Supplement for manuscript

Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea

Jihoon Seo^{1,2}, Doo-Sun R. Park³, Jin Young Kim¹, Daeok Youn⁴, Yong Bin Lim¹, Yumi Kim⁵

¹Green City Technology Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
 ²School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
 ³Department of Earth Sciences, Chosun University, Gwangju 61452, South Korea
 ⁴Department of Earth Science Education, Chungbuk National University, Cheongju 28644, South Korea
 ⁵Division of Resource and Energy Assessment, Korea Environment Institute, Sejong 30147, South Korea
 Correspondence to: Jin Young Kim (jykim@kist.re.kr), Daeok Youn (dyoun@chungbuk.ac.kr)

Contents: 1 table and 7 figures

dof	PM_{10}	SO_2	NO_2	СО	$O_{3\;8h}$	Т	T_{max}	Р	RH	WS	SI
X _{ST}	1054	1084	1084	1084	1626	1084	1084	1084	1084	1626	1622
$X_{\rm BL}$	45	45	55	35	50	46	47	47	60	36	58
$X_{\rm LT}$	2	5	2	4	2	7	7	9	7	2	8
$X_{\rm LT}^{\rm emis}$	2	6	4	8	2						
$X_{\rm LT}^{ m met}$	3	6	3	2	2						

Table S1. Degrees of freedom (*dof*) of each time series of short-term, baseline, and long-term components calculated based on Leith (1973).

Leith, C. E.: The standard error of time-average estimates of climatic means, J. Appl. Meteor., 12, 1066–1069, https://doi.org/10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2, 1973.

Figure S1. (a) Numbers of available air quality monitoring sites in Seoul, of which missing data are less than 10% of the total. (b) Average and (c) standard deviation of PM_{10} concentrations in Seoul. Asian dust events those were excluded from the PM_{10} analysis are marked with orange color.

Figure S2. Number distribution of (a) daily average PM₁₀ concentration and (b) log-transformed daily average PM₁₀ concentration. The bell shaped curves show normal (Gaussian) distributions, and #, μ , and σ denote the total number of days, mean values, and standard deviation, respectively. Asian dust event days were excluded from the analysis.

Figure S3. Decompositions of (a) PM₁₀ and (b) O_{3 8h} time series in Seoul for 1999–2016.

Figure S4. Power spectra of (a) log-transformed daily average PM_{10} concentration time series (a black line) and its (b) short-term, (c) seasonal, and (d) long-term components (red lines). Effective filter widths for $KZ_{(15,5)}$ filter (33 days) and $KZ_{(365,3)}$ filter (632 days) are marked with blue vertical dashed lines.

Figure S5. An example of obtaining horizontal gradient of long-term component (X_{LT}) of PM₁₀ on 23 February 2014. (a) Locations of 70 air quality monitoring sites in Cartesian coordinates centered at the Seoul weather station $(37.57^{\circ}N, 126.97^{\circ}E)$, of which data availability were more than 75% for the period of 1999–2016. (b) Meridional gradients of the baseline $(\frac{\partial X_{BL}}{\partial y})$ and seasonal component $(\frac{\partial X_{SN}}{\partial y})$ obtained by linear regressions. (c) Zonal gradients of the baseline $(\frac{\partial X_{BL}}{\partial x})$ and seasonal component $(\frac{\partial X_{SN}}{\partial x})$. Zonal and meridional gradient of the long-term component can be gained by subtracting the seasonal component gradients from the baseline gradients $(\frac{\partial X_{LT}}{\partial x} = \frac{\partial X_{BL}}{\partial x} - \frac{\partial X_{SN}}{\partial x}, \frac{\partial X_{LT}}{\partial y} = \frac{\partial X_{BL}}{\partial y} - \frac{\partial X_{SN}}{\partial y})$.

Figure S6. Long-term component of (a) zonal wind (u_{LT}) and (b) meridional wind (v_{LT}) at the Seoul weather station. Zonal gradient $(\partial X_{LT}/\partial x, \text{ red lines})$ and meridional gradients $(\partial X_{LT}/\partial y, \text{ blue lines})$ of the long-term components and transport term $(-\vec{V}_{LT} \cdot \nabla X_{LT}, \text{ violet lines})$ by long-term components of horizontal winds $(\vec{V}_{LT} = (u_{LT}, v_{LT}))$ for (c–d) PM₁₀, (e–f) CO, (g–h) SO₂, (i–j) NO₂, (k–l) O_{3 8h}.

Figure S7. (a) Mean geopotential height (contours with interval of 20 gpm) and wind fields (arrows with reference scale of 3 m s⁻¹) at 850 hPa, and linear trends of (b) geopotential height (contours with interval of 0.5 gpm yr⁻¹) and wind (arrows with reference scale of 0.1 m s⁻¹ yr⁻¹) at 850 hPa and (c) 10 m wind speed (contours with interval of 0.01 m s⁻¹ yr⁻¹) for the period of 2000–2015. The trends statistically significant at 95% confidence level in (b) and (c) are represented as gray shaded areas and wind arrows. Seoul is marked by solid red circles.