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Abstract 
The Weather Research and Forecasting Model (WRF-ARW) meteorological output, coupled 
with the Stochastic Time-Inverted Lagrangian Transport model (STILT; a Lagrangian Particle 
Dispersion Model) has been extensively applied to emissions studies particularly in North 
American mid-latitudes.  In addition, the Vegetation, Photosynthesis, and Respiration Model 
(VPRM)—a simple biosphere model providing output of hourly vegetation CO2 fluxes—is being 
increasingly used in CO2 optimization studies as part of the WRF-STILT-VPRM modeling 
framework. This methods paper describes the configuration and processes involved in 
constructing and evaluating the WRF-STILT-VPRM framework for application to CO2 
emissions optimization studies in China. We present configuration details, optimal settings, and 
results of evaluation of WRF meteorological fields and VPRM fluxes with observations. We 
evaluate assumptions associated with selection of CO2 background concentrations from the 
NOAA CarbonTracker model (CT2015) and also examine the impact of processing 
anthropogenic inventories for use in the overall model framework. 
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S1 Introduction 
The Weather Research and Forecasting Model Advanced Research WRF (WRF-ARW) has been 
coupled with the Stochastic Time-Inverted Lagrangian Transport Model (STILT) is a lagrangian 
particle dispersion model developed by (1). It has been extensively tested and applied to 
numerous inventory optimization studies (e.g., 1-5). In addition, the Vegetation, Photosynthesis, 
and Respiration Model (VPRM) described in (6) has been coupled with WRF-STILT in studies 
examining CO2 exchange during the growing season (e.g., 7-8).  
 
In this document, we detail our data processing methods, including configuration and evaluation 
output from modeling framework (Fig. S1). Sec S2 describes the WRF model and project-
specific settings and presents results from evaluation against Chinese Meteorological 
Administration (CMA) observational data sets. Sec S3 describes the STILT model and settings. 
Sec S4 describes the construction and processing of the VPRM and its driving data and evaluates 
hourly model performance in detail. Sec S5 assesses bias in the CT2015 by comparison to 
observational data. Sec S6 provides supplementary information related to processing the 
anthropogenic inventories used in this study. Sec S7 presents model output of hourly CO2 
relative to observations over the entire study time period. We conclude with Sec S8 where we 
present complete seasonal and annual results from inventory optimization.  
 

S2 WRF Model 
 
S2.1 Model Description 
 
The Stochastic Time-Inverted Lagrangian Particle model (STILT) has been optimized for being 
driven with meteorology from the WRF-ARW modeling system (9). WRF typically conserves 
mass to a high degree (9).  
 
WRF can be run in ideal or real-data mode. For the purposes of the WRF-STILT framework, the 
model is configured to be initialized in the real data mode via the optional WRF Pre-processing 
System (WPS). The second component of the WRF model used in this study is the WRF-ARW 
solver itself, which consists of the real-data initialization and numerical integration programs. 
Refer to the official WRFv3.6 User Manual 
(http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.6_july/UG_July2014.pdf) for 
further details including general installation and configuration steps. 

 
S2.2 Project-Specific Model Set-up and Run Details 

We set up the study region as a two-way nested run with three domains (Table S1). The 
outermost domain (d01) has the coarsest spatial resolution (27kmx27km). The resolution of 
domain d02 is 9kmx9km, and domain d03 has the finest resolution (3kmx3km). d01 is the parent 
domain for d02; d02 is the parent domain for d03.  
 
Within the WRF-STILT framework, we run independent 30-hour WRF simulations (9-10). That 
is, a month with 31 days involves 31 independent 30-hour simulations. The 30 hours allows for 
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rejection of the first 6 hours as model equilibration, or spin-up, such that what remains is the 
requested 24-hour period of valid output. In this study, we start each daily run at 18:00 UTC the 
previous day and specify a run duration of 30 hours from start.  In addition to running the model 
for short periods of time, error growth during the forecast is further limited by implementing a 
nudging scheme in the outer domain and never within the PBL. Temperature and Q are not 
nudged in the PBL as a rule; winds are generally not nudged in the PBL but can be if the 
temporal resolution of the initialization data is sufficiently fine (10). We customize the WRF 
Registry.EM_COMMON file prior to recompiling the model as described by http://www.stilt-
model.org and (11). The changes made include high resolution output of Temperature and 
downward shortwave radiation fields for use with the VPRM model. See 
https://dx.doi.org/10.7910/DVN/OJESO0 and (12) for customization and namelist files. 
 
The combination of short run durations and nudging attempts to minimize WRF output deviation 
from real meteorological observations/measurements. We run each daily simulation on a single 
node with 15 cores. See Appendix C in (12) for general steps involved in running WRF for a 
typical 30h period. 
 
S2.3 Real Data Simulation Mode: WRF Pre-processing System 

The purpose of the WRF Pre-processing System (WPS) is to create a real data-based 
initialization file for the WRF-ARW solver in cases where real data simulations are required. 
This mode is necessary for the WRF-STILT framework. 
 
WPS requires static land data sets (MODIS or USGS) and GRIB1/GRIB2 meteorological data 
and to run. We use the IGBP-Modified MODIS 20-category Land Use data set for consistency 
with VPRM configuration (Sec. S4). WRF is initialized with NCEP FNL GRIB1 files: NCEP 
FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (13). The 
NCEP FNL fields are on a 1x1 grid, with a 6-hour temporal resolution. All WPS settings are 
described in its configuration (namelist) file (https://dx.doi.org/10.7910/DVN/OJESO0). Fig. S2 
shows the study domain as defined in WPS. 
 
