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on  “Impact of humidity biases on light precipitation occurrence: observations versus simulations” 
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Received and published: 18 July 2018 5 
 
1 Abstract 
This study evaluates the performance of a number of regional climate models to reproduce humidity 
and precipitation. The emphasis of the article lies on the evaluation of Integrated Water Vapor (IWV), 
as well as its relation with temperature and finally with precipitation. It is found that models tend to 10 
overestimate the lower values of IWV, which is closely related to the "drizzling effect", i.e. too often 
too low precipitation. 
 
2 General comments 
I find this an interesting piece of work. The authors have made an effort to collect and put in 15 
comparable terms an heterogeneous set of data, from models to different observed variables at 
different locations and with different temporal availability. The use of an ensemble of simulations is a 
particularly good choice, as it provides robustness in the findings. I also like the fact that the authors 
do not just compare models with observations in plain terms, but they describe a simple two-layer 
atmosphere model that allows them to modelise the relationship between IWV and relative humidity 20 
with temperature, which allows them to gain insight on the sources of model biases. The text is well 
written and is easy to read, and the conclusions follow from the analysis carried out. Therefore I have 
only found very minor issues that the authors might want to consider. 
 
>>We thank the referee for the positive comments and we took in consideration all the minor issues 25 
listed in section 3.  
 
3 Specific comments & Technical corrections 

1. Pag. 6, line 23: has been → have been 
-> done 30 

2. Pag. 7, line 1: consists in → consists of 
-> done 

3. Pag. 7, line 34: Due to the existence of gaps in the observational dataset, which reduces... 
-> done 

4. Pag. 10, line 18: valeurs → values? 35 
-> done 

5. Pag. 11, line 20: I’d suggest that s, in Qs(T) to be called subscript, not exponent. An 
exponent is something else 
-> done 

6. Pag 10, line 28: Why do we have that Qs(TFT)≈αQs(TBL)? It is not obvious to me. 40 
 
>>The August-Roche-Magnus formula (approximation of Clausius-Clapeyron law) allows to express 
qsat (specific humidity at saturation) in function of Ta (air temperature (in °C)) : 
 
es = 6.1094*exp((17.625*Ta)./(243.04+Ta));  45 
 qsat  = 0.622*(es./(Pa-es)); 
 
The following figure plots qsat = f(Ta) and it shows that for low T, qsat is less than 2 g/kg, and it 
increases exponentially at high T. But in our 2-layers model, we consider the averaged temperature of 
the boundary layer, not the surface temperature, so it is not so high, and we consider that T is around 50 
280-290K, so qsat is between 6 and 12 g/kg ; and for the free troposphere, the temperature is less than 
260K and qsat is less than 2 g/kg. The ratio between Qs(TBL) and  Qs(TFT) is then close to 1/α 
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Figure : Specific humidity at saturation in function of temperature following August-Magnus-Roche 
approximation of Clausius-Clapeyron law. 
In the text, we added some indications on these values and we mentionned the August-Magnus-Roche 
formula. 
 

7. Pag. 12, line 8: What is Tb1 and Tb2? 
>>Tb1 is the temperature after which RH starts to decrease, while Tb2 is the temperature after which 5 
IWV starts to decrease. We clarified that in the text in this way : 
 
‘RH starts to decrease significantly at T~13°C (hereafter called Tb1), while IWV curve deflects at 
T~16°C (hereafter called Tb2)’ 
 10 
We also added vertical lines on Fig. 5b to indicate Tb1 and Tb2.  
 

8. Pag. 12, line 33: What is SD? 
>>SD is for standard deviation. We replaced SD by the full name. 
 15 

9. Figure 5: Should the right panel in the first row be labelled d? Further, that panel has 
particularly low resolution and generally lower presentation quality than, let’s say, Figure 4 
 
>> the right panel of the first row is now labeled b, and the two plots under it are now c and d. 
References to these subplots have been modified in the text accordingly. We also improved the quality 20 
of this figure and added vertical lines for Tb1 and Tb2 on subplot b. The colors for IWV have also 
been inverted to have hot colors for dry areas and cold colors for humid ones, as suggested by 
reviewer 2. 
 

10. Figure 6: The same applies here. The first panel has bad quality and different aesthetics. 25 
I’d advice to follow the style followed to produce Fig. 4 
 
>>We tried to improve the esthetics of the figure as much as we could.  
 

11. Figure 7: the lines surrounding the panels are partly hidden by them and produce an ugly 30 
effect that should be avoided in the final version of the manuscript 
 
>> Figure 7 now appears correctly in the PDF file. 
 

12. Figure 9: The panels could be larger to take better advantage of the available space. Unlike 35 
in the other two, the third column has no right and top axis. The labels in the first row overlap with the 
axes. The low resolution issue applies here as well. There is no legend. 
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>> We added a legend and right and top axis in the third column. Labels are also better located and 
resolution has been improved. 
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A.2 Referee #2 comments and authors’ response:  
 
We are very grateful for the comments of referee 2 whic allowed to address important issues in our 5 
revised manuscript. We took into account all the comments as follow : 
 
The authors make use of integrated water vapour (IWV) and precipitation from a collection of 
observations (GPS stations, radio sounding, and combined radar/rain gauge data) in order to evaluate 
regional climate models operated on various grids (the grid spacing ranges from 0.11◦ to 0.44◦) in a 10 
climatological manner (the periods of evaluation cover multiple years to decades).  The climate 
models’ simulations are driven by ERA-Interim and participated in the Med-CORDEX initiative.  For 
this purpose, the authors develop a conceptual model that connects IWV, temperature, and 
precipitation (including Clausius-Clapeyron scaling and deviations from it) that helps to interpret the 
detected model biases and gives insights in the complexity of precipitation generating processes.  15 
From their analyses the authors conclude:  1) all models overestimate lower  values  of  IWV  with  an  
increasing  spread  among  the  models  during  summertime 2) mean biases are mostly explained by 
model physics (land surface/atmosphere interactions) while dynamics affect the variability 3) the 
IWV/temperature relationship (that deviates from the Clausius-Clapeyron law) is generally well 
represented by the models 4) biases in the frequency of occurrence in precipitation can be explained 20 
by a higher probability of exceedance of a critical value for IWV (that in turn depends on temperature) 
 
General Comments 
There is an endless number of evaluation papers for regional climate models (RCMs) that  content  
themselves  with  showing  biases,  but  there  are  only  a  few  papers  that deal with the sources of 25 
such biases and their underlying processes.  The presented manuscript could be one of those rare 
papers.  In addition, the manuscript elaborates on (even if just in a speculative manner) some aspects 
of the question, how climate change may affect the water cycle.  The authors have provided a very 
interesting and innovative analysis that should be published as soon as possible.  However, there are 
two methodological weaknesses that should to be clarified first, because they may affect the 30 
conclusions concerning the interpretation of biases and the precipitation/IWV function (Figure 7) 
drawn:   
(1) Comparability between reference (observational) and modelled data The authors make use of RCM 
data (including re-analysis data ERA-Interim) on various grids and compare it with data from stations 
(point data) by means of the nearest neighbouring method (cf.  page 6, line 12).  This has two 35 
implications: a) In such a comparison a coarser resolved model is more penalised than a model with a 
higher resolution, because it has a smaller spatial variability per construction. The coarser resolved 
model “sees” processes that are resolved by the model with a higher resolution only as “sub-grid scale 
effects”.  As a consequence, a judgement of biases drawn from models on their original grid can be 
misleading. In order to achieve comparability throughout models of different resolution, modelled and 40 
observed data is usually remapped onto a common coarsely resolved grid before the analysis continues 
(see Diaconescu et al., 2015; Li and Heap, 2014; Kotlarski et al., 2014).  By doing so, it is advisable to 
recognise the numerical solver of the models: in case of discrete differences, grid cell values are 
representing averages throughout the grid cell, because of the underlying Reynolds averaging.  In such 
case, a conservative remapping guarantees comparability.  b) An intrinsic incomparability with IWV 45 
data from GPS stations is introduced, because GPS IWV is based on profiles from 4 surrounding 
ERA-Interim grid cells that are bi-linearly interpolated to the location (latitude and longitude) of the 
GPS station (Parracho et al., 2018).  Hence, the effective resolution of the GPS IWV data is much 
lower than all models in the manuscript – it is even lower than the IWV from ERA-Interim. 

è We draw the attention of the referee to the fact that the profile data from the 4 50 
surrounding ERA-Interim grid cells used in the computation of the GPS IWV data 
are: 1) an estimate of the surface pressure Ps, and 2) an estimate of the weighted 
mean temperature Tm, but not of IWV. Hence we believe that the water vapour 
information contained in the GPS ZTD data remain representative of the 
atmospheric column above the GPS antenna. Note that in Parracho et al. 2018, a bi-55 
linearly interpolated IWV estimate is also computed from the 4 surrounding ERA-
Interim grid cells but this one is used as the ERA-Interim IWV estimate. In the 
present work, ERA-Interim IWV data was not computed in the same way, but 
simply extracted from the nearest grid cell. It is therefore not necessary to derive 
the model IWV by a bi-linearly. However, we agree that mapping all models onto 60 
the ERA-Interim grid is a proper approach to compare all the models with GPS and 
we did it to compute the bias and standard deviation (Table 3), and the percentage 
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of values which overestimate GPS values (Figure 3), and the relationship between 
monthly IWV values and surface humidity values (Figure 4). 

è For precipitation, we partly addressed this point in our comparison since we used the 
COMEPHORE product at two different resolutions: at 1 km resolution to compare 
it with the local measurement at SIRTA, and at 50km resolution to compare it with 5 
the models using a similar size of grid cell (see section 3.2). However, we agree 
that it is not fair to compare models at 50 km resolution and models at higher 
resolution. So, to address this point in our review, i) we removed all the simulations 
which use higher resolution than 50 km from our analysis because it is not the 
important message of this paper. ii) to compare the occurrence of precipitation and 10 
precipitation fluxes (Figure 2), we regridded the precipitation model outputs to the 
LMD grid using conservative remapping. But for the main analysis of this paper 
which aims at estimating the critical value of IWV from which precipitation starts 
to increase, we preferred to keep the native grid of the models so that it really 
corresponds to an intrinsic property of the model not modified by numerical 15 
artefact due to remapping.  

