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Abstract 15 

Semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs) from anthropogenic sources are 16 
likely to be important precursors of secondary organic aerosol (SOA) in urban airsheds yet their treatment in most 17 
models is based on limited and obsolete data, or completely missing. Additionally, gas-phase oxidation of organic 18 
precursors to form SOA is influenced by the presence of nitric oxide (NO), but this influence is poorly constrained in 19 
chemical transport models. In this work, we updated the organic aerosol model in the UCD/CIT chemical transport 20 

model to include (i) a semi-volatile and reactive treatment of primary organic aerosol (POA), (ii) emissions and SOA 21 
formation from IVOCs, (iii) the NOX influence on SOA formation, and (iv) SOA parameterizations for SVOCs and 22 
IVOCs that are corrected for vapor wall loss artifacts during chamber experiments. All updates were implemented in 23 
the statistical oxidation model (SOM) that simulates the oxidation chemistry, thermodynamics, and gas/particle 24 
partitioning of organic aerosol (OA). Model treatment of POA, SVOCs, and IVOCs was based on an interpretation of a 25 
comprehensive set of source measurements available up to the year 2016 and resolved broadly by source type. The NOX 26 
influence on SOA formation was calculated offline based on measured and modeled VOC:NOX ratios. And finally, the 27 
SOA formation from all organic precursors (including SVOCs and IVOCs) was modeled based on recently derived 28 

parameterizations that accounted for vapor wall loss artifacts in chamber experiments. The updated model was used to 29 
simulate a two week summer episode over southern California at a model resolution of 8 km. 30 
 31 
When combustion-related POA was treated as semi-volatile, modeled POA mass concentrations were reduced by 15-32 
40% in the urban areas in southern California but were still too high when compared against “hydrocarbon-like organic 33 
aerosol” factor measurements made at Riverside, CA during the Study of Organic Aerosols at Riverside (SOAR-1) 34 
campaign of 2005. Treating all POA (except that from marine sources) to be semi-volatile, similar to diesel exhaust 35 

POA, resulted in a larger reduction in POA mass concentrations and allowed for a better model-measurement 36 
comparison at Riverside, but this scenario is unlikely to be realistic since this assumes that POA from sources such as 37 
road and construction dust are semi-volatile too. Model predictions suggested that both SVOCs (evaporated POA 38 
vapors) and IVOCs did not contribute as much as other anthropogenic precursors (e.g., alkanes, aromatics) to SOA mass 39 
concentrations in the urban areas (<5% and <15% of the total SOA respectively) as the timescales for SOA production 40 
appeared to be shorter than the timescales for transport out of the urban airshed. Comparisons of modeled IVOC 41 
concentrations with measurements of anthropogenic SOA precursors in southern California seemed to imply that IVOC 42 

emissions were underpredicted in our updated model by a factor of 2. Correcting for the vapor wall loss artifact in 43 
chamber experiments enhanced SOA mass concentrations although the enhancement was precursor- as well as NOX-44 
dependent. Accounting for the influence of NOX using the VOC:NOX ratios resulted in better predictions of OA mass 45 
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concentrations in rural/remote environments but still underpredicted OA mass concentrations in urban environments. 46 
The updated model’s performance against measurements combined with the results from the sensitivity simulations 47 
suggest that the OA mass concentrations in southern California are constrained within a factor of two. Finally, 48 
simulations performed for the year 2035 showed that despite reductions in VOC and NOX emissions in the future, SOA 49 

mass concentrations may be higher than in the year 2005, primarily from increased hydroxyl radical (OH) concentrations 50 
due to lower ambient NO2 concentrations.  51 
 52 

Glossary 53 

OA - Organic aerosol 54 
POA - Primary organic aerosol or direct emissions of organic aerosol 55 
SOA - Secondary OA or organic aerosol formed in the atmosphere 56 
VOC - Volatile organic compound 57 
NMOG - Non-methane organic gas 58 

SVOC - Semi-volatile organic compound 59 
IVOC - Intermediate-volatility organic compound 60 
HOA - Hydrocarbon-like organic aerosol measured by the aerosol mass spectrometer 61 
OOA - Oxygenated organic aerosol measured by the aerosol mass spectrometer 62 
aV-SOA - Anthropogenic SOA formed from VOC oxidation 63 
bV-SOA - Biogenic SOA formed from VOC oxidation 64 
aS-SOA - Anthropogenic SOA formed from SVOC oxidation 65 
aI-SOA - Anthropogenic SOA formed from IVOC oxidation 66 

 67 

1 Introduction 68 

Organic aerosol (OA) is an important yet uncertain component of atmospheric aerosol (Fuzzi et al., 2015; Jimenez et 69 
al., 2009) and has large impacts on air quality, climate, and human health (Pachauri et al., 2014). Combustion sources 70 
such as motor vehicles, biomass burning, and food cooking are significant contributors to atmospheric OA from urban 71 
to regional to global scales (Bond et al., 2004). Yet, in urban environments where combustion emissions are a dominant 72 
source, atmospheric models often underpredict total OA mass concentrations (e.g., Carlton et al. (2010)). Models based 73 
on older parameterizations also predict much lower contributions of secondary organic aerosol in urban areas (e.g., 74 
Volkamer et al. (2006); Jathar et al. (2017a)), and may overemphasize the role of mobile sources (e.g., Ensberg et al. 75 

(2014)), suggesting that combustion-related OA and other urban sources may not be well represented in models. There 76 
is a need to improve the treatment of combustion-related OA in atmospheric models since these improvements will 77 
allow for better predictions of air quality that are needed to mitigate climate and health impacts from anthropogenic 78 
combustion sources, and will facilitate improved understanding of additional potentially missing sources. 79 
 80 
Research over the past decade has made major inroads in understanding the sources and properties of combustion-81 
related OA (Gentner et al., 2017). Combustion sources directly emit organic particles (primary organic aerosol, POA) 82 

and also emit gaseous organic compounds that are oxidized in the atmosphere to form secondary organic aerosol (SOA). 83 
A significant fraction of the combustion-related POA mass is now understood to be semi-volatile, that is material that 84 
exists in a dynamic equilibrium between the vapor and particle phases (Grieshop et al., 2009a, 2009b; Huffman et al., 85 
2009; Kuwayama et al., 2015; Lipsky and Robinson, 2006; May et al., 2013a, 2013b, 2013c; Robinson et al., 2007). 86 



 

3 
 

This POA is formed as vapors in the combustion exhaust cool down to become supersaturated and condense on existing 87 
seed aerosol (Robinson et al., 2010). After emission, some of this POA evaporates with atmospheric dilution since the 88 
aerosol mass available for partitioning decreases as the POA is transported away from source regions. Further, diurnal 89 
changes in temperature leading to changes in the vapor pressure can also cycle POA between the two phases. Both vapor 90 

and particle forms of semi-volatile POA have been shown to photochemically react in the atmosphere to add or remove 91 
organic material from the particle-phase (Miracolo et al., 2010) and become more oxygenated (Kroll et al., 2009), 92 
although the vapors react much faster. In addition, all combustion processes are now believed to include emissions of 93 
an important additional class of SOA precursors: intermediate-volatility organic compounds (IVOCs) (Jathar et al., 94 
2014). Gas-chromatography mass-spectrometry applications have suggested that they are primarily composed of high 95 
molecular weight linear, branched, and cyclic alkanes (carbon numbers greater than 12) and aromatics (Gentner et al., 96 
2012; Zhao et al., 2014, 2017). Model IVOCs have been shown to form SOA efficiently in chamber experiments (Chan 97 
et al., 2009; Lim and Ziemann, 2009; Presto et al., 2010; Tkacik et al., 2012) and have been hypothesized to account for 98 

a large fraction of the SOA formed from the photooxidation of motor vehicle exhaust and biomass burning emissions 99 
(Jathar et al., 2014; Zhao et al., 2017). The emissions and atmospheric properties (e.g., volatility, reactivity, SOA mass 100 
yields) of POA and IVOCs are known (or very likely) to vary by source (e.g., mobile sources versus biomass burning) 101 
and hence atmospheric models need to include a source-resolved treatment to accurately predict source contributions to 102 
OA and fine particulate matter.  103 
 104 
Most commonly used chemical transport models (e.g., CMAQ, CAMx, PMCAMx, WRF-Chem, GEOS-Chem) have 105 

been updated to include a semi-volatile and reactive treatment of POA and emissions and SOA formation from IVOCs 106 
(Ahmadov et al., 2012; Koo et al., 2014; Murphy and Pandis, 2009; Pye and Seinfeld, 2010). However, their 107 
representation in models has been based on limited data and there are major differences between the implementations 108 
in different models. For example, in most models, with a few exceptions (e.g., most recent research version of the OA 109 
model in CMAQ developed by Koo et al. (2014)), the gas/particle partitioning of POA was modeled based on 110 
measurements performed on a small off-road diesel engine from more than a decade ago (Robinson et al., 2007) and 111 
IVOC emissions were based on data gathered from two medium duty diesel vehicles from two decades ago (Schauer et 112 

al., 1999). Models have assumed that these data are representative of emissions from modern diesel-powered sources 113 
and the POA/IVOC properties from diesel sources are similar to those from other sources. New source data are now 114 
available to update POA and IVOC emissions estimates in chemical transport models. Further, the most common 115 
schemes to model SOA formation from POA vapors and IVOCs use a single lumped precursor to simulate SOA 116 
formation from all sources (e.g., Pye and Seinfeld (2010)) or use an ad hoc aging routine that continuously reduces the 117 
volatility of the precursor/oxidation products until they partition into the particle phase (Robinson et al., 2007). While 118 
some of these schemes have been validated against experimental data (Fountoukis et al., 2016; Hodzic and Jimenez, 119 
2011; Murphy et al., 2017; Zhang et al., 2015), most have assumed that all sources have the same rate and potential to 120 

form SOA and, in some cases, ignore fragmentation reactions tied to multigenerational chemistry. Ad hoc aging schemes 121 
can overestimate net aerosol mass yields from an SOA precursor and can sometimes overpredict ambient SOA mass 122 
concentrations too, especially over larger regional scales (Dzepina et al., 2009, 2011; Hayes et al., 2015; Jathar et al., 123 
2016). Recently, a host of studies have quantified the volatility of POA emissions from over 100 unique sources and 124 
measured SOA formation in more than 100 chamber experiments across six broad source classes: on- and off-road 125 
gasoline and diesel sources, wood stoves, and biomass burning (Gordon et al., 2014a, 2014b; Hennigan et al., 2011; 126 
May et al., 2013a, 2013b, 2013c, 2014; Tkacik et al., 2017). These data offer a comprehensive set of measurements to 127 

inform and update the source-resolved semi-volatile and reactive behavior of POA and the emissions and SOA 128 
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formation from IVOCs in atmospheric models.  129 
 130 
SOA formation is strongly influenced by the presence of NOX (Camredon et al., 2007; Chhabra et al., 2010; Loza et al., 131 
2014; Ng et al., 2007b). For most SOA precursors, with the exception of alkanes (Loza et al., 2014) and certain 132 

sesquiterpenes (Ng et al., 2007b), environmental chamber data suggest that the reaction chemistry at low NOx, or more 133 
precisely low NO, conditions (<2 ppbv) produces more SOA than at high NOX conditions (>50 ppbv and up to ~1 ppmv)  134 
(Camredon et al., 2007; Chhabra et al., 2010; Loza et al., 2014; Ng et al., 2007; Zhang et al., 2014). The consensus 135 
seems to be that at low NOX conditions such as those found in remote continental or marine regions the peroxy radical 136 
(RO2) – formed immediately after the reaction of the precursor with the oxidant – combines with the hydroperoxy radical 137 
(HO2) or RO2 to form lower volatility hydroperoxides or organic peroxides (Kroll and Seinfeld, 2008). Low NO 138 
conditions in remote regions, and in some cases in urban regions that have recently witnessed dramatic reductions in 139 
NOX concentrations, can promote autooxidation reactions to form extremely low-volatility organic compounds (Ehn et 140 

al., 2014; Praske et al., 2018). At high NOX, or more precisely high NO, conditions such as those found in urban regions 141 
or biomass burning plumes, the RO2 reaction with NO either leads to the formation of alkoxy radicals that can then 142 
fragment the carbon backbone, or to the formation of organic nitrates where both reactions result in more volatile 143 
products (Kroll and Seinfeld, 2008). Most atmospheric models (e.g., CMAQ, WRF-Chem, GEOS-Chem) have 144 
incorporated this knowledge to account for the influence of NOx on the magnitude, composition, and spatial distribution 145 
of SOA.  146 
 147 

In the mostly commonly used scheme (i.e., Henze et al. (2008)), RO2 reacts with HO2 to form ‘low-NO’ SOA or with 148 
NO to form ‘high-NO’ SOA. The HO2:NO ratio determines the branching ratio for RO2 and controls the SOA formed 149 
under varying NOX levels. The SOA yields under the low and high NOX conditions are parameterized based on chamber 150 
data gathered under low and high NOx conditions respectively. Despite being widely implemented, this scheme has one 151 
key limitation that might tend to bias the NOX-dependent predictions of SOA. This scheme relies on an accurate 152 
prediction of NO and HO2 to determine the branching ratio for the RO2 radical. Although NO predictions can be 153 
validated against routine measurements and most chemical mechanisms seem to predict NOX (NO+NO2) within a factor 154 

of 2, there are very few ambient data to validate model predictions of HO2. For example, as will be shown later, we find 155 
that predictions of HO2 concentrations from the use of a typical gas-phase chemical mechanism (SAPRC-11) in a 3D 156 
model at Pasadena, CA were almost an order of magnitude lower when compared against measurements at the same 157 
site in 2010 (Griffith et al., 2016). In this case, underpredicting HO2 concentrations by an order of magnitude could shift 158 
the scheme to produce most of the SOA via the high NO pathway. In contrast, box models that have used the regional 159 
atmospheric chemistry mechanism (RACM) have shown good model-measurement comparisons for HO2 160 
concentrations in polluted regions (Griffith et al., 2016; Hofzumahaus et al., 2009). Regardless, gas-phase chemical 161 
mechanisms that use the aforementioned scheme need to ensure accurate predictions of HO2 and NO concentrations to 162 

simulate the influence of NOX on SOA formation. 163 
 164 
In this work, we update the organic aerosol model in the UCD/CIT chemical transport model to include a semi-volatile 165 
and reactive treatment of POA, emissions and SOA formation from IVOCs, the NOX influence on SOA formation, and 166 
SOA parameterizations for SVOCs and IVOCs that are corrected for vapor wall loss artifacts during chamber 167 
experiments. All of these updates are implemented in the statistical oxidation model (SOM) that simulates the oxidation 168 
chemistry, thermodynamics, and gas/particle partitioning of OA. Model inputs for POA and IVOCs are based on an 169 

interpretation of a comprehensive set of source measurements and resolved broadly by the source type. The NOX 170 
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influence on SOA formation is calculated offline based on measured and modeled VOC:NOX ratios and NOX 171 
concentrations. And finally, the SOA formation from SVOCs and IVOCs is modeled based on recently derived 172 
parameterizations that account for vapor wall loss artifacts in chamber experiments. Building on our earlier work (Cappa 173 
et al., 2016; Jathar et al., 2015, 2016), these updates within the framework of the SOM have improved the representation 174 

of OA in a chemical transport model.  175 
 176 
To help the reader, we provide a brief overview of the different sections in this manuscript (section numbers in 177 
parentheses). Section 2 discusses details of the chemical transport model (2.1), organic aerosol model (2.2), simulations 178 
performed (2.3), and measurements used for model evaluation (2.4). In Section 3, we first describe the emissions (3.1), 179 
spatial distribution (3.2), and precursor contributions to OA (3.3), followed by the influence of vapor wall losses (3.4) 180 
and NOX (3.6) on SOA formation. In the same section, we describe results from sensitivity simulations performed on 181 
the most sensitive inputs (3.5). Next, we compare model predictions of SOA precursors (4.1), OA (4.2), POA, and SOA 182 