We discard the May 31, 2005 to June 1, 2005 period from analysis due to a discontinuity in the 
soil levels in the initialization data set. Specifically, the number of expected metgrid soil levels 
changed from two to four. 
 
S2.4 WPS and WRF Namelist Configuration 

https://dx.doi.org/10.7910/DVN/OJESO0 provides the WPS and WRF namelists. The individual 
variables are thoroughly documented in the WRF-ARWv3.6 User’s manual. Deviations from 
default are based upon optimal WRF-STILT settings as described in (9-11).  
 
S2.5 Post-processing and Evaluation of WRF Output  

We evaluate WRF output against publicly available, 24h-averaged Chinese Meteorological 
Administration (CMA) observational data. CMA observational data is not used in the NCEP 
FNL reanalysis WRF initialization fields. CMA provides daily averages of surface pressure, 
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wind speed, temperature, and relative humidity. Access to higher temporal resolution 
observational data is limited. We convert hourly (d01) and half-hourly (d02, d03) WRF output to 
daily averages before evaluation. We use a combination of NCAR Command Language v6.1.2 
(NCL; http://dx.doi.org/10.5065/D6WD3XH5) and R v2.9.0 (https://www.r-project.org/) to 
process the observed and simulated output. The standard post-processing toolbox, consisting of 
the WRF Unified Post Processor  and METv4.1 Point-Stat Tool (http://www.dtcenter.org/code/) 
as shown in the shaded grey area of Fig. S3, is provided for reference but is not used here 
because of the low temporal resolution of observational data and file format mismatches. 
However, we base our evaluation method and procedures on the METv4.1 Point-Stat Tool. Both 
the METv4.1 and our version of the Point-Stat tool match WRF forecast fields to observation 
point locations for comparison. For surface observations, no interpolation is performed. 
Forecasts are instead matched to nearest CMA surface station observation point. Fig. S2 displays 
a map of the CMA surface network in 2006 and 2008, with approximate WRF domains overlaid 
with CMA station 54511 (C54511; 39.8N, 116.47E) highlighted in d03. We display sample 
evaluation results from C54511 in Fig. S4 through Fig. S6, using observed and simulated fields 
from 2006. In the evaluation, WRF forecast fields are matched to the nearest observation point.  
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S3 STILT Model 

	

S3.1 Model Description 

 
STILT (http://www.stilt-model.org), a Lagrangian Particle Dispersion Model (LPDM), is an 
adjoint used to attribute sensitivies of downwind tracer concentrations made at a receptor to 
upwind surface influences (sources or sinks) of the tracer. Like all LPDMs, its strength lies in its 
ability to capture sub-gridscale transport. It does so by interpolating sub-grid scale particle 
locations using turbulent velocity statistics driven by the meteorology fields. This “stochastic” 
component of STILT is what enables capture of fine structures and inhomogeneity in transport. 
Specifically, STILT enables modeling concentrations of a tracer by computing an Influence 
function, I, described in Equation 1 below, reproduced from (1). 
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where: 
 C =  mixing ratio, in mol/mol, of tracer at specified location and time 
 xr  = spatial location of receptor 
 tr =  time of observation at receptor located at xr 
 t0 = initial time, less than tr, provides the boundary condition 
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   where horizontal elements are x and y and vertical element is z. 
I ,-, %# ", %) = Influence Function. This is what STILT provides. Represents the fraction  

of a fluid element (or “particle”) that reached location=xr, time=tr  
given that the entire fluid element was at location x at a previous  
time t. Influence function is expressed in units of inverse volume (vol-1). 
Note that boldface ,-indicates it is a location vector with x and y elements. 

 S(x,t) = Surface flux of tracer at location x, time t. Units are (mol/mol) s-1;  
i.e., mixing ratio per time 
 
 

The STILT model computes the influence of upwind surface fluxes on downwind concentrations 
and ultimately outputs surface footprints. A sample footprint map is shown in Fig. S7. Footprint 
quantities are expressed as concentration changes at the receptor due to discretized surface fluxes 
and is expressed as ?@AB	@AB

CD

?@AB	@CEFCD
  or simply  GG@

?@AB	@CEFCD
 . Once the particle velocity has been 

computed, sub-gridscale particle locations are interpolated for a chosen timestep. The sub-
gridscale particle locations then produce particle densities by transporting, for statistical 
robustness, an ensemble of particles back in time according to WRF meteorological fields 
described previously. See (1) for details of the derivation of footprint elements. 
 
STILT examines near-field influences by designating surfaces with which PBL air has come into 
contact before arrival at the observation location. Given that PBL ventilation time is on the order 
of 4 days, the near-field surface influence domain affected by PBL processes can extend from 
regional (102 km) to continental (103 km) scales, corresponding to spatial scales of the WRF d01 
mother domain for this study (1, Table S1). Ultimately, inaccurate representation of transport 
limits our ability to correctly attribute sources to measured concentrations. STILT assumes well-
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mixedness in an atmospheric column of vertical extent of z ≤ h, where h is the mixing height. 
Footprints have been found to be insensitive to the exact value of h between 10 and 100% of the 
PBL height such that h is set to PBL height as defined by the WRF output (1). Here we set the 
mixing height to 50% of the modeled PBL height. The assumption of well-mixedness in the 
vertical is a consequence of mass conservation and is necessary to prevent the accumulation of 
particles in low turbulence pockets of the PBL (10). 
 
S3.2 Project-Specific Model Set-up and Run Details 

The version of WRF-STILT1  used in this study corresponds to STILT release r701 of the AER-
NOAA branch at the STILT svn repository2, and Release-3-5 of the WRF-STILT interface3. 
Spin-up periods are removed from the WRF meteorological data and the WRF netcdf output files 
are converted to .arl format (Air Research Laboratory; 
https://ready.arl.noaa.gov/HYSPLIT_data2arl.php#INFO) prior to being ingested into STILT. 
 