 
(2) Internal variability and its influence on evaluation results The solution of a local area model is 
partly predominated by its lateral boundary conditions (LBCs). The larger the model domain or the 
smaller the grid spacing becomes, the weaker becomes the coupling to its LBCs and the larger become 20 
large-scale deviations from its driving data in the interior of the model.  Kida et al.  (1991) and Paegle 
et al.  (1996) are often cited in this context.  More recently, Becker et al.  (2015) demonstrated that a 
local area model creates artificial flows to compensate those deviations in order to achieve physical 
consistency with the LBCs along the lateral boundaries and that an increase of the model domain does 
not change this – the artificial flows simply become more complex. As a consequence of this 25 
decoupling the model’s variability is increased compared to its driving data.  This may lead to added 
value if the LBCs are derived from a global climate model.  However, if the LBCs are taken from 
ERA-Interim (or some other reanalysis product), the decoupling introduces deviations from 
observational data. Such deviations are not “wrong”, they just limit the applicability of traditional 
error statistics. For instance, if there is a thunderstorm at a certain point in time at a certain location in 30 
the observations, one cannot expect to find the same thunderstorm at the same location in the model.  
This has a severe impact on biases that are calculated grid cell by grid cell, but it does not mean, that 
the model is “wrong” – in a climatological context. This decoupling effect can be seen for instance in 
Table 3:  SD from daily differences are systematically smaller than SD from 6 hourly data and 
correlation coefficients on monthly basis are very – although these numbers are affected by issue a).  35 
All biases from IPSL20 are systematically larger than those from IPSL50, although both simula- 
tions are nudged to large-scale dynamics. 
 
=> The reviewer is right, the internal variability affects the results and we should not present results at 
6-hourly time scales. So we removed them from our analysis. However, we think that we’ve partly 40 
addressed the internal variability aspect in the submitted version, by comparing the statistics obtained 
on precipitation occurrence for different periods (see Table 4), and by estimating the critical value of 
IWV using also different periods, and in particular the longer common period we have for the models 
that is 20-year long (1989-2008). These results were discussed in section 5.1, and presented in Fig. S1 
of the submitted paper. In the revised version, we removed the comparison at 6-hourly and we 45 
discussed a bit more the issue of internal variability in section 4.1when we compare IWV from GPS, 
ERAi and RCMs, using references suggested by the reviewer and others. We kept the discussion in 
section 5.1 which adresses the impact of the different periods. 
 
Both methodological issues (comparability and internal variability) have not received any attention 50 
yet. However, these issues may severely contribute to the detected biases and their interpretations 
(which are numerous throughout the manuscript) and hence, they could have significant impact on the 
conclusions.  The authors are kindly asked to revise their analyses, interpretations, and conclusions 
according to the suggestions below.  In order to achieve comparability, all model data should be 
remapped onto a common grid first and continue with the analysis afterwards.  This common grid may 55 
depend on the variable, the models, and the reference data. For instance, if IWV from models need to 
be compared with IWV from GPS, then all models need to be remapped onto the ERA-Interim grid; 
the final IWV is then derived by a bi-linear interpolation from the 4 surrounding grid cells.  In order to 
avoid misinterpretations of biases stemming from internal variability, one can increase the period 
and/or the area of averaging.  At least, the interpretation of 6 hourly biases should be avoided. 60 
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è See previous comments. We remapped the outputs to a common grid (ERAI grid 
when comparing IWV datasets, and LMD for precipitation occurrence) and we 
removed higher resolution simulations and 6-hourly datasets from our analysis.  

 
Becker,  N.,  Ulbrich,  U.  and  Klein,  R.: Systematic  large-scale  secondary  circulations  in  5 

a  regional  climate  model,  Geophys.Res.Lett.,  42(10),  4142–4149, doi:10.1002/2015GL063955, 
2015.  

Diaconescu, E. P., Gachon, P. and Laprise, R.: On the Remapping Procedure of Daily 
Precipitation Statistics and Indices Used in Regional Climate Model Evaluation, J. Hydrometeorol., 
16(6), 2301–2310, doi:10.1175/JHM-D-15-0025.1,  2015.    10 

Kida,  H.,  Koide,  T.,  Sasaki,  H. and Chiba,  M.:  A New Approach for  Coupling  a  Limited  
Area  Model  to  a  Gcm  for  Regional  Climate  Simulations,  J. Meteorol.   Soc.   Jpn.,  69(6),  723–
728,  1991.    

Kotlarski,  S.,  Keuler,  K.,  Christensen, O.  B.,  Colette,  A.,  Déqué,  M.,  Gobiet,  A.,  
Goergen,  K.,  Jacob,  D.,  Lüthi,  D.,  van Meijgaard,  E.,  Nikulin,  G.,  Schär,  C.,  Teichmann,  C.,  15 
Vautard,  R.,  Warrach-Sagi,  K. and  Wulfmeyer,  V.:   Regional  climate  modeling  on  European  
scales:   a  joint  standard evaluation of the EURO-CORDEX RCM ensemble,  Geosci.   Model Dev.,  
7(4), 1297–1333, doi:10.5194/gmd-7-1297-2014, 2014.   

Li, J. and Heap, A. D.:  Spatial interpolation methods applied in the environmental sciences: A 
review, Environ. Model. Softw., 53, 173–189, doi:10.1016/j.envsoft.2013.12.008, 2014.   20 

Paegle, J., Mo, K. and NoguesPaegle, J.: Dependence of simulated precipitation on surface 
evaporation during  the  1993  United  States  summer  floods,  Mon.   Weather  Rev., 124(3),  345–
361, doi:10.1175/1520-0493(1996)124<0345:DOSPOS>2.0.CO;2,  1996.   

Parracho,  A. C., Bock, O. and Bastin, S.:  Global IWV trends and variability in atmospheric 
reanalyses and GPS observations, Atmospheric Chem.  Phys.  Discuss., 1–43, doi:10.5194/acp-2018-25 
137, 2018. 
 
Specific Comments 
Page 3, line 38:  Parracho et al.  (2018) only speaks of 104 GPS stations world wide. How can the 
authors make use of a hundred of European sites?  30 

-> In Parracho et al. (2018), as explained in their section “2.2  GPS data”, among 456 GPS 
stations, stations that have time series with only small gaps over the 15-year periods 1995-2010 have 
been selected so that they could estimate trends. In our study, we are not as restrictive as they are 
because we do not estimate trends.  We selected stations with at least 5 years of available data. We 
modified this sentence to make clearer the fact that the processing is the same than those used by 35 
Parracho et al., but not the selection of stations. We didn’t give too much details in the introduction 
but we gave more details in the “Material” section (section 2.1).  

 
Page 3, line 39: How accurate are such IWV measurements in the end?  

The accuracy of GPS IWV has been estimated about 1-2 kg/m2 (Bock et al., 2005; 2013; Ning 40 
et al., 2016). 
 
Bock O, Keil C, Richard E, Flamant C, Bouin MN. Validation of precipitable water from ECMWF 
model analyses with GPS and radiosonde data during the MAP SOP. Q. J. R. Meteorol. Soc. 
131:3013–3036, 2005 45 
Bock, O., Bosser, P., Bourcy, T., David, L., Goutail, F., Hoareau, C., Keckhut, P., Legain, D., 
Pazmino, A., Pelon, J., Pipis, K., Poujol, G., Sarkissian, A., Thom, C., Tournois, G., and Tzanos, D.: 
Accuracy assessment of water vapour measurements from in situ and remote sensing techniques 
during the DEMEVAP 2011 campaign at OHP, Atmos. Meas. Tech., 6, 2777-2802, 
https://doi.org/10.5194/amt-6-2777-2013, 2013. 50 
Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., and 
Smale, D.: The uncertainty of the atmospheric integrated water vapour estimated from GNSS 
observations, Atmos. Meas. Tech., 9, 79-92, https://doi.org/10.5194/amt-9-79-2016, 2016. 
 
Page 5, line 18: ERA-Interim shouldbe referred by Dee et al.  (2011).  Dee, D. P., Uppala, S. M., 55 
Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., 
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,  
Dragani,  R.,  Fuentes,  M.,  Geer,  A.  J.,  Haimberger,  L.,  Healy,  S.  B.,  Hersbach, H., Holm, E. V., 
Isaksen, L., Kallberg, P., Koehler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, 
J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N. and Vitart, F.: The ERA 60 
Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol.  
Soc., 137(656), 553–597,doi:10.1002/qj.828, 2011.   

-> done: we replaced reference to Berrisford et al., 2011 by this reference. 
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Page 6ff:  When models are compared with observational data, the authors simply speak of 
“differences”. However, it is not always clear how the difference is defined: “model minus 
observation” (as I suppose) or “observation minus model”?  Please, define “difference” somewhere in 
the methods section and stay with it throughout the manuscript.  5 

è We added this sentence at the beginning of the ‘Methods’ section and we checked that it is 
like this in our study. “To compare models and observations, we consider differences as 
the ‘model minus observation’ results throughout the manuscript.” 

 
 10 
Page 7, line 39: The explanation of the temperature binning should be explained here. Why is it 
important that all bins have a similar amount of data elements? Temperatures do not occur with the 
same frequency – in fact, it would be easier to follow the argumentation, if the binning would be the 
same for all models and observations.   

-> Our methodology ensures a reasonable number of events in all bins. However, you’re right 15 
that since we do not consider extremes, and we do not focus on lower or upper tail of the distributions, 
we can use the same bins for temperature in models and observations. In the revised version, we 
changed the text and the results according to that.   
 
Page 14, line 29:  “The humidity bias thus strongly affects the low precipitation rates, more than the 20 
threshold of precipitation triggering.”  The latter part of this sentence is inconclusive:  1) a ranking of 
possible reasons has not been done – however, it would be nice to have.  Maybe the authors could 
explicitly work out this point. 2) Which threshold is meant in this context? 

