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Abstract. China has pledged reduction of carbon dioxide emissions per unit GDP by 60-65% relative to 15 

2005 levels, and to peak carbon emissions overall by 2030. However, disagreement among available 

inventories makes it difficult for China to track progress toward these goals and evaluate the efficacy of 

regional control measures. In this study, we evaluate three anthropogenic CO2 inventories by tracking 

the fidelity of predicted concentrations of CO2 in the atmosphere to observations, focusing on the key 

commitment period for the Paris accords (2005) and the Beijing Olympics (2008). One inventory is 20 

China-specific and two are spatial subsets of global inventories. The inventories differ in spatial 

resolution, basis in national or subnational statistics, and reliance on global or China-specific emission 

factors. We use a unique set of historical atmospheric observations from 2005-2009 to evaluate the 

three CO2 emissions inventories within China's heavily industrialized and populated Northern region 

accounting for ~33-41% of national emissions. Each anthropogenic inventory is combined with 25 

estimates of biogenic CO2 within a high-resolution atmospheric transport framework to model the time 

series of CO2 observations. Model-observation mismatch in concentration units is translated to mass 

units and used to optimize the original inventories in the measurement influence region, largely 

corresponding to Northern China. Except for the peak growing season, where assessment of 
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anthropogenic emissions is entangled with the strong vegetation signal, we find the China-specific 

inventory based on subnational data and domestic field-studies agrees significantly better with 

observations than the global inventories at all timescales. On average, over the study time period, the 

China-specific inventory has substantially larger (20%) emissions for all China than the global 

inventories. Our analysis uses observations to support and justify increased development of China-5 

specific inventories in tracking China’s progress towards reducing emissions. Here we are restricted to a 

single measurement site; effectively optimizing inventories at relevant spatial scales requires multiple 

high temporal resolution observations. We emphasize the need for a denser observational network in 

future efforts to measure and verify CO2 emissions for China both regionally and as a whole.  

 10 
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1 Introduction 

Achievement of emissions targets and reliable projection of climate trends requires accurate and 

independently validated greenhouse gas emissions inventories, particularly from the world's leading 

emitters. This paper focuses on independent testing of three CO2 emission inventories for northern 

China during the critical period 2005 through 2009. China’s contribution to world CO2 emissions has 5 

been steadily growing, becoming the largest in the world in 2006. China has accounted for 60% of the 

overall growth in global CO2 emissions over the past 15 years (EIA, 2017). Under the United Nations 

Framework Convention on Climate Change (UNFCCC) 2015 Paris Climate Agreement, China has 

committed to reduce its carbon intensity (CO2 emissions per unit GDP) by 60-65% relative to the 

baseline year of 2005, and to peak carbon emissions overall by or before 2030.  10 

 

China’s emissions inventories for CO2 have a large uncertainty, as indicated by differences in data 

reported at national and provincial levels. In 2012 this discrepancy was approximately half of China’s 

2020 emission reduction goals (EIA, 2017; NDRC, 2015; Guan et al., 2012; Zhao et al., 2012). Our 

study addresses the critical need for independent and observational testing of emissions estimates to 15 

enable China to successfully achieve its policy targets. Moreover, China is under mounting pressure to 

address severe regional air pollution events that are often associated with CO2 emissions sources—

vehicles, power plants and other fossil fuel-burning operations. China’s 11th Five Year Plan (11th FYP) 

of 2006-2010 included aggressive measures to retire inefficient coal-fired power plants and improve 

energy efficiency in other industries starting in 2007 (Zhao et al., 2013; Nielsen & Ho, 2013). A number 20 

of pollution control measures that were implemented specifically in preparation for the 2008 Beijing 

Summer Olympics were also largely in effect by the end of 2007 (Nielsen & Ho, 2013; Wang et al., 

2010). Our results thus provide an assessment of the effectiveness of these steps within our study period 

in our study region, encompassing much of northern China. 

 25 

The efficacy and impact of many of China’s emissions reduction measures can be determined only if 

there exist both an accurate baseline against which to compare future changes in emissions, and a 

reliable methodology for tracking those emissions. As evaluating all existing inventories is outside the 
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scope of our analysis, we focus on investigating the performance of three bottom-up anthropogenic 

inventories that represent the dominant methods currently employed for estimating China’s CO2 

emissions. Two of the inventories, the Emissions Database for Global Atmospheric Research (EDGAR) 

and Carbon Dioxide Information Analysis Center (CDIAC), are spatial subsets from larger global 

models of CO2 emissions (PBL, 2013; Andres et al., 2016). They rely on national-level energy statistics 5 

and global default values for sectoral emission factors, and they estimate activity levels using 

generalized proxies (e.g. population). The third inventory (ZHAO) is specific to China, with greater 

reliance on energy statistics at provincial and individual facility levels as well as emission factors from 

domestic field studies (Zhao et al., 2012). The ZHAO inventory represents increased efforts in recent 

years to incorporate more China-specific data into emissions inventories (e.g., 10 

http://www.meicmodel.org/; Shan et al., 2016).  

 

To our knowledge, none of the China-specific CO2 inventories have been evaluated with independent 

atmospheric observations. The official national total for China’s 2005 CO2 emissions from energy 

related activities, used as the benchmark for the Paris commitment, is approximately 5.4Gton CO2 15 

(NDRC, 2015). ZHAO, EDGAR, and CDIAC report total 2005 energy-related CO2 emissions that are 

higher by 31% (7.1Gton), 9%(5.9Gton), and 7%(5.8Gton) respectively. As the official national total is 

not available in a spatially allocated format, it cannot be tested by observations and we refer to it only as 

a benchmark in our analysis. We will show that the China-specific inventory (ZHAO) provides 

excellent agreement with observations while the others do not. The result provides guidance for 20 

assessing, and potentially updating, the Paris agreement base year emissions. 