In this study, we transport an ensemble of 500 particles 7-days back in time to model footprints 
for each measurement hour at the receptor. The receptor (Miyun; 40°29′N, 116°46.45′E, 152 m 
above sea level (asl)) has the measurement inlet (STILT particle “release” point) located 6m 
above ground level (agl). We employ dynamic regridding, which accounts for resolution changes 
among the nested WRF domains. Mixing height is derived from WRF PBL heights; we set the 
surface layer as 50% of the mixed layer height. Footprints are integrated hourly. We set up the 
STILT runs as “pleasantly parallel” by running each month of a year simultaneously; hours 
within a month are run serially.  
 
When the receptor release occurs outside of peak daylight hours, stratification of the PBL 
becomes significant. Therefore, as is common practice in virtually all emissions optimization 
studies, we model the 1100 to 1600 (local time) subset. These daylight hours represent a typical 
window for which STILT reliably models transport (e.g., 4). We examine the unoptimized model 
performance at all times, averaged seasonally and diurnally, in Sec S7.   
 

S4 Anthropogenic CO2 inventories 
 

In order to facilitate comparison among the three anthropogenic inventories used in this study, 
we interpolate the two global inventories (EDGAR, 0.1ºx0.1º; CDIAC, 1ºx1º) to the same 
0.25ºx0.25º grid as the regional inventory (ZHAO) described in detail in (14-16). We use the 
NCL Earth System Modeling Framework (ESMF) Conserve regridding method which minimizes 
deviation of the variable’s integral between source and destination grids. We evaluate the impact 
of regridding in Fig. S8 by comparing annual totals (MtCO2) before and after regridding. The 
ZHAO inventory remains on its native grid. We show that regridding does not appreciably affect 

                                                
1
	https://www.bgc-jena.mpg.de/bgc-systems/projects/stilt/pmwiki/pmwiki.php?n=WRFSTILT.WRF-STILT	

2
	https://projects.bgc-jena.mpg.de/STILT/svn/branches	

3
	available	from	http://files.aer.com/external/CarbonSoftware	
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the total emissions reported for mainland China by EDGAR and CDIAC, providing confidence 
in our representation of the two original inventories.  
 
The ZHAO inventory provides estimates of total annual emissions for 2005 through 2009. In 
addition, the 2005 and 2009 ZHAO emissions are spatially allocated to a 0.25º x0.25º grid. We 
average the 2005 and 2009 percent contributions of each grid cell to the total emissions to 
provide weights for spatially allocating 2006 through 2008 total annual emissions. Fig. S9 
evaluates the validity of this assumption by identifying regions where the 2009 gridcell 
contribution to the total emissions is outside +/- 2% of its 2005 contribution (Fig. S9a) and +/-
50% of its 2005 contribution (Fig. S9b). We find the assumption to be valid; the mean change 
per gridcell from 2009 relative to 2005 is -0.011% with a 2-s of 15%.  
 
The original inventories do not embed or provide estimates of intra-annual variability. Previous 
work (17) has found that temporal variations in CO2 can be significant, and surface CO2 can 
be perturbed from 1.5-8ppm based on time of day and/or day of week 
(http://cdiac.ornl.gov/ftp/Nassar_Emissions_Scale_Factors). However, in this study we assume 
anthropogenic CO2 fluxes are temporally invariant on intra-annual timescales as the effect of 
applying the weekly and diurnal scaling factors were not statistically significant. No seasonal 
scaling factors were available. 
 
Total unoptimized emissions for each anthropogenic inventory are calculated on the 0.25ºx0.25º 
grids and provided in Table S2. We provide emissions summed for each administrative region in 
the study domain, each STILT influence contour, and all China. Differences among the 
inventories zoomed to the L_90 influence region, are displayed in Fig. S10. Miyun and Beijing 
are encompassed by the L_0.25 contour. We display the average gridcell emissions of ZHAO 
(Fig. S10a) and the differences of EDGAR and CDIAC relative to ZHAO (Fig. S10b and Fig. 
S10c, respectively). In heavily emitting regions, ZHAO is typically higher than EDGAR and 
CDIAC. In regions where ZHAO is consistently lower than CDIAC, the differences are lower 
than the instances where ZHAO is higher. Note that, in the case of CDIAC, the uniformity of the 
differences includes artefacts from downscaling the gridded CDIAC inventory from 1°x1° to 
0.25°x0.25°. 

 

S5 VPRM Configuration and Evaluation 
S5.1 Model Description  

The VPRM, a simple biosphere CO2 flux model, uses satellite and surface observations to 
quantify net ecosystem exchange (NEE) of CO2 at hourly scales. It has been adapted from the 
early version described in (6).  The adapted model is described in detail in (12). The VPRM NEE 
equation is reproduced below and is computed for each ecosystem category in the domain (Fig. 
S11a).  
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HII = − K×MFNOBP×QFNOBP×RFNOBP×
1

1 + QTU
QTU4

×I*+×QTU + V×M + W 		 

 

The first parenthesized term represents the photosynthetic Gross Primary Productivity (GPP); 
the second parenthesized term represents ecosystem respiration (Reco). Tscale, Pscale, and Wscale 
represent temperature sensitivity, phenology, and water availability respectively. PAR 
parameterizes photosynthetically active radiation; EVI is the Enhanced Vegetation Index; T is air 
temperature. l, a, b, and PAR0 are parameters adjusted for each ecosystem type during 
calibration with eddy flux observations. 