-> We removed this sentence and added this point as a perspective in the conclusion. 
 25 
Technical Corrections 
The  authors  are  introducing  a  space  character  (“  “)  prior  to  a  double  point  (“:”).  I find this 
quite disturbing.  It would help,  if these unusual space characters could be avoided.   
-> we removed the space character prior to double point in all the documents. It seems that this space 
is created automatically by Word with the police “Times New Roman”.  30 
 
Sometimes the LMDZ model is labelled with “LMD”, sometimes it is labelled with  “LMD50”.  Just  
for  the  sake  of  consistency  and  also  to  provide  some  information about the grid spacing in the 
acronym, I suggest to use “LMD50” throughout the manuscript.   
-> Reviewer is right. We used LMD50 throughout the manuscript. 35 
 
Page 1: line 29: typo: “baises” -> done 
Page 6, line 23: typo: “Various evaluation metrics ...has...” -> done 
Page 7, line 39: referring to Figure 7 at this stage is way too early. The numeration of figures and 
tables should follow the sequence of their first appearance. -> we removed the reference to this figure 40 
at this stage. 
Page 8, line 10: “This one identifies the minimum value...” – shouldn’t it be the maximum?  -> 
Actually, we modified this sentence to better take into account the uncertainty in the estimate of this 
value. It is now this one: “This one identifies the value(s) of IWV over which precipitation rates are 
greater than 0.1 mm/day. In some cases, two values are obtained, that are represented by an errorbar to 45 
indicate the uncertainty of the estimate of this critical value. » These errorbars appear on Fig.8 
 
Page 9, line 23:  The sentence “This good agreement...” is speculative and not relevant for the 
presented work.  -> we removed this sentence 
Page 9, line 34:  typo:  “...is a very godd approximation...” -> done 50 
Page 10, line 18: “Table 5” – sequence of numeration  -> we checked that the sequence of numeration 
is ok 
Page 10, line 18:  typo:  “...averaged valuers...” -> done 
Page 10, line 29:  “...addects...” – not clear, what is meant by that; maybe “dominates”?  -> it’s a 
mistake. We replaced ‘addects’ by ‘affects’ 55 
Page 12, line 13:  typo “...depiste...” -> done 
Page 12, line 16:  typo “...aslo...” -> done 
Page 12, line 33:  “...explain important SD...”– not clear, what is meant by “important”; maybe “large 
parts”?  -> we used reviewer’s suggestion to replace ‘important’ 
Page 13, line 5:  “...precipitation picks up...” – this phrase is often used in the manuscript.  It sounds a 60 
bit clumsy.  Precipitation more likely ”starts to increase”.  -> done. We replaced ‘pick up’ by ‘start to 
increase’. 
Page 13, line 11:  typo “...the same than...” -> done 
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Page 13, line 29:  typo “...tendancy...” -> done 
Page 23, Table 3:  Are the numbers differences in IWV (as I suppose)?  -> we added IWV in the 
caption.  
Figure 1, 5c, and 6c:  I suggest to reverse the colours for IWV. When it is more moist (large values) it 
should be blue. -> done 5 
Figure 2:  The labels “ReOBS”, “COM 1pc”, and “COM maille” are not defined, here. 
In more general, it would increase the readability, if the legend and the figure caption 
would make use of the same acronyms. -> we added the labels in the caption. 
Figure 2d: Is there a reason for including non-precipitating days in q50?  If there are more non-
precipitating days than precipitating days q50 simply becomes 0.  It would be more informative, if q50 10 
would be based on precipitating days only. -> reviewer is right, it is redondant with Fig.2a.  In the 
revised version, we based q50 on precipitating days only. 
Figure 5d: It would be more informative, if Tb1 and Tb2 would be indicated. -> done 
Figure 6a: What is that red dashed line? -> it shows the Clausius-Clapeyron scaling. It is now 
indicated in the caption. 15 
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B. Marked-up manuscript with authors’ changes 

Impact of humidity biases on light precipitation occurrence : 

observations versus simulations 
 5 

 

Sophie Bastin1, Philippe Drobinski2, Marjolaine Chiriaco1, Olivier Bock3, Romain Roehrig4, 

Clemente Gallardo5
,
 Dario Conte6, Marta Dominguez-Alonso5, Laurent Li2, Piero Lionello6,7, 

Ana C. Parracho1,3 

 10 
1 LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France 
2 LMD/IPSL, UPMC Univ. Paris 06, Ecole Polytechnique, ENS, CNRS, Palaiseau, France 
3 IGN LAREG, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75013, France 
4 CNRM/Meteo-France, Toulouse, France 
5 UCLM, Instituto de Ciencias Ambiantales, Toledo, Spain  15 
6 CMCC, Euro Mediterranean Center on Climage Change, 73100 Lecce, Italy 
7 DiSTeBA, University of Salento, 73100 Lecce, Italy 
 
 
 20 
Abstract. This work uses a network of GPS stations over Europe from which a homogenised integrated water 

vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements 

over specific stations to i) estimate the biases of six regional climate models over Europe in terms of humidity ; 

ii) understand their origins ; iii) and finally assess the impact of these biases on the frequency of occurrence of 

precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX 25 
programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 km.  

The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging 

technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models 

mostly explain the mean biases, while dynamics, which can deviate from the driving data when nudging is not 

used, affects the variability. The land surface/atmosphere exchanges affect the estimation of IWV over most part 30 
of Europe, especially in summer. The limitations of the models to represent these processes explain part of their 

biases in IWV. However, models correctly simulate the dependance between IWV and temperature, and 

specifically the deviation that this relationship experiences regarding the Clausius-Clapeyron law after a critical 

value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on 

local processes which drive the local humidity sources. This explains why the maximum values of IWV are not 35 
necessarely observed over warmer area, that are often dry area.  

Finally, it is shown over SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is 

strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of 

IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in 

other areas of Europe, especially where precipitation has a predominantly convective character. According to the 40 

Sophie Bastin� 14/12/y 16:19
Supprimé: to 12 
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observations, for each range of temperature, there is a critical value of IWV from which precipitation starts to 

increase. The critical values and the probability to exceed them are simulated with a bias that depends on the 

model. Those models which present too often light precipitation generally show lower critical values and higher 

probability to exceed them.  

5 
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1 Introduction 

	
Humidity plays a major role in the water and energy cycles due to its strong radiative effect associated with a 

positive feedback on climate (Randall et al., 2007) and its importance to control precipitation and particularly 5 
extreme ones (Held and Soden, 2006 ; Neelin et al., 2009 ; Sahani et al., 2012). Trends and variability of 

humidity and precipitation are strongly correlated (Trenberth et al., 2003 ; Zhang et al., 2013) and several studies 

have revealed that the rate of increase in daily extreme precipitation is highly connected with the warming 

following the Clausius-Clapeyron (C-C) relation (Allen and Ingram, 2002; Pall et al., 2007; Kharin et al., 2007). 

This rate of precipitation is indeed affected by the humidity content of the atmosphere (Integrated water Vapor 10 
(IWV)), which rises as climate warms (e.g Trenberth, 2011). Nevertheless, dynamical processes (O’Gorman and 

Schneider, 2009; Sugiyama et al., 2010; Singleton and Toumi, 2013; Muller, 2013 ; Drobinski et al., 2016a), 

lack of humidity sources leading to a decrease of relative humidity (Drobinski et al., 2016b), or low/high 

precipitation efficiency (Drobinski et al., 2016a ; Trenberth et al., 2003) can explain the deviation from C-C rate 

locally. Humidity variability at regional scale -and not only at the surface - thus needs to be assessed to better 15 
anticipate the precipitation change, and more specifically the rate of heavy precipitation, that are not well 

estimated by global models (e.g Allan and Soden, 2008). 	

Another aspect that links IWV and precipitation concerns the triggering of precipitation and thus the frequency 

of occurrence of precipitation: Holloway and Neelin (2008) showed that precipitation over the tropical oceans is 

strongly sensitive to free-tropospheric humidity even more than surface humidity, and Neelin et al. (2009) and 20 
Sahany et al. (2012) further conclude that there exists a threshold of IWV, which depends on the mean 

tropospheric temperature, over which precipitation starts to increase significantly. They also showed that this 

critical value of IWV does not correspond to the saturation value when temperature increases, i.e that at higher 

temperature, deep convection occurs at a lower value of relative humidity. This means that IWV is a relevant 

parameter to measure over long-term periods, at high temporal resolution and at the regional scale in order to 25 
establish the relationship between IWV-precipitation and temperature and monitor its possible evolution. Models 

still have strong difficulties to simulate adequately the water cycle (Trenberth et al., 2003, Flato et al., 2013), and 

often presents the « too often too light precipitation » problem (e.g Sun et al., 2006 ; Panthou et al., 2016). A 

better knowledge of the IWV-precipitation relationship would be a help to better constrain models.  

Up to now, very few long-term (> 15 years) and homogeneous datasets of water vapor measurements exist, even 30 
less at sub-daily time scales. These datasets are necessary to understand the humidity variability at regional 

scales at different time scales. Besides, the co-location of such measurements with independent measurements of 

precipitation and vertical profiles of temperature provide a strong added-value for better climate understanding. 

Reanalyses are of course a good tool to have these three parameters co-located over long-term and at sub-daily 

time scales, however precipitation mostly relies on the model physics. Moreover, Flato et al. (2013) have shown 35 
that even in reanalyses, the relationship between the IWV trend and the temperature trend presents differences 

between reanalyses and deviates from C-C over tropical oceans.  

In this study, we make use of the Global Positioning Sysem (GPS) IWV dataset that has been processed as done 

by Parracho et al., (2018) and which provides IWV measurements over a hundred of European sites covering a 

period of 5 years or more. The GPS technique accurately measures IWV (accuracy around 1-2 kg.m-2 according 40 
to Bock et al., 2005 ; 2013 and Ning et al., 2016) in all weather conditions including rainy situations, which is an 
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important aspect for our study (e.g Wang et al. 2007). GPS measurements have been successfully used to better 

understand atmopsheric processes at high resolution (Bastin et al., 2005, 2007 ; Bock et al., 2008 ; Champollion 

et al., 2009). Here we use a GPS IWV dataset to analyse the humidity biases in regional climate models over 

Europe at interannueal, seasonal and daily time scales and to better understand the source of errors of models.  

We also use GPS IWV measurements co-located with precipitation and tropospheric temperature measurements 5 
from the SIRTA observatory in France to consider the relationships between these parameters. Note they have 

not yet been considered outside the tropics. We compare observations and regional models output at the site 

level, and extend the analysis of models to other locations over Europe.  

The paper is organised as follow: section 2 presents the observational datasets and the different simulations used 

in this study. Section 3 describes the methodology to compare observations and models. In section 4, the ability 10 
of models to reproduce the mean value of humidity and its variability over Europe at different time scales is 

evaluated. The influence of dynamical and physical processes is discussed, and a special focus on the scaling of 

IWV with temperature is developed. In section 5, the issue of how much a bias in IWV can enhance the problem 

of ‘too often too light precipitation’ behavior of models is raised by considering the relationship between mean 

tropospheric temperature, IWV and precipitation in the different models and observations over the SIRTA 15 
supersite in France. Then, the generalization of this relationship, by considering other stations over Europe is 

assessed. Finally, a conclusion is given in section 6. 

 

2 Material 	
 20 
2.1 GPS IWV data 

 

The GPS dataset used in this study is based on homogeneously reprocessed GPS delay data produced by the 

NASA’s Jet Propulsion Laboratory in the framework of the first International GNSS Service (IGS) reprocessing 

campaign. The data cover the period from January 1995 to May 2011 and include more than 400 stations 25 
globally. For the present study, the delay data were screened and converted into 6-hourly IWV estimates as 

described in Parracho et al. (2018). Then, daily values are computed using this 6-hourly dataset. The dataset was 

restricted to the period from January 1995 to December 2008 and includes 95 GPS stations over Europe as 

shown in Fig. 1. It represents much more stations than in the study of Parracho et al. (2018) because for the 

purpose of their study which estimates IWV trends, they restricted their selection to stations with only small 30 
gaps over the 15-year period from 1995 to 2010. Here, only stations with less than 5 years of observations are 

not considered in the evaluation of models humidity bias.  