(4.3) mass concentrations, and OA elemental composition (4.4) against measurements in southern California. Finally, 183 
we highlight key findings from this work in the summary and discussion section (5). 184 
 185 

2 Methods 186 

2.1 Chemical Transport Model 187 

We used the UCD/CIT regional chemical transport model (Kleeman and Cass, 2001) to simulate the emissions, 188 
transport, chemistry, and deposition of air pollutants over the state of California at a grid resolution of 24 km and over 189 
southern California (see Fig. S1) using a nested 8 km grid from 20th July to 2nd August 2005. The results and analysis 190 
were focused on model predictions over Southern California because the region, with approximately 15 million people, 191 

is home to one of the most polluted cities in the United States (Los Angeles; ALA (2017)). The time period for simulation 192 
was primarily chosen because the model has been previously evaluated for this time period (Jathar et al., 2016) and 193 
applied to examine important sources and formation pathways of OA (Cappa et al., 2016; Jathar et al., 2015, 2016, 194 
2017b). The recent literature describes the latest version of the UCD/CIT model but we provide a very brief description 195 
of the models and inputs used in this work. Anthropogenic emissions for California were developed using the California 196 
Regional PM10/PM2.5 Air Quality Study (CRPAQS) inventory of 2000 but scaled to match conditions in 2005. Wildfire 197 
emissions were based on the model FINN (Fire Inventory for National Center for Atmospheric Research) (Wiedinmyer 198 
et al., 2011) although they were not found to significantly contribute to OA during the simulated time period (Docherty 199 

et al., 2011). Biogenic emissions were based on the model MEGAN (Model of Emissions of Gases and Aerosols from 200 
Nature) (Guenther et al., 2006). The Weather Research and Forecasting (WRF) v3.4 model (www.wrf-model.org) was 201 
used to produce hourly meteorological fields. National Center for Environmental Protection’s NAM (North American 202 
Mesoscale) analysis data were used to set the initial and boundary conditions for WRF. The gas- and particle-phase 203 
initial and hourly varying boundary conditions were based on the results from the global model MOZART-4/NCEP 204 
(Emmons et al., 2010). The gas-phase chemistry was modeled using SAPRC-11 (Carter, 2010). 205 

 206 

2.2 Organic Aerosol Model 207 

2.2.1 Statistical Oxidation Model (SOM) 208 

In this work, we use the Statistical Oxidation Model (SOM) developed by (Cappa and Wilson, 2012). The SOM is a 209 

semi-explicit and parameterizable model that simulates the oxidation chemistry, thermodynamics, and gas/particle 210 
partitioning of OA and its precursors. The SOM has been used to model SOA formation in chamber (Cappa et al., 2013; 211 
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Cappa and Wilson, 2012; Zhang et al., 2014) and flow reactor (Eluri et al., 2017) experiments. and was recently coupled 212 
with SAPRC-11 (gas-phase chemical mechanism) in the UCD/CIT model (Jathar et al., 2015) to investigate the role of 213 
chamber-based vapor wall losses (Cappa et al., 2016) and multigenerational aging (Jathar et al., 2016) on the ambient 214 
SOA burden. In this work, we used an updated version of the SAPRC-SOM model embedded in the UCD/CIT model 215 

that included the POA and IVOC updates described in Section 2.2.2. A detailed description of the mathematical and 216 
numerical formulation of the SOM can be found in earlier literature but a brief description of the SOM framework 217 
follows. The SOM uses a 2-dimensional carbon-oxygen grid to describe and track the evolution of the gas- and particle-218 
phase organic carbon that is known to yield OA. Each grid cell in the SOM represents an organic species with the 219 
molecular formula: CXH2X+2-ZOZ, where X=NC, and Z=NO. This species is expected to capture the average properties 220 
(e.g. volatility, reaction rate constants) of species with the same number of carbon (NC) and oxygen (NO) atoms that are 221 
formed from a given SOA precursor. Each species, in the gas and particle phases, is assumed to react with the hydroxyl 222 
radical (OH). Operationally, OH is not consumed within the SOM as the chemistry captured in the SOM overlaps with 223 

that represented in the gas-phase mechanism (i.e., SAPRC-11). Reactions with the OH radical result in functionalization 224 
or fragmentation of the organic species and the distribution of the reaction products is tracked in the carbon-oxygen 225 
grid. Six precursor-specific adjustable parameters are assigned for each SOM grid: four parameters that define the molar 226 
yields of the four functionalized, oxidized products (Pfunc), one parameter that determines the probability of 227 
functionalization or fragmentation (mfrag) and one parameter that describes the relationship between NC, NO and volatility 228 
(ΔLVP). In the model, the probability of fragmentation is modeled as a function of the O:C ratio since species with 229 
higher O:C ratios have been shown to fragment much more easily than species with lower O:C ratios (Chacon-Madrid 230 

and Donahue, 2011). All SOM species properties (e.g., OH reactivity, volatility) are described in terms of NC and NO. 231 
  232 
Seven SOM grids were used to represent SOA formation from nine different precursor classes: (i) long alkanes, (ii) 233 
benzene, (iii) high-yield aromatics, (iv) low-yield aromatics, (v) isoprene, (vi) monoterpenes, (vii) sesquiterpenes, (viii) 234 
semi-volatile POA (SVOC), and (ix) IVOCs. Long alkanes as a precursor class includes linear, branched, and cyclic 235 
alkanes roughly up to a carbon number of C13 and represent they speciated alkanes present in existing emissions 236 
inventories. These long alkanes are distinct from the alkanes that might be present in SVOC and IVOCs. High-yield and 237 

lower-yield aromatics include all speciated aromatic compounds present in existing emissions inventories and, similar 238 
to the long alkanes precursor class, are distinct from the aromatics that might be present in SVOC and IVOCs. Classes 239 
(i) through (vii) have been included in previous applications of the SOM and we refer the reader to our earlier 240 
publications for more details (Cappa et al., 2016; Jathar et al., 2015, 2016). Classes (viii) and (ix) were included in this 241 
work for the first time. The SOA formation from monoterpenes and sesquiterpenes (classes vi and vii) was modeled in 242 
the same SOM grid since both precursors used the SOM parameter sets for α-pinene. Similarly, the SOA formation 243 
from SVOCs and IVOCs was modeled in the same SOM grid and both used the SOM parameter sets for n-dodecane; 244 
sensitivity simulations were performed using the SOM parameter set for toluene. SOM parameters were determined 245 

from fitting the observed SOA volume produced in chamber experiments, with and without accounting for losses of 246 
vapors to the chamber walls. Details about how the vapor wall losses were modeled are described in Zhang et al. (2014) 247 
and Cappa et al. (2016). Briefly, loss of vapors to the Teflon walls of the chamber was modeled reversibly where the 248 
first-order uptake to the walls was assumed to be 2.5×10-4 s-1 and the release of vapors from the walls was modeled 249 
using absorptive partitioning theory with the Teflon wall serving as an absorbing mass with an effective mass 250 
concentration of 10 mg m-3. Recent work has argued that vapor wall loss rates in Teflon chambers are much higher 251 
(larger than a factor of 5) than those used by Cappa et al. (2016) to derive the SOM parameterizations (Huang et al., 252 

2018; Krechmer et al., 2016; Sunol et al., 2018). The use of a higher wall loss rate will tend to increase SOA aerosol 253 
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mass yields further. This new understanding will need to be considered in the future.  254 
 255 
We used low and high NOx-specific parameter sets to simulate SOA formation separately under low and high NOx 256 
conditions respectively since the current version of the SOM cannot account for continuous variation in NOx. The SOM 257 

parameters used for the nine different classes and seven different grids are listed in Table 1. Parameters for all species 258 
except for isoprene were from Cappa et al. (2016). The parameters for isoprene were from Hodzic et al. (2016) that 259 
included updates for the reactions rate constants for the first generation products from isoprene photooxidation. Jathar 260 
et al. (2016) investigated the influence of oligomerization reactions by allowing irreversible conversion of particle-261 
phase SOM species into a single non-volatile species and found that the oligomerization pathway (as simulated) did not 262 
substantially affect the OA mass concentration in Southern California. Hence, the oligomerization pathway was not 263 
considered in this work. We also did not include the formation of extremely low-volatility organic compounds from 264 
oxidation of SOA precursors such as α-pinene (Ehn et al., 2014) and alkanes (Praske et al., 2018) through autooxidation 265 

pathways, which will very likely be addressed in future versions of the SOM.  266 

 267 

Table 1: SOA precursors and SOM parameters used in this work. VWL=Vapor Wall Loss Corrected, ΔLVP = 268 

change in vapor pressure linked to addition of one oxygen atom, Pfunc = molar yields of species that add 1 to 4 oxygens 269 
per reaction (Pf1 through Pf4), mfrag = exponent influencing the probability of fragmentation. 270 

SOA Precursors SAPRC Species 
/SOM Grid 

SOM 
Surrogate VWL NOx ΔLVP 

Pfunc 
mfrag Reference 

Pf1 Pf2 Pf3 Pf4 

SVOC/IVOC  POA+IVOC n-dodecane/ 
toluene 

No Low 1.54 0.717 0.278 0.0028 0.0022 0.122 
Loza et al. 
(2014) 

High 1.39 0.927 0.0101 0.018 0.0445 0.098 

Alkanes ALK Yes Low 1.83 0.999 0.001 0.001 0.001 2 
High 1.47 0.965 0.001 0.002 0.032 0.266 

Benzene BENZ benzene 
No Low 2.01 0.769 0.001 0.0505 0.180 2.010 

Ng et al. 
(2007a) 

High 1.7 0.079 0.001 0.919 0.001 0.535 

Yes Low 1.97 0.637 0.001 0.002 0.360 0.0807 
High 1.53 0.008 0.001 0.991 0.001 0.824 

High-yield 
aromatics ARO1 toluene 

No Low 1.84 0.561 0.001 0.001 0.438 0.010 
Zhang et al. 
(2014) 

High 1.24 0.003 0.001 0.001 1.010 0.222 

Yes Low 1.77 0.185 0.001 0.002 0.812 1.31 
High 1.42 0.856 0.001 0.002 0.141 4.61 

Low-yield 
aromatics ARO2 m-xylene 

No Low 1.76 0.735 0.001 0.002 0.262 0.010 
Ng et al. 
(2007a) 

High 1.68 0.936 0.001 0.002 0.061 0.010 

Yes Low 2.05 0.102 0.001 0.878 0.019 1.08 
High 1.46 0.001 0.001 0.942 0.056 0.0671 

Isoprene ISOP isoprene 
No Low 2.26 0.973 0.001 0.001 0.026 0.010 

Chhabra et al. 
(2011); Hodzic 
et al. (2016) 

High 1.94 0.952 0.001 0.030 0.016 0.063 

Yes Low 2.25 0.1646 0.5164 0.3012 0.0179 0.0244 
High 1.93 0.988 0.0002 0.0116 0.0009 0.51 

Monoterpenes 
/Sesquiterpenes TRP α-pinene 

No 
Low 1.87 0.001 0.869 0.078 0.053 0.010 

Chhabra et al. 
(2011) 

High 1.62 0.068 0.633 0.275 0.024 0.035 

Yes 
Low 1.97 0.419 0.426 0.140 0.014 0.305 

High 1.91 0.500 0.422 0.070 0.008 0.16 

 271 

 272 

2.2.2 Model Inputs 273 

Semi-Volatile and Reactive POA (SVOC). POA from gasoline, diesel, biomass burning, and food cooking sources was 274 
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treated as semi-volatile and reactive. POA from all other sources (e.g., marine, dust) was assumed to be non-volatile in 275 
all simulations except one where we explored the sensitivity in model predictions to this assumption (see Section 2.3 276 
for more details). Semi-volatile POA was modeled by distributing POA emissions from the emissions inventory in the 277 
SOM grid as hydrocarbon species modeled as linear alkanes, i.e. as species with no oxygen (i.e., CXHY). The 278 

hydrocarbon/linear alkane distribution in the SOM grid was determined by refitting the volatility distributions published 279 
by May and coworkers (May et al., 2013a, 2013b, 2013c) such that the hydrocarbon distribution reproduced the observed 280 
gas/particle partitioning behavior; the hydrocarbon distributions are listed in Table S1. We assumed all on- and off-road 281 
gasoline exhaust POA to have the same hydrocarbon/linear alkane distribution as the volatility distribution determined 282 
by May et al. (2013a) from data for 51 light-duty gasoline vehicles. Almost three-quarters of the light-duty gasoline 283 
vehicles used in May et al. (2013a) were manufactured in or prior to 2005 (the year modeled in this work) and they did 284 
not find the POA volatility distribution data to be sensitive to the model year of the vehicle. Hence, the volatility 285 
distribution used in this work should still be representative of the vehicle fleet in 2005. Based on tests performed on 286 

eight light-duty gasoline vehicles, Kuwayama et al. (2015) found that the POA volatility for their vehicles was consistent 287 
with that determined by (May et al., 2013a) for about half the vehicles but substantially lower for the other half. They 288 
hypothesized that the lower POA volatility could be attributed to fuel oxidation products. The findings of Kuwayama 289 
et al. (2015) suggest that the volatility distribution used in this work may overestimate the evaporation of POA with 290 
dilution. We assumed all on- and off-road diesel exhaust POA to have the same hydrocarbon/linear alkane distribution 291 
as the volatility distribution determined by May et al. (2013b) from data for two medium-duty diesel trucks, three heavy-292 
duty diesel trucks, and a single off-road diesel engine. May et al. (2013b) did not report on differences in the POA 293 

volatility distribution between vehicles that did or did not use a modern emissions control system (diesel particulate 294 
filter (DPF) and/or diesel oxidation catalyst (DOC)). Hence, we assumed that the volatility distribution used here was 295 
still representative of the mostly non-DPF and non-DOC vehicle fleet in 2005. We assumed residential wood combustion 296 
and wildfires to have the same hydrocarbon/linear alkane distribution as the volatility distribution determined by May 297 
et al. (2013c) from a selection of fifteen different fuels. We assumed food cooking to have the same hydrocarbon/linear 298 
alkane distribution as that for wildfires. Recent work suggests that food cooking OA may be significantly less volatile 299 
than wildfire OA (Louvaris et al., 2017; Woody et al., 2016). To examine the influence of this finding, we performed 300 