The NEE and gross primary productivity (GPP) are provided on a 0.25ºx0.25º grid, matching the 
anthropogenic inventory described in (16). 

 
S5.2 Data Processing 

Fig. S11b displays the entire process involved in modeling hourly Net Ecosystem Exchange of 
CO2 (NEE; µmolCO2m-2s-1) across multiple years. As described in (13) we use data derived from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra 
Satellite (https://modis.gsfc.nasa.gov) to model GPP: surface reflectance (8-day average 
MOD09A1 surface reflectance bands 2, 6, 1 and 3); IGBP land use categories (MCD12Q1); and 
ecosystem phenology (MCD12Q2). We do not include MODIS surface reflectance data from the 
Aqua satellite due to failure of a majority of band 6 detectors after launch. All datasets were 
downloaded using the Reverb tool in NASA’s Earth Observing System Data and Information 
System  (http://reverb.echo.nasa.gov/). We then use the MODIS Mosaic and Reprojection Tool 
(MRTv4.1) to stich and reproject relevant tiles to a WGS84 datum Geographic Coordinate 
system on a 500m grid.  

We quality control our raw surface reflectance data set by only selecting highest quality data 
under clear sky conditions. We use the NCL Poisson Grid Filling function to interpolate any 
missing values that result from our quality filtering (Fig. S12). As described in (13), the quality 
filtering of the ecosystem timing dates (MCD12Q2) was limited in scope to (i) removing 
anachronistic dates represented by instances where, for a given pixel, ecosystem times were not 
in chronological order, and (ii) where a given pixel’s date was outside of 1-s of the mean for the 
ecosystem class represented by that pixel for its latitude band. The second step of MCD12Q2 
quality filtering was not conducted for cropland classes in the 32N-38N latitude band due to 
bimodality of phenology. We display filtered and filled MCD12Q2 ecosystem timing dates for 
two sample years (2005 and 2006) in Fig. S13 similarities in patterns across years provides 
confidence in the robustness of the manual filtering method.  
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We then calculate the VPRM phenology (Pscale), water stress (Wscale), Enhanced Vegetation 
Index (EVI), and Land Surface Water Index (LSWI) parameters from the resulting quality-
filtered, filled data set (Fig. S14). Temperature dependence (T, Tscale) and radiation (PAR) are 
based on hourly-averaged 10-minute outputs of WRF surface temperature and shortwave 
radiation fields, bilinearly interpolated to the same 500m geographic grid as the MODIS-derived 
parameters (Fig. S15). Note that in all cases, water pixels are masked.  

 
S5.3 Evaluation of Hourly output at calibration sites 

We calibrate hourly VPRM NEE output for each major ecosystem type in the domain as 
described in (13) and examine hourly model bias by evaluating calibrated model output with 
observed NEE (Fig. S16). As discussed in (13), the VPRM’s strength lies in its ability to capture 
hourly processes that are dominated in the short term by temperature and radiation. When 
integrated over longer timescales (e.g., months and years) non-random errors can aggregate 
significantly. 
 
The northern mixed forest ecosystem represented by CN-Cha is well captured by the VPRM 
during non-winter seasons. Respiration is consistently underestimated by the model as evidenced 
by the nighttime output relative to observations (Fig. S16a). For ecosystems in southern latitudes 
of the study domain (CN-Din/Evergreen Broadleaf; CN-Qia/Woody Savanna) both season and 
time of day is captured consistently by the VPRM (Fig. S16b, Fig. S16d). Grassland processes, 
represented by a single degraded grassland in Inner Mongolia, are best captured during the peak 
summer but overall underestimate uptake (Fig. S16c). Respiration processes in winter wheat and 
corn dual croplands (CN-Yuc; Fig. S16e) are consistently and significantly underestimated by 
the VPRM at all seasons; uptake during the spring winter wheat period is consistently 
underestimated by VPRM as well.  
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S6 CT2015: Background Concentration Selection and Evaluation of Model Bias 
 

We derive estimates of background CO2 concentrations from NOAA CarbonTracker (CT2015; 
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2015/). CT2015 enables us to estimate 
concentrations of CO2 prior to interaction with the surfaces in the study domain. The CT2015 
model for the study domain is heavily trained by observations made approximately weekly via 
flask sampling at four World Meteorological Organization (WMO) sites in the region 
(https://www.esrl.noaa.gov/gmd/dv/site/). Mt. Waliguan to the west of the receptor (WLG) 
represents free tropospheric background air; Ulaan Uul (UUM) in Mongolia represents clean 
continental air; Tae-ahn Peninsula (TAP) in South Korea represents urban-influenced air from 
the east; Lulin (LLN) in Taiwan represents urban-influenced air from the southeast. TAP and 
LLN become more prominent in their representation upwind/background air sites during the 
spring and summer months when the East Asian Monsoon begins to influence regional air 
trajectory patterns. WLG and UUM are prominent in their representation of upwind/background 
air at all times of the year but particularly weight background air during the winter and fall 
seasons. 
 
Background values are selected using methodology similar to (5) and is summarized as follows. 
For each hour, the end x-y-z-time coordinates for each of 500 particles is found and linked to its 
corresponding CT2015 CO2 concentrations using a spatiotemporal nearest neighbor approach. 
Only instances where a particle originated at the edge of the outermost domain and/or an altitude 
greater than or equal to 3000masl is included in the average background concentration 
calculation for that hour. If less than 75% of particles for an hour have valid background 
concentrations, that hour is not used in subsequent analyses. This selection criteria for 
background CO2 mole fractions enables realistic modeling of true background conditions that 
have not interacted with the domain within each hourly measurement’s maximum seven-day 
regional influence period. For the five-year study period, this method of boundary selection 
retains approximately 85% of hourly modelled values per year and across years.  
 