 
 
 35 
2.2 Observations at SIRTA  

 

This study also uses observations collected at the SIRTA atmospheric observatory, located 20-km South West of 

Paris (2.2°E/48.7°N 160 m of altitude; black triangle on Fig. 1), from 2003 (Haeffelin et al. 2005). This 

observatory has collected many observations, which are now synthesized into the so-called “SIRTA-ReOBS 40 
dataset” described in Chiriaco et al. (2018) and used in Chiriaco et al. (2014) and Bastin et al. (2016). After 
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many steps of data quality control and harmonization, the “SIRTA-ReOBS” file contains hourly averages of 

more than 50 variables at this site. The sample of data varies from one variable to another. Among these 

variables, the IWV retrieved from GPS measurement since 2008 and the precipitation rate from a single 

raingauge over 2003-now are available. A regional-scale precipitation estimate, deduced from the measurements 

of other Météo-France raingauges located around Paris area, is also provided.  5 
The Météo-France COMEPHORE (« COmbinaison en vue de la Meilleure Estimation de la Precipitation 

HOraiRE ») product is used to allow a fairer intercomparison between models and observations than the single 

raingauge (Chen and Knutson, 2008): it is a hourly reanalysis of precipitation by merging radar data and 

raingauges over France at 1km x1km resolution (more details in Fumiere et al., in revision ; see also Laurantin et 

al., ERAD 2012). From this product, we can have a better knowledge of the average precipitation rate over a 10 
model grid of 50 x 50 km or higher resolution. However, this product only covers the period 1997-2007 (at the 

time of this study) and is not concomitent with the IWV dataset over SIRTA. Despite this, a comparison has 

been made between the statistics of the different datasets when possible (see section 3.2). 

 

The Météo-France radiosoundings launched twice a day from Trappes (near 00 and 12 UTC), 15 km to the west 15 
of SIRTA are also used to compute the mean tropospheric temperature (more details in section 3).   

 

2.3 Med-CORDEX simulations 

 

The list of regional climate models (RCMs) and details about the settings are given in Table 1. All the 20 
simulations use the 6-hourly European Center for Medium-Range Weather Forecast (ECMWF) reanalyses ERA-

Interim (Dee et al., 2011) as RCM boundary conditions.  They cover at least the period 1989–2008 as initially 

recommended in MED-CORDEX project (Ruti et al. 2015). For LMDZ, which is a global model with regional 

zoom capability, temperature, wind speed and specific humidity are nudged towards the ERA-Interim fields 

outside the MED-CORDEX domain. It must be noted that the mesh of LMDZ is not regular within the zoom 25 
region and the resolution varies between 50 and 30 km. All other RCMs are forced at the boundaries using 3-

dimensional re-analyses of wind, humidity, temperature or potential temperature and geopotential height. For 

CCLM, cloud ice and liquid water are additionally prescribed at the domain boundaries. The IPSL WRF 

simulation uses nudging at all scales within the domain for temperature, wind and humidity above the planetary 

boundary layer (Salameh et al. 2010; Omrani et al. 2013, 2015). The other models did not use nudging in the 30 
Med-CORDEX domain. 

Simulations used here were produced from five models (ALADIN V5.2, Colin et al. 2010; CCLM, Rockel et al. 

2008; WRF V3.1.1, Skamarock et al. 2008; LMDZ V4, Hourdin et al. 2006; PROMES, Dominguez et al., 2010 ; 

2013) with a horizontal resolution around 50 km (0.44° for most models) on the MED-CORDEX domain. In the 

following the simulations are referred to by the name of the modeling group and resolution (see Table 1, first 35 
column). All the models provide daily values of IWV, precipitation, 2-m temperature, and temperature at 850, 

500 and 200 hPa.  

 

2.4 Others datasets 

Utilisateur de Microsoft O…, 12/12/y 12:04
Supprimé: Five simulations were carried out 40 
Utilisateur de Microsoft O…, 12/12/y 12:04
Supprimé: , and other three simulations was 
run with a higher resolution (0.11° or 0.18°)
Utilisateur de Microsoft O…, 12/12/y 12:05
Supprimé: The 6-hourly model outputs are 
used when available for comparison with GPS 
data. 45 
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The GPS observations are supplemented by the HadISD v.2.0.1.2016 subdaily dataset of surface parameters (e.g 

temperature, dew point temperature, wind, pressure - Dunn et al., 2012). It is global and based on the Integrated 

Surface Database (ISD) dataset from NOAA’s National Climatic Data Center. Stations were selected on the 

basis of their length of record and reporting frequency before they are passed through a suite of quality control 

tests. It is a joint effort from the MetOffice Hadley Center and the National Center for Atmospheric research 5 
(NCAR). 

 

 

3 Methods 

 10 
To compare models and observations, we consider differences as the ‘model minus observation’ results 

throughout the manuscript. 

 

3.1 Comparison between GPS dataset and model outputs 

 15 
Each modeling group has provided a file containing the gridded IWV over the 1995-2008 period at daily 

resolution on its native grid. The IWV is either computed online or offline the model. The offline computation 

can introduce some errors due to vertical integration over the discretized vertical grid. For each model, we 

extracted the value of IWV  at the closest grid point of GPS stations. We did it using the native grid, and also 

after having regridded all the model outputs to ERA-Interim (ERAI) grid, to have a fair comparison with ERAI 20 
when necessary. The difference of altitude between the GPS station and the closest grid point is difficult to take 

into account and can introduce strong bias over complex terrain (Hagemann et al., 2003; Zhang and Wang, 

2009). As a consequence, the stations where the difference of altitude is higher than 500m were removed from 

the analysis. Note the number of stations that are removed depends on each model since the models do not use 

the same topography and the same projection. Then, a linear correction is applied on model outputs to reduce the 25 
bias due to orography: for each model and each month, we plotted the difference of the monthly averaged IWV 

values between the model and GPS as a function of the difference of altitude and we concluded that a linear 

correction can be applied to take into account the difference of altitude. For each different month, the slope of 

the linear regression between these two differences is computed and we apply the corresponding correction to 

IWV values of the model. The values of the slope of the linear regression for each model and each month are 30 
indicated in Table 2, both for the native grid of the model and for the regridded outputs. Various evaluation 

metrics (Table 3) have been computed with and without correction for these two grids. The correction does not 

impact the variability scores (e.g interannual variability), but does affect the mean bias (not always by an 

improvement) and slightly reduces the standard deviation of the difference (Table 3). It does not affect the 

ranking of performance between models. 35 
Note that at SIRTA, the difference of altitude is weak and results are thus not impacted by this problem.  

 

 

3.2 Comparison with SIRTA observations 

Utilisateur de Microsoft O…, 12/12/y 12:09
Supprimé: or 6-hourly 40 

Utilisateur de Microsoft O…, 12/12/y 12:09
Supprimé:  every 6 hours when available
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i) Tropospheric temperature: to be as consistent as possible between model outputs and radiosoundings, the 

mean tropospheric temperature corresponds here to the daily average value of 2m-temperature, and temperatures 

at 850, 500 and 200 hPa. So we extracted the temperature values at these pressure levels for each radiosounding 

launched from Trappes (a few kilometers away from SIRTA) and computed the mean tropospheric temperature 

as the average of these 4 values. Then, the daily mean is the average of the two daily radiosoundings. The same 5 
method is applied to ERA-Interim reanalysis to compute the mean tropospheric temperature over the other 

European sites. The impact of using ERA-Interim instead of radiosoudings data has been evaluated at SIRTA 

where both are available. Due to the width of temperature bins considered in this study, results are not sensitive 

to the use of one or another.  

 10 
ii) Precipitation: a first step consists of comparing the precipitation statistics obtained using the single raingauge 

located at SIRTA, from the closest grid point (1 km*1 km) of COMEPHORE over the SIRTA and an average of 

COMEPHORE over an area centered over the SIRTA and covering 2500 km2 (i.e a 50-km resolution model grid 

point). Figure 2 shows the mean annual cycle of the frequency of occurrence of different light precipitation 

regimes. The annual cycle is computed from 30-day means from January to December over the years 2004-2007, 15 
which is the common period of all datasets. The SIRTA raingauge and COMEPHORE product do not indicate 

the same frequency of occurrence of non-precipitating days, and very light precipitations, but they show similar 

frequency of occurrence for light precipitation which corresponds mainly to large scale precipitation. Note the 

different values of the 50th percentile of precipitation when considering only precipitating days, which emphasize 

the impact of heavy precipitation on the estimate of this index. The SIRTA raingauge estimate is between the 20 
estimate by COMEPHORE at the two different resolutions. The difference between the frequency of occurrence 

of non–precipitating days (higher with COMEPHORE at the closest grid point) and that of very light 

precipitation (higher with SIRTA raingauge) likely come from the coarse resolution of the coding of reflectivity 

data of the radars used at low levels which is a limiting factor for the precise estimation of precipitation at low 

rain rates (Laurentin et al., 2012). The difference is stronger in winter than in summer. The average over 50*50 25 
km2 grid cell shows a decrease in the number of non-precipitating days and an increase in the occurrence of very 

light precipitations: it is expected since the probability that a system passes through a wider area is higher but the 

total precipitation averaged over a wide area is often much weaker as the strongest precipitation rates are 

generally localized.  

Table 4 presents an estimate of the frequencies of occurrence of non-precipitating days, very light precipitation 30 
and light precipitation for winter (julian day 1 to 100) and summer (julian day 151 to 251) when considering 

either the common period of the two datasets (2004-2007) or the full period of each dataset (i.e 1997-2007 for 

COMEPHORE and 2003-2015 for SIRTA raingauge). The number of dry days increases for the two estimations 

from COMEPHORE when considering a longer period than the common period. For ReOBS, the statistics 

remain similar for the two different periods. However, when considering the most recent years only, that will be 35 
used in the next section (2008-2015), the number of dry days increases. The influence of the number of years,  

the years considered and the products used to estimate these frequencies of occurrences is generally small but 

significant. Even though model errors are most of the time beyond this uncertainty, it has to be kept in mind in 

the following analysis.  

 40 

Sophie Bastin� 13/12/y 16:24
Supprimé: Note that in Figure 2 and table 4, 
results from IPSL50 and IPSL20 are actually 
very similar which justifies the choice we 
made to use only the name of the institution 
for the model formulation. 45 
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3.3 Method to establish the relationship between IWV and precipitation as a function of tropospheric 

temperature 

 

The objective is to characterize how precipitation depends on IWV for different range of mean tropospheric 

temperature. To do that, we divided our datasets into four different bins of temperature : the first bin is for 5 
temperature less or equal to 254.5 K, the second bin if for temperature between 254.5 and 258K, the third one 

corresponds to temperature between 258K and 262.5K and the fourth one for temperature higher than 262.5K. 

