (in black) for all data being smaller than
the threshold. Have-in-mind Please keep in mind that the calculation of theoretical distribution curves is based exclusively on
data larger than the threshold. Hence, decreasing or increasing a threshold will change the specific values of a and b. Figure 6d
shows the ice number density distribution where we have added in the histogram (in black) all data being larger than the
threshold. Again, also the maximum likelihood method has automatically detected the existence of a negative slope parameter

b for the ice number density distribution.

6 Discussion
6.1 Construction of artificial data

In the derivation of the Z-distribution we used the assumption that all ice parameters of maximum backscatter x=MBS, ice
mass density y=IMD, ice particle radius  and ice number density n are connected with one another by the power law given in
Eq. (5). In Sect. 5.3 we showed that the Z-pdf describes with a high accuracy each distribution of these ice parameters which,
in turns, means that indeed there exists at least an approximative power law between ice parameters. We discuss a suitable
justification of this power law relation in more detail in Sect. 6.2. In the following we will show that the use of a Z-distribution
allows to construct artificial unknown data samples of various ice parameters which approximate true data to a high degree.
We think that such an application is one of the most beneficial outcomes from the new Z-distribution approach. We explain
the numerical procedure by the help of an practical example.

We already showed a linear dependance in the logarithmic frame using linear regression (LR) for maximum backscatter and
ice particle radius, see Figure 3b. Hence we can compute artificial ice radius proxies 7;, named as LR-proxy of true data r;,
as a function of MBS-data z; from the regression power law function (Eq. 5) with 7; = cx¢ and with power law coefficients
c=13.509 and d=0.497. Figure 7a shows a comparison between LR-proxy and original ice radius data where we test the
identity of the two data samples. The correlation coefficient is the same as shown in Figure 3b with R = 0.55. Mean and
median values of proxy and original data are almost identical, and a regression analysis shows a perfect identity (c=1.000 and
d=1.000). Now we calculate the frequency histogram of LR-proxy ice radii, see Figure 7b, and compare the histogram with
the original Z-distribution of ice radii already shown in Figure Sc. We find that the LR-proxy approximates the mean, median,
mode and standard deviation values of the original Z-distribution with an relative error of 9.5% comparable to the original
error of 9.1%. We conclude that a linear regression analysis of logarithmic data offers a good opportunity to approximate
data provided that a pair of data samples exists that allows the calculation of power law coefficients ¢ and d from regression
methods.

Now the Z-distribution approach offers a more general possibility to derive artificial data samples without any knowledge
of correlation and regression coefficients. Indeed we will show that results from the Z-approach are very close to results from

a regression analysis. Again, our goal is to approximate ice radius data from a given maximum backscatter data sample. But
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Figure 7. (a) Proxy p of ice radius versus original ice radius data without any threshold. The proxy has been derived from maximum

backscatter data using the fit function that has been estimated by linear regression (LR-proxy) between original logarithmic MBS and ice

radius data, see Figure 3b. (b) Frequency distribution of LR-proxy (gray and black histogram) with a threshold ., =23.3 nm. For comparison

we also plot the original Z-pdf curve (blue) from the analysis of original ice radius data, see Figure 5c. The relative error describes the

accuracy between LR-proxy data and original Z-function fit. (c) Same as a, but for Z-proxy data resulting from the Z-pdf analysis of MBS

data, see text for more details. (d) Same as b with Z-proxy data.
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now we suppose that no data of ice particle radii r exist, hence any correlation and regression analysis is not possible. First,
we assume that a data sample of ©=MBS of number N exists and also its Z-distribution Z(z,a,,b,) with a, =0.140 and
b, = 0.931 is well known, see Figure 5a. Secondly, we assume that we know a priori the form of the Z-distribution Z(r,a,., b;.)
of ice radius r, e.g. with values of parameters a, and b, from Figure 5c (a, = 1.269 - 1073, b, = 1.833). Have-in-mind Please
keep in mind that such information about scale and shape parameters of the ice radius distribution could be also provided from
independent satellite measurements that are capable to measure ice particles radii, e.g. AIM-SOFIE.