We quantify bias in the background model by evaluating observations against the nearest 
CT2015 model pixel and level. Observations are filtered using highest quality flask sample 
points only. Fig. S17(top panel) displays the time series of 3-hourly modeled CT2015 values and 
observed WMO measurements. Deviation of residuals from a normal distribution are displayed 
in Fig. S17 (bottom panel). The typical 1-s model bias is 2ppm, but not all of the distributions 
are normal. For UUM, and therefore, CT2015 parameterization of clean continental background, 
the model-measurement residuals largely follow a normal distribution centered around 0. The 
clean continental background generally exhibits well-mixed behavior and is not defined by large 
excursions in the CO2 signal. At the high-altitude WLG site representative of the free 
troposphere, the residuals follow a normal distribution centered around 0 but deviate from 
normal during instances where significant excursions in the CO2 signal are present. This is also 
the case at LLN (distribution centered near 2.5ppm). TAP residuals deviate significantly from 
normal. In general CT2015 does not capture CO2 events that are significantly different from 
global means; CT2015 underestimates uptake processes and overestimates lower or higher than 
global mean.  
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As not all deviations from observations can be represented as normal distributions, we place the 
model-measurement residuals at the four WMO sites in an error pool and select as part of an 
overall bootstrapping procedure for the modeling framework as described in the main text, 
similar to that described in (4). 

 

S7 Analysis of Modeled and Measured CO2 at the hourly scale 
 
As discussed in Sec S3.2, STILT does not perform well when the receptor release occurs outside 
of peak daylight hours, when stratification of the PBL is a significant source of error in particle 
back-trajectory. Therefore, we model the 1100 to 1600 (local time) afternoon hour subset, which 
is a typical window for which STILT reliably models transport (e.g., 4). We display diurnal 
modeled and measured averages by season for the unoptimized models with the local afternoon 
STILT optimization window highlighted in Fig. S18.   
 
We also provide the complete hourly timeseries of WRF-STILT-VPRM modeled DCO2 using the 
three anthropogenic inventories, and compare them with hourly observations (Fig. S19). We note 
that the WRF-STILT transport framework largely captures timing of events; the combination of 
the WRF vertical mixing parameterizations and vegetation and anthropogenic inventories 
regulate the magnitude of the regional CO2 enhancement or depletion relative to the background.  
 
We present hourly local afternoon observations of CO2 over the entire study time period with 
modelled CT2015 background conditions (Fig. S20a).   We have high confidence in the selection 
criteria and performance of the CT2015 as evidenced by its ability to represent the baseline of 
the observations such that local enhancements and depletions are visible as relative to the 
CT2015 baseline. Local events do not impact the CT2015 modelled background. Therefore, the 
four WMO stations heavily training CT2015 in the region adequately represent upstream 
background air advected to Miyun, depending on air mass trajectories.  
 
We evaluate the hourly modelled versus measured DCO2 in the bottom panel, and colour by 
season. The 1:1 line is displayed for reference. All modelled hourly quantities include the same 
biological component from VPRM such that the only source of variation among models is the 
anthropogenic inventory. Fig. S20(b-d) display hourly DCO2,ZHAO+VPRM, DCO2,EDGAR+VPRM, and 
DCO2,CDIAC+VPRM . For all three anthropogenic inventories evaluated against DCO2,obs, the 
correlation coefficient R2 is greater than 0.4 when aggregated across all seasons, and for winter 
and fall seasons.  During the spring and summer, DCO2,ZHAO+VPRM has the highest R2 (0.2 and 
0.23, respectively); DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM have R2 values of 0.2 or lower. 
Despite the high R2 values across seasons and during dormant seasons, DCO2,ZHAO+VPRM is the 
only model to equally span the 1:1 line; DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM consistently fall 
below, suggesting systematic underestimation of measured DCO2 (Fig. S20e-g). The EDGAR 
and CDIAC underestimation of DCO2 at the hourly scale aggregates more apparently at longer 
timescales of months, seasons, and years as discussed in the main text.
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S8 Optimization Results and Methodology 
Complete results from optimization in the L_0.90 influence region are provided in Table S3 and 
Table S4. Table S3 provides seasonal fluxes for each year before and after optimization. Table 
S4 provides annual scaling factors, and emissions totals after optimization. 
 
We translate the resulting mole fraction (ppm) mismatch between observed and modeled DCO2 
to inventory corrections at annual and seasonal timescales. We optimize in the L_0.90 contour 
(Fig. S10) which represents regions that substantially influence the receptor without 
disproportionally weighting pixels that contribute very little to the observed signal.  
 
At annual scales, the dominant contributor to the CO2 signal are anthropogenic emissions; 
optimization at annual scales is therefore applied only to the anthropogenic emissions 
inventories. The heavily cropped L_0.90 influence region implies rapid turnaround of vegetation 
carbon stocks at the annual scale, justifying this assumption (18). At these timescales, we derive 
the DCO2,obs/DCO2,mod ratio which represents the factor by which the annual anthropogenic 
inventory must be scaled in order to match observations. We use a model of the mean method to 
derive the annual scaling factors, 

 

/X =
Y!Z[	,A\F]]
Y!Z[	,@A^]]

	

                        
where hh represents each local afternoon hour (1100 to 1600) in the year. SF>1 implies the 
model underestimates CO2 concentrations while SF<1 implies the model overestimates CO2 
concentrations. We obtain 95% confidence bounds by bootstrapping uncertainties in the 
numerator and denominator separately, and obtaining the 0.025 and 0.975 quantiles from the 
ratio of the means of the two distributions. 
 