This choice has been made to ensure a high number of samples in each bin of temperature to proceed to the next 

step. Doing this way, the mean tropospheric temperature of one bin is similar more or less 1K for all the datasets. 

Then, in each bin of temperature, the daily mean precipitation rates are sorted according increasing values of 10 
daily mean IWV. IWV bins are then defined such that they contain an equal number of pairs of precipitation 

rates-IWV (40 samples) to ensure a reasonable number of days to compute the 50th quantile of precipitation 

which indicates if there are more precipitating days than non-precipitating days. The range of each IWV bin is 

thus not constant but allows to identify quite easily the transition between mostly non-precipitating days and 

mostly precipitating days. For each model and for observations, a critical value of IWV (wc) is then determined 15 
for each different bin of temperature by using a very simple algorithm. This one identifies the value(s) of IWV 

over which 50th quantile of precipitation is greater than 0.1 mm/day. In some cases, two values are obtained, 

that are represented by an errorbar to indicate the uncertainty of the estimate of this critical value. 

 

4 Humidity biases in the Med-CORDEX simulations 20 
  

4.1 Comparison with GPS dataset at regional scale 

 

Figure 1 indicates the mean values of IWV retrieved from GPS measurements in winter (Fig.1a) and in summer 

(Fig.1b). In winter, higher values are observed along the Atltantic and Mediterranean coasts while Central and 25 
Eastern Europe exhibit very low values of IWV. In summer, there are two different regimes: i) north of 45°N 

showing a decrease of IWV values while going to Scandinavia, following the temperature gradient; ii) around 

the Mediterranean, the structure is more patchy with an alternance of low and high values. Most low values 

correspond to higher topography but not systematically.  

Table 3 shows the mean bias and the standard deviation (SD) of ERA-interim and RCMs IWV on their native 30 
grid or regridded to ERAI grid, in comparison to GPS estimates. Daily datasets are used to compute these 

statistics and exactly the same sampling is used between models and observations. It shows that the mean bias 

ranges from 0.5 to 1.0 kg.m-2 except for CNRM50 and UCLM50 for which the biases are stronger (up to 1.8 

kg.m-2 for UCLM50 on its native grid). It is to be noted that the mean biases are generally not better on the 

native grid (50km resolution) than when regridded on ERAI grid (75 km resolution). The correction of 35 
topography improves the comparison for all models but ERAI and LMD50 on its native grid.  

The standard deviation indicates a large spread around observations for all models (~3.5-4.0 kg.m-2), except 

IPSL which is even better than ERA-interim. The nudging towards ERA-interim used in this simulation likely 

explains this behaviour. This large standard deviation, which is reduced when using the corrected topograhy, 

does not mean that the model is wrong in a climatological context, but it is the result of internal variability in 40 
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absence of nudging, generating deviations from its driving data in the interior of the domain (e.g Kida et al. 

1991), partly compensated by potential artificial flows created to achieve physical consistency with the lateral 

boundary conditions (Becker et al., 2015 ; Omrani et al., 2015). However, in the configuration of Med-

CORDEX, the domain is quite small and the jump of resolution between lateral boundary conditions (75km) and 

the RCM (50 km) is also weak, so that we could have expected smaller differences between model using 5 
nudging and not (Matte et al., 2017).. 

To the first order, the IWV variability is dominated by the seasonal cycle (shown on Fig.1), which is 

underestimated by models (not shown), and which explains part of the model standard deviation: indeed, Figure 

3 shows the percentage of simulated daily mean IWV values which overestimate GPS values at each station for 

the ensemble of the five models regridded to the ERAI grid, in winter and summer. Figures 3a and 3b present 10 
results without height-correction, while Figs.3c and 3d are done with height-corrected data. In winter, more than 

70% of values are overestimated over most stations, with or without height corrections. In summer, this 

percentage decreases appreciably in most stations and in almost half of them it reaches values below 50% 

(Fig.3b). The use of height correction homogenizes the results in summer between stations and the very low or 

very high percentages do not appear anymore when this correction is applied. UCLM50 simulation is the 15 
moistest, especially in summer (not shown), which explains its high standard deviation in Table 3.  

The IWV variability also comes from the interannual variability. For each month, we computed its anomaly by 

substracting the average value of the month over all the years. We then computed the correlation between the 

anomalies of the GPS IWV estimates and those from the models. The minimum and maximum values of these 

correlations for each model when all stations are considered are indicated in Table 3 (last column). As indicated 20 
by these numbers that range between 0.78 and 0.99, the interannual variability is well captured by model, which 

is not surprising since this variability is mostly driven by large scale advection of air masses (all models use 6-

hourly ERA-Interim parameters as lateral boundary conditions). Note that the maximum correlation is very high 

for all models, while the minimum values are higher for ERAI, LMD50 and IPSL50 than for the three others. 

This is mostly due to a specific month (not shown): in january 1996, three models have an anomaly very 25 
different from the observations and, as a consequence, the interannual correlation for january goes down.   

To conclude, the RCM configuration allows a reasonable representation of the large scale advection of air 

masses by the models, which is an important driver of humidity within the RCM domains (see also Trenberth et 

al., 2005). This is further improved when the model is nudged towards reanalysis, as in the IPSL model (Tab.3).  

Nevertheless RCM errors are significant, with a difficulty to reproduce low values of IWV, generating a mean 30 
positive bias for all models. Most of the contribution of humidity to the integrated water vapor comes from the 

surface, and the interaction between environment and clouds and boundary layer. Small scale processes are thus 

important to reproduce moisture sources and sinks (precipitation, mesoscale circulations, evaporation and 

evapotranspiration, clouds and microphysics). To better understand these errors, we assess the link between 

surface humidity and IWV at different time scales. Figure 4 displays the monthly mean values of IWV versus 35 
monthly mean values of 2-m specific humidity (Q2) averaged over all stations where and when both IWV from 

GPS and Q2 from HadISD are available. Monthly means are computed if at least 60 concommitant (both IWV 

from GPS and Q2 from surface station) values are available (i.e about 2 values per day out of 4 possible). A total 

of 3238 months are obtained, spread over 42 different stations. The average number of stations per month is 19 

with a maximum of 30 stations. Figure 4 shows that 2-m specific humidity is a very good proxy for IWV at the 40 

Sophie Bastin� 14/12/y 11:35
Supprimé: The use of daily data instead of 6-
hourly data does not modify the mean bias but 
it significantly decreases the RMSE, 
consistently with the work of  Bock and Nuret 
(2009) on reanalyses. 45 
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monthly scale. All models but IPSL have a similar relationship between the two variables to the observed one 

(slope of 2.4*103 kg.m-2). However, for a given surface humidity, IWV is generally overestimated by models, 

especially for the driest conditions. The IPSL model presents a different behavior: for low values of surface 

humidity, IPSL shows the same bias than the other models, while at higher Q2 values, its bias strongly increases, 

generating a different regression slope than observations. IPSL compensates its underestimation of surface 5 
humidity in summer (Bastin et al., 2018) by a steeper slope. This compensation may be the result of the use of 

nudging or it can be due to a deep boundary layer so that the total humidity contained within the boundary layer 

is similar to that of other models (not possible to check that). Since the nudging is only used above the boundary 

layer, and since most of humidity is contained within the boundary layer, there is little reason that the nudging 

totally explains this compensation. It means that for this model, Q2 is not a good proxy of total column 10 
humidity, even at monthly scales. Note also that the spread between models is a bit higher in summer than in 

winter, most probably because of more active boundary layers and increased entrainment of humidity from the 

free troposphere at their top. These processes will also affect the link between surface humidity and IWV at 

scales shorter than a month.  

Despite the strong correlation between the annual cycle of Q2 and those of IWV, Q2 is not necessarily a good 15 
proxy for IWV at other time scales or to tackle model biases (for instance IPSL bias for surface humidity is 

strongly negative while it is weak and slightly positive for IWV). While in the wintertime, humidity variability 

mostly originates from the air mass advection, summertime variability is mainly affected by land-surface 

interactions and boundary layer processes. Several studies have shown the existence of a large spread in the 

representation of the surface fluxes and land-atmosphere coupling strength between models over Europe, due to 20 
the fact that Europe is a zone of transition between the regime of « energy limited » with low land-atmosphere 

coupling strength and those of « soil moisture limited » with high land-atmosphere coupling strength. The 

difficulty to represent soil conditions and surface fluxes is then increased (Cheruy et al., 2015 ; Boe and Terray, 

2014 ; Fischer et al., 2007 ; Knist et al., 2017). The interannual correlations between IWV and Q2 summertime 

anomalies are indicated for each model in Table 5, as averaged values over all GPS stations and 25 
minimum/maximum values across all GPS stations (an attempt was done for GPS IWV and HadISD Q2 but 

there were too many missing values). For most stations, the correlation is higher than 0.5 with a mean value 

around 0.8 for the 5 models. The standard deviation of the difference between models is around 0.15, which 

reveals a good agreement between them. Some stations however indicate higher differences, as indicated by the 

minimum values that strongly differs between models. IPSL50 and LMD50 models present strong correlation at 30 
all stations (r > 0.52 and 0.43, respectively) while it is very weak at some stations for UCLM50, CNRM50 and 

ERAI. It can be explained by a stronger availability of surface humidity in summer, and then a weaker sensivity 

of IWV to the surface moisture availability. For the drier models (e.g IPSL50), a dry interannual anomaly of soil 

moisture will have an impact on the surface evaporation and then on the IWV anomaly. On the other hand, over 

areas where the advection of air masses from the sea/ocean is a more important driver, the interannual variability 35 
of the large scale dynamics affects more strongly both IWV and surface humidity than surface processes. 

Depending on the area and on the model, Q2 and IWV thus convey different but complementary information 

about the model behaviour.  

  

4.2 Scaling of IWV with temperature 40 
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A way to check the behavior of models is to consider the relationship between IWV and temperature. At global 

scale, the scaling of IWV with temperature is expected to follow the Clausius-Clapeyron (C-C) law, at a rate of 

about 6-7 %.°C-1. At regional scale, this relationship deviates from C-C due to the strong influence of dynamics 

(air masses advection) and moisture availability (e.g Drobinski et al., 2016). Figure 5a illustrates the scaling of 5 
IWV with temperature over the SIRTA station, which is representative of most stations over Europe. For the 

lower temperature, the scaling follows C-C law. Above a critical temperature (Tbreak), IWV stops to increase at 

this rate. This critical temperature, defined as the temperature when the slope of the relationship deviates from 

C-C, presents spatial variations that are displayed on Fig.5c for observations. For most stations, the critical value 

is between 15 and 18°C. It is higher for stations located around the Mediterranean sea, the Black Sea or at the 10 
eastern edge of the domain, in the Dniepr and Volga basins. The IWV value corresponding to this critical 

temperature (which is close to the maximum IWV value reached at each station) is more variable (Fig.5d), due to 

a combinated effect of Tbreak value, orography, and latitudinal differences.  