 

In order to independently evaluate and optimize existing bottom-up estimates of China’s CO2 

emissions, we employ a top-down approach using five years (January 2005 through December 2009) of 

continuous hourly-averaged CO2 observations measured in Miyun, China, at a site 100km northeast of 25 

Beijing (Wang et al., 2010). Modeled concentrations of CO2 are obtained from convolving hourly CO2 

surface flux estimates with surface influence maps derived from the Stochastic Time-Inverted 

Lagrangian Transport Model driven with meteorology from the Weather Research and Forecasting 
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Model version 3.6.1 (WRF-STILT; Lin et al., 2003; Nehrkorn et al., 2010). NOAA CarbonTracker 

(CT2015) provides modeled estimates of advected upwind background concentrations of CO2 that are 

enhanced or depleted by processes in the study region. As atmospheric CO2 concentrations are 

significantly modulated by vegetation during the regional growing seasons we additionally prescribe 

hourly biosphere fluxes of CO2 using data-driven outputs from the Vegetation, Photosynthesis, and 5 

Respiration Model (VPRM) adapted for China (Mahadevan et al., 2012; Dayalu et al., 2017). VPRM 

provides a functional representation of biosphere fluxes based on data from remote sensing and eddy 

flux towers. The WRF-STILT-VPRM framework has been successfully adapted for similar emissions 

optimization studies in North America in regions where biogenic fluxes dominate surface processes 

(e.g., Sargent et al., 2018; Karion et al. 2016; Matross et al., 2008). The relative magnitudes of biogenic 10 

fluxes and anthropogenic emissions in the Northern China region are comparable (Dayalu et al., 2017). 

In contrast to extensive measurement networks that exist in North America, continuous high-temporal 

resolution measurements of CO2 necessary for inventory evaluation applications are sparse and very 

few datasets are available in China (Wang et al. 2010). Despite being restricted to a single measurement 

station, our site provides valuable information and constraints on emissions inventories because it 15 

receives air at different times from one of the heaviest emitting regions of China, and clean air at other 

times.  Our inventory optimization is confined to the Northern China region, but this region accounts for 

33-41% of China’s total annual CO2 emissions from fossil-fuel combustion. Translating model-

observation mismatch from concentration units (ppm) to mass units (Mton CO2), we conduct a basic 

benchmark optimization of the inventories for the 2005-2009 measurement time period. Our 20 

optimizations are resolved at the policy-relevant timescales of season and year. 

 

Section 2 of this paper describes the observation CO2 record used in this analysis. Sect.3 details the 

analysis methods, including WRF-STILT model configuration, a discussion of the main features of the 

inventories, error evaluation, and inventory optimization methods. We present the results in Sect. 4, 25 

beginning with an assessment of seasonality impacts. We then compare inventory performance against 

observations across multiple timescales from hourly to annual. We conclude Sect. 4 with optimization 

results including a brief examination of regional carbon intensity over the study time period. 
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Concluding remarks are provided in Sect. 5. Additional methodological details are provided in the 

accompanying Supplementary Information (SI) and at https://doi.org/10.7910/DVN/OJESO0. 

2 CO2 observations 

This study uses five years (2005-2009) of continuous hourly averaged CO2 observations (LI-COR 

Biosciences Li-7000), made at a site in Northern China (Miyun; 40°29'N, 116°46.45'E). The Miyun 5 

receptor is an atmospheric measurement station in a rural site 100 km northeast of the Beijing urban 

center. It was established in 2004 by collaborating researchers at the Harvard China Project and 

operated by researchers at Tsinghua University. The site is strategically located to capture both clean 

continental background air from the west/northwest and polluted air from the Beijing region to the 

southwest. Miyun is located south of the foothills of the Yan mountains; the region consists of 10 

grasslands, small-scale agriculture, and mixed temperate forest. Further descriptions of the site and 

details of the instrumentation of the CO2 observations are in provided in Wang et al. (2010). Average 

annual data coverage in this time period was 83% (range: 78% to 92%). 

3 Methods 

We evaluate performance of the ZHAO, EDGAR, and CDIAC inventories by modelling five years of 15 

hourly CO2 observations using the Stochastic Time-Inverted Lagrangian Transport Model (STILT; Lin 

et al., 2003) run in backward time mode driven by high resolution meteorology from the Weather 

Research and Forecasting Model version 3.6.1 (WRF). The WRF-STILT tool models the surfaces that 

influenced each measurement hour in the study domain (Figure 1). Hourly vegetation CO2 fluxes are 

prescribed by the VPRM adapted for China (Mahadevan et al., 2008, Dayalu et al., 2017). We 20 

categorize seasons by months based on regional growing season patterns, which are heavily dominated 

by winter wheat/corn dual-cropping regions in the North China Plain (Dayalu et al. 2017). Winter wheat 

emergence in the spring and corn emergence in later summer shift the seasonal patterns such that 

regional seasons are more appropriately represented when months of year are grouped as January, 
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February, March (JFM/Winter); April, May, June (AMJ/Spring); July, August, September 

(JAS/Summer); and October, November, December (OND/Fall), respectively. 

 

Ultimately, modeled concentrations of CO2 are obtained from convolving hourly surface flux estimates 

with surface influence maps derived from the WRF-STILT framework. NOAA CarbonTracker 5 

(CT2015) provides estimates of advected upwind background concentrations of CO2 that are enhanced 

or depleted by processes in the study region. Our final modeled-measurement data set is the subset 

consisting of local daytime values (1100h to 1600h) filtered to include only non-missing observations 

and CT2015 background values satisfying true background criteria as described in the SI, Sect. S6.  We 

optimize inventories based on model-measurement mismatch of this final data subset. Model 10 

components are described individually below and in more detail in the SI, Sects S2 through S6. 