At the seasonal scale, however, evaluation of CO2 processes is complicated by the biogenic flux 
contribution during the growing season and, to a lesser extent, the effects of ecosystem 
respiration in the dormant season. At these timescales, we derive additive corrections from 
converting observation-model mole fraction mismatch to the total CO2 to be added or subtracted 
from the inventories. We optimize the anthropogenic and vegetation inventories together as it is 
not possible to distinguish the contributions from our existing observational data set. For each 
modeled hour we derive a residual-based flux correction, DFhh, in µmolCO2m-2s-1: 

 

Y_`` =
Y!Z[,A\F]] − Y!Z[,@A^]]

abb%``cdef`
4

	

                            
where hh represents each local afternoon hour (1100 to 1600) in the season and h represents the 
STILT footprint back-trajectory hour up to 7 days back in time. Given that anthropogenic 
emissions are positive terms and the biogenic component is a net balance of two opposing terms 
(uptake and release) of CO2 during the growing seasons, use of inventory scaling factors for 
growing season optimization is inappropriate. That is, even a small mole fraction difference 
between modeled and observed in the growing season can result in meaningless scaling factors 
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when there is a difference in sign involved. While scaling factors are appropriate during dormant 
seasons, for consistency we apply the same method of additive corrections across all seasons and 
report the optimized inventory as fluxes (kg CO2 m-2 season-1). The methods are comparable; 
inventory corrections obtained by both methods during the winter and fall exhibit converging 
95% confidence intervals. 
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Fig. S1. Overview of CO2 inventory evaluation and optimization  
 

C54511 

Fig. S2. CMA Station Map (2006, 2008) with WRF domain boundaries. 
Sample WRF evaluation results are provided for Station 54511 (indicated by 
arrow on map), near Miyun receptor. 
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Fig. S3. Evaluation procedure for WRF meteorological output. Grey shaded region 
refers to standard WRF evaluation toolbox, applicable for future studies where high 
resolution observational data becomes available. 
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(a) 

(b) 

(c) 

(d) 

Fig. S4. Evaluation of WRF output against observational data. 2006 Meteorology 
timeseries for sample WRF gridcell (39.825N, 116.51E) evaluated against nearest CMA 
Station C54511 (39.800N 116.47E). WRF Meteorology averaged from half-hourly to daily 
for (a) Specific Humidity; (b) Surface Temperature; (c) Surface Pressure; (d) Surface Wind 
Speed. Original half-hourly output displayed in grey. Shaded yellow region represents 
observed daily range; daily minimum for windspeed is not available, but assumed to be 
0m/s. 
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Fig. S6. Q-Q plots of Observed and WRF Modeled (Forecast) meteorology for sample WRF 
gridcell. Gridcell (39.825N, 116.51E) evaluated against nearest CMA Station C54511 (39.800N 
116.47E). Time-base of fields is daily average. 

Fig. S5. Observed vs WRF Modeled (Forecast) meteorology for sample WRF gridcell. 
Gridcell (39.825N, 116.51E) evaluated against nearest CMA Station C54511 (39.800N 
116.47E). Time-base of fields is daily average. 



 22 

M
t C

O
2 

Fig. S8. ZHAO, EDGAR, and CDIAC estimates of total annual CO2 emissions for 
Mainland China, 2005 to 2009. EDGAR and CDIAC are regridded to 0.25ºx0.25º grid using 
the NCL Earth System Modeling Framework Conserve regridding function. 

Fig. S7. Sample STILT footprint map. Measurement hour on January 23, 2005 at 0700UTC 
(1500 Local). Surface influences are provided in ppm µmol-1m-2s-1. Receptor release point is 
indicated by the green cross. 
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(a) (b) 

2009-2005 Threshold: 2% Difference 2009-2005 Threshold: 50% Difference 
Fig. S9 Spatial Allocation of ZHAO inventories (2006-2008). Mean percent difference of gridcell 
contribution to total emissions is -0.011% ±15% (2-s). We highlight instances where 2009 gridcell 
contribution to total annual emissions differs from its 2005 value by (a) more than 2% and (b) more 
than 50%. Blue represents a relative DECREASE in 2009 relative to 2005; red represents a relative 
INCREASE; grey represents values WITHIN the specified threshold.   

(a) (b) (c) 

Fig. S10 Mean annual Anthropogenic emissions (Mt CO2 yr-1, 2005-2009) zoomed to approximate 
d02 extent. Black contour lines represent the 25th, 50th, and 75th, and 90th percentiles of multi-year mean 
annual STILT footprint influences. (3a) displays emissions estimated by ZHAO; black and green circle 
represents Miyun receptor. (3b) displays EDGAR inventory difference relative to ZHAO; (3c) displays 
CDIAC inventory difference relative to ZHAO. ZHAO is consistently higher than EDGAR and CDIAC 
in the Beijing area. Both EDGAR and CDIAC are regridded from their original grids to the ZHAO grid 
via ESMF Conserve regridding technique. 
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Fig. S11. VPRM Processing (a) for each pixel associated with an IGBP ecosystem category in 
domain and (b) schematic of VPRM data processing, quality control, and model calibration 
leading to hourly NEE output at each pixel. Note western edge of domain is slightly truncated 
in (a). 