sensitivity simulations to model the POA from food cooking sources using the volatility distribution of Louvaris et al. 301 
(2017). This work, similar to the most recent implementation in the Community Multiscale Air Quality (CMAQ) model 302 
(Koo et al., 2014; Woody et al., 2016), included a source-resolved treatment of semi-volatile POA that was tied to a 303 
comprehensive set of source measurements. 304 
  305 
The reactive behavior of POA was modeled by assuming that the POA vapors (i.e. SVOCs) (represented as a 306 
hydrocarbon distribution) and their products participated in gas-phase oxidation and formed SOA similar to linear 307 
alkanes and utilized the SOM parameter set for n-dodecane. The surrogate, in this case n-dodecane, only informs the 308 

multi-generational oxidation chemistry of the precursor and the actual compound of interest (e.g., a C15 linear alkane) 309 
can have a different SOA mass yield than that of n-dodecane. The reaction rate constants with OH for the parent 310 
hydrocarbons were assumed to be similar to the carbon-equivalent linear alkane. We should note that the presence of 311 
branched/cyclic alkane and aromatic compounds in the SVOCs would require the use of a higher reaction rate constant 312 
with OH as these compounds are more reactive with OH than carbon-equivalent linear alkanes. The equivalence to 313 
linear alkanes while not perfect was probably a good assumption for gasoline and diesel sources since alkanes account 314 
for a substantial fraction of gasoline and diesel fuel (Gentner et al., 2012) and lubricating oil (Caravaggio et al., 2007) 315 

and are a dominant organic class in both gas- and particle-phase emissions from mobile sources (Brandenberger et al., 316 
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2005; Hays et al., 2017; Schauer et al., 1999, 2002b)(Worton et al., 2014). However, alkanes do not make up a significant 317 
fraction of the gas- and particle-phase emissions from biomass burning (Hatch et al., 2015; Schauer et al., 2001; 318 
Stockwell et al., 2015) or food cooking (Schauer et al., 2002a) and hence it is unlikely that linear alkanes are good 319 
surrogates to model the oxidation of SVOCs from these sources. To test the sensitivity of the model predictions to the 320 

surrogate used to model SOA formation from SVOCs, we ran sensitivity simulations where we modeled the SVOCs as 321 
a mixture of aromatic compounds using the SOM parameter set for toluene (see rationale in Section 2.4). 322 
  323 
Intermediate-Volatility Organic Compounds. We included IVOC emissions from gasoline, diesel, and biomass burning. 324 
We assumed none of the other sources emitted IVOCs for all simulations except one where we explored the sensitivity 325 
in model predictions to this assumption (see Section 2.4 for more details). The IVOC emissions estimates and their 326 
potential to form SOA was based on the work of Jathar et al. (2014). In Jathar et al. (2014), IVOC emissions, defined 327 
as the sum of all unspeciated compounds, were determined as a mass fraction of the total non-methane organic gas 328 

(NMOG) emissions for three different source categories: gasoline vehicles, diesel vehicles, and biomass burning. Here, 329 
the IVOCs, as unspeciated organic compounds, are new SOA precursors added to the emissions inventory and regardless 330 
of their chemical makeup are distinct from the speciated precursors such as long alkanes and aromatics already present 331 
in existing emissions inventories. IVOCs were assumed to be 25% of the NMOG emissions for on- and off-road gasoline 332 
exhaust, 20% of the NMOG emissions for on- and off-road diesel exhaust, and 7% of the NMOG emissions for 333 
residential wood combustion and wildfires. The IVOC:NMOG fractions did not appear to be statistically different for 334 
the gasoline and diesel sources manufactured before or after 2005 and hence those fractions were assumed to be 335 

representative of the source fleet in 2005. No IVOCs were considered for the food cooking source but recent work 336 
suggests that they might play a role in influencing the OA evolution from a multitude of food cooking sources 337 
(Kaltsonoudis et al., 2017; Liu et al., 2017). We assumed that the NMOG emissions in the emissions inventory accounted 338 
for most of the gas-phase organic compound mass that included the IVOCs and hence the addition of IVOC emissions 339 
meant that the non-IVOC emissions had to be reduced to conserve total NMOG mass. Recent literature suggests that 340 
IVOCs could be lost to walls of the sampling hardware (e.g., tubing, bags) (Pagonis et al., 2017) and therefore would 341 
be excluded in the NMOG measurement. Our assumption should result in conservative estimates for the influence of 342 

IVOC emissions on SOA formation.  343 
 344 
Following Jathar et al. (2014), the IVOCs were modeled as a C13 hydrocarbon for those from on- and off-road gasoline 345 
sources and as a C15 hydrocarbon for those from on- and off-road diesel sources and biomass burning. The oxidation of 346 
the IVOC hydrocarbons and their reaction products and the subsequent SOA formation was modeled assuming 347 
equivalence to a linear alkane and used the SOM parameter set for n-dodecane. As mentioned earlier, n-dodecane only 348 
informs the multi-generational oxidation chemistry of the precursor and the actual compound of interest (e.g., a C13 or 349 
C15 linear alkane) can have a different SOA mass yield than that of n-dodecane. The equivalent linear alkane to model 350 

SOA formation from IVOCs in Jathar et al. (2014) was based on fitting the SOA formation observed in chamber 351 
experiments (Gordon et al., 2014a, 2014b; Hennigan et al., 2011) and hence the choice of the hydrocarbon in this work 352 
was experimentally constrained. Jathar et al. (2014) used linear alkanes as a surrogate as the SOA formation from linear 353 
alkanes was well studied when they developed the parameterization and the SOA mass yields increased predictably with 354 
the carbon number of the precursor. Recent application of gas-chromatography mass-spectrometry to combustion 355 
emissions has found that IVOCs are mostly composed of branched/cyclic alkane and aromatic compounds (Gentner et 356 
al., 2012; Koss et al., 2018; Zhao et al., 2016, 2017). So while it would have been more appropriate to model the IVOCs 357 

as an alkane-aromatic mixture, this choice would not have substantially changed the model predictions in the work as 358 
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the SOA formation from this alkane-aromatic mixture would still be constrained to the same chamber experiments. We 359 
will consider the recent detailed speciation work surrounding IVOCs in future applications of this model. In this work, 360 
we also investigated the sensitivity in model predictions to the use of an aromatic compound (i.e., toluene) as a surrogate 361 
instead of an alkane (i.e., n-dodecane) to model SOA formation from IVOCs (see rationale in Section 2.4). 362 

  363 
Recently, Zhao and coworkers (Zhao et al., 2015, 2016) used thermal desorption gas-chromatography mass 364 
spectrometry (TD-GC-MS) to measure IVOC emissions in gasoline and diesel exhaust and speciated/classified the 365 
IVOCs as a mixture of linear, branched, and cyclic compounds resolved by carbon number. We should note that Zhao 366 
et al. (2015, 2016) defined IVOCs as the sum of speciated and unspeciated hydrocarbons roughly larger than a C12 367 
alkane, which was different from the definition adopted by Jathar et al. (2014). In their first paper, Zhao et al. (2015) 368 
found IVOCs to be about 60% of the NMOG mass emissions for tailpipe exhaust from older diesel vehicles/engines 369 
(ones without particle filters or oxidation/reduction catalysts). In this work we used an IVOC:NMOG ratio of 0.2 and 370 

likely underestimated IVOC emissions from diesel sources by a factor of 2.5. Zhao et al. (2015) concluded that the 371 
effective IVOC yield based on their speciation was comparable to the yield of the C15 linear alkane used in this work 372 
but the application of that yield over-predicted the chamber SOA data from Gordon et al. (2014a) by a factor of 1.8; 373 
virtually all of the SOA predicted by Zhao et al. (2016) was from the oxidation of IVOCs. If one assumed that the effects 374 
from lower IVOC emissions (factor of 2.5) were roughly balanced by the use of higher SOA yields (factor of 1.8), then 375 
the SOA formation from diesel sources was probably well represented in our work.  376 
 377 

In their second paper, Zhao et al. (2016) found the IVOCs to be only about 4% of the NMOG mass emissions in gasoline 378 
exhaust but we used an IVOC:NMOG ratio of 0.25 in this work. This suggests that we may be overestimating the 379 
gasoline exhaust IVOC emissions by approximately a factor of six in this work. Based on the speciation performed, 380 
Zhao et al. (2016) estimated that the IVOCs collectively had an SOA yield between 19 and 24% at an OA mass 381 
concentration of 9 µg m-3 (9 µg m-3 was the average end-of-experiment concentration in the chamber experiments of 382 
Gordon et al. (2014a)), which was slightly more than twice the SOA yield for a C13 linear alkane (7-12%) – used to 383 
model gasoline IVOCs in this work – at the same OA mass concentration. However, application of the Zhao et al. (2016) 384 

SOA yields for IVOCs underpredicted the observed chamber SOA formation for newer gasoline vehicles by a factor of 385 
~2. Since IVOC oxidation accounted for slightly less than half of the SOA formed (with the other half coming from 386 
single-ring aromatics), the IVOC SOA yields in Zhao et al. (2016) would need to be tripled to explain the chamber SOA 387 
measurements. If we assumed that the effects from higher IVOC emissions (factor of 6) were approximately balanced 388 
by the use of lower SOA yields (factor of 2×3=6), then the SOA formation from gasoline sources in this work was 389 
probably well represented in our work. To summarize, the IVOC emissions estimates and the surrogates used to model 390 
SOA formation from IVOCs from gasoline and diesel sources in this work, while different from those suggested in Zhao 391 
et al. (2015, 2016), are still consistent with the SOA measurements made by Gordon et al. (2014a, 2014b). In a future 392 

version of the model, we will aim to include the IVOC emissions estimates of Zhao et al. (2015, 2016) and update the 393 
SOA parameterizations accordingly. It is likely that these might slightly alter the spatiotemporal distribution of IVOC 394 
SOA in the modeled domain.  395 

 396 

2.2.3 Modeling the NOX Dependence on SOA Formation 397 

Previous applications of the SOM have simulated SOA under low and high NOX conditions separately since the SOM, 398 
in its current form, cannot model the continuous evolution of SOA under varying NOX conditions using the local 399 
NO/HO2. Predictions from either of these simulations (Jathar et al., 2016) or the average of these simulations (Cappa et 400 
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al., 2016) likely do not accurately characterize the evolution or spatial distribution of SOA since NOX concentrations 401 
exhibit strong spatial variability with higher concentrations in urban (e.g., traffic) and source (e.g., wildfires) regions. 402 
For example, since most precursors have higher SOA yields under low NOX conditions than under high NOx conditions, 403 
the use of an average is expected to overestimate SOA in high-NOX urban areas and underestimate SOA in low-NOX 404 

rural/remote continental areas.  405 
 406 
In this work, we used two different offline techniques to account for the influence of NOX on SOA formation. For both 407 
methods, we assumed that the 3D model predictions based on the low and high NOX SOA parameterizations bounded 408 
the minimum and maximum ambient SOA mass concentrations. Xu et al. (2015) found that the SOA formation from 409 
isoprene photooxidation was maximized at intermediate NOX levels with lower values at the extreme NOX levels, 410 
suggesting that our bounding assumption may not necessarily hold for all precursor species. Presto and Donahue (2006) 411 
found that the SOA from α-pinene ozonolysis under varying NOX conditions could be estimated by interpolating the 412 

SOA formed between the low and high NOX conditions using the VOC:NOX ratio. Hence, in the first method, we used 413 
the VOC:NOX ratios from the low and high NOX chamber experiments as our bounds and used the 3D model predicted 414 
VOC:NOX ratio to interpolate between the minimum and maximum SOA mass concentrations predicted from the low 415 
and high NOX simulations. Previous work (e.g., Camredon et al. (2007), Xu et al. (2015)) has also found SOA formation 416 
to vary along a NOX scale and hence, in the second method, we used NOX concentrations from the low and high NOX 417 
chamber experiments and the 3D model predictions to perform the interpolation. For each method, we performed the 418 
interpolation on the SOA mass concentrations assuming a linear or logarithmic dependence on the VOC:NOX ratios and 419 

NOX concentrations. The linear dependency was chosen for simplicity while the logarithmic dependency was chosen to 420 
mimic the visual trends in SOA and VOC:NOX or NOX reported in previous work and also to produce the highest 421 
response in the SOA formation with NOX. The VOC:NOX ratio and the NOX concentration served as an approximate 422 
surrogate for the HO2:NO ratio used in most atmospheric models to simulate the NOX-dependent SOA formation. The 423 

NOX-adjusted SOA concentrations (𝑆𝑂𝐴$%%) from each precursor at each grid cell were calculated from model 424 

predictions from the low and high NOx simulations using the following equations: 425 
 426 

𝑆𝑂𝐴$%% = 𝑆𝑂𝐴'()'	+,- +
/,0123	45-6/,07897	45-

(;,<:+,-)123	45-6(;,<:+,-)7897	45-
× ((𝑉𝑂𝐶:𝑁𝑂C)DEF$G − (𝑉𝑂𝐶:𝑁𝑂C)'()'	+,-)- (1) 427 

𝑆𝑂𝐴$%% = 𝑆𝑂𝐴'()'	+,- +
/,0123	45-6/,07897	45-

GE)(;,<:+,-)123	45-6GE)(;,<:+,-)7897	45-
× (𝑙𝑜𝑔(𝑉𝑂𝐶:𝑁𝑂C)DEF$G −428 

𝑙𝑜𝑔(𝑉𝑂𝐶:𝑁𝑂C)'()'	+,-)- (2) 429 

𝑆𝑂𝐴$%% = 𝑆𝑂𝐴GEL	+,- −
/,0123	45-6/,07897	45-

(+,-)7897	45-6(+,-)123	45-
× ((𝑁𝑂C)DEF$G − (𝑁𝑂M)GEL	+,N) - (3) 430 

𝑆𝑂𝐴$%% = 𝑆𝑂𝐴GEL	+,- −
/,0123	45-6/,07897	45-

GE)(+,-)7897	45-6GE)(+,-)123	45-
× (𝑙𝑜𝑔(𝑁𝑂C)DEF$G − 𝑙𝑜𝑔(𝑁𝑂C)GEL	+,-) - (4) 431 

 432 

where 𝑆𝑂𝐴GEL	+,Nand 𝑆𝑂𝐴'()'	+,Nare model predictions of SOA from using the low and high NOX parameterizations 433 

respectively, (𝑉𝑂𝐶:𝑁𝑂M)GEL	+,N and (𝑉𝑂𝐶:𝑁𝑂M)'()'	+,Nare the initial VOC:NOX ratios from the chamber 434 

experiments used to develop the low and high NOX SOA parameterizations, (𝑉𝑂𝐶:𝑁𝑂M)DEF$G is the model predicted 435 

VOC:NOX ratio in the model grid cell, (𝑁𝑂M)GEL	+,Nand (𝑁𝑂M)'()'	+,Nare the NOX concentrations from the chamber 436 

experiments used to develop the low and high NOX parameterizations, and (𝑁𝑂M)DEF$Gis the model predicted NOX 437 

concentration in the model grid cell. Equations (1) and (3) assume linear dependence while equations (2) and (4) assume 438 

logarithmic dependence. For the (𝑉𝑂𝐶:𝑁𝑂C)DEF$G ratio, the VOC is the sum of all organic species tracked in the 439 
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SAPRC-11 gas-phase chemical mechanism, including all IVOCs and gas-phase SVOCs. NOX is the sum of NO and 440 