Our new proxy method (Z-proxy) requires the following transformations. We first transform the x;-values (¢ = 1,...,N) into

the z-domain with z; — z;: z = amwi’”’ followed by a second transformation with z; — r;: r; = (2;/ ar)l/ br resulting in
1/b,
ba 1/by
Ay T . Ay b,
xini»—)m:rile] :cwf with c:(l> ,d==. (15)
Ay (€28 b’l‘

Note that the derivation of c and d in Eq. (15) is based on the same mathematical steps when we developed the Z-distribution
from Eq. (8) to Eq. (9). Inserting the a,, b,., a,- and b,. values into Eq. (15) determines the power law coefficients for Z-proxy 7
with c= 12.994 and d = 0.508. These values do not exactly coincide with c and d values obtained from the regression method,
see above, but the identity test between Z-proxies and true ice radii shows a very good coincidence, see Figure 7c. Again, mean
and median values of proxy and original data are practically identical, and a regression analysis shows almost a perfect identity
(c=1.095 and d=0.980). Finally we calculate a frequency histogram of Z-proxies, see Figure 7d, and find a good agreement
between proxies and true pdf. Mean, median, and standard deviations of Z-proxy data correspond perfectly to original ice
radius data, and the relative error has now even decreased to 9.2%.

We summarize that we present a new method in order to construct artificial data samples provided Z-descriptions of these
data sets exist. By means of a consecutive arranging of ice parameters starting at one given data sample this method allows
to construct any artificial data sample within (z,y,r,n). This method can be also applied to other data sets, e.g. ice parame-
ter measurements from satellite observations. For example, a data sample of ice water content (IWC) obtained from satellite
measurements might be analyzed in terms of a Z-distribution estimating the scale and shape parameters a and b of the IWC
distribution. This would allow to establish a connection of satellite IWC data to lidar data samples (z,y,r,n) through Eq. (15),
hence the satellite IWC data could be transferred to lidar maximum backscatter, ice mass density, ice particle radius and ice
number density. Vice versa the knowledge of an satellite IWC Z-distribution would allow to transform lidar observations into
IWC proxies and compare these with the original IWC observed by the satellite. We think that our proposed transformation
method could be very helpful to connect different ice parameter data from different instruments, either from satellite obser-
vations or ground based measurements. We also think that this new approach might be important in trend analysis of NEC/
PMC.

In the next section we will discuss the power law assumption (Eq. 5) and the physical meaning of the shape parameter b

which might be introduced as a new trend variable in the analysis of N=E/ PMC long-term changes.
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6.2 Discussion of the power law assumption between PMC parameters

In this section we discuss some theoretical aspects of the power law dependence on ice parameters in order to validate the
justification of Eq. (5). We use again the assumption as already discussed in Sect. 2 that at the altitude of maximum brightness
(MBS) and ice mass density (IMD) there exists in the real atmospheric background an ice particle distribution that is perfectly
Gaussian (N;) distributed as
2
1 1 /77—
Ni(r) = exp(—= ( Z) )
Z( ) o \/ﬂ p( 2 o; )

We also assume that the geometric shapes of these ice particles are spheres with ice radii 7 with mean radius r; and vari-

ance o7. Again index i =1,..., N relates to the i-th measurement in a given data sample of number N. N; is normalized to
fo 7)dT=1. When we assume an ice number density of n; particles per cm® we get the expression fo ng - N (7)dT = n,.
Note that mean ice radii r; and ice number densities n; are elements of our lidar data climatology which we have introduced
in Sect. 2.