 

3.1 WRF-STILT Model Configuration 

The WRF-STILT particle transport framework and optimal configuration have been extensively tested 

in several studies using mid-latitude receptors (e.g., Sargent et al., 2018; McKain et al., 2014; Kort et 15 

al., 2013; McKain et al. 2012; Miller et al., 2012). WRF is configured with 41 vertical levels and two-

way nesting in three domains, with the outermost domain covering nearly seven administrative regions 

(Figure 1, Figure 2), defined according to convention in Piao et al. (2009). The domain resolutions from 

coarsest to finest are 27km (d01), 9km (d02), and 3km (d03). Initial and lateral WRF boundary 

conditions are provided by NCEP FNL Operational Model Global Tropospheric Analyses at 1°x1° 20 

spatial 6-hourly temporal resolution (NCEP, 1999). Nudging of fields is implemented in the outer 

domain only, and never within the Planetary Boundary Layer (PBL). WRF output is evaluated against 

publicly accessible 24-hourly averaged observational datasets from the Chinese Meteorological 

Administration (CMA); finer temporal resolution meteorological data is not publicly available. 

Additional WRF run details and results from comparison with observations are presented in SI Sect. S2. 25 
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The STILT model is configured in backward time mode, with the particle release point set as the Miyun 

sample inlet height of 158m above sea level (masl), corresponding to 6m above ground level (magl). 

Each hourly footprint (CO2 concentration attributed to each unit of flux as ppm µmol-1m2s) is calculated 

from releasing 500 particles until they reach the outer domain boundaries up to seven days back in time. 

The STILT 0.25º x0.25º footprint map for each measurement hour enables assessment of regions in the 5 

study domain to which the receptor is most sensitive. We calculate STILT surface influence at the 50th 

(L_0.50), 75th (L_0.75), and 90th (L_0.90) percentile levels (Figure 2). L_0.90—the region estimated as 

containing 90% of surfaces influencing measurement—is selected as the inventory optimization region. 

Figure 1. Study domain configuration. Miyun receptor and Beijing center 
are located within the innermost domain at a resolution of 3x3km. 
NOAA/ESRL/WMO (WMO) flask sampling sites used to evaluate bias in 
CT2015 modeled backgrounds are the solid shapes; nearest CT2015 
comparison pixel is the corresponding unfilled shape.  
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The 1100 to 1600 local time period is used, as STILT performs best with a well-mixed boundary layer 

at the time of particle release (McKain et al., 2015). Further details are available in SI Sect. S3.  

 

The complete list of WRF-STILT settings and STILT footprint files are available from 

http://dx.doi.org/10.7910/DVN/OJESO0. 5 

 

Figure 2. 2005-2009 mean seasonal (a-d) and Annual (e) footprint contours, as percentiles 
of influence highlighted by administrative region.  Red, blue, and black contour lines 
represent 50th, 75th, and 90th percentile regions respectively. Stippling represents location of 
0.25°x0.25° footprint and inventory gridcell centers, colored by relevant administrative regions. 
Northern China (red stippling) is the administrative region with predominant influence on Miyun 
observations, followed by Inner Mongolia and Northeast China. Southeast and Central China 
have minimal representation, and only during the spring and summer seasons. 
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3.3 Anthropogenic CO2 Emissions Inventories 

ZHAO, EDGAR, and CDIAC report estimates of total annual emissions of CO2 at 0.25º x0.25º, 

0.1ºx0.1º, and 1ºx1º original grid resolutions, respectively. We regridded the EDGAR and CDIAC 

inventories to the 0.25º x0.25º resolution, using NCAR Command Language version 6.2.1 Earth System 5 

Modeling Framework conserve regridding algorithm to preserve the integral of emissions (Brown et al., 

2012). Assessment of impact of regridding on total emissions for EDGAR and CDIAC is discussed in 

SI Sect. S4, and Figure S8. We present the main components and defining features of the three 

anthropogenic CO2 inventories below. 

 10 

The ZHAO inventory provides estimates of total annual emissions for 2005 through 2009. In addition, 

spatial location of emissions is given for years 2005 and 2009 on a 0.25º x0.25º grid. Using 2005 and 

2009 gridded values, we calculate an average percent contribution of each grid cell to the total 

emissions. The average contributions are used as weights to spatially allocate 2006, 2007, and 2008 

total annual emissions. We evaluate and justify this assumption in detail in the SI Sect. S4, and Figure 15 

S9. The ZHAO inventory represents one of the first statistically rigorous bottom-up CO2 inventories for 

China. It relies on provincial- and facility-level data rather than national level data resulting in national 

CO2 emissions estimates that are typically higher than those using national statistics. Satellite 

observations of criteria air pollutants (e.g., nitrogen dioxide, which serves as a proxy for fossil fuel 

combustion) show greater agreement with provincial statistics. The increased use of China-specific 20 

emission factors and activity levels based on domestic field studies is a shift from other inventories that 

rely heavily on global averages to estimate processes occurring in China.  Despite the increased 

incorporation of China-specific field data, the largest sources of uncertainty to the ZHAO inventory are 

industrial emission factors, and activity levels across all sectors. Total uncertainty in the inventory is 

estimated as -9% to +11%. (Zhao et al., 2012). 25 
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The EDGAR emissions database continues to be a major prior in atmospheric studies, and the CO2 

inventory is used to inform key global scientific results considered by the UNFCCC Conference of 

Parties. The EDGAR global inventory takes total annual estimates of national emissions and 

downscales emissions to a 0.1º x0.1º as a function of road/shipping networks, population density, 

energy/manufacturing point sources, and agricultural land. Estimates for China are available for all five 5 

years as gridded inventories. Reported uncertainties for global emissions are ±10% 

(http://themasites.pbl.nl/tridion/en/themasites/edgar/documentation/uncertainties/index-2.html). 

However, this applies to global averaged uncertainty; the uncertainty for China is expected to be much 

higher.  