NO2. The (𝑉𝑂𝐶:𝑁𝑂C) ratios and the 𝑁𝑂M concentrations from the chamber experiments used in the equations were 441 

gathered directly from the primary references and are listed in Table 2. When the (𝑉𝑂𝐶:𝑁𝑂M)DEF$G or (𝑁𝑂M)DEF$G 442 

values were lower or higher than the chamber values in Table 2, the SOA formation was set to model predictions from 443 
the bounding simulations.  444 
 445 
Table 2: Low and high VOC:NOx ratios in ppb ppb-1 from chamber experiments used to model the influence of NOX on 446 
SOA formation.  447 

SOM 
surrogate 

(𝑉𝑂𝐶:𝑁𝑂C)GEL	+,-
 (𝑁𝑂M)GEL	+,N (𝑉𝑂𝐶:𝑁𝑂C)'()'	+,- (𝑁𝑂M)'()'	+,N Reference 

n-dodecane 17.0& <2 ppbv 0.09 343 Loza et al. (2014) 
benzene 207& <2 ppbv 1.98 169 Ng et al. (2007a) 
toluene 46.3&* <0.8 ppbv 0.76* 50 Zhang et al. (2014) 
m-xylene 12.1&# <2 ppbv 0.10 943 Ng et al. (2007a) 
isoprene 24.5& <2 ppbv 0.29 937 Chhabra et al. (2010) 
α-pinene 33.1& <2 ppbv 0.05 844 Chhabra et al. (2010) 
&minimum VOC:NOx ratios since these assume a NOX concentration of 0.8 ppbv in the chamber 448 
*average of six experiments performed by Zhang et al. (2014) 449 
#average of two experiments performed by Ng et al. (2007a) 450 
 451 
We acknowledge that this approach to modeling the NOX influence on SOA formation is limited and is sensitive to the 452 
following assumptions: (i) the VOC:NOX ratio plus NOX concentration is a good proxy to model the HO2:NO ratio and 453 
the branching between low and high NOX SOA formation, (ii) the low and high NOX chamber experiments for a 454 

particular precursor bound the minimum and maximum SOA formed, (iii) the SOA response between the low and high 455 
NOX levels varies linearly or logarithmically with VOC:NOX ratios/NOX concentrations, and (iv) the model predicted 456 
VOC concentrations at each grid cell, summed across a mixture of organic compounds, are analogous to the initial VOC 457 
concentrations from the chamber experiment to calculate VOC:NOx ratios. There are few experimental data to test these 458 
assumptions and these need to be investigated in future work. In addition to modeling the influence of NOX on ambient 459 
SOA concentrations, this approach allowed us to explore the influence of reductions in NOX emissions and 460 
concentrations on ambient OA concentrations in the future. 461 

2.3 Simulations 462 

Table 3: Names and descriptions of the simulations performed in this work 463 

No. Name Semi-volatile & 
Reactive POA (SVOC) IVOC Vapor Wall Losses for 

SVOC, IVOC, and VOC  Additional Details 

1 Traditional No No No Same as model of Cappa et al. (2016) 
2 SVOC Yes2 No No - 
3 IVOC Yes2 Yes No - 
4 Base 

Yes2 Yes Yes 

Base case model used in this work 

5 - SVOCmax
1 SVOCs modeled as per diesel 

parameterization 

6 - IVOCmax
1

 
IVOCs modeled as per diesel 
parameterization 

7 - No-Aging1 No multi-generational aging 

8 - VOCspec
1

 
VOC speciation from May et al. 
(2014) 

9 - Aromatic1 S/IVOCs modeled using the toluene 
parameterization 

10 - SVOCcooking
3 Yes3 SVOCs from food cooking modeled 
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using the volatility distribution of 
Louvaris et al. (2017).  

1Same as the Base simulation but with differences noted in the ‘Additional Details’ section. 2Assumes volatility of food 464 
cooking POA to be similar to volatility of biomass burning. 3Uses measured volatility of food cooking POA. 465 
 466 
The Base simulation – representing our most comprehensive simulation – included the updates described in Section 467 
2.2.2; a source-resolved semi-volatile and reactive treatment of POA, source-resolved SOA formation from SVOCs and 468 

IVOCs, and correction of the subsequent SOA formation for vapor wall losses in chambers. The Base simulation 469 
included sub-simulations at two resolutions (24 km and 8 km) with two NOX parameterizations (low and high NOX).  470 
  471 
Additional simulations were designed and performed with two objectives in mind: (i) to examine the influence of each 472 
update included in this work and (ii) to test the sensitivity in model predictions to uncertainties inherent in the updates 473 
and other model inputs. A set of four simulations were performed to systematically study the influence of model updates. 474 
These included the following simulations where only one update (as underlined) was made over the previous 475 
configuration: (1) Traditional – Non-volatile POA, no IVOCs, SOA from VOCs, and no correction for chamber vapor 476 

wall losses, (2) SVOC – Semi-volatile POA, no IVOCs, SOA from SVOCs and VOCs, and no correction for chamber 477 
vapor wall losses, (3) IVOC – Semi-volatile POA, IVOCs, SOA from SVOCs, IVOCs, and VOCs, and no correction 478 
for chamber vapor wall losses, and (4) Base – Semi-volatile POA, IVOCs, SOA from SVOCs, IVOCs, and VOCs, and 479 
correction for chamber vapor wall losses. Successive differences in model predictions between the Traditional, SVOC, 480 
IVOC, and Base simulations were used to systematically examine the influence of the semi-volatile and reactive POA, 481 
IVOCs, and chamber vapor wall losses respectively.  482 
  483 

A set of six simulations were performed to study uncertainties in model inputs. The SVOCmax simulation (5) assumed 484 
that POA from all sources (all POA except marine POA) was semi-volatile and modeled using the volatility distribution 485 
for diesel exhaust POA. Diesel POA was chosen since it was the most volatile of the volatility distributions used in this 486 
work. This simulation bounded the maximum loss in POA mass to evaporation. The IVOCmax (6) simulation assumed 487 
that all sources (combustion and non-combustion except biogenic sources) emitted IVOCs, which were estimated using 488 
an IVOC:NMOG ratio of 0.2 and allowed to form SOA equivalent to a C15 alkane. This simulation provided an upper 489 
bound estimate to the contribution of IVOCs to ambient SOA although the IVOC emissions and their potential to form 490 
SOA could be even higher than that assumed here. The No-Aging (7) simulation assumed no multi-generational aging 491 

or in other words, the emitted precursor was allowed to react with OH and form four functionalized products with no 492 
further oxidation. This simulation investigated the influence of multi-generational aging on ambient SOA. The VOCspec 493 
(8) simulation updated the VOC speciation for on- and off-road gasoline and diesel vehicles based on a comprehensive 494 
set of measurements performed on an in-use fleet (May et al., 2013a, 2013b). This simulation examined the influence 495 
of updated emissions profiles on the non-IVOC contribution to SOA. The Aromatic (9) simulation assumed that the 496 
oxidation of SVOCs and IVOCs to form SOA was modeled using toluene. There were two reasons for choosing toluene. 497 
First, both mono- and poly-cyclic aromatic compounds are found in gasoline and diesel fuel (Gentner et al., 2012) and 498 

in tailpipe emissions from mobile sources (Zhao et al., 2015, 2016), and oxygenated aromatic compounds such as 499 
phenols, guaiacols, and syringols are found in biomass burning emissions (Schauer et al., 2001; Stockwell et al., 2015). 500 
Second, aromatic compounds, similar to alkanes, have been studied in detail for their potential to form SOA and are 501 
recognized to form more SOA than linear alkanes for the same carbon number. This simulation provided an upper bound 502 
estimate for SOA formation from the oxidation of SVOCs and IVOCs. Finally, the SVOCcooking (10) simulation used a 503 
hydrocarbon/linear alkane distribution based on the measured volatility distribution of Louvaris et al. (2017) to represent 504 
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POA from food cooking sources. This simulation examined the effect a more realistic volatility distribution for food 505 
cooking POA on mass concentrations of POA and SOA from SVOCs.  506 
  507 
The UCD/CIT model was run on the High Performance Computing cluster run by Engineering Network Services at 508 

Colorado State University. Although the number of cores varied based on availability, on average each simulation used 509 
96 cores and required 5 days to execute 19 simulated days. Since each set included four sub-simulations, each simulation 510 
required ~5 days and all simulations in this work required ~180 days of computational time.  511 

2.4 Measurements for Model Evaluation 512 

Model predictions were evaluated against gas-phase measurements of SOA precursors and particle-phase measurements 513 
of OA mass concentrations and composition. Here, we briefly describe the primary measurement data and any post-514 
processing of the data we performed prior to undertaking the model evaluation.  515 
 516 
Gas-phase measurements of SOA precursors were from two different sources. The first source was routine daily-517 
averaged measurements of single-ring aromatics made by the South Coast Air Quality Management District (SCAQMD, 518 
2017) in southern California at three different sites: North Los Angeles, Riverside, and Long Beach. While measurement 519 

data were available at three other sites, data were not available for 2005, our modeled year and hence not included. 520 
These gas-chromatography-based measurements were available every twelfth day and included the following aromatic 521 
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and styrene. Since there was little overlap between the modeled 522 
episode (14 day period over July-August) and available aromatic data, the measurement data were averaged over a three 523 
month period in the summer (May 15th to September 15th) and then compared to the episode-averaged model 524 
predictions. The second source was gas-chromatography mass-spectrometry measurements of single-ring aromatics 525 
(Borbon et al., 2013) and IVOCs (Zhao et al., 2014) made at the Pasadena ground site in the months of May and June 526 

of 2010 as part of the CalNex campaign. The single-ring aromatics were measured every hour and included the following 527 
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and styrene. The IVOCs were measured every three hours and 528 
included most of the reduced and oxidized organic species with a carbon number larger than 12. Since these 529 
measurements were from a different time period, we compared campaign-averaged measurements against episode-530 
averaged model predictions.  531 
 532 
Particle-phase measurements were from two different sources as well. The first source was routine daily-integrated 533 

measurements of organic carbon (OC) in southern California from four sites in the Chemical Speciation Network (CSN; 534 
Central Los Angeles, Riverside, Simi Valley, and Escondido) and six sites in the Interagency Monitoring of Protected 535 
Visual Environments (IMPROVE) network (San Rafael, Rubidoux-Riverside, San Gorgonio Wilderness, Joshua Tree 536 
NP, Agua Tibia, and San Gabriel). The CSN is a network of ~50 urban measurement sites across the United States 537 
where pollutant concentrations are typically higher, more variable, and representative of local sources and measurements 538 
are made once every three days. The IMPROVE is a network of ~200 rural/remote continental sites typically located in 539 
national parks across the United States where pollutant concentrations are lower, less variable, and representative of 540 
regional influences and measurements are made once every three days. Over the 14 day episode modeled in this work, 541 

three measurements from the CSN and five measurements from the IMPROVE network were available for comparison. 542 
We used an organic aerosol to organic carbon ratio (OA:OC) of 1.6 to calculate OA at the CSN sites (Docherty et al. 543 
(2011) measured an OA:OC ratio of 1.77 during the SOAR-1 campaign, after correction with the updated calibration of 544 
Canagaratna et al. (2015)) and a ratio of 2.1 to calculate OA at the IMPROVE sites (Turpin and Lim, 2001). The CSN 545 
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data are artifact corrected but we subtracted 0.5 µg m-3 from the calculated OA mass concentrations to blank correct the 546 
data (Subramanian et al., 2004). The IMPROVE data are both blank and artifact corrected. We note that a negative 547 
evaporation artifact has been reported for at IMPROVE sites in the southeast US (Kim et al., 2015) but it is not known 548 
whether such an artifact may be present in this region and no correction has been made. The second source was particle 549 

measurements made at the ground site in Riverside as part of the SOAR-1 campaign during the summer of 2005 550 
(Docherty et al., 2008, 2011). These measurements included hourly-averaged mass concentrations and elemental ratios 551 
of H:C and O:C for OA, and estimates of the POA-SOA split based on results from a positive matrix factorization 552 
analysis.  553 
 554 

3 Results 555 

3.1 POA and SOA Precursor Emissions 556 

Gas- and particle-phase emissions of organic compounds in the 8 km southern California domain, averaged over the 14-557 
day episode, are shown in Figure 1. The 8 km domain, shown in Figure S1, includes the entire Los Angeles metropolitan 558 
statistical area, parts of the Pacific Ocean, and forested areas surrounding the urban area. The emissions are color-coded 559 
by source type and include all species that contribute to direct emissions and atmospheric formation of OA. These do 560 
not include emissions of marine POA since those were calculated inline in the UCD/CIT model. Since the POA 561 

repartitioned between the gas and particle phases after emission, POA was split into POA and SVOC that represented 562 
the particle and gas portions of POA partitioned at an urban OA mass concentration of 9 µg m-3. We chose 9 µg m-3 to 563 
partition POA because the campaign-averaged OA mass concentration at Riverside during SOAR-1 was 9 µg m-3. If 564 
one discounts the POA emissions in the ‘Other’ category (which is mostly made of road, agricultural, and construction 565 
dust), the re-partitioning resulted in about 60% of the POA emitted to evaporate as SVOC vapors; these vapors will 566 
oxidize in the atmosphere to form SOA. As noted earlier, a relatively more volatile treatment compared to that described 567 
in the recent literature suggests that we may have overestimated the POA evaporation from food cooking sources. 568 
Mobile sources accounted for 20% of the POA and 35% of the SVOC vapors and competed with food cooking as an 569 

important source of primary emissions and one which accounted for 15% of the POA and 44% of the SVOC vapors. 570 
IVOC, long alkane, and aromatic emissions were roughly on the same order of magnitude but taken together were 571 
approximately an order of magnitude larger than the POA emissions. This suggests that even at low SOA mass yields 572 
(say <10%), the OA formed from the oxidation of these precursors could quickly exceed direct emissions of POA.  573 
 574 
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 575 

Figure 1: Episode-averaged gas- and particle-phase organic emissions in tons per day over the 8 km southern 576 
California domain resolved by source. POA and SVOC represent the particle- and gas-phase emissions partitioned to 577 
an OA mass concentration of 9 µg m-3. SVOC, IVOC, long alkanes, aromatics, and biogenics represent gas-phase 578 
emissions of precursor species that are modeled to form SOA. We note that recent measurements suggest that POA from 579 
food cooking sources is less volatile than assumed in these results. 580 
 581 