Physically, Tbreak corresponds to the value when the relative humidity significantly decreases due to a lack of 

humidity sources.  15 
To determine the slope after Tbreak, we can approximate the expression of IWV: 

!"# $ = 	 '( $, * +* = - 1. / $, 0 +1
2345

26
	

789:;

78<
 
 

with Q the specific humidity at altitude z, !"   the density of water vapor in kg.m-3, Ps the surface pressure and 

PTOA the pressure at the Top Of Atmosphere (TOA).  

As observed in average (e.g Ruzmaikin et al., 2014), the troposphere can be separated into two layers, one being 20 
the boundary layer (BL) and the other one the free troposphere (FT): assuming constant humidity within the two 

layers, IWV can be expressed as:  

 

!"# $ ≈ 1
' (()*-),-)*0,- $,- + (),--)234)*052 $52 ) 

 
Ps is about 1000 hPa, PTOA between 0 and 10 hPa, and PBL around 800-850 hPa, so that we can write: 25 
(Ps-PBL) = !   (PBL-PTOA) ≅ α PBL with  α ≅ 1/6-1/4  

For an air mass at temperature T and specific humidity Q, we can write Q(T) = RH* Qs(T), with subscript s for 

saturation and RH for relative humidity. 

Which gives: 

 30 
!"# $ ≈ &

' ()	+,-*/0,-*12 $,- + 	+,-*/045*12 $45 )             (1) 
 

With our simplified profile in two layers, we have: 

 

!" #$% 	≈ (!"(#*+)    if we consider that TBL is around 280-290 K (Qs then ranges between ~6 and ~12 35 
g.kg-1 according to August-Magnus-Roche formula) and TFT around 260 K (for T<260, the value of T does not 

affect a lot the value of Qs since it has nearly reached its minimum value, being inferior to 2 g.kg-1). 

RHFT can approximately be considered as a constant, close to 30% in average over Europe (Ruzmaikin et al., 

2014) 



 20 

Equation (1) can thus be approximated by: 

 
 
!"# $ ≈ &
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 5 
And finally, by differentiation we obtain equation (2)  
!
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The first term of the right hand side (RHS) of Eq. (2) is the variation of water holding capacity of the atmosphere 10 
at temperature T and is thus Clausius-Clapeyron rate (~7%.C°-1 at 25°C).  

At temperature lower than Tbreak, RH is nearly constant, so that the second term of RHS of Eq. (2) is close to zero 

and the slope of IWV as a function of temperature follows C-C. According to Eq. (2), the deviation of the slope 

from C-C after Tbreak should correspond more or less to the rate of RH decrease, which depends on the 

considered station. Figure 5b shows RH and IWV as a function of T for SIRTA observations. RH starts to 15 
decrease significantly at T~13°C (hereafter called Tb1), while IWV curve deflects at T~16°C (hereafter called 

Tb2). Table 6 indicates the values of the left hand side term of Eq(2) and the second term of the right hand side of 

Eq. (2) before Tb1 (at 10°C) and after Tb2 (at 20°C). In spite of the important approximations done to obtain Eq. 

(2), the RH variations in the boundary layer thus explain to the first order the scaling of IWV with T. The 

determination of humidity sources that explain the RH variability are thus crucial.  20 
Figure 5a indicates that despite the bias at low temperature, models generally capture the deviation from C-C, 

and the IWV maximum value that is reached at high temperature, except the UCLM model for which IWV 

slightly continues to increasing with T. Note that the model slopes at low T are a bit lower than that of the C-C 

law and that derived from the observations. They are also often slightly different above the critical value, 

indicating some difficulties to simulate the relative humidity decrease. Figure 6a shows the model ensemble 25 
mean of the scaling at the SIRTA station. It confirms that the deviation from C-C exists but the transition is 

smoother in the models than in the observations which makes the estimate of Tbreak more uncertain at this station. 

However, some stations show more abrupt transitions (not shown). For the ensemble, due to the smooth 

transition, Tbreak is thus defined as the temperature value when IWV stops to increase (i.e when it reaches its 

hiatus value). Figure 6b and c indicates the model ensemble mean value of Tbreak and the corresponding IWVbreak. 30 
The models capture the spatial pattern of Tbreak, especially the higher values close to the Mediterranean, the 

Black Sea and in the eastern edge of the domain, but tend to overestimate it compared to the observations 

(Fig5c) but as already said, the uncertainty on the Tbreak estimate is quite high. The maximum value of IWV is 

also generally well simulated by the models, except over the northern part of the domain where UCLM50 

simulation does not always capture this break (as seen on Fig.5a), indicating an overestimation of relative 35 
humidity. 

The link between the IWV and RH evolutions for the model ensemble is shown on Fig.6a. Once again, the 

transition from one regime to another is smoother than for observations (Fig.5b), but the decrease of RH starts 

around the same range of temperature as for the transition of IWV-T relationship. Table 6 confirms that also in 

models RH variations in the boundary layer explain to a good degree the scaling of IWV with T.  40 
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In conclusion to this section models tend to overestimate low values of IWV. Although they generally well 

capture the IWV scaling with temperature, small scale processes also explain part of standard deviation (not only 

induced by the deviations from driving data) when considering the differences with GPS IWV data. In the next 

section, we consider the impact of these humidity biases in models on light precipitation occurrence.  

 5 
5 Impact of model biases on light precipitation 

  

5.1 Over SIRTA 

 

Figure 7 displays the 50th percentile of precipitation (computed including days without precipitation) as a 10 
function of IWV for four different bins of mean tropospheric temperature for both observations and the models 

(see section 3 for the details of the methodology). The observations are considered for the period 2008-2015 and 

the different models for the period 2001-2008 (i.e. the same number of years, despite the time shift). For all these 

datasets, there exists a critical value of IWV, wc, over which precipitation starts to increase. The values of these 

critical values are determined from Figure 7 following methodology indicated on section 3.3. The critical value 15 
depends on temperature (it increases with temperature) and on the models, as shown on Figure 8a. UCLM50 

presents lower critical values of IWV than observations at all temperatures, and CNRM50 also at high 

temperatures. This means that in these models the precipitation begins in a drier atmosphere than that which 

begins to produce rain in the observations. On the contrary, for CMCC50, at high temperature, the atmosphere 

needs to be as wet or wetter than what is observed to trigger precipitation. IPSL50 and LMD50 present similar 20 
values than observations for this critical value. CNRM50 and UCLM50 are the two models which present too 

often light precipitation and not enough days without precipitation (Fig.2).  

The second reason of the high frequency of occurrence of very light precipitation in these models is that the 

probability of exceeding this critical value of IWV is strongly overestimated in these two models in comparison 

with observations (Fig.8b). Statistically speaking, it means that the models that are too humid have a positive 25 
bias in light precipitation. For CMCC, the dipole between winter and summer observed in the estimate of non-

precipitating days is observed here also : though the critical value of IWV is correct at low and moderate T, the 

probability to exceed it is too strong, i.e typically during winter, which explains why it rains too much during 

winter, while it is not the case during summer, with very low probability to exceed the high critical value of 

IWV. IPSL model is dry both in terms of humidity and precipitation, and LMD50 follows observations but with 30 
a slightly higher probability to exceed the critical value. It is also important to note that the underestimation of 

non-precipitating days for all models in winter is consistent with the systematic overestimation of low values of 

IWV (Figs 3, 4, 5). 

In addition to period 2001-2008 discussed above, we tested two other 8-year periods (1989-1996 and 1995-

2002) and the entire period (1989-2008) to assess the influence of the considered period on the results. Figure S1 35 
and Table 7 show that results are rather robust among models and periods though there exists some uncertainty 

in both wc and the probability to exceed it. The maximum relative variability in wc for one model is around 25%, 

which is small compared to the maximum difference when considering all values from all models that is 58% for 

bin 1 (253 K), 73% for bin 2 (257 K), 63% for bin 3 (261 K), and 64% for bin 4 (264 K). The warming of the 

tropospheric temperature due to climage change is also visible on Fig. S1 and in Table 7 since for all models and 40 
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for the three warmer temperature bins, the warmer temperature is obtained during the most recent period (2001-

2008 ; i.e period 3). On the contrary, lower temperatures (first bin) tends to decrease, indicating a tendency of 

the distribution to become wider. We can note that due to the variability of the critical value of IWV and the 

variability of T inside each bin, the maximum value of wc inside each bin is not always obtained during the 

period of maximum temperature. For the first bin, 4 models out of 6 indicate a higher value of wc during the first 5 
period, which is the warmer for this bin. For the other three bins, the maximum temperature is obtained for all 

six models during the most recent period, i.e period 3 (100% of values) while this period gets only 39% (7 out of 

18 cases) of maximum wc values, and the three other periods represent about 20% each.  

 

5.2 Generalization  10 
 

To have an idea of the models’ behavior over other parts of Europe, several other stations are considered in this 

section. Their locations are shown on Fig. 1b by black diamonds and details are given in Table 8. Except for 

Marseille located in the south of France where the COMEPHORE product associated with GPS has been used, 

the model outputs are not compared with observations for the other stations. Figure 9 displays the occurrence of 15 
non-precipitating days for the different models and from COMEPHORE product at the station location when 

available (over France), wc values as a function of temperature and the percentage of IWV values that exceed wc 

as a function of temperature. The observed frequency of occurrence of non-precitating days is slightly higher in 

Marseille, located in the dry southern France, than in the northern part of France (SIRTA). Most of the models 

(except CNRM50) overestimate this north-south gradient. For instance, for UCLM50, the frequency is between 20 
80 and 90% at Marseille, while it is around 15% at SIRTA. Several other characteristics of the models’ behavior 

do not depend much on the station: CNRM50 always simulates less occurrence of non-precipitating days than 

other models and simulates a rather flat annual cycle ; the annual cycle simulated by CMCC50 is always very 

intense, with much higher frequency of occurrence of non-precipitating days in summer than in winter, IPSL is 

always the model with the highest frequency of occurrence of non-precipitating days ; UCLM50 and LMD50 are 25 
between CNRM50 and IPSL50, with a tendency to simulate many days with very light precipitation at the 

northern stations (Fig.2 and Fig.9g, m) but not at the southern ones (Fig.9a, d). In the eastern part of the domain 

(Fig.9j), the annual cycle of precipitation simulated by models is a bit different than elsewhere with two drier 

periods in spring and fall.  