 10 

We include the CDIAC inventory here due to its historical prevalence as a benchmark inventory for 

global indicators, including evaluations of carbon intensity provided by the World Bank (World Bank, 

2017). The CDIAC inventory allocates estimates of national emissions to a 1º x1º grid, primarily 

distributed according to human population density. A thorough assessment of 2s uncertainties in the 

CDIAC spatial allocation of emissions shows considerable spread in regional uncertainties (Andres et 15 

al., 2016).  

 

Based on multi-year means (2005 to 2009) and 95% confidence intervals derived from two-sample t-

tests, we find that within the L_0.90 optimization region EDGAR and CDIAC report emissions that are 

significantly lower than ZHAO by typically 20% (-24%, -16%) and 36% (-37%, -34%), respectively. 20 

Across China’s administrative regions, the highest discrepancy between the global and regional 

inventories is in Northern China (ZHAO is approximately 30% higher than both EDGAR and CDIAC). 

In addition, Northern China represents one of the administrative regions with the highest CO2 emissions 

density (2.3 to 3.3 kilotonnes of CO2 per square kilometer, compared to the average of 0.7 ktCO2 km-2
 

averaged across China) and is therefore a particularly rich spatial subset for emissions inventory 25 

evaluation.  A detailed breakdown of emissions by region of China is provided in the SI Table S2. 

Spatial differences are displayed in SI Figure S10. 
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3.4 Vegetation Flux Inventory 

We prescribe biological contributions to the CO2 signal by adapting the VPRM for the study domain 

which provides 0.25ºx0.25º gridded estimates of hourly CO2 net ecosystem exchange (NEE) from 2005 

to 2009 (Dayalu et al., 2017). The VPRM is driven by 8-day 500m MODIS surface reflectance values 

and 10-minute averages of WRF downward shortwave radiation and surface temperature fields. The 5 

NEE is calibrated using eddy flux measurements representing each ecosystem type classified according 

to the International Geosphere-Biosphere Programme (IGBP) scheme. Eddy flux data are obtained from 

FluxNet and ChinaFlux collaborators. The L_0.90 region is dominated by croplands (Figure S11a), in 

particular the winter wheat and corn dual-cropping that characterizes the North China Plain (Dayalu et 

al., 2017). See SI Sect. S5 for a summary of the VPRM adapted for the study region. VPRM output and 10 

additional model details are provided at http://dx.doi.org/10.7910/DVN/RQLGLH. 

3.5 Background Concentrations 

Appropriate quantification of background CO2 concentrations (i.e., the CO2 concentration at the lateral 

edges of the model domain and/or prior to interaction with domain surface processes) enables realistic 

assessment of the study domain’s contribution to atmospheric CO2 at varying timescales. CT2015 15 

estimates of CO2 concentrations are provided on a 3ºx2º grid at upwind background locations. 

Background values are selected and corrected for large-scale biases using methodology similar to 

Karion et al. (2016) and is detailed in the SI Sect. S6. 

 

3.6 Quantifying Regional Changes to Background CO2 Concentrations: DCO2  20 

We define hourly DCO2 as a regional change (enhancement or depletion) imparted to concentrations of 

CO2 advected from the boundary (CO2,CT2015) such that for each observation hour:  

 

𝛥𝐶𝑂$,&'( = 	𝐶𝑂$,&'( − 	𝐶𝑂$,,-$./0 

 25 
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For each modeled hour, h, where i and j represent the surface gridcell locations:  

 

𝛥𝐶𝑂$,1&2 = 	 𝑓𝑜𝑜𝑡67	×(𝐴𝑁𝑇𝐻67 + 𝑉𝑃𝑅𝑀67

C/DEF

.F

) 

 

Note that for the modeled enhancement or depletion, only the VPRM fluxes change hourly; as stated 5 

previously, the anthropogenic fluxes are temporally invariant over the course of a year.  

 

Without a sufficiently dense network of high temporal resolution observations, full-scale inverse 

modeling approach to inventory optimization is inappropriate. Instead, we translate concentration (ppm) 

mismatch between observed and modeled DCO2 into additive inventory corrections in mass units (Mton 10 

CO2) at annual and seasonal timescales. We optimize emissions within the L_0.90 contour (Figure 2) 

which represents regions that substantially influence the receptor, to avoid disproportionally weighting 

pixels that contribute very little to the observed signal. Details on inventory optimization methodology 

is provided in the SI Sect. S8. 

3.6.1 Uncertainty Analysis 15 

The sources of uncertainty in calculations of DCO2 include uncertainty in CT2015 background 

concentrations, CO2 observations, STILT footprints, anthropogenic inventories, and the VPRM 

vegetation inventory. We obtain 95% confidence bounds for DCO2 by following a procedure similar to 

McKain et al., 2015 that involves bootstrapping daily averages of hourly afternoon values. For monthly 

and seasonal timescales, we obtain 95% confidence intervals for DCO2,obs by performing a bootstrap on 20 

probability distributions of errors in both the CT2015 and observations 1000 times. (See SI Sect. S6 and 

Figure S17 for details on parameterizing CT2015 uncertainty.) The relevant quantiles are obtained from 

the resulting distribution, and are reported relative to the mean DCO2,obs of the original data subset. We 

follow a slightly modified approach for DCO2,mod in that we construct monthly and seasonal residual 

pools from daily averages of hourly afternoon CO2,mod-CO2,obs. The residuals—the deviation of the 25 

model from the true observed values—represent the total uncertainty in the model and therefore 
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aggregates the effects of uncertainty in the footprints, background, and inventories. Monthly and 

seasonal 95% confidence intervals of CO2,mod-CO2,obs are then obtained from the distribution of 

bootstrapping the residual pools 1000 times. We then obtain the mean and 95% confidence interval of 

DCO2,mod by applying the relevant quantiles of the residuals to the mean DCO2,obs of the original data 

subset. Similar to McKain et al., 2015 distributions of seasonal averages obtained from the above 5 

method are used to estimate annual averages and 95% confidence intervals. 