Emissions of total IVOCs were slightly lower than those for long alkanes (by ~30%) and aromatics (by ~40%) but a 582 
factor of 2 higher than the sum of POA and SVOCs. Previously, IVOC emissions have been estimated by scaling POA 583 
emissions by a factor of 1.5 to 4 derived from gas/particle partitioning calculations (Dzepina et al., 2009; Shrivastava et 584 
al., 2008) and from atmospheric measurements (Ma et al., 2017). While our estimate for IVOC emissions are within the 585 
previously used range, our estimates were informed by a broader suite of source measurements, which will help reduce 586 
the uncertainty in IVOC emissions and related SOA formation in atmospheric models. IVOC emissions from mobile 587 
sources were similar to aromatic emissions but twice the long alkane emissions. Hence, we anticipated IVOCs to 588 

contribute meaningfully to the anthropogenic SOA burden. We note that in this work we only considered IVOC 589 
emissions from combustion sources but recent work suggests that volatile chemical products present in sources such as 590 
pesticides, coatings, cleaning agents, and personal care products may be a large source of SVOCs and IVOCs in urban 591 
environments (McDonald et al., 2018).  592 
 593 
Mobile sources – dominated by gasoline use – accounted for a much larger fraction of the anthropogenic SOA precursors 594 
(85% of IVOCs, 27% of long alkanes, and 55% of aromatics) in this study. Hence, mobile source regulation on precursor 595 
emissions from gasoline vehicles (e.g., limits on emissions of unburned hydrocarbons) has and could have a much larger 596 

influence on controlling ambient OA than regulating direct emissions of POA, although this ultimately depends on the 597 
extent of conversion of these species to SOA. Finally, biogenic precursor emissions of isoprene, monoterpenes, and 598 
sesquiterpenes were about a factor of three higher than the combined emissions of SVOCs, IVOCs, long alkanes, and 599 
aromatics and will continue to be an important source of SOA in southern California. However, their impact on urban 600 
OA/SOA will be smaller since these emissions are primarily limited to regions outside the urban areas. 601 
 602 
 603 
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 604 
Figure 2: 14-day averaged model predictions of mass concentrations for OA, POA, SOA, aV-SOA, aS/I-SOA, and bV-605 
SOA in µg m-3 over the southern California domain from the Base simulation. We note that recent measurements 606 
suggest that POA from food cooking sources is less volatile than assumed in these results. 607 
 608 
3.2 Spatial Distribution of OA Concentrations and Bulk Composition 609 

In Figure 2 we plot predictions of the 14-day averaged mass concentrations for OA, POA, SOA, and contributions 610 
from three lumped SOA precursors (long alkanes and aromatics, SVOC and IVOCs, and biogenic VOCs) from the 611 
Base case simulation. We used the terminology developed by Murphy et al. (2014) to describe the SOA from the 612 
different sources. To reiterate, the Base case simulation included a semi-volatile treatment of POA, SOA formation 613 
from oxidation of SVOCs, IVOCs, and VOCs, multi-generational aging, and SOA parameterizations that accounted 614 

for the influence of chamber vapor wall losses. The mass concentrations in Figure 2 account for SOA formation under 615 
varying NOX levels as per equation 2 (logarithmic dependence on the VOC:NOX ratio). We chose equation 2 because 616 
it produced the highest SOA mass concentrations and presented an upper bound on SOA formation.  617 
 618 
The highest OA mass concentrations were found in three general regions: the densely-populated Los Angeles-Orange-619 
Riverside County region likely attributed to heavy transportation emissions, along the coast as a result of sea spray 620 
emissions, and in biogenic VOC dominated areas. In central Los Angeles (grid cell containing the CSN site), OA 621 

accounted for 38% of the modeled non-refractory PM2.5 mass concentration with 20, 25, and 18% contributions from 622 
sulfate, nitrate, and ammonium aerosol. A sensitivity simulation that turned emissions of marine POA off suggested 623 
that the marine POA mass concentrations in central Los Angeles were ~0.9 µg m-3, which were considerably higher 624 
than the coastal measurements made during CalNex in 2010 (Hayes et al., 2013). Measured mass concentrations of 625 
POA over the open ocean west of California were ~0.2 µg m-3 during CalNex in 2010 and it was expected that these 626 
mass concentrations would be substantially lower by the time they were transported to central Los Angeles (Hayes et 627 
al., 2013). Sea spray emissions in the UCD/CIT model are based on the parameterization of Gong et al. (2003) and 628 
may need to be revisited in the future.  629 

 630 
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The broader spatial trends of OA, POA, and SOA were in line with results from earlier chemical transport model 631 
studies that have treated POA as semi-volatile and modeled SOA formation from SVOCs and IVOCs (Ahmadov et 632 
al., 2012; Jathar et al., 2017a; Koo et al., 2014; Robinson et al., 2007; Tsimpidi et al., 2010). POA mass 633 
concentrations were highest in upwind (e.g., 3.4 µg m-3 in central Los Angeles) and lower in downwind (e.g., 2.7 µg 634 

m-3 in Riverside) locations as the POA emissions that were transported away from the source region evaporated with 635 
dilution. SOA mass concentrations, in contrast to POA, had a more regional presence with lesser differences between 636 
the upwind and downwind regions (e.g., 2.4 µg m-3 in Riverside versus 2.2 µg m-3 in central Los Angeles) or in 637 
regions with high emissions of biogenic VOCs (e.g., 2.5 µg m-3 inside the Los Padres National Forest). To assess the 638 
relative contribution of POA and SOA to total OA, we plot the POA:SOA ratio in Figure S2, which suggests a 639 
POA:SOA ratio of ~1.6 in near-source regions and lower elsewhere, e.g., ~0.4, 0.8, and 1.2 in representative marine, 640 
biogenic-dominated, and urban downwind regions. These POA:SOA splits qualitatively aligned with the hydrocarbon-641 
like and oxygenated organic aerosol (HOA and OOA) splits estimated in aerosol mass spectrometer datasets in urban 642 

locations worldwide (Jimenez et al., 2009; Zhang et al., 2007). However, we predict POA:SOA ~1 for Riverside 643 
during SOAR-1, compared to a measured ratio of ~0.25 (Docherty et al., 2008), which indicates that SOA may still be 644 
underestimated in the model.  A comparison of the OA composition predictions with the aerosol mass spectrometer 645 
measurements is described in Section 4.  646 
 647 
Panels (d) through (f) show contributions of three distinct SOA precursor classes to total SOA. Alkane and aromatic 648 
VOCs – included as SOA precursors in most atmospheric models – appeared to contribute a maximum of 1.2 µg m-3 649 

of what we refer to as aV-SOA downwind of the source region. The majority of this aV-SOA (75% ) originated from 650 
aromatic precursors implying that alkane VOCs are unlikely to contribute much to the anthropogenic SOA or total OA 651 
burden in urban areas, consistent with our earlier work (Cappa et al., 2016; Jathar et al., 2016). We note that emissions 652 
inventories typically only include alkane species with carbon numbers less than 12 (Pye and Pouliot, 2012) and longer 653 
alkanes with carbon numbers larger than 12 are included as part of the POA, SVOC, and IVOC emissions. Together 654 
aS-SOA and aI-SOA mass concentrations exhibited a similar spatial pattern over the domain but were substantially 655 
lower than the aV-SOA mass concentrations – reaching a maximum of only 0.5 µg m-3. The lower aS-SOA and aI-656 

SOA mass concentrations were somewhat contrary to earlier work that has argued that SVOCs and IVOCs are an 657 
equal or dominant precursor of anthropogenic SOA when compared to aV-SOA, especially in urban areas (Jathar et 658 
al., 2014, 2017a; Woody et al., 2016). The reason for these lower concentrations can be partially attributed to the 659 
precursor-dependent influence of accounting for vapor wall losses in chamber experiments (probed in greater detail in 660 
Section 3.4). Biogenic SOA or bV-SOA mass concentrations exceeded 3.2 µg m-3 in regions with high biogenic 661 
emissions but were slightly less than 1 µg m-3 in urban regions where the POA mass concentrations were the highest. 662 
Previous work has suggested that the bV-SOA in urban regions is formed outside but later transported to the urban 663 
region (Hayes et al., 2015; Heo et al., 2015). Overall, the averaged results over the urban areas appeared to be split 664 

evenly between POA, anthropogenic SOA (aV-SOA+aS-POA+aI-SOA), and biogenic SOA (bV-SOA). 665 
 666 
3.3 Precursor Contributions to OA and SOA 667 

We examined the absolute OA mass concentrations and precursor contributions to SOA in central Los Angeles across 668 
four different simulations to better understand the effect of successive updates: semi-volatile and reactive POA, 669 
IVOCs, and accounting for vapor wall losses. We chose central Los Angeles (grid cell containing the CSN site) as our 670 
study area as it is representative of an urban location with a large population density and suffers from some of the 671 
poorest air quality in the United States (ALA, 2017); results from the sensitivity simulations in Section 3.5 are also 672 



 

19 
 

discussed at this specific site. Results at other urban locations (e.g., Riverside, Simi Valley) had similar SOA 673 
precursor fractional contributions although the absolute concentrations did vary a little (see Figure S3). In Figure 3, 674 
we plot the 14-day averaged, precursor-resolved OA mass concentrations and precursor contributions to SOA in Los 675 
Angeles from two pairs of four different simulations. The two pairs represent model predictions based on the low and 676 

high NOX parameterizations.  677 
 678 
Semi-volatile and Reactive POA. Differences in the Traditional and SVOC simulations were used to highlight the 679 
influence of including a semi-volatile and reactive treatment of POA. The semi-volatile POA treatment resulted in 680 
evaporation of the primary POA emissions from combustion sources (on- and non-road gasoline and diesel, 681 
woodsmoke, biomass burning, and food cooking) and reduced POA mass concentrations by 35% in central Los 682 
Angeles. A ratio of the POA mass concentrations from the SVOC simulation to those from the Traditional simulation 683 
suggested that the POA mass was reduced by approximately 30 to 50% in the urban environment around the central 684 

Los Angeles site (Figure S4). Overall, the POA reductions appeared to be smaller than those implied by the volatility 685 
distributions of May and coworkers (May et al., 2013a, 2013b, 2013c) and those simulated in other atmospheric 686 
models (Robinson et al., 2007). For gasoline, diesel, and biomass burning, May and coworkers (May et al., 2013a, 687 
2013b, 2013c) proposed a 45 to 80% reduction in POA mass concentrations at ambient OA mass concentrations 688 
between 1 and 10 µg m-3. This difference was mainly because we only modeled certain combustion-related POA to be 689 
semi-volatile (i.e., gasoline, diesel, biomass burning, and food cooking sources) while earlier modeling work has 690 
considered POA from all sources to be semi-volatile (e.g., marine, dust). The use of a less volatile and more realistic 691 

food cooking POA than that used in this work (informed by the works of Woody et al. (2016) and Louvaris et al. 692 
(2017)) would tend to further increase the discrepancy between our work and the findings of May and coworkers. Hu 693 
et al. (2014) found that the combustion sources considered to be semi-volatile in this work accounted for about half of 694 
PM2.5 mass concentrations in Los Angeles. The POA mass reductions shown here are conservative and might have 695 
been larger if there was evidence that sources other than those considered here (e.g., marine, dust) produced POA that 696 
was semi-volatile too, although this scenario seems unlikely.  697 
 698 
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  699 
Figure 3: 14-day averaged model predictions of POA and SOA mass concentrations and precursor contributions at 700 
the central Los Angeles site from the sensitivity simulations that examined the influence of updates made in this work. 701 
Panel (a) shows absolute concentrations and panel (b) shows precursor contributions. The legend at the bottom 702 
tracks how the different pathways (i.e., SOA formation from SVOCs, SOA formation from IVOCs, and correction for 703 
chamber vapor wall losses (VWL)) were turned on for the different simulations. Model predictions from the low and 704 
high NOX simulations are shown separately. Model predictions to the extreme right are from accounting for the 705 

influence of NOX on SOA formation using equation 2. We note that recent measurements suggest that POA from food 706 
cooking sources is less volatile than assumed in these results. 707 
 708 
Allowing the POA vapors or SVOCs to react resulted in only a small fraction of their oxidation products to condense 709 
back as aS-SOA. For example, of the 1.75 µg m-3 of POA lost at the central Los Angeles site, only 0.082 µg m-3 for 710 
the low NOX and 0.068 µg m-3 for the high NOX simulations was regained as aS-SOA from oxidation reactions. This 711 
implied a very low chemical conversion efficiency (~4%) for the POA-to-SVOC-to-aS-SOA pump within the urban 712 

area (Miracolo et al., 2010). The SVOCs, at an ambient concentration of 9 µg m-3, from gasoline exhaust, diesel 713 
exhaust, and biomass burning emissions had an average carbon number between 18 and 20. Calculations with a box 714 
model version of the SOM suggested that the SOA mass yields for C18 and C20 alkanes were between 33 and 86% 715 
where the range includes yields for low NOX and high NOX parameterizations. One possible explanation for the 716 
difference between the chemical conversion efficiency in the 3D model and box model yields was that only a small 717 
fraction of the SVOCs had the opportunity to react with OH and form SOA before they were transported out of the 718 
urban area. If we assume that most of the sS-SOA in the grid cell that contains the Los Angeles site was from the 719 
oxidation of SVOCs released in that grid cell and from grid cells that are up to two grid cells away, our results do not 720 
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appear unrealistic. For example, for an SOA precursor with an OH reaction rate constant of 2.4×10-11 cm-3 molecules-1 721 
s-1 (average value from a C18 and C20 linear alkane) and an SOA mass yield of 60% (average from the SOA mass yield 722 
range described earlier for a C18 and C20 linear alkane), the chemical conversion efficiency would be 3.5-15% with a 723 
daily-averaged OH concentration of 1.5×106 molecules cm-3 and a reaction time of 0.5-2.3 hours. A reaction time of 724 

0.5 to 2.3 hours corresponds to a transport of 2.5 (half a grid cell) and 12.5 (2.5 grid cells) miles at an average wind 725 
speed of 5.4 miles per hour (Weather Spark).   726 
 727 
The low and high NOX parameterizations had little effect on the aS-SOA mass concentrations presumably because the 728 
n-dodecane based parameterization used for semi-volatile POA exhibited marginal differences in SOA production 729 
under low and high NOX environments (Loza et al., 2014). Finally, SOA parameterizations based on including the 730 
vapor wall loss effect only marginally increased the aS-SOA mass concentrations, especially when viewed in light of 731 
the SOA increases from other precursors. We examine the precursor-resolved vapor wall loss effect in more detail in 732 

Section 3.4. For the Base simulations, the aS-SOA mass concentrations were a factor of 10 and 2 lower than the aV-733 
SOA mass concentrations for the low and high NOX parameterizations respectively.  734 
 735 
IVOC. Differences in the SVOC and IVOC simulations were used to determine the influence of including SOA 736 
formation from IVOCs. For both the low and high NOX simulations, IVOCs contributed marginally to the aI-SOA 737 
mass concentrations in Los Angeles (~0.045- µg m-3) and elsewhere too (see Figures S3 and S4). The aI-SOA mass 738 
concentrations were about half of the aS-SOA mass concentrations for both the low and high NOX simulations. When 739 

compared to the aV-SOA mass concentrations, the aI-SOA mass concentrations were slightly lower for the high NOX 740 
simulations (~40%) but about a factor of five lower for the low NOX simulations. The inclusion of vapor wall losses 741 
seemed to make aI-SOA as or more important than aS-SOA but still less important than aV-SOA; the aI-SOA mass 742 
concentrations were a factor of 3.3 and 2.9 lower than the aV-SOA mass concentrations for the Base simulations for 743 
the low and high NOX simulations respectively. Our simulations imply that IVOCs might be as influential as SVOCs 744 
as a bulk class of SOA precursors but they were still less important than the traditional SOA precursors (that included 745 
long alkanes and aromatics) in contributing to ambient SOA levels. In this work, the IVOC contribution to SOA was 746 

smaller compared to that from traditional SOA precursors mostly because IVOC emissions were only about a third of 747 
the traditional SOA precursors (see Section 3.1 for details on emissions). So although IVOCs have higher SOA yields 748 
than most of the traditional SOA precursors, the significantly lower IVOC emissions more than offset the increased 749 
SOA formation from higher yields. While there are exceptions (e.g., Tsimpidi et al. (2010); Jathar et al. (2017a)), our 750 
results did not align with previous box (e.g., Dzepina et al. (2009); Hayes et al. (2015); Ma et al. (2017)) and 3D (e.g., 751 
Bergstrom et al. (2012); Zhang et al. (2013)) modeling literature that has found IVOCs to be similar or more important 752 
than traditional SOA precursors in contributing to ambient SOA levels. Below we discuss three main reasons for this 753 
inconsistency. 754 