(a) 

(b) 

L_0.90	Influence	Region	

L_0.75	Influence	Region	

L_0.50	Influence	Region	

Miyun	Receptor	

Beijing	

	
*	
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rNIR, QC 

rNIR, no QC 

rNIR, QC+fill 

rSWIR, no QC rRED, no QC rBLUE, no QC 

rSWIR, QC rRED, QC 

rRED, QC+fill rSWIR, QC+fill 

rBLUE, QC 

rBLUE, QC+fill 

Fig. S12. MOD09A1 Surface reflectances (r) in the near infra-red (NIR); shortwave 
infrared (SWIR); red (RED); and blue (BLUE) for a sample day during peak growing 
season in July 2006 (day 201). We display original, unfiltered data (top row); QC filtered subset 
(middle row); and poisson-filled filtered subset (bottom row).  
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2005 

Green	Up Green	Max Green	Down Green	Min 

2005 2005 2005 

2006 2006 2006 2006 

Pscale Wscale 

EVI LSWI 

Fig. S13. Quality filtered MCD12Q2 Ecosystem Timing Dates. Reported as day of 
year for 2005 (top row) and 2006 (bottom row) 

Fig. S14. Pscale, Wscale, EVI, LSWI for sample peak growing 
season day. Day is in July 2006 (day 201).Timing is based on 
ecosystem event onset. 
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Fig. S15. WRF Surface Temperature (T2) and Shortwave radiation 
(SWDOWN) in d01 for a sample day in July 2006. Top row: fields on 
original 27km WRF grid; bottom row: fields regridded using bilinear 
interpolation (NCL; Earth System Modeling Framework) to 500m 
geographic grid. 
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Fig. S16 Hourly Modeled vs. Measured NEE at VPRM calibration sites. Point color and 
fill represent season and time of day (open circles = day time). Light grey shading represents 
regions where either Modeled or Measured NEE are >0 (net release); dark grey represents 
regions where both Modeled and Measured NEE are >0. 

(a) CN-Cha 
Mix Forest 

 

(b) CN-Din 
Ev. Bdlf 

 

(c) CN-Du2 
Grassland 

 

(d) CN-Qia 
Woody Sav 

 

(e) CN-Yuc 
Cropland 
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Fig. S17. Evaluation of CT2015 model bias. ~Weekly flask samples from WMO sites (LLN, 
TAP, UUM, WLG) used to train CT2015 compared with nearest CT2015 pixel. Top row: time 
series of measurements; bottom row: Normal Q-Q plot of model-measured residuals. 
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Fig. S18. Diurnal UNOPTIMIZED modeled and measured CO2, 
averaged by season from 2005 to 2009. Local time is on x-axis. 
Optimization window (1100 to 1600) is highlighted in yellow. 
Comparison of CO2 observations (black) with CO2 modeled by 
ZHAO+VPRM (red), EDGAR+VPRM (blue), and CDIAC+VPRM 
(purple). CT2015 background is in grey. 
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Fig. S19. Hourly Timeseries of CO2 and DCO2 (1100 to 1600, local) over study time period. 
(a) Observed CO2 (ppm) with modeled background highlighted; observed DCO2 plotted against 
(b) DCO2,ZHAO+VPRM; (c) DCO2,EDGAR+VPRM; (d) DCO2, CDIAC+VPRM. 
 

(a) 

(b) 

(c) 

(d) 
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Table S1. Resolution and Extent of study WRF domains. 
 
 
 
 

 
 
 

 
 
Table S2. Comparison of unoptimized annual anthropogenic CO2 emissions (TgCO2) by region. EDGAR and 
CDIAC are reported as percent differences relative to ZHAO. *: Based on sums AFTER spatial allocation of ZHAO 
inventories but are <0.1% different from original totals in (16). 

 

Domain (resolution) Latitude Range Longitude Range 
d01 (27kmx27km) 17.37N, 47.40N 94.9E, 132.3E 
d02 (9kmx9km) 34.58N, 43.90N 111.5E, 122.8E 
d03 (3km x 3km) 38.42N, 41.59N 114.8E, 118.6E 

 STILT 
L_0.25 

STILT 
L_0.50 

STILT 
L_0.75 

STILT 
L_0.90 

IM NE N C SE S SW All 
China 

20
05

 ZHAO 135.1 697.0 1796 3015 252.1 682.8 2244 502.4 1486 519.6 759.5 7126 
EDGAR -31% -35% -28% -23% +1.9% +1.2% -32% +1.2% -12% -19% -25% -17% 
CDIAC -49% -44% -42% -36% -48% -32% -32% +13% -23% -1.7% +17% -19% 

20
06

 ZHAO 124.8 734.4 1922 3273 311.7 690.6 2440 558.9 1590 567.6 822.9 7726* 
EDGAR -17% -32% -26% -21% -8.2% +13% -31% +2.1% -7.9% -19% -23% -15% 
CDIAC -39% -41% -40% -34% -54% -26% -31% +13% -21% -0.74% +20% -17% 

20
07

 ZHAO 136.8 805.0 2107 3588 341.6 757.0 2675 612.6 1743 622.1 902.0 8469* 
EDGAR -18% -33% -27% -22% -9.8% +12% -32% +0.76% -9.3% -21% -25% -16% 
CDIAC -41% -43% -42% -37% -55% -29% -33% +9.2% -23% -4.2% +15% -20% 

20
08

 ZHAO 140.5 826.8 2164 3685 350.9 777.5 2747 629.2 1790 639.0 926.4 8699* 
EDGAR -12% -27% -21% -16% -3.8% +18% -26% +7.5% -1.9% -14% -20% -9.7% 
CDIAC -39% -41% -40% -35% -54% -27% -31% +12% -21% -1.4% +19% -18% 

20
09

 ZHAO 125.1 864.7 2301 3974 424.6 777.2 2967 694.8 1903 693.4 997.2 9370 
EDGAR +5.4% -26% -20% -17% -16% +25% -27% +3.5% -1.8% -15% -21% -11% 
CDIAC -26% -40% -40% -36% -60% -22% -32% +8.0% -21% -3.5% +17% -19% 
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Table S3. Seasonal Flux Optimization Results and 95% CI (kg CO2 m-2 month-1) for L_0.90 region. Optimizations based on 
additive corrections. Unoptimized fluxes are in regular font; optimized fluxes and 95% CI are in bold.  