4 Results & Discussion 

4.1 Impact of Seasonality on Optimization Region 

As shown in Figure 2, we find strong seasonality in footprint extent and influence region, in agreement 

with previous analysis of Miyun observations by Wang et al. (2010). At annual timescales, the L_0.90 10 

optimization region is comparable to the WRF d02 extent. Northern China, including Inner Mongolia, 

dominate the L_0.90 optimization region both seasonally and annually. 

  

Due to the heavy biosphere influence in the regional growing season, previous work by Wang et al. 

(2010) used Miyun non-growing season measurements of CO2 and carbon monoxide (CO) as an 15 

anthropogenic tracer to estimate combustion efficiency for China. When compared to bottom-up 

estimates of national combustion efficiency, observations suggested 25% higher combustion efficiency 

than bottom-up estimates of national combustion efficiency; however, Wang et al. (2010) note that the 

regional (Northern China) and seasonal (winter) subsets could contribute to such a discrepancy. The 

seasonality exhibited in Figure 2 indeed suggests that combustion efficiency estimates derived from 20 

non-growing season measurements alone do not represent anthropogenic processes in provinces south 

of Miyun that are visible in the observations primarily during the growing season. Low emitting regions 

northwest of Miyun such as Inner Mongolia dominate site influence in the fall and winter; spring and 

summer correspond to seasons where the higher emitting regions in provinces south heavily influence 

the Miyun receptor. However, non-growing season CO2 is influenced by often inefficient district 25 
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heating in the northwest. And, while growing season CO2 is influenced by intense urban activities from 

Beijing and other cities to the south, vegetation draws down the seasonal CO2 significantly.   

4.2 Unoptimized Models: Performance at multiple timescales 

We evaluate unoptimized model performance relative to observations at hourly, seasonal, and annual 

timescales. While inventory optimizations are performed at the policy relevant scales of seasons and 5 

years, examination of the models at shorter timescales provides insight into model bias and error 

aggregation at longer timescales.  

 

All modeled hourly quantities include the same biological component from VPRM such that the only 

source of variation among models is the anthropogenic inventory. At all timescales we note that 10 

CO2,ZHAO+VPRM and DCO2,ZHAO+VPRM consistently agree within uncertainty bounds to observations. With 

a few exceptions that are discussed in the following sections, CO2,EDGAR+VPRM, CO2,CDIAC+VPRM, 

DCO2,EDGAR+VPRM, and DCO2,CDIAC+VPRM systematically underestimate observations.  

4.2.1 Hourly 

We examine the distribution of modeled-measured residuals at hourly timescales for each 15 

anthropogenic inventory. While standard deviations are consistent across all models of CO2 flux 

(1s=9ppm; Figure S20) DCO2,ZHAO+VPRM exhibits the least bias relative to observations with a non-

significant mean residual of 0.25(-0.11,+0.62) ppm. In contrast, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM 

display significantly greater bias by typically underestimating observations by large amounts: 

2.1(1.7,2.4) ppm and 3.3(3.0,3.6) ppm, respectively. Here, the 95% confidence intervals are derived 20 

from a two-sample t-test. Details of the hourly analysis are provided in SI Appendix section S7 and 

Figures S19-S20, including evaluation of hourly bias by season. The EDGAR and CDIAC 

underestimation of DCO2 at the hourly scale aggregates at longer timescales of seasons and years as 

discussed below. 

 25 
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4.2.2 Seasonal 

With the exception of the growing season, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM typically 

underestimate DCO2,OBS, even within the 95% uncertainty bounds. The VPRM has a sparse calibration 

network, leading to an underestimate of regional CO2 drawdown during the growing season (Dayalu et 

al., 2017). Therefore, while DCO2,ZHAO+VPRM agrees within 95% confidence bounds with DCO2,OBS 5 

during the non-growing seasons, DCO2,ZHAO+VPRM generally overestimates CO2 concentrations in the 

growing season (Figure 3a). DCO2,EDGAR+VPRM (Figure 3b) and DCO2,CDIAC+VPRM (Figure 3c) display 

lower CO2 concentrations and generally result in better agreement with observations during the growing 

season than at other times of the year; however, based on our analysis at hourly timescales this is an 

artifact of lower anthropogenic emissions estimates relative to ZHAO that counteracts the VPRM 10 

Figure 3. Modeled and Measured Seasonal DCO2. CT2015 background is subtracted from 
observations to provide observed DCO2 (black line). 95% confidence bounds are derived from 
bootstrapping hourly afternoon concentrations for each season. 
 
\ 

(a) 

(b) 

(c) 
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underestimating drawdown. Even during the growing season, DCO2,CDIAC+VPRM agrees with observations 

typically at its upper confidence limits. 

As ZHAO+VPRM demonstrates the least bias relative to observations at hourly and seasonal scales, we 

model the relative contributions to the monthly signal during the May through September peak regional 

growing season as defined by Wang et al. (2010). Figure 4 displays the results from partitioning the 5 

mean monthly DCO2,ZHAO+VPRM signal as a multi-year average into anthropogenic and vegetation 

contributions. While the WRF-STILT-VPRM framework has been successfully adapted for similar CO2 

inventory optimization studies in North American regions where biogenic fluxes dominate surface 

processes (Karion et al., 2016; Matross et al., 2006), Figure 4 shows the relative magnitude of biogenic 

fluxes and anthropogenic emissions in the Northern China region is comparable during peak summer, 10 

making it difficult to independently constrain them with observational data. Furthermore, knowledge of 

the relative contribution of vegetation and anthropogenic processes to the CO2 signal during the peak 

growing season is necessary to interpret satellite retrievals of CO2 over the region (Dayalu et al., 2018). 