 755 
First, some previous estimates of IVOC emissions are likely to be less representative of the in-use gasoline- and 756 
diesel-powered sources and unconstrained for biomass burning sources. IVOC emissions in most atmospheric models 757 
have previously been determined by scaling emissions of POA or by calculating partitioning with the measured POA, 758 
with scaling factors typically on the order of 1.5 (e.g., Shrivastava et al. (2008)) but as large as 3 (e.g., Dzepina et al. 759 
(2009)). These factors have been calculated from emissions data from two medium-duty gasoline vehicles built more 760 
than two decades ago and a POA volatility distribution from a small off-road diesel engine (Robinson et al., 2007). 761 

Additionally, since POA is semi-volatile the POA mass in the particle phase will change with OA loading, which can 762 
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complicate the use of a scaling based on POA (but this is addressed by the partitioning method used in some studies). 763 
Zhao et al. (2015) provided some evidence for this where they found that the POA-based scaling did not work that 764 
well for modern diesel vehicles and instead recommended the use of an NMOG-based scaling. We note that Ma et al. 765 
(2017) used the IVOC estimates of Zhao et al. (2015) and still found IVOCs to be comparable to VOCs in terms of 766 

SOA production in the Los Angeles area. Second, the SOA formation from IVOCs in most models to date has not 767 
been experimentally constrained. Most schemes to model SOA formation from IVOCs have relied on an ad hoc aging 768 
scheme where IVOCs and their oxidation products react with the OH radical to form lower volatility products with 769 
ultimate SOA yields of 100% (Robinson et al., 2007). These schemes do not account for fragmentation reactions and 770 
have not been comprehensively validated against experimental data. Jathar et al. (2016) showed that such schemes 771 
may significantly overestimate the net aerosol production from SOA precursors. And finally, most models do not use 772 
SOA parameters that yet account for the effect of vapor wall losses in chamber experiments. This effect and its 773 
particular influence on the IVOC contribution to SOA is discussed in Section 3.4. In this work, we (i) rely on a 774 

comprehensive set of IVOC emissions estimates made from measurements performed on more representative sources, 775 
(ii) model fragmentation reactions during IVOC oxidation, (iii) to some degree constrain SOA formation from IVOCs 776 
with chamber experiments, (iv) to some degree account for the influence of vapor wall losses in chamber experiments, 777 
and (v) include all of the previously mentioned updates in a chemical transport model. Hence, we argue that our 778 
findings on the IVOC contribution to SOA might be more robust than those modeled in earlier studies.  779 
 780 
Traditional VOCs. For the Base simulations in Los Angeles, aromatics accounted for 33% of the total SOA in Los 781 

Angeles and were the most important anthropogenic precursor of SOA. Alkane contributions to SOA were less than 782 
10% for both the low and high NOx simulations. Biogenic VOCs accounted for 46% and 55% of the total SOA for the 783 
low and high NOX simulations respectively and were clearly the most important precursor of SOA at the central Los 784 
Angeles site. After accounting for the influence of NOX based on equation (2), the isoprene, monoterpene, and 785 
sesquiterpene contributions to bV-SOA were 23%, 68%, and 9% respectively, suggesting a strong monoterpene 786 
contribution to SOA in southern California. As biogenic VOCs react very quickly with OH and O3 (chemical lifetimes 787 
of a few hours), most of the biogenic SOA at this site was likely formed outside the urban airshed and transported to 788 

this location, as suggested by Kleeman et al. (2007), Hayes et al. (2015) and Heo et al. (2015). 789 

3.4 Influence of Vapor Wall Losses 790 

SOA parameterizations that accounted for the influence of vapor wall losses in chambers seemed to have had a large 791 

effect on the absolute mass concentrations of SOA. This can be seen by comparing model results between the IVOC 792 
and Base simulations in Figure 3. The SOA mass concentrations were enhanced by a factor of 10.1 and 2.6 for the low 793 
and high NOX simulations respectively and consistent with previous 3D simulations (Cappa et al., 2016). However, they 794 
were slightly higher than the range of enhancements reported by Zhang et al. (2014) and estimated by Krechmer et al. 795 
(2016) based on analyses of chamber data. The SOA enhancements resulted in an OA enhancement of 1.66 and 1.14 in 796 
the low and high NOx simulations, which were lower than the SOA enhancements since SOA only accounted for a 797 
fraction of the OA mass. Differences in enhancements in the low and high NOX simulations suggest that the vapor wall 798 
loss effect was modified by the NOX level where the enhancement may be lower in urban/source regions with higher 799 

NOX but higher in rural/remote continental regions with lower NOX. Since urban SOA mass concentrations are usually 800 
higher than those in rural/remote continental regions, an implication of this NOx-modified enhancement is that 801 
accounting for vapor wall loss artifacts will tend to reduce gradients in SOA mass concentrations between urban and 802 
rural/remote continental regions and make SOA more of a regional pollutant similar to ozone (O3). 803 
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 804 

 805 

Figure 4: Ratio of model predictions from the Base simulation that accounts for the influence of vapor wall losses to 806 
model predictions from the IVOC simulation that does not account for the influence of vapor wall losses. Ratios are 807 
calculated from the 14-day averaged results for the whole domain and are resolved by precursor. Panels (a) and (b) 808 
show results from the low and high NOX simulations respectively.  809 
 810 

Different precursors contributed in varying degrees to the SOA enhancement. The precursor-resolved enhancements are 811 
visualized in Figure 4 where we plot the ratio of the 14-day averaged model predictions of the SOA mass concentrations 812 
from the Base simulation to those from the IVOC simulation for each grid cell in the southern California domain (dots) 813 
and overlay box-whisker plots based on those data. For all precursors the enhancements were higher for the low NOX 814 
simulations compared to the high NOX simulations. SVOCs showed the smallest enhancement at both the low and high 815 
NOX levels (median of 1.6 and 1.2) and hence their fractional contribution to total SOA was reduced in the Base 816 
simulation when compared to the IVOC simulation. Alkanes showed the largest enhancement in the low NOX 817 

simulations (median of 94) and the second largest enhancement in the high NOX simulations (median of 4.5). Despite 818 
the large enhancements, alkanes still contributed marginally to total SOA in the Base simulations because the baseline 819 
contribution of alkanes to SOA was small in the IVOC simulations (<3%). IVOCs exhibited a larger enhancement 820 
(median of 17 and 2.9) compared to SVOCs and a smaller enhancement compared to alkanes in both simulations, despite 821 
using the same surrogate (i.e., n-dodecane) to model SOA formation. The reason for varying enhancements in SVOC, 822 
IVOCs, and alkanes, despite using the same surrogate (i.e., n-dodecane), was that the vapor wall loss-related 823 
enhancement was inversely related to the carbon number where larger carbon number precursors (e.g., SVOC that had 824 

an average carbon number of 18 to 20) showed smaller enhancements and smaller carbon number precursors (e.g., 825 
alkanes that included species between carbon numbers of 6 and 12) showed larger enhancements. The simplest 826 
explanation for this inverse relationship is that larger precursors and their oxidation products, relatively speaking, have 827 
shorter chemical lifetimes and undergo fewer chemical reactions before condensing, which make them less susceptible 828 
to being lost to the walls (see Figure S5 where we plot the vapor wall loss-related enhancement in SOA yields as a 829 
function of the carbon number at an OA mass concentration of 9 µg m-3). Of the two other important precursors, 830 
aromatics displayed the largest enhancement in the high NOX simulations (median of 6.6) and were tied with IVOCs 831 
for the second largest enhancement in the low NOX simulations (median of 16) while biogenic VOCs showed the lowest 832 

enhancement after SVOC in both the low NOX and high NOX simulations. Accounting for vapor wall loss artifacts is 833 
expected to result in an increase in the aromatic contribution to SOA when compared against biogenic VOCs. Vapor 834 
wall loss rates in Teflon chambers might be much higher (~factor of 5) than those used in this work to develop the SOM 835 
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parameterizations ((Huang et al., 2018; Krechmer et al., 2016; Sunol et al., 2018), the use of which will be will tend to 836 
increase SOA mass concentrations even further. This new understanding will need to be considered in the future.  837 

3.5 Sensitivity Analysis 838 

Results from the sensitivity simulations that examined uncertainties in select model inputs are shown in Figure 5 where 839 
we plot the 14-day averaged model predictions from these simulations at the central Los Angeles site. We also plot 840 
model predictions from the Base simulations as all the sensitivity simulations have been performed using the Base 841 
simulation as the reference (see Table 3 for details about the simulations). Model predictions from the low and high 842 

NOX simulations are shown separately. The No Aging simulations decreased the SOA mass concentrations by almost 843 
an order of magnitude demonstrating the importance of modeling multi-generational aging in the SOM. The inclusion 844 
of oligomerization reactions that may enhance the partitioning of semi-volatile species may alter this finding. The No-845 
Aging simulations produced a very different precursor contribution to total SOA compared to the Base simulations and 846 
the changes in the precursor contribution were also different between the low and high NOX simulations. For instance, 847 
the aV-SOA contributions to total SOA increased from 39% to 41% for the low NOX simulations but decreased from 848 
26% to less than 5% in the high NOX simulations. This implied that the treatment of multi-generational aging in the 849 
SOM did not proportionately enhance the SOA mass concentrations from the different precursors but rather produced 850 

varying levels of enhancement for the different precursors that was further modified by the NOX levels. This finding is 851 
of note because CTMs that have employed schemes such as the volatility basis set (VBS) have typically assumed that 852 
multi-generational aging has an approximately similar effect on SOA mass concentrations from different precursors, 853 
regardless of the NOX levels, and one which does not significantly change the precursor contribution to SOA. With the 854 
VBS, one may observe some differences with multi-generational aging from the use of different starting VBS 855 
distributions for SOA from different precursors.  856 
 857 

The SVOCmax simulations that assumed all POA (except marine POA) to be semi-volatile saw POA mass concentrations 858 
decrease by 36% compared to the Base simulations and by 56% compared to the Traditional simulations (not shown 859 
here but inferred from results in Figure 3). The increase in SVOCs from the additional evaporation of POA mass resulted 860 
in about a three-fold increase in the aS-SOA mass concentrations and a proportionate increase in the SVOC contribution 861 
to total SOA. Similar to the findings discussed in Section 3.3, only a fraction of the evaporated POA mass lost was 862 
regained as aS-SOA mass concentrations. For instance, when compared to the Traditional simulations, of the 2.9/3.3 µg 863 
m-3 of POA mass lost 0.32/0.22 µg m-3 was regained as aS-SOA reflecting a chemical conversion efficiency of 11/7% 864 

for the low/high NOX simulations. These simulations predicted the maximum decrease in POA mass concentrations 865 
from treating all POA as semi-volatile and reactive but the results still found POA to be 40% and 69% of the total OA 866 
in the low and high NOX simulations respectively. Direct emissions of POA were still a sizeable fraction of the ambient 867 
OA and PM burden using the current state-of-the-science treatment. 868 
 869 
Estimating IVOCs to be 20% of the NMOG emissions for all combustion sources and modeling the SOA formation 870 
from IVOCs using a C15 linear alkane – as modeled in the IVOCmax simulations – resulted in an approximately four-fold 871 
increase in the aI-SOA mass concentrations over the Base simulations. The increases were partly attributed to additional 872 

IVOC emissions from sources other than mobile and biomass burning (factor of 2.8 compared to IVOC emissions from 873 
the Base simulations) and partly to using a larger alkane (C15 linear alkane) with a higher SOA mass yield to model 874 
SOA formation from IVOCs emitted by gasoline sources. Simulating SOA formation from IVOCs using an aromatic 875 
surrogate in the S-IVOCaromatic simulations had the same effect as the IVOCmax simulations and increased aI-SOA mass 876 
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concentrations by a factor of 2.6/6.3 for the low/high NOX simulations. The aI-SOA mass concentrations were higher 877 
because aromatics for the same carbon number have a higher SOA mass yield than alkanes. The IVOCmax and S-878 
IVOCaromatic simulations potentially present an upper bound contribution of IVOCs to SOA formation and in both these 879 
simulations were ~30% of the total SOA and a factor of ~1.5-2 larger than the aromatic VOC contribution. While the 880 

IVOCmax and S-IVOCaromatic simulations dramatically increased the aI-SOA mass concentrations, these simulations only 881 
modestly increased the total OA mass concentrations over the low and high NOX simulations (average increase of 10%). 882 
Over the urban area, the OA mass concentrations in the IVOCmax and S-IVOCaromatic simulations were on average 10-883 
12% higher compared to the Base simulations (see Figure S6). Updating the emissions profiles based on the work of 884 
May et al. (2014) had a negligible effect on the SOA mass concentrations and its precursor contribution implying that 885 
the emissions profiles from more than a decade and a half ago may be sufficient to model the modern mobile source 886 
fleet. Finally, a lower volatility (i.e., more realistic) POA in the SVOCcooking simulations, informed by the measurements 887 
of Louvaris et al. (2017), resulted in a 20% increase in POA mass concentrations when compared to both the low and 888 

high NOX Base simulations. POA mass concentrations in these low and high NOX simulations accounted for 889 
approximately 55 and 85% of the OA respectively. The SOA mass concentrations between the SVOCcooking and Base 890 
simulations remained the same.  891 

  892 
Figure 5: 14-day averaged model predictions of POA and SOA mass concentrations and precursor contributions from 893 
the sensitivity simulations. Panel (a) shows absolute concentrations and panel (b) shows precursor contributions. 894 
Model predictions from the low and high NOX simulations are shown separately. Simulation legend: Base = Base 895 
case, No Aging = only models first generation chemistry in the SOM, SVOCmax = all POA treated as semi-volatile, 896 
IVOCmax = all combustion sources assumed to have 20% IVOC emissions and a C15 SOA yield, S-IVOCaromatic = 897 
SVOCs and IVOCs modeled as high-yield aromatic compounds, VOCspec = mobile source emissions profiles based on 898 
May et al. (2014), SVOCcooking = POA volatility distribution for food cooking sources based on the measurements of 899 
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Louvaris et al. (2017). All simulations besides SVOCcooking assumed food cooking POA to have the same volatility as 900 
biomass burning POA. More details about these simulation inputs can be found in Section 2.3.  901 