Furthermore, we assume from the analysis of lidar observations (3-color measurements) that the relation of mean radius
and variance is according to o; = 0.4r; for r; < 37.5 nm and o; = 15 nm for r; > 37.5 nm (Baumgarten et al., 2010). This
assumption has been also applied in the analysis of AIM/SOFIE-CIPS PMC satellite data (Lumpe et al., 2013; Hervig and
Stevens, 2014). In order to simplify calculations we apply this relation o; = 0.4r; also for r; larger than 37.5 nm. We now
investigate the question which backscatter lidar and ice mass signals result from such an ice distribution?

We compute the mass of an spherical ice particle with radius 7 as 4/37p;..7> with density of ice pjce = 932 kg/m3. The
backscatter signal from a single ice particle is calculated as az7°-® with the lidar constant az, = 1.5 - 107'! m?2. Then the

maximum backscatter z; and ice mass density y; are estimated by an integration of the radius distribution from zero to infinity

as
T, = aLn/7'5'8./\/'»(7')617':aLn/Tagi1 exp(—1 (T_Ti>2)dr
' Z 0.47:7/27 2\ 047,
0 0

4 T, 4 70 .1 1<T7”i)2
i = =TpPicen | TN (T)dT = =T pieen | 702 ———= exp(—= dr
Y 377 / (mdr=gmp oarvas P2 o))

0 0

assuming a constant number density n of ice particles Only the integral of y; is analytically computable with a solution in

which the error function defined by the integral er f(x) = 2//7 fo exp(—t?)dt is part of the solution:
(o)
4 37 5(r—ri) V2 257 25 (2 +17)
i = 3T Picen 2 257; - .
x 3 mp l50 ryerf < o ) 125\f ( 572 + 257, + 331 ) exp 1, &2 )

The integral for z; includes the term 7°-® that arises from Mie-scatter theory for light scattering of a wavelength of 532 nm
(ALOMAR RMR-lidar) at spheres in a range of radii with 1-100 nm. The exponential value of 5.8 approximates exact Mie-
scatter calculations with an relative error less than 0.5 % in this radii range. Unfortunately, the integral can only be solved

analytically if the exponent is an integer number as 5 or 6, respectively. Nevertheless, we are able to solve this integral by

19



10

15

20

25

30

means of numerical methods with the specific exponent of 5.8. In a next step, we construct analytical approximations f, (r;)

and f,(r;) for both integral solutions using a typical value of n =200 cm ™3 with

fo(ri) = 2 = arapnrd® | fu(ry) = yi = as %ﬂ—pice nrd .
The linear constants a; and as with values a; =4.20 and a = 1.47 are optimal dimensionless parameters. f, approximates the
analytical solution of y; with a relative error less than 0.7 percent in the range 7; = [0 nm;45 nm], and less than 1.2 percent in
the range r; = [45 nm; 70 nm]. A precise solution of z; resulting from numerical methods of integration is approximated by f
with a relative error less than 0.3 percent in the range r; = [0 nm;45 nm], then the relative error increases linearly to a maximum
error of 5 percent at r; = 70 nm. We find that the solutions f, and f, approximate the general power law condition p = cq?
(Eq. 5) inside a small error range. Hence these analytical examples show that MBS is a function of ice radius proportional to
~ 158 (d=5.8), the same is also true for IMD (~ 73, d=3). It also follows that MBS and IMD are consequently connected
through a power law condition with MBS ~ IMD?#/3 (d=5.8/3=1.93).

But the new form of the Z-distribution technique opens up whole new perspectives for the validation of the analytical
examples based on the ALOMAR lidar data samples. We transform the z-distribution of IMD into the MBS domain using Eq.