 

Fig. 4. Modeled mean monthly contribution (ppm) to Miyun CO2 concentrations from 
vegetation (VPRM) and anthropogenic (ZHAO) sources. Enhancement and depletion is 
relative to advected CT2015 background concentrations during the regional growing season 
(MJJAS), averaged over 2005 to 2009. Vertical lines represent 1-s of monthly averages (Green: 
Vegetation; Black: Anthropogenic). Negative values represent depletion from CT2015 
background; positive values represent enhancement of CT2015 background. 

May Jun Jul Aug Sep 
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4.2.3 Annual  

Aggregation of uncertainty and anthropogenic inventory biases at shorter timescales becomes most 

apparent at the annual timescales. For annual budgeting we follow the assumptions of Piao et al. (2009), 

and Jiang et al. (2016) that agricultural systems are in annual carbon balance because crop biomass has 5 

a short  residence time. Therefore, while the VPRM is implicitly included in the modeled annual CO2 

and DCO2, vegetation carbon stocks of the heavily cropped influence region effectively turn over such 

that only the anthropogenic inventories dominate the modeled CO2 signal. We evaluate annual CO2 

including CT2015 background (Figure 5a-c) and as regional enhancement relative to background 

(Figure 5d-f).  10 

Fig. 5. Mean annual CO2 and DCO2 over entire study time period. (a-c) CO2 annual 
concentration; (d-f) DCO2 (regional enhancement, after removal of advected CT2015 
background) with bootstrapped 95% confidence intervals. 
 

 

(a) (b) (c) 

(d) (e) (f) 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-632
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 24 September 2018
c© Author(s) 2018. CC BY 4.0 License.



19 
 

For all years, CO2,ZHAO+VPRM and DCO2,ZHAO+VPRM agree tightly within 95% uncertainty to observations 

(Figure 5a, Figure 5d). EDGAR+VPRM and CDIAC+VPRM are consistently biased significantly lower 

than observations. 

4.3 Optimization of inventories at seasonal and annual timescales 

We derive optimized inventories using additive flux corrections at seasonal timescales and 5 

multiplicative corrections at annual timescales. Complete seasonal and annual optimization results are 

provided in the SI Sect. S8, and Tables S3-S4.  

 

The observational record informing the optimization integrates the biological and anthropogenic 

signals. At the seasonal scale, where biological processes are significant contributors to the signal, we 10 

optimize the sum of the anthropogenic and biological fluxes (Figure 6). Optimized non-growing season 

flux estimates are higher than unoptimized values, partially accounting for the VPRM generally 

underestimating ecosystem respiration by an additive offset (Dayalu et al., 2017). As the vegetation 

component is controlled across models, the inter-model variance reflects the relative performance of the 

anthropogenic estimates. We find that in the non-growing months the original ZHAO+VPRM inventory 15 

typically remains within the 95% confidence bounds of the optimized inventory. However, both 

EDGAR+VPRM and CDIAC+VPRM are consistently significantly lower than their optimized 

counterparts. This implies that both EDGAR and CDIAC underestimate anthropogenic emissions, and 

that ZHAO estimates are closer to actual emissions. During the growing seasons, however, the 

afternoon vegetation signal is significant and the picture is more complex. In the spring, the CO2 signal 20 

at Miyun is significantly affected by the North China Plain winter wheat growing season. The effect of 

optimization in the spring from 2005 to 2007 is to increase CO2 emissions with a net positive seasonal 

flux; however, in 2008 and 2009 we find the net seasonal flux becomes negative such that uptake 

dominates emissions. The prior models in all cases predict positive flux. During the summer months, 

ZHAO+VPRM predicts more emissions and/or less uptake relative to EDGAR+VPRM and 25 

CDIAC+VPRM. Optimization of summertime fluxes serves to significantly increase ZHAO+VPRM 
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uptake estimates; the EDGAR+VPRM and CDIAC+VPRM prior estimates are within the 95% 

confidence bounds of the optimization for reasons discussed previously. 

 

We report annual optimized anthropogenic inventories in the L_0.90 region in Fig. 7 and Table S4 as 

MtCO2yr-1. As discussed previously, the annual optimizations are applied only to the anthropogenic 5 
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Figure 6. Optimized Seasonal Fluxes in the L_0.90 region (kg CO2m-2month-1). Anthropogenic 
and vegetation inventories are optimized together; all models have the same vegetation component 
(VPRM) and differ only in the anthropogenic inventory source. Shaded green represents negative 
flux (uptake by biosphere). Optimization based on additive corrections; difference among 
optimized inventories is due to differing spatial allocations by anthropogenic inventories. 
Boostrapped 95% confidence intervals are represented by the black vertical lines.  
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inventory, as the signal at the annual timescale is effectively dominated by anthropogenic emissions; net 

ecosystem fluxes are expected to be relatively minor at the L_0.90 extent in comparison. For all years, 

the emissions estimated by the original ZHAO inventory lie within the 95% confidence bounds of the 

optimized ZHAO inventory. However, for EDGAR and CDIAC, the original inventories consistently 

underestimate observations. Averaged over the five-year study period, EDGAR and CDIAC are 5 

typically lower than observations in the L_0.90 region by 30% and 70% respectively (Fig. 5). Averaged 

across the five years, this translates to EDGAR and CDIAC being scaled relative to their unoptimized 

values in the L_0.90 region by 1.3 and 1.7, respectively (Fig. 7; Table S4). We note that the relatively 

simple methodology involved in downscaling the coarse 1º x1º CDIAC emissions allocation contributes 

to its particularly poor performance relative to observations. Specifically, when high emissions from a 10 

localized region are distributed across an entire 1º x 1º grid, their influence is diluted, highlighting that 

Fig. 7. Annually optimized emissions for 90th percentile of influence region. 
Optimization is based on multiplicative scaling factors. Difference among optimized 
inventory means is due to differing spatial allocations in original anthropogenic 
inventories. Bootstrapped 95% confidence intervals are represented by the black vertical 
lines. *Note the y-axis origin begins at 1000 Mton CO2 for visual clarity. 
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CDIAC, or any other similar coarse-resolution inventory, is not well suited for this type of regional 

study making them difficult to test with observations. 