3.6 NOX-Adjusted SOA Formation 902 

The SOM currently does not model the continuous evolution of SOA under varying NOX concentrations. One of the 903 
challenges in modeling the NOX influence on SOA formation has been in quantifying the branching of the VOC 904 
oxidation under low and high NOX conditions. Most commonly used schemes in atmospheric models use the NO:HO2 905 
ratio to determine the initial branching of the precursor to form SOA via the low or the high NOX pathway. However, 906 

this scheme depends on an accurate prediction of NO and HO2. To assess, at least qualitatively, the ability of the model 907 
to capture NO and HO2 concentrations, we compare 14-day averaged diurnal profiles from this work to those measured 908 
in Pasadena in 2010 during the CalNex campaign in Figure S7. We found that the model predictions were within a factor 909 
of two for NO concentrations but were about a factor of 10 lower than the measured HO2

* concentrations. We should 910 
note that the HO2

* measurements included HO2 and a fraction of RO2 radicals,  where RO2 radicals contributed to  ~30% 911 
of the HO2

* measurements (Griffith et al., 2016). The inclusion of RO2 should not change the findings reported here. If 912 
the results from our modeling are representative of results from other atmospheric models that use SAPRC or other gas-913 
phase chemical mechanisms, underestimating the HO2 concentrations may lead NO:HO2 ratio-based schemes to 914 

overestimate the SOA formed via the high NOX pathway. Given this limitation and the fact that the SOM does not model 915 
the model the continuous evolution of SOA under varying NOX concentrations, we attempted to model the NOX-916 
dependent SOA formation using VOC:NOX ratios and NOX concentrations.  917 
 918 
Four different methods – described in equations (1) through (4) – were used to adjust the SOA mass concentrations 919 
from each individual precursor to account for the influence of NOX. To remind the reader, equations (1) and (2) assume 920 
a linear and logarithmic dependence respectively between the SOA mass concentration and the VOC:NOX ratio. 921 

Equations (3) and (4) assume a linear and logarithmic dependence respectively between the SOA mass concentration 922 
and the NOX concentration. The adjusted SOA mass concentrations, referred to as SOAeff, were summed to calculate 923 
the total SOA mass concentrations. Equation (2) produced the highest SOA mass concentrations while equation (3) 924 
produced the lowest SOA mass concentrations amongst the four equations. Scatter plots comparing the SOA mass 925 
concentrations calculated using equation (2) to those calculated using other equations, in Figure S8, show that the SOA 926 
mass concentrations based on equation (2) were, on average, a factor of 1.27, 3.19, and 1.92 higher than those with 927 
equations (1), (3), and (4) respectively. This meant that a calculation based on the VOC:NOX ratio produced a stronger 928 

response of NOX on SOA mass concentrations than the NOX concentrations themselves. In the subsequent sections, 929 
where we evaluate the model predictions (Section 4) and predicted future changes in the OA burden (Section 5), we 930 
used the SOAeff calculations based on equation 2 since they represented an upper bound estimate of the NOX effect on 931 
SOA mass concentrations. The validity of equation 2 needs to be examined in future work.  932 
 933 

 934 
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Figure 6: 14-day averaged ratio of the SOAeff mass concentration to the SOA mass concentration from the (a) high 935 
NOX and (b) low NOX Base simulations. 936 
 937 
In Figure 6, we plot the ratio of the total SOAeff mass concentrations based on equation (2) to the total SOA mass 938 

concentrations from the (a) high NOX and (b) low NOX Base simulations. The SOAeff mass concentrations were higher 939 
than the SOA mass concentrations predicted using the high NOX parameterizations, with an average factor of two 940 
increase in urban areas and a maximum factor of four increase in non-urban areas. This was because the model predicted 941 
VOC:NOX ratios in the urban areas were higher than the VOC:NOX ratios produced in the high NOX chamber 942 
experiments and based on equation (2) the SOA mass concentrations were adjusted upwards to include the SOA 943 
predicted using the low NOX parameterizations. The adjustments increased the SOA mass concentrations because the 944 
SOA mass concentrations from each precursor were universally higher with the use of the low NOX parameterizations 945 
compared to the high NOX parameterizations. The SOAeff mass concentrations were 30-40% lower than the SOA mass 946 

concentrations predicted using the low NOX parameterizations in urban areas, suggesting that the SOAeff mass 947 
concentrations were approximately midway between the SOA predictions using the high and low NOX 948 
parameterizations. In contrast, the SOAeff mass concentrations were only marginally lower (10-20%) in the non-urban 949 
areas implying that the VOC:NOX ratios in these regions were very similar to the VOC:NOX ratios produced in the low 950 
NOX chamber experiments. In summary, a modest fraction of the SOA mass may be formed through the ‘low-NOX’ 951 
pathway in high NOX urban areas, which may result in substantial increases in the predicted SOA mass concentration 952 
when compared against predictions purely based on the use of high NOX parameterizations. This low-NOX SOA will 953 

continue to increase in the future as NOX concentrations are reduced in urban areas through controls on mobile sources. 954 
In contrast, only a small fraction of the SOA mass may be formed through the ‘high-NOX’ pathway in low NOX non-955 
urban areas and the use of a low NOX parameterization in these regions will only marginally bias model predictions of 956 
SOA mass concentrations.  957 
 958 

4 Model Evaluation 959 

Model predictions from the Base simulation were evaluated against gas-phase measurements of SOA precursors and 960 
particle-phase measurements of OA mass concentrations and composition. For the particle-phase measurements, we 961 
focused the model evaluation on predictions adjusted for the NOX influence on SOA formation using equation 2 962 

(logarithmic dependence on VOC:NOX ratio).  963 

4.1 SOA Precursors 964 

In Figure 7(a), we compare 14-day averaged model predictions of aromatic concentrations for our 2005 episode against 965 

measured temporal trends in summer-averaged single-ring aromatic concentrations at three different sites in Southern 966 
California (Los Angeles-North Main Street, Riverside-Rubidoux, and Long Beach) (SCAQMD, 2017); model 967 
predictions of aromatic concentrations are a sum of the benzene, ARO1, and ARO2 concentrations. On the same figure, 968 
we also plot model predictions of aromatic concentrations at Pasadena for our 2005 episode and measured single-ring 969 
aromatic concentrations made at the Pasadena ground site in 2010 as part of the CalNex campaign (Zhao et al., 2014). 970 
The summertime single-ring aromatic concentrations in southern California have decreased by a factor of 2 to 3 between 971 
2000 and 2011 presumably from regulations that have targeted emissions from mobile sources. These reductions agreed 972 
well with reported temporal trends in carbon monoxide, nitrogen oxides, and non-methane organic compounds for Los 973 

Angeles over the same time period (Warneke et al. (2012); MacDonald et al. (2013)). Aromatic measurements at 974 
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Pasadena in 2010 compared well with the 2010 measurements made ~12 km southwest of Pasadena at the Los Angeles-975 
North Main Street location suggesting that the summer/campaign-averaged aromatic concentrations were spatially 976 
homogeneous over urban Los Angeles and findings from the model-measurement comparison at a particular site could 977 
be generalized for the larger modeled domain. The model-measurement comparison for aromatics in 2005 was mixed. 978 

Concentrations were overpredicted by a factor of ~1.5 at the Los Angeles-North Main Street and Long Beach sites but 979 
agreed well with measurements at Riverside-Rubidoux. The predictions might have been overestimated because we 980 
were using an older emissions inventory developed for the year 2000 but adapted for use for the year 2005 based on 981 
activity data (Hu et al., 2015). Another possibility for the over prediction was that the lumped model species ARO1 and 982 
ARO2 in SAPRC-11 also included emissions from oxygenated aromatic (e.g., phenols) and aromatic-like compounds 983 
(e.g., furans) while the measurements were limited to a handful of single-ring reduced aromatic compounds. Despite 984 
differences in the absolute concentrations, the model seemed to capture the measured spatial differences between the 985 
three sites, i.e. Los Angeles-North Main Street > Riverside-Rubidoux > Long Beach.  986 

 987 

 988 
Figure 7: (a) Mass concentrations of single-ring aromatics in southern California at different sites between 2000 and 989 
2011. Measurements show the temporal trend in the summertime mean (solid line) and 10th-90th percentile (bands) at 990 
Los Angeles, Riverside, and Long Beach from 2000 to 2011 (ARB, 2017) and the campaign-averaged measurement 991 
from CalNex at the Pasadena ground site in 2010 (Zhao et al., 2014). Model predictions show the 14-day averaged 992 
concentration simulated in this work at four different sites (solid symbols) in 2005. (b) Mass concentrations of single-993 
ring aromatics and IVOCs compared between the model predictions from 2005 (this work) to measurements in 2010 994 
(Zhao et al., 2014). 995 
 996 

In Figure 7(b), model predictions of aromatics and IVOCs in Pasadena in 2005 are compared against measurements 997 
made at the Pasadena ground site in 2010. The model predictions in Pasadena were calculated by averaging predictions 998 
from the grid cell that contained the Pasadena ground site and the grid cell immediately to the south. This was done 999 
because the ground site location was very close to the cell boundary to the south and the grid cell containing the Pasadena 1000 
ground site included mountains to the north of Pasadena that tended to dilute the concentrations in that grid cell. The 1001 
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measurements in Figure 7(b) included primary IVOCs but did not include the oxygenated IVOCs measured by Zhao et 1002 
al. (2014) since the primary IVOCs, according to the authors, relate most closely to IVOC emissions from mobile 1003 
sources. The IVOCs included in this work were mostly (>95%) from mobile sources (see Figure 1) and the hence the 1004 
comparison with primary IVOCs was appropriate. The model predicted aromatic concentrations at Pasadena in 2005 1005 

were twice the measured aromatic concentrations at Pasadena in 2010. This 2005(modeled)-to-2010(measured) ratio 1006 
was slightly higher but still consistent with the measured 2005-to-2010 ratio in aromatic concentrations at the Los 1007 
Angeles-North Main Street site (1.67). That the 2005(modeled)-to-2010(measured) ratio for IVOCs in Pasadena was 1008 
~1.0 is some evidence that the model predictions of IVOCs might be underpredicted in 2005, assuming that the ambient 1009 
IVOC-to-aromatic ratio did not change between 2005 and 2010. The IVOCmax sensitivity simulation (the only sensitivity 1010 
simulation that modeled an increase in IVOC emissions) predicted a 2005(modeled)-to-2010(measured) ratio of 3.15 1011 
for IVOCs in Pasadena, which was closer to the measured aromatic concentrations ratios between 2005 and 2010 at the 1012 
Los Angeles-North Main Street site. This provides additional evidence for higher IVOC emissions to be included in the 1013 

model and it is possible that these additional IVOC emissions might come from volatile chemical products such as 1014 
pesticides, coatings, cleaning agents, and personal care products (McDonald et al., 2018). While this model-1015 
measurement comparison validates the aromatic SOA precursors and to some extent the mobile source IVOC SOA 1016 
precursors, our model does not account for the oxygenated IVOCs that Zhao et al. (2014) measured and we recommend 1017 
that future work investigate the sources, composition, and the SOA potential for these IVOCs.  1018 
 1019 

 1020 
Figure 8: Model-measurement comparison for daily-averaged OA mass concentrations at (a) CSN and (b) IMPROVE 1021 

sites in southern California. Panel (c) shows the geographic locations where the comparisons were made.  1022 

4.2 OA Mass Concentrations 1023 

Scatter plots comparing model predictions of OA from the Base simulations to (a) CSN and (b) IMPROVE 1024 

measurements in southern California are shown in Figure 8(a) and (b). Predictions from the low and high NOX 1025 
simulations are presented in grey while predictions accounting for the influence of NOX are shown in color. The colors 1026 
denote different sites and the site locations are shown in Figure 8(c). The model-measurement performance is also 1027 
captured using statistical metrics of fractional bias, fractional error, and the coefficient of determination in Table 4. At 1028 
all CSN sites, model predictions of OA that included SOA mass concentrations adjusted for the influence of NOX were 1029 
in-between those predicted between the low and high NOX simulations. As explained earlier, this was because the 1030 
VOC:NOX ratios at all these sites (see Figure S9(a)) were always higher than those in the high NOX chamber experiments 1031 

(see Table 2) and hence the SOA mass concentrations calculated using equation 2 were always higher than those 1032 
predicted in the high NOX simulations. At all the CSN sites, correcting for NOX improved model performance compared 1033 
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to the high NOX experiments but was still inferior compared to the predictions from the low NOX simulations (see Table 1034 
4). The mean predicted OA mass concentration across all the CSN sites was about 30% lower than the measurements 1035 
(5.96 versus 8.86 µg m-3). Model predictions of OA were very similar to those predicted in the low NOX simulations at 1036 
the IMPROVE sites where the VOC:NOX ratios were higher (e.g., San Rafael–green square). But, similar to the finding 1037 

at the CSN sites, model predictions of OA were in-between the predictions between the low and high NOX simulations 1038 
at the IMPROVE sites where the VOC:NOX ratios were lower as a result of their proximity to urban areas (e.g., Agua 1039 
Tibia–blue square and Riverside–brown square). Accounting for NOX seemed to improve the model performance at the 1040 
IMPROVE sites when compared to predictions from the high NOX simulations and were slightly inferior to those from 1041 
the low NOX simulations (see Table 4). Of the 27 IMPROVE measurements available for comparison, 22 or ~80% of 1042 
the model predictions corrected for NOX were within a factor of two of measurements with little bias (fractional bias=-1043 
16.63%). The model skill, captured by the R2 values, for all model simulations at both the CSN and IMPROVE sites 1044 
was quite poor, but still slightly better than that found in earlier work for the southern California region with the CMAQ 1045 

model (Baker et al., 2015). However, the model skill was much worse than that reported in earlier work with CMAQ 1046 
(e.g., Murphy et al. (2017)) and WRF-Chem (e.g., Ahmadov et al. (2012)) over regions other than southern California, 1047 
suggesting that there might be missing emissions sources and/or chemical pathways or meteorological considerations 1048 
that contribute to the poor model skill in southern California.  1049 
 1050 
Given the differences in the model-measurement comparison between the CSN (or urban) and IMPROVE (rural/remote 1051 
continental) sites, the underprediction at the CSN sites might be indicative of a missing urban source or pathway of OA 1052 

formation. Recently, McDonald et al. (2018) found that volatile chemical products such as pesticides, coatings, cleaning 1053 
agents, and personal care products may contribute substantially to IVOC emissions and account for more than half of 1054 
the anthropogenic SOA formation in southern California. Our underprediction at urban sites might be evidence of 1055 
missing SOA from volatile chemical product-related IVOC emissions. However, it is also possible that the urban versus 1056 
rural/remote continental difference is an artifact of how the SOM models the oxidation chemistry and/or accounts for 1057 
the influence of vapor wall losses. Within the CSN and IMPROVE sites, we did not find the model-measurement 1058 
comparison to vary systematically by location. The model-measurement comparison over all of California using the 24 1059 

km simulations produced a similar result (Figure S10). 1060 
 1061 
Table 4: Statistical metrics of averages, fractional bias, fractional error, and R2 for the model-measurement comparison 1062 
in southern California.  1063 

Simulation 

CSN IMPROVE 
Measured 
Average 
(µg m-3) 

Modeled 
Average 
(µg m-3) 

Fractional 
Bias 

Fractional 
Error R2 

Measured 
Average 
(µg m-3) 

Modeled 
Average 
(µg m-3) 