 JFM/Winter AMJ/Spring JAS/Summer OND/Fall 
20

05
 

ZHAO 0.133 
0.129 (0.103, 0.105) 

0.0492 
0.0735 (0.0195, 0.135) 

-0.0540 
-0.170 (-0.237,-0.106) 

0.132 
0.164 (0.137, 0.193) 

EDGAR 0.108 
0.151 (0.124, 0.174) 

0.0256 
0.116 (0.0597, 0.176) 

-0.076 
-0.120 (-0.186, -0.0478) 

0.110 
0.181 (0.154, 0.204) 

CDIAC 0.0937 
0.144 (0.117, 0.170) 

0.0117 
0.132 (0.0734, 0.185) 

-0.0972 
-0.121 (-0.183, -0.0445) 

0.0951 
0.177 (0.147, 0.206) 

20
06

 

ZHAO 0.131 
0.146 (0.122, 0.167) 

0.0601 
0.156 (0.0990,0.217) 

-0.0568 
-0.135 (-0.197,-0.0708) 

0.140 
0.174 (0.124, 0.217) 

EDGAR 0.106 
0.169 (0.145, 0.190) 

0.0421 
0.185 (0.126, 0.246) 

-0.0771 
-0.0951 (-0.157, -0.0310) 

0.114 
0.204 (0.152, 0.251) 

CDIAC 0.0929 
0.165 (0.139, 0.189) 

0.0260 
0.194 (0.134, 0.254) 

-0.102 
-0.0912 (-0.157, -0.0171)  

0.0965 
0.223 (0.168, 0.270) 

20
07

 

ZHAO 0.139 
0.154 (0.118, 0.189) 

0.0831 
0.109 (-0.00290, 0.217) 

-0.0735 
-0.151 (-0.205, -0.0958) 

-0.171 
0.174 (0.129, 0.214) 

EDGAR 0.109 
0.171 (0.133,0.205) 

0.0569 
0.141 (0.0282, 0.264) 

-0.103 
-0.110 (-0.170, -0.0528) 

0.138 
0.192 (0.151, 0.231) 

CDIAC 0.0917 
0.157 (0.119, 0.191) 

0.0323 
0.149 (0.0381, 0.271) 

-0.123 
-0.113 (-0.173, -0.490) 

0.119 
0.184 (0.138, 0.222) 

20
08

 

ZHAO 0.120 
0.134 (0.109, 0.160) 

0.0577 
0.0157 (-0.0470,0.0794)  

-0.0290 
-0.170 (-0.247, -0.0940)  

0.143 
0.201 (0.159, 0.243) 

EDGAR 0.0973 
0.145 (0.120, 0.171) 

0.0459 
0.0492 (-0.0140,0.111) 

-0.419 
-0.127 (-0.207,-0.0447) 

0.118 
0.219 (0.174, 0.259) 

CDIAC 0.0785 
0.139 (0.109, 0.166) 

0.0135 
0.0559 (-0.0114, 0.122) 

-0.0800 
-0.134 (-0.217, -0.0494) 

0.0960 
0.224 (0.179, 0.264) 

20
09

 

ZHAO 0.144 
0.231 (0.130, 0.300) 

0.0809 
-0.0655 (-0.127, -0.00290) 

0.0277 
-0.125 (-0.193, -0.0449) 

0.134 
0.215 (0.158, 0.265) 

EDGAR 0.130 
0.249 (0.156, 0.313) 

0.0563 
-0.0653 (-0.124, 0.00) 

-0.00797 
-0.122 (-0.197, -0.0399) 

0.112 
0.217 (0.165, 0.266) 

CDIAC 0.0970 
0.238 (0.147, 0.306) 

0.0355 
-0.0404 (-0.105, 0.0239) 

-0.0312 
-0.110 (-0.192, -0.0267) 

0.0874 
0.215 (0.162, 0.270) 
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Table S4. Annual scaling factors (95% CI) and optimized emissions for L_0.90 region. 

 
 

 Scaling Factor (95% CI) Optimized MtCO2 (95% CI) 

20
05

 ZHAO 0.95 (0.84, 1.0) 2800 (2476, 3105) 
EDGAR 1.4 (1.3, 1.6) 3306 (2886, 3683) 
CDIAC 1.7 (1.5, 1.9) 3489 (3017, 3871) 

20
06

 ZHAO 1.0 (0.91, 1.1) 3326 (2972, 3631) 
EDGAR 1.5 (1.3, 1.6) 3751 (3325, 4150) 
CDIAC 1.9 (1.6, 2.0) 3930 (3438, 4338) 

20
07

 ZHAO 0.94 (0.85, 1.0) 3080 (2789, 3324) 
EDGAR 1.4 (1.2, 1.5) 3454 (3096, 3785) 
CDIAC 1.6 (1.5, 1.8) 3180 (2842, 3493) 

20
08

 ZHAO 0.94 (0.82, 1.0) 3422 (3008, 3768) 
EDGAR 1.2 (1.1, 1.4) 3790 (3332, 4207) 
CDIAC 1.7 (1.5, 1.9) 3941 (3461, 4374) 

20
09

 ZHAO 0.96 (0.86, 1.1) 3860 (3474, 4251) 
EDGAR 1.1 (1.0, 1.3) 3518 (3133, 3874) 
CDIAC 1.5 (1.3, 1.7) 3921 (3454, 4330) 