(15) with y; — z;: 2 = ayy?“ and z; — 20 2; = (23 /az)"/?

by 7 1/0e 1/b, b
T = [ay y } =c-y? with c= <ay) , d=—. (16)
a a

= that gives

<

(=

We insert into Eq. (16) the values of a, =0.140, b, =0.931, a, =4.321- 10—2 and b, =1.355 from Figure 5a,b and get ¢=0.023
and d=1.46. Obvieusly;—+t The power constant (d=1.46) derived from the shape parameters b, and b, of the Z-distribution
analysis of real ALOMAR IBS and IMD data is suffieiently significantly different from the power estimate (d =1.93) belonging
to the analytical example that necessitates various assumptions, e.g Gaussian distributed ice particles at the height of maximum
backscatter, constant ice particle number or spherical shape of ice particles. Hence, we conclude that the determination of
shape parameters b from a Z-distribution analysis of observational data therefore provides a qualitative indication of the actual
microphysical state that controls real ice formation processes. This leads to the idea that as a future task long-term changes
in PMC formation might be characterized by potential long-term changes in b that indicate long-term changes of atmospheric

background conditions and microphysical ice constraints of ice formation.

7 Summary and conclusions

In this study we present a new method to describe statistical probability density distributions (pdfs) for different ice parameters
of PMC/NEE. We analyze a climatology of ice seasons from 2002 until 2016 as measured by the ALOMAR lidar. From this
data set we derive ice cloud parameters of maximum backscatter, ice mass density, ice radius and ice number density whose
occurrence frequencies are investigated with respect to exponential distributions. We show that only maximum backscatter
follows an exponential distribution whereas ice mass density, ice radius and ice number density frequencies fail to fit satisfac-
torily to an exponential distribution. The reason for these deviations from exponential behavior is based on the fact that these

ice parameters are not linearly dependent on each other.
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We introduce a new probability density distribution (Z-function, see Eq. 9) that assumes instead a general power law rela-
tion among ice parameters, see Eq. (5). The new Z-distribution is described by two free constants with scale parameter a and
the shape parameter b. We point out that the new distribution is closely related to a more general Weibull-distribution. The
new distribution has been applied to maximum backscatter, ice mass density, ice radius and ice number density data from the
ALOMAR data set. As a result all data distributions are described with a high accuracy by Z. We discuss that the exponential
distribution (g-function) is a special case of the more general Z-function with shape parameter b= 1. We present two nume-
rically stable methods (method of mean and median, method of maximum likeliness) that allow to derive the values of free
constants a and b describing the actual Z-function shape for a given data sample.

Perhaps the most important application of the new method is the possibility to construct unknown data sets for different ice
parameters which approximate true data to a high degree. We show in Sect. 6.1 that a linear regression analysis in a logarithmic
data frame offers a good opportunity to approximate data provided that a pair of data samples exists that allows the calculation
of power law coefficients ¢ and d from regression methods. The Z-distribution approach offers a more general possibility to
derive artificial data samples without any knowledge of correlation and regression coefficients. This allows the connection
of different observational PMC distributions of lidar, and satellite data, and also with distributions resulting from ice model
studies. In particular, the statistical distributions of different measured ice parameter can be compared with each other on the
basis of a common assessment that again should be helpful in combining trend analysis of PMC/NEE long term time series

from different observational data sets

Appendix A: Properties of the exponential distribution (g-function)

When considering a threshold () the exponential pdf £(z) is normalized according to A fzo: E(x)dx =1 with a scaling

factor A = exp(awyp, ). It follows that the mean 4 is then given by

00 oo 1)e—ox o}
o= /:E~A€(:z:)dx':A/x~aefo‘xd:r’ :—AM
Tth Zth “ Teh
(e Lot D
o
This yields for the mean
w =z +1/a. (Al)

The median v denotes the boundary of separating the higher half from the lower half of the distribution with

oo o0

05 = /A.S(x) dx' = A/aexp(faz) dz’ = —Ae *"|>°

v

v v
— 0 _ (_)e(lfxth . e—au .

The equation is solved for the median with

v=uy+1In(2)/ . (A2)
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The mode is the value 1 at which AE(x) takes its maximum value

T]:Ith.