 

In all optimizations, the differences in means among inventories is a result of differing proxies for 

spatial allocation among the inventories. In other words, the optimal annual mean and distribution for 5 

each inventory is based on the inventory’s existing method for spatial allocation. Determining optimal 

spatial allocation is outside the scope of this study as doing so requires data from a network of high-

resolution observations, which does not exist. 

4.4 Regional Patterns in Emissions from 2005 to 2009 

We examine the statistical significance of the inter-annual observed concentration and enhancement 10 

differences using a two sample t-test (Table 1). The observed concentrations including advected global 

background (Figure 5, top row) display an overall increasing trend of 1.87 (1.8, 1.9) ppm CO2 yr-1 

between 2005 and 2009, in agreement with flask samples obtained from nearby WMO sites between 

2007 and 2010 (Liu et al., 2014). The inter-annual increases are statistically significant (Table 1). 

However, when we remove the modeled background to more closely examine regional patterns that 15 

would otherwise be drowned out by the global signal, we find that the regional (DCO2) trend does not 

parallel the increasing global trend (Figure 5, bottom row; Table 1). Regionally, the observed 

enhancements increase from 2005 to 2006 and plateau in 2007 before decreasing in 2008. 

Enhancements increase again in 2009. 

  20 

 
 
 
 
 25 
 
 
 
 
 30 
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Table 1. Inter-annual observed CO2 and DCO2 differences. Differences are of observations between 
consecutive years. 95% confidence intervals are derived from a two-sample t-test. Italicized entries 
denote instances where the inter-annual difference is not statistically significant (confidence interval 
includes zero). 

 5 

Time 
Interval  
(y2-y1) 

CO2,OBS (ppm) 
Mean Difference  
(95% CI) 

DCO2,OBS (ppm) 
Mean Difference   
(95% CI) 

2006-2005 4.86 (4.5, 5.2) 2.08 (1.9, 2.3) 
2007-2006 1.08 (0.69, 1.5) 0.0693 (-0.15, 0.29) 
2008-2007 0.772 (0.37, 1.2) -1.43 (-1.6, -1.2) 
2009-2008 2.60 (2.2, 3.0) 1.12 (0.88, 1.4) 
2009-2005 9.31 (8.9, 9.7) 1.84 (1.6, 2.0) 

 

 

In Figure 8a we estimate Gross Regional Product (GRP) for eight of China’s 34 provincial-level 

administrative units, specifically those encompassed significantly by the L_0.90 influence contour: 

Beijing, Tianjin, Henan, Shanxi, Shandong, Hebei, Inner Mongolia, and Liaoning. We suggest that 10 

industrial energy efficiency improvements beginning in 2007 under the 11th FYP, preparations and 

staging of the 2008 Beijing Summer Olympics, and the global financial crisis in late 2008 followed by a 

large Chinese fiscal stimulus in 2009 are likely contributors to the observed interannual variation in 

regional CO2 emissions (Figure 5d-e) while also compatible with a doubling of GRP from 2005 to 2009 

(Figure 8a). In addition, earlier work by Wang et al. (2010) extends Miyun observations of CO2 growth 15 

rate to all of China and estimates a lower growth rate than previously suggested. However, Figure S9 

suggests local reductions in regions influencing Miyun, possibly in preparation for the Beijing 

Olympics, are partially offset by increases elsewhere. A larger network of sites would be needed to 

quantify this further in order to evaluate the CO2 growth rate for other regions in China and for China as 

a whole.  20 

 

As policy targets are often measured as relative changes over multiple years, an important component of 

emissions inventories is their ability to accurately capture multi-year changes. Observations indicate 

enhancements above background CO2 increased by 28% (22%, 34%) between 2005 and 2009. 
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ZHAO+VPRM estimates a 20% increase over the same time period while EDGAR+VPRM and 

CDIAC+VPRM estimate 61% and 56% increases respectively.  

4.4 Implications for Assessing National Carbon Emission Targets 

China has pledged a 60-65% reduction in carbon intensity by 2030 and has additionally set a benchmark 

of 40-45% reduction in carbon intensity by 2020, where both targets are relative to the baseline year 5 

2005 (NDRC, 2015; Guan et al., 2014). However, Guan et al. (2014) found that provincial trends in 

carbon intensity can vary significantly from national trends. Using the GRP values shown in Figure 8a, 

we calculate a Northern China regional carbon intensity (Figure 8b). The eight provinces are those that 

are encompassed significantly by the L_0.90 influence contour: Beijing, Henan, Shanxi, Tianjin, 

Shandong, Hebei, Inner Mongolia, and Liaoning. We also estimate an L_0.90 regional carbon intensity 10 

based on the official national energy-related CO2 emissions in NDRC (2015); we scale the national total 

by 39% (35%,42%) which is the mean (range) contribution of the L_0.90 region to the national 

emissions in 2005, averaged across the three unoptimized gridded emissions inventories. We emphasize 

that carbon intensity values are inherently uncertain due to complexities in GRP and Gross Domestic 

Product (GDP) calculations such as double-counting due to inter-provincial trade or spatial mismatch 15 

between emissions and economic data. Nevertheless, the analysis provides valuable insight into trends 

rather than precise values.  

 

Over the study time period, the GRP of the L_0.90 region more than doubled (Figure 8a), evidently 

correlated to a significant increase in emissions. Coinciding with the 2008 Beijing Summer Olympics, 20 

the region’s contribution to China’s GDP grew from approximately 13.5% in 2007 to nearly 16% in 

2008, representing a 20% increase, before plateauing into 2009 (Figure 8a). As noted in Guan et al. 