To relate these caracteristics to temperature and humidity, we reproduced the analysis done at SIRTA. The value 30 
of the critical value of IWV over which precipitation starts to increase is generally similar among models, 

despite increasing dispersion with temperature. This value depends on the stations, indicating the influence of 

local specificities in the estimation of this relationship. For instance, UCLM50, which is the model with the most 

important difference between southern and northern stations for the annual cycle of dry days also indicates 

strong differences in the wc for a similar temperature, with a critical value around 25 kg.m-2 in Marseille for a 35 
tropospheric temperature of 260K (Fig.9b), while it is ~12 kg.m-2 in the Netherlands (Fig.9n). The nature of 

precipitation, more or less convective, likely explains these differences. The probability to exceed the critical 

value is the most discriminant parameter between models and between seasons. Results are robust and confirm 

the importance of the relationship between temperature, IWV and light precipitation: for a given bin of 

temperature if the model is too humid (higher probability to exceed the threshold), it rains too often.  40 
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6 Conclusion 

 

This work uses GPS integrated water vapor measurements associated with temperature and precipitation 5 
measurements to i) estimate the biases of six regional climate models over Europe in terms of humidity ; ii) 

understand their origins ; iii) and finally assess the impact of these biases on the occurrence of precipitation. 

The first part of the study aimed at evaluating the mean bias and standard deviations of IWV in models 

compared to GPS measurements at interannual, seasonal, and daily time scales. An interesting result is that all 

models overestimate the lower values of IWV (nighttime, wintertime) at all stations. The spread among models 10 
is increased during summertime. Our analysis suggests that the model physics mostly explain the mean biases, 

while dynamics affects the variability. The use of nudging towards reanalyses thus improves the representation 

of the large scale advections of air masses and reduces the standard deviation of differences between GPS 

retrieved IWV and simulated ones. The land surface/atmosphere interactions are crucial in the estimation of 

IWV over most part of Europe, especially in summer, and explain part of the mean biases. However, the 15 
relationship between IWV and temperature, that deviates from the Clausius-Clapeyron law after a critical value 

of temperature, is generally well captured by models. This critical temperature presents a spatial variability since 

it corresponds to the value when relative humidity starts to decrease. It is thus strongly dependent on local 

processes which drive the local humidity sources (from evaporation and advection). This explains why the 

maximum values of IWV are not necessarily observed over warmer areas, which often corresponds to dry areas, 20 
where soil moisture limited regime is dominant.  

The improvement in humidity representation may also help in the representation of precipitation distribution. 

Indeed, in the second part of this study, it is shown that the biases in IWV and most importantly IWV’s 

distributions as a function of temperature strongly impact the occurrence of light precipitation over France, and 

most generally over areas where convection is the main process of precipitation triggering. For each range of 25 
mean tropospheric temperature, there exists a critical value of IWV over which a pickup in precipitation occurs. 

This is observed and simulated by models, but the critical values and the probability to exceed them vary 

between models and observations. Models which present too often light precipitation generally show lower 

critical values and higher probability to exceed them. Thus, a better knowledge and representation of the 

triggering thresholds of precipitation and of their variablity should potentially help to improve the representation 30 
of the whole precipitation distribution in models. The ensemble of simulations with implicit and explicit 

convection that will be performed in the framework of the Flagship Pilot Study Convective-Permitting Climate 

Simulation of CORDEX project will allow us to assess the sensitivity of precipitation triggering and distribution 

to the model resolution. Issues that will be explored in more details following this work will be the role of 

humidity in i) the triggering of precipitation in simulations at different resolution; ii) the low precipitation 35 
rates (precipitation efficiency); iii) the impact of too easy triggering in the entire precipitation distribution.  
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Table 1 : List of models used in the study 
 
Name in 
this paper 

Model/resolution Num
ber of 
levels 

Radiation scheme Convective 
scheme 

Microphysics 
scheme 

Land surface 
scheme 

PBL 
scheme 

Land use 

CMCC50 CCLM4-8-
19/MED44 

45 Ritter and Geleyn 
(1992) 

Tiedtke 
(1989) 

Doms et al., 
(2007) and 
Baldauf and 
Schulz (2004)  

Doms et al. 
(2007) 

Louis 
(1979) 

GLC200
0 

CNRM50 ALADIN52/ME
D44 

31 Morcrette (1990) Bougeault 
(1985) 

Ricard and 
Royer (1993) 
and Smith 
(1990) 

Noilhan and 
Planton (1989) 
and Noilhan 
and Mahfouf 
(1996) 

Ricard 
and 
Royer 
(1993) 

GLC200
0 

IPSL50 WRF311/MED44 28 Mlawer et al. 
(1997) and 
Dudhia (1989) 

Kain (2004) Hong et al. 
(2004) 

Smirnova et al., 
(1997) 

Noh et 
al. 
(2003) 

USGS 

LMD50 LMDZ4NEMO8/
MED44 

19 Fouquart and 
Bonnel (1980) 
Morcrette et al. 
(1986) 

Emmanuel 
(1993) 

Li (1999) and 
Hourdin et al. 
(2006) 

Krinner et al. 
(2005) 

Louis 
(1979) 

None 

UCLM50 PROMES/MED4
4 

37 Mlawer et al. 
(1997), Morcrette 
et al. (2008) 

Kain (2004) Hong et al. 
(2004) 

Krinner et al. 
(2005) 

Cuxart 
et al. 
(2000) 

IGBP 

 5 
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Table 2 : values of linear regression slopes obtained for each model/each month when plotting IWVmod-IWVobs as a 
function of difference of altitudes between model and GPS at each station. The first figure is for native grid of the 
model and the second figure is for model regridded to ERAI grid. It is expressed in 10-3 kg.m-3 
 
 
 CMCC50 CNRM50 IPSL50 LMD50 UCLM50 
January -4.1/-5.5 -5.8/-5.6 -4.8/-5.9 -4.5/-5.1 -4.7/-5.3 
February -4.1/-5.2 -5.3/-5.3 -4.7/-5.5 -4.5/-5.1 -4.7/-5.2 
March -4.6/-5.0 -5.4/-5.2 -5.1/-5.3 -4.9/-4.8 -4.9/-5.0 
April -5.7/-5.0 -5.6/-5.0 -5.4/-5.4 -5.8/-4.8 -5.8/-4.7 
May -7.0/-6.2 -7.0/-6.2 -6.6/-6.6 -7.0/-6.2 -6.8/-5.8 
June -8.3/-5.9 -7.6/-6.6 -8.2/-6.8 -7.5/-6.1 -7.9/-5.6 
July -9.8/-6.8 -8.9/-7.7 -8.5/-7.3 -8.2/-6.7 -8.6/-6.3 
August -11.2/-8.2 -8.2/-8.5 -9.0/-8.0 -8.6/-7.5 -8.6/-6.7 
September -8.4/-7.4 -7.6/-7.9 -8.1/-7.8 -7.2/-6.9 -8.1/-6.9 
october -8.0/-7.4 -7.7/-7.6 -7.9/-7.8 -7.2/-7.0 -7.7/-7.0 
November -5.4/-5.8 -6.2/-6.1 -5.8/-6.3 -5.7/-5.7 -6.0/-5.9 
December -4.4/-5.6 -5.8/-5.8 -5.0/-5.9 -4.9/-5.3 -5.2/-5.4 
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Table 3: Mean bias and standard deviation (SD) in kg.m-2 of the differences of IWV between models and GPS 
observations using daily time resolution, and using the data obtained with the correction due to altitude difference or 
not. Computation has been done using models on their native grid, or bilinearly remapped on ERA-Interim grid.  The 
rightmost column indicates the minimum and maximum values of the correlation of the interannual variability of 
monthly GPS anomalies and model anomalies (one correlation computed by month). 
 
 
 Bias (daily) SD of difference 

(daily) 
Interannual 
correlation 
(min/max) 

 uncorrected corrected uncorrected corrected  
ERAI  0.57 0.61 1.87  1.30 0.92/0.99 
LMD50 0.71 0.77 3.28 3.09 0.91/0.99 
LMD50 
grid ERAI 

0.77 0.56 3.25 2.96 0.89/0.99 

IPSL50 0.95 0.80  1.80 1.38 0.91/0.99 
IPSL50 
grid ERAI 

0.94 0.76 1.92 1.44 0.97/0.99 

CNRM50 1.35 1.11 3.35 3.10 0.77/0.98 
CNRM50 
grid ERAI 

1.39 1.14 3.34 3.07 0.79/0.98 

CMCC50 0.60 0.55 3.38 3.16 0.78/0.96 
CMCC50 
grid ERAI 

0.59 0.52 3.30 3.05 0.79/0.98 

UCLM50 1.81 1.56 3.62 3.47 0.80/0.98 
UCLM50 
grid ERAI 

1.71 1.52 4.30 4.16 0.84/0.97 

 



 33 

 
Table 4 : Occurrence (%) of non –precipitating days (first number), very light precipitation (second number) and 
light precipitation (third number) for different datasets (columns) computed over different years (rows) for two 
different periods of the year: W is for winter (Julian day from 1 to 100) and S is for summer (julian day from 151 to 
251).  Native grids are used. 
 

  REOBS COM01 COM50 LMD50 UCLM50 CMCC50 CNRM50 IPSL50 

2004-
2007 

W 45/24/8 56/7/8 34/24/9 20/43/11 13/41/18 5/55/13 2/37/18 33/39/8 
S 58/16/4 67/10/5 47/27/6 29/41/9 18/38/15 41/40/5 2/43/11 59/21/4 

1989-
1996 

W - - - 24/40/11 12/41/17 7/56/10 1/42/14 35/38/7 
S - - - 36/42/6 22/38/16 49/35/4 0/48/8 65/20/4 

1995-
2002 

W - - - 23/38/10 23/34/14 7/53/11 1/42/14 36/35/8 
S - - - 33/41/7 24/36/15 45/37/4 1/45/9 62/20/4 

2001-
2008 

W - - - 23/28/11 14/37/17 6/54/13 2/37/16 35/37/8 
S - - - 31/40/7 16/41/15 42/38/5 1/44/10 62/19/4 

1989-
2008 

W - - - 24/38/11 17/38/16 7/55/11 1/41/15 36/37/8 
S - - - 33/42/6 22/38/15 45/37/4 0/46/9 62/21/4 

1997-
2007 

W - 62/6/7 44/22/8 24/38/11 22/36/16 7/54/12 1/40/15 36/37/8 
S - 69/8/5 53/21/6 31/40/7 23/37/14 44/37/4 1/45/9 61/21/4 

2008-
2015 

W 53/17/6 - - - - - - - 
S 63/13/5 - - - - - - - 

2003-
2015 

W 47/18/6        
S 57/13/4        
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Table 5 : Summertime interannual correlation between IWV and Q2 at GPS stations. In bold, the mean value for 
each model, followed by min and max values. The other values in the table corresponds to the standard deviation of 
the difference of correlation between two models.  
 