The variance o2 of an exponential distribution considering a threshold is calculated with

oo

o’ = /(x—u)z-AE(x) da’ = A/(x_u)z_ae—ax da’
Tth Tth

CAla(z—p) (a(z—p)+2)+2)e” "

o0

(07

Tth

oy, (@ (@en — ) (o (g — p) +2) +2) e *%n

= 0—(—)e 5

«

(A3)

Inserting p = x4, + 1/ simplifies the algebraic expression and shows that the variance o2 (standard deviation o) is indepen-

dently from a given threshold:

o? = 1/a*.

Appendix B: Properties of Z-distribution

(A4)

In the following all quantities take into account a threshold z;,. We introduce a scaling factor A = exp(ath). Setting the

threshold to zero means a scaling factor A = 1 and gives the regular expressions for cumulative pdf, median, mode, mean, and

variance, see Eq. (12a—d).
Probability density function Z(z > zy,,a > 0,b# 0):
b—1_—az® az? b—1_—az®
Z(z) = A-al|blz’ e , 1:/e th - qlb|z""teT Y dz .
Zth

Cumulative form of Z.,,:

b | o0

Zeum(2) = A/a|b|zb_1e_azbdz = —Ae™?*
z

z

Median v:

b |O° b

— Acfal/

v

oo oo
0.5 = /Zdz:/Aa|b\zbflcfazbdz: —Ae™

a a

1/b
<ln(2A)>1/b (ln?—l—ln(eazf%l)) / (an b )l/b

Mode n:

ab

22

_ b
=A-e ¥ |, z>zyp.

b—1 1/b
7:O:—A.a|b\zb*2(abzbberl)e*“Zh —n = ( ) (b>1,b<0).

(BI)

(B2)

(B3)

(B4)



10

15

20

Mean p:

oo o

AT (L g2?
= [ 2Zdz = A [ ap|zhe " dz = — i ( . i) (B5)
8 ba?v
Zth Zth
Details of calculation:
+1 1
Substitute:  u = a v 2 5 dz = ——du
(b+1)a v
Aalb -
Aa‘b|2be_azbdz — # . " g
bag*‘rl +ag+1
v b+ 1)I(EEL o
We solve: /efubﬂdu: 0+ (b uv)
b1
Inserting: Aai\lﬂ ) /e—uﬁbldu _ Aa|b|(b—|—1) (4 b U )
 battl et b(bat ™ T al )
Abblb+1 b A|T (BEL, a2
Resubstitute: = albl(b+ DT ,a2”) = — M )
b(bat ! +artl) bat

o0 o0
Here we use the Gamma-function I'(a) = [ ¢~ 'e~*dt and the incomplete Gamma-function I'(a,x) = [ t*~te~*dt. Notice

0 x
that the Gamma-function is defined for all real values of a except a =0 and all negative integer values of a. The same applies

to I'(a,z) with x > 0.

Variance o2
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Appendix C: Estimation of parameters (a,b) using the maximum log-likelihood method

For a single observation, the likelihood function [ of Z is calculated from Eq. (B1). Given a sample of N observations with
threshold zy,, the likelihood function (a,b) = Hf\il Z(z;) is

N
l(a,b) _ Naz”1 a|b| N H Zb 1 7azb . 1)
i=1
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Taking the logarithm of [ yields the log-likelihood function L(a,b) =In(l) = >

N N
L(a,b) = Nath+N(lna+ln|b\)+(b—1)Zln(zi)—a22f.
i=1 i=1

The derivative with respect to parameter a is

N
0L(a,b) y N b
B L A DE

and for parameter b

OL(a,b)

N N N
ab — N.a.lnzth.th—i—?—f—;lnzi—G;ZZ,?IHZZ'.

i=1

Setting each of the derivatives equal to zero yields for a and b

b
; 1
2 0=~ +a-Inzy 25+ —

> lnz " Mlnz;-2?

L,
a thm N b N

N
=1

In(Z(z))

These are the maximum-likelihood estimators for scale parameter a and shape parameter b.
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