Fractional 
Bias 

Fractional 
Error R2 

Base - 
Low NOx 

8.86 7.96 -31.5% 46.0% 0.16 3.72 4.87 -1.38 % 41.8% 0.116 

Base - 
Effective 8.86 5.96 -53.4% 49.2% 0.13 3.72 4.02 -16.6 % 44.8% 0.079 

Base - 
High NOx 8.86 3.97 -83.1% 83.1% 0.013 3.72 2.00 -74.1 % 75.9% 0.317 

 1064 
Model predictions of the OA:ΔCO diurnal profile and daytime OA versus CO (between 10 am and 8 pm local time) are 1065 
compared against measurements made at the Riverside site during the SOAR-1 campaign in Figure 9(a) and (b); SOA 1066 
mass concentrations have been adjusted for the influence of NOX using equation (2). The ΔCO for the measurements 1067 
was calculated by assuming a background concentration of 105 ppbv (Hayes et al., 2013) while the ΔCO for the model 1068 
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predictions was calculated by using the model predicted background concentration of CO over the ocean to the west of 1069 
Los Angeles. This model-measurement comparison was not completely coincident in time since the model results were 1070 
between July 20 and August 2 while the SOAR-1 campaign spanned from July 15 to August 15. The measurements did 1071 
not point to any substantial differences in results between the coincident and non-coincident time and hence we did not 1072 

anticipate any issues in our comparisons here. The model predictions were able to capture the general trends in the 1073 
measured diurnal profile in Figure 9(a) with low ratios during the night, high ratios attributed to photochemistry in the 1074 
mid-afternoon, and a peak between 1 and 2 pm (local time). However, the modeled OA:ΔCO ratios at all times in the 1075 
diurnal profile in Figure 9(a) and the slope of the OA:CO ratios in Figure 9(b) was approximately a factor of 2 to 3 1076 
lower than the measured ratios, indicating a significant underprediction of urban SOA, which was consistent with the 1077 
much higher POA/SOA ratios predicted by the model compared to the observations, as discussed above. This 1078 
underprediction cannot be blamed on the model grid resolution since a ratio with CO should to first order account for 1079 
the influence of dilution in the grid cell. Cappa et al. (2016) showed much better model performance than this work 1080 

when they assumed a non-volatile POA and SOA formed under low NOX conditions. In this work, despite forming 1081 
additional SOA from SVOCs and IVOCs, the evaporation of the POA mass and an SOA estimate adjusted for NOX 1082 
meant that the model performance was worse in comparison to Cappa et al. (2016). The sensitivity simulations of 1083 
IVOCmax and S-IVOCaromatic produced slightly higher OA mass concentrations (~10-15%) compared to the Base 1084 
simulations but not dramatically different to influence the comparison in Figure 9(a) and (b). As mentioned earlier, SOA 1085 
formation from IVOC emissions from volatile chemical products, or other future improvements in the SOM, have the 1086 
potential to reduce the model underprediction at Riverside during the SOAR-1 campaign.  1087 

 1088 

 1089 
Figure 9: (a) Diurnal profile of the modeled and measured OA/ΔCO ratios at Riverside, CA. The box plots capture the 1090 
10th-25th-50th-75th-90th in model predictions over the simulated episode while the gray bands and solid orange line 1091 
represent the 10th and 90th percentile and median of the measured data. (b) Modeled and measured OA mass 1092 
concentrations plotted against CO concentrations between 10 am and 8 pm local time. The solid and dashed black 1093 
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lines represent lines fitted to the modeled and measured data by forcing the X-intercept to be the corresponding 1094 
modeled and measured background CO concentration. Diurnal profiles of the modeled and measured (c) H:C and (d) 1095 
O:C ratios of the OA (corrected as per Canagaratna et al. (2015)). The three different predictions show results from 1096 
the Base simulations for OA assuming no change, the POA O:C was fixed to 0.078 based on the measurements of 1097 

Docherty et al. (2011), and no POA.  1098 

4.3 POA and SOA Mass Concentrations 1099 

The 14-day averaged results predicted POA and SOA mass concentrations of 3.4 and 2.2 µg m-3 and an approximate 1100 

60:40 POA-SOA split at Riverside. Docherty et al. (2011) estimated average POA and SOA mass concentrations of 1.9 1101 
and 7.0 µg m-3 and a POA-SOA split of 20:80 at Riverside during the SOAR-1 campaign. On an absolute basis model 1102 
predictions of POA mass concentrations were overpredicted by ~80%. A sensitivity simulation that turned sea spray 1103 
emissions off suggested that the 14-day averaged marine POA mass concentrations at Riverside were ~0.8 µg m-3, which 1104 
are very likely to be overestimated (Hayes et al., 2013). If the emissions of marine POA were updated to align better 1105 
with the observations and in the limiting case where the marine POA mass concentrations at Riverside were negligible, 1106 
model predicted POA mass concentrations at Riverside (3.4-0.8=2.6 µg m-3) would compare well with the measured 1107 
values (1.9 µg m-3). As the POA mass concentrations in the SVOCcooking simulations increased and the SOA mass 1108 

concentrations remained the same compared to the Base simulations, a low volatility and more realistic treatment of the 1109 
POA from food cooking sources increased the discrepancy in the modeled and measured POA:SOA ratio at Riverside. 1110 
It is also possible that the model might be over predicting POA because we only considered POA from certain sources 1111 
(gasoline and diesel use, woodsmoke, and food cooking) to be semi-volatile.  1112 
 1113 
Figure 1 shows that more than half of the partitioned POA (that excludes marine POA) in southern California belonged 1114 
to other sources (e.g., road and construction dust) and this POA was treated as non-volatile in the Base simulations. 1115 

Model predictions from the SVOCmax simulations that treated all POA except marine POA as semi-volatile predicted a 1116 
14-day averaged POA mass concentration of 2.1 µg m-3, which was much closer to the measured value of 1.9 µg m-3. 1117 
This suggests that all POA, regardless of source, might be semi-volatile and could be modeled so in atmospheric models. 1118 
While these results are in better agreement with measurements, PM2.5 from road and construction dust sources is not 1119 
created in a high temperature process followed by rapid cooling and so it is unknown whether the POA portion in it 1120 
would evaporate with atmospheric dilution. We also compared the hydrocarbon-like OA (HOA) estimate from the 1121 
measurements, which was more representative of POA from mobile sources, against model predictions of POA from 1122 

mobile sources. We did not model POA from mobile sources separately but if we assumed that mobile sources only 1123 
accounted for about a quarter of the partitioned POA mass in southern California (based on Figure 1), our estimated 1124 
Base model predictions of POA mass concentrations from mobile sources of 0.85 µg m-3 (=3.4×0.25) would compare 1125 
reasonably with the measured HOA mass concentrations of 1.20 µg m-3.  1126 
 1127 
On an absolute basis, SOA mass concentrations were underpredicted by a factor of 3 compared to measurements. Based 1128 
on the discussion in the previous paragraph, if we added the non-mobile source POA to SOA, the net SOA mass 1129 
concentration (3.4×0.75+2.2=4.75 µg m-3) was still 33% lower than the measured value. The SOA mass concentrations 1130 

in the IVOCmax simulations – sensitivity simulations that modeled a fixed IVOC:NMOG ratio of 20% for all sources 1131 
except biogenic sources, assumed IVOCs formed SOA similar to a C15 linear alkane, and which produced the maximum 1132 
SOA mass concentrations amongst all the simulations – were 33% higher than those in the Base simulation but still 1133 
~60% lower than the measured SOA mass concentration of 7 µg m-3. A combination of the two, i.e., adding the non-1134 
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mobile source POA to the SOA formation in the IVOCmax simulations, resulted in a net SOA mass concentration that 1135 
was only 22% lower than the measured SOA value. Since the IVOCmax simulations produced ambient IVOC 1136 
concentrations that were more in line with the measurement trends (see Section 4.1), it is likely that the IVOCmax 1137 
simulations were better in predicting IVOC concentrations and their contribution to SOA. However, there are no bottom 1138 

up (i.e., source) or top down (i.e., atmospheric) data to directly constrain the emissions of and SOA formation from 1139 
IVOCs in the IVOCmax simulations and hence this finding provides motivation for more detailed studies of IVOCs in 1140 
the future.  1141 

4.4 OA Elemental Composition 1142 

The SOM tracks the carbon and oxygen numbers for the OA species and hence we were able to compare model 1143 
predictions of the diurnal profiles for the OA H:C and O:C ratios to measurements made at the Riverside site during the 1144 
SOAR-1 campaign. The comparisons are shown in Figure 9(c) and (d). For the Base simulations (shown as orange box 1145 
plots), model predictions of H:C were significantly overpredicted and those for O:C were significantly underpredicted 1146 
although the predictions did capture dips in the H:C and the peaks in the O:C ratios in the mid-afternoon, coincident 1147 
with peak photochemical activity. The model predictions did not capture the slight increase in H:C and the decrease in 1148 
O:C in the early morning attributed to emissions from rush hour traffic. The high H:C and low O:C predictions were a 1149 

result of OA being dominated by POA (~60%), which in this work was modeled as a hydrocarbon distribution that had 1150 
an H:C slightly larger than 2.0 and an O:C of 0. Docherty et al. (2011) found that POA had a campaign-averaged H:C 1151 
of 1.92 and an O:C of 0.078. If the POA O:C were fixed to the values estimated by Docherty et al. (2011), model 1152 
predictions (shown as blue box plots) improved – as shown in Figure 9(c) and (d) – but still over and under predicted 1153 
the H:C and O:C, respectively; since SOM only tracks carbon and oxygen numbers for an organic species and determines 1154 
the hydrogen number based on the remaining valence, specifying the O:C dictates the H:C. To assess the ability of the 1155 
model to predict the elemental composition of SOA, we plot the diurnal profile of H:C and O:C of the SOA in Figure 1156 

9(c) and (d). Model predictions of SOA H:C and O:C (shown as green box plots) compared well with the measured 1157 
range of values but did not reproduce the diurnal changes. Docherty et al. (2011) argued that the H:C and O:C of OA at 1158 
Riverside was mostly controlled by the SOA composition, which did not change dramatically during the day, and was 1159 
modified by POA at certain times when POA emissions dominated over SOA production (e.g., nights, rush-hour traffic). 1160 
This suggests that if absolute predictions of the SOA mass concentrations and the POA-SOA splits were improved, our 1161 
model would be able to predict both the magnitude and diurnal changes in OA H:C and O:C ratios. We found that the 1162 
SOA H:C and O:C ratio predictions did not vary significantly and produced similarly flat diurnal profiles across a subset 1163 

of sensitivity simulations performed (Figure S11), suggesting that the modeled elemental composition of SOA was not 1164 
very sensitive to the distribution of precursor contributions to SOA.  1165 
 1166 

5 Summary and Discussion 1167 

Organic aerosol (OA) is an important contributor to urban fine particle pollution yet remains one of its most uncertain 1168 
components. In this work, we updated the organic aerosol treatment in the UCD/CIT chemical transport model to include 1169 
a semi-volatile and reactive treatment of POA, emissions and SOA formation from IVOCs, the NOX influence on SOA 1170 
formation, and SOA parameterizations for SVOCs and IVOCs that were corrected for vapor wall loss artifacts during 1171 
chamber experiments. All updates were implemented in the statistical oxidation model (SOM), which simulates the 1172 
multigenerational aging and gas/particle partitioning of organic aerosol and is embedded in the UCD/CIT model (Cappa 1173 

et al., 2016; Jathar et al., 2015, 2016). POA, SVOC, and IVOC updates were based on an interpretation of a 1174 
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comprehensive set of source measurements. The influence of NOX on SOA formation was estimated offline using 1175 
methods based on the VOC:NOX ratios/NOX concentrations. 1176 
 1177 
Despite treating the POA from gasoline, diesel, biomass burning, and food cooking sources as semi-volatile, the updated 1178 

model only predicted a 30-50% decrease in POA mass concentrations in the urban airshed even when the volatility data 1179 
used to simulate POA projected a much larger decrease (45 to 80%). The primary reason for the weaker response was 1180 
that a large fraction of the POA mass came from sources other than those modeled as semi-volatile, e.g., road and 1181 
construction dust, marine. When all POA, except for marine POA, was modeled as semi-volatile, more than 60% of the 1182 
POA mass evaporated and the POA mass concentrations under this scenario compared well with measurements made 1183 
in Riverside, CA as part of the SOAR-1 field campaign. While this sensitivity analysis was informative, it is unlikely 1184 
that the POA from sources such as road and construction dust is semi-volatile and recent measurements suggest that 1185 
POA from food cooking sources has much lower volatility than assumed in the Base simulations in this work.  These 1186 

findings indicate that model predictions continue to overestimate POA relative to measured concentrations. Sea spray 1187 
emissions accounted for a quarter of the POA mass concentrations in the urban airshed but more recent observations 1188 
suggest that the sea spray emissions or the organic fraction attributed to the sea spray emissions might be overestimated 1189 
(Hayes et al., 2013). This needs to be examined in future applications of the UCD/CIT model. Atmospheric oxidation 1190 
of the evaporated POA vapors or SVOCs did not contribute significantly to the SOA burden (<0.1 µg m-3), even after 1191 
accounting for the influence of vapor wall loss artifacts, since the timescales for SOA production appeared to be longer 1192 
than the timescales for transport out of the urban airshed.  1193 

 1194 
We found IVOCs to be more important than SVOCs but less important than traditional VOCs such as single-ring 1195 
aromatics and biogenics in forming SOA. IVOCs accounted for less than 0.5 µg m-3 of SOA while single-ring aromatics 1196 
and biogenics each contributed to approximately 1 µg m-3 in the Base simulations. The IVOC contribution to SOA was 1197 
smaller than that for aromatics partly because IVOC SOA was relatively less sensitive to corrections of vapor wall loss 1198 
artifacts in chamber experiments. Another reason for the small IVOC contribution to SOA was that we only considered 1199 
IVOC emissions from gasoline, diesel, and biomass burning. On analyzing trends in SOA precursor concentrations in 1200 

southern California, the modeled IVOC concentrations in this scenario appeared to be underpredicted by a factor of ~2. 1201 
Allowing all sources that emit non-methane organic gases (NMOG) to emit IVOCs (using an IVOC:NMOG ratio of 1202 
0.2) and form SOA similar to a C15 linear alkane seemed to increase the IVOC contribution to SOA (⅓ of total SOA) 1203 
and produced better comparisons against ambient measurements of IVOC concentrations, OA composition, and SOA 1204 
mass concentrations. This might be indicative of missing IVOC emissions in the model. These missing emissions might 1205 
be from volatile chemical products such as pesticides, coatings, cleaning agents, and personal care products, which have 1206 
been found to contribute substantially to urban SOA burdens (McDonald et al., 2018). It is also likely that the missing 1207 
IVOC emissions are from sources considered in this work (i.e., gasoline, diesel, and biomass burning sources) but were 1208 

not accounted in the emissions inventories because they have been shown to be very easily lost to sampling tubes 1209 
(Pagonis et al., 2017). The IVOCs in this work were modeled using a linear alkane surrogate despite recent evidence 1210 
that IVOCs in combustion emissions are a mixture of branched and cyclic alkanes, aromatics, and oxygenated 1211 
compounds with very few linear alkanes (Koss et al., 2018; Zhao et al., 2016, 2017). A more chemically appropriate