 CMCC50 CNRM50 IPSL50 LMD50 UCLM50 ERAI 
CMCC50 0.81/0.30/0.96 0.18 0.14 0.13 0.18 0.16 
CNRM50 0.18 0.76/0.05/0.97 0.16 0.15 0.19 0.20 
IPSL50 0.14 0.16 0.81/0.52/0.98 0.11 0.15 0.20 
LMD50 0.13 0.15 0.11 0.83/0.43/0.96 0.13 0.16 

UCLM50 0.18 0.19 0.15 0.13 0.76/0.24/0.96 0.21 
ERAI 0.16 0.20 0.20 0.16 0.21 0.76/0.13/0.97 
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Table 6 : Values of the left hand side (LHS), 2nd term of the right hand side (RHS) and total RHS of Eq. (2) computed 
for the SIRTA site for two different temperatures (10°C and 20°C), according to Fig.5d for observations and Fig.6a 
for models. 
 
 10°C 20°C 

LHS RHS, term 2 RHS 
total 

LHS RHS, term2 RHS total 

OBS IWV~15 
kg.m-2 
Slope = 1 
kg.m-2. C°-1 
Value = 
6.6%. C°-1 

RH~85%+30% 
Slope = -0.8%.C°-1 
Value = -0.7%. C°-1 

6.6-
0.7=5.9 %. 
C°-1 

IWV~23 
kg.m-2 
Slope = 0.5 
kg.m-2. C°-

1 
Value = 
2.2%. C°-1 

RH~60%+30% 
Slope = -3%.C°-1 
Value = -3.3%. 
C°-1 

6.2-3.3 = 
2.9 %. C°-1 

IPSL50 IWV~15 
kg.m-2 
Slope = 0.8 
kg.m-2. C°-1 
Value = 
5.2 %. C°-1 

RH~80%+30% 
Slope = -0.8%.C°-1 
Value = -0.7%. C°-1 

6.6-
0.7=5.9 %. 
C°-1 

IWV~22 
kg.m-2 
Slope = 0.2 
kg.m-2. C°-

1 
Value = 
1.1%. C°-1 

RH~47%+30% 
Slope = -3%.C°-1 
Value = -3.9%. 
C°-1 

6.2-3.9 = 
2.3 %. C°-1 

Model 
ensemble 

IWV~16.5 
kg.m-2 
Slope = 1 
kg.m-2. C°-1 
Value = 
6.1 %. C°-1 

RH~90%+30% 
Slope = -0.6%.C°-1 
Value = -0.5%. C°-1 

6.6-
0.5=6.1 %. 
C°-1 

IWV~25 
kg.m-2 
Slope = 0.4 
kg.m-2. C°-

1 
Value = 
1.6%. C°-1 

RH~70%+30% 
Slope = -4%.C°-1 
Value = -4%. C°-1 

6.2-4 = 2.2 
%. C°-1 
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Table 7 : Period for which the maximum value of the temperature bin (T), the critical value of IWV (wc) is reached. Period 1 
is for 1989-1996 ; P2 for 1995-2002 ; P3 for 2001-2008. The second number in the column of Wc corresponds to the 
maximum relative variability of IWV computed as ((max(Wc)-min(Wc))/mean(Wc)) for each temperature bin and each 
model 
 
 Bin1-253 K Bin2-257K Bin3-261K Bin4-264K 
 T Wc T Wc T Wc T Wc 
IPSL50 P1 P1/7% P3 P3/10% P3 P2/11% P3 P1/9% 
CMCC50 P1 P3/15% P3 P2/7% P3 P1/15% P3 P1/6% 
LMD50 P1 P1/22% P3 P3/5% P3 P3/17% P3 P3/19% 
CNRM50 P1 P1/20% P3 P3/7% P3 P3/8% P3 P2/16% 
UCLM50 P1 P1/4% P3 P2/11% P3 P3/6% P3 P3/24% 
 

5 
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Table 8 : Latitude/longitude/altitude of the closest grid point of each model for the GPS stations used. 
 5 
 LMD50  CNRM50 UCLM50 CMCC50 IPSL50 
SIRTA 
48.7/2.2/156 

48.7/2.3/99 48.6/2.1/125 48.6/2.5/84 48.5/2.1/123 48.7/2.6/103 

MARSEILLE 
43.3/5.4/12 

43.3/5.4/132 43.5/5.1/35 43.1/5.6/0 43.2/5.5/112 43.1/5.6/61 

MADRID 
40.4/-4.2/777 

40.3/-4.4/731 40.5/-4.2/1130 40.4/-4.2/759 40.5/-4.5/922 40.4/-4.2/750 

DRESDE 
51.0/13.0/160 

51.1/13.7/228 51.1/13.8/177 51.1/13.9/256 50.9/14.0/277 51.1/14.0/273 

KOOTWIJK 
52.2/5.8/53 

52.0/5.8/17 52.2/5.8/32 52.2/5.5/15 52.1/5.9/22 52.1/6.1/13 

POLTAVA 
49.6/34.5/160 

49.6/34.6/125 49.7/34.5/145 49.8/34.6/132 49.8/34.6/132 49.4/34.8/118 
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Figure 1: Mean values of IWV in winter (a) and summer (b) retrieved from GPS network. 
Note that color scales are different between winter and summer. Circles indicate stations with 
more than 10 years of observations between 1995 and 2008 and squares indicate stations with 
5 to 10 years of observations. SIRTA observatory is shown by the black triangle. Black 
diamonds indicate the location of stations considered in section 5.2. Topography higher than 
500 m above sea level is shaded in grey. 
  
 



 39 

 
 

0 100 200 300
0

0.2

0.4

0.6

0.8

Day of year

O
cc

ur
re

nc
e

a. Non precipitating days

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

Day of year

O
cc

ur
re

nc
e

b. very light precipitations (0<PR<=1mm)

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Day of year

O
cc

ur
re

nc
e

c. Light precipitations (1<PR<=2mm)

0 100 200 300
0

0.5

1

1.5

2

2.5

3

3.5

Day of year

Pr
ec

ip
. r

at
e 

(m
m

/d
ay

)
d. 50th qu. of precip. (only rainy days)

 

 ReOBS
COM01
COM50
LMD50
UCLM50
CMCC50
CNRM50
IPSL50

 
Figure 2 : Occurrence for 30-day periods from January to December over the years 2004-
2007 of a. Non precipitating days ; b. precipitation rates between 0 and 1 mm/day ; c. 
precipitation rates between 1 and 2 mm/day. d. Value of the 50th quantile of precipitation 
(excluding non-precipitating days). Each color corresponds to a different model at 50 km 
resolution regridded to the LMD grid (see legend for details). Black line is for observations at 
SIRTA supersite (ReOBS). Dashed black line is for COMEPHORE product at 1*1 km2 
resolution at the closest grid point of SIRTA (COM01) and black line with squares is for 
COMEPHORE averaged over a square of 50*50 km2 around SIRTA (COM50).  
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Figure 3: Percentage of simulated daily mean IWV values which overestimate the GPS ones 
a) in winter and b) in summer. Simulated values are taken from 5 models at 50 km resolution 
(LMD50, IPSL50, CNRM50, CMCC50, UCLM50) regridded to the ERAI grid.  c) and d) 
same as a) and b) but for height-corrected values. 
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Figure 4: Monthly values of IWV as a function of monthly values of  2-m specific humidity  
(Q2) averaged over all stations where and when both IWV from GPS and Q2 from HadISD 
are available (Monthly mean are computed if at least 60 co-existing values exist (i.e about 2 
values per day over 4 possible). A total of 3238 months are obtained, spread over 42 different 
stations. The average number of stations per month is 19 with a maximum of 30 stations). 
The color of circles corresponding to each model is indicated on the legend. All model 
outputs have been regridded to the ERAI grid. The first number indicates the slope of the 
regression obtained when considering the same months than observations at each station, 
while the second number is the slope of the regression when considering all months at all 
grid points (only models). 
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Figure 5: (a) IWV – T(2m) relationship at SIRTA station from observations and models. 
Median values are plotted for observations and models. The grey band represents the interval 
between the 20th and 80th quantiles for observations. The black vertical dashed line shows 
Tbreak, the black horizontal dashed line shows IWVbreak, and the red slant dashed line shows C-
C scaling (b) Median values of IWV and RH(2m) as a function of T(2m) at SIRTA from 
observations only. The vertical grey dashed lines indicate the values of Tb1 and Tb2 (see text 
section 4). (c) Map of Tbreak at all the GPS stations. (d) Map of IWVbreak at all the GPS 
stations.  
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Figure 6 : a) Scaling of IWV (black) and RH (blue) with temperature for the model ensemble 
at SIRTA station. Solid lines are for quantile 50 and dashed lines are for quantiles 20 and 80 
of the distributions. The red slant dashed line shows C-C scaling. b) and c) As Fig5c,d but for 
the model ensemble.  
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Figure 7 : 50th quantile of precipitation as a function of IWV for 4 different bins of 
tropospheric temperature at latitude 48.7°N and longitude 2.2°N (SIRTA). (a) SIRTA-ReOBS 
observations. (b) CMCC50. (c) IPSL50.  (d) LMD50.  (e) CNRM50. (f) UCLM50. 
Observations are analysed for the period 2008-2015, and models for the period 2001-2008. 
The values of T indicated in the legends correspond to the mean values in the bins that have 
been choosen as indicated in the text.  
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Figure 8 : (a) Critical value of IWV at latitude 48.7°N and longitude 2.8°E over which 50th 
quantile precipitation significantly increases as a function of the mean tropospheric 
temperature. Each color corresponds to a different model (see legend for details). The period 
considered is 2001-2008. Solid black line is for observations from the SIRTA-ReOBS dataset 
between 2008 and 2015 and dashed black line is for SIRTA-ReOBS with ERA-Interim 
tropospheric temperature instead of tropospheric temperature from radiosoundings . (b) 
Probability for IWV to exceed the critical value for each dataset.  
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Figure 9 : first column : Annual cycle of occurrence of non-precipitating days for the different 
models and COMEPHORE in black in panel a (same legend than Fig.8 for models). Second 
column : Value of wc (maximum value) as a function of tropospheric temperature. Third 
column : Probability to exceed wc value. First row is for the station located in southern France 
(Marseille), second row for the one located in Central Spain (Madrid), third row for station in 
eastern Germany (Dresde), fourth row in Ukraine, and fifth row in Netherlands (see table 8 
and Fig.1 for details on the locations of the stations). 
 
 
 