(2014), reductions in carbon emissions intensity can come about via two main pathways: the first, 

within industries, through increased energy efficiency combined with expanded production capacity; the 

second, across the economy, through structural shifts from energy-intensive industrial sectors to service 25 

sectors. The doubling of GRP suggests enlarged production capacity as a driver for regional carbon 

intensity reductions. From 2005 to 2009, carbon intensity for the L_0.90 region decreased by 47% 
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(28%,65%), based on a one-sample t-test of pooled emissions intensity changes across optimized 

inventories. Analysis presented by organizations such as the World Bank (World Bank, 2017) suggests 

China’s carbon intensity at the national level decreased by 20% in 2009 relative to 2005. However, we 

note that the carbon emissions data source for the World Bank carbon intensity calculations is CDIAC. 

We have shown that at least for the L_0.90/Northern China region, CDIAC emissions data for the base 5 

year 2005 was 70% (50%, 90%) too low. 
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Fig. 8. Estimates of Regional Carbon Intensity (kg CO2 USDPPP
-1). (a) PPP GRP by year and as a 

% of China’s national GDP. No PPP GRP values were available for 2006 and 2007; PPP GRP for 
these years was instead calculated by linearly interpolating Nominal GRP/PPP GRP for 2005, 2008, 
and 2009. (b) Regional Carbon intensity using optimized (solid) and unoptimized (grey) CO2 
estimates. Uncertainty bars are bootstrapped 95% confidence intervals. GRP, GDP data from IMF, 
World Bank, China Statistical Yearbook. Provinces used in GRP calculation are those significantly 
encompassed by L_0.90 contour: Beijing, Henan, Shanxi, Tianjin, Shandong, Hebei, Inner Mongolia, 
and Liaoning. *Estimated by scaling the official national emissions total by the average contribution 
(39%) of L_0.90 region to total emissions in 2005. Uncertainty bars represent the % contribution 
range estimated by ZHAO, EDGAR, and CDIAC in 2005 (35%, 42%). 

(a) 

(b) 
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5 Conclusions 

Continuous hourly CO2 observations, significantly influenced by the heavily CO2-emitting Northern 

China region, are used in a top-down evaluation and optimization of three bottom-up CO2 flux 

inventories. We focus on the policy-relevant time interval from 2005 to 2009, noting that 2005 is 

China’s baseline year for carbon commitments. The three inventories are distinct in their anthropogenic 5 

component, with a common biogenic flux component provided by the VPRM, a simple satellite data-

driven biosphere model. The ZHAO anthropogenic emissions inventory incorporates a regional 

approach to China’s CO2 emissions estimation, using activity data at the provincial and facility-levels as 

well as domestic emission factors. The EDGAR and CDIAC emissions inventories incorporate a greater 

reliance on global averages and China’s national statistics and international default emission factors, 10 

and depend more heavily on proxies (e.g., population) to allocate the emissions geographically. The 

three anthropogenic inventories are selected such that the typical range of inventory methods available 

for China are well-represented. 

 

We find strong seasonality in L_0.90 footprint extent and influence region, with the northwest 15 

dominating non-growing season and a more uniform influence in the growing season. The Northern 

China administrative region, excluding Inner Mongolia, dominates the L_0.90 influence region (Figure 

2). Within the L_0.90 inventory optimization region, EDGAR and CDIAC are lower than ZHAO by 

20% and 36% respectively. Across administrative regions, the highest discrepancy between the global 

and regional inventories is in Northern China, where the ZHAO inventory estimates emissions that are 20 

on average 30% higher than both EDGAR and CDIAC (SI, Table S2).   

 

We find the ZHAO+VPRM inventory agrees very closely with observations, much better than the 

nationally referenced inventories at all timescales. During the peak growing season, the regional 

enhancement to background CO2 concentrations is approximately zero, due to an agriculturally 25 

dominated vegetation signal that is equal and opposite in sign to the anthropogenic signal, so this 

conclusion applies strictly to the other three seasons. At annual timescales, the anthropogenic signal 

dominates and we find that EDGAR and CDIAC underestimate emissions in the Northern China region 
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by an average of 30% and 70% respectively. In contrast, the ZHAO inventory gives a priori results very 

close to observations and is not significantly affected by the optimization. Note that the EDGAR and 

CDIAC inventories can differ from -10% to -20% relative to ZHAO in their national emissions totals 

(Table S2). Since the ZHAO methodology gives comparatively accurate and higher results for the 

influence region dominated by Northern China, we hypothesize that the proxies used in the global 5 

inventories have biases that likely result also in overestimation in other regions of China. However, 

observational data from strategically located stations in and around the eastern half of China are 

required to explore this hypothesis. 

 

Our results, backed by a robust high-resolution time series of CO2 observations, show that assessments 10 

of China’s CO2 emissions require regional inventories with a methodology such as that employed in 

ZHAO, where China-specific field and facility-level data are used with increased reliance on provincial 

energy statistics. We show that global inventories can significantly underestimate annual CO2 emissions 

in China and that the regional partitioning can be far off. In situ CO2 observations interpreted within a 

high-resolution model framework such as described in this study provide a powerful constraint to test 15 

and correct spatially explicit inventories. The single station available for the 2005-2009 period was 

strategically located to provide information on one of the highest CO2 emitting regions of China. Within 

that limitation, the observations provide strong evidence supporting the use of China-specific methods, 

such as those employed in ZHAO, for China’s CO2 emissions inventory derivation. A denser network of 

CO2 measurement stations in China is required as a basis for effective monitoring, reporting, and 20 

verification of regional and national inventories.  
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Code and Data Availability  
 
Code and data are available at https://doi.org/10.7910/DVN/OJESO0. The supplement includes 

observational and modeled CO2 time series, WRF and STILT parameter files, and STILT footprint files. 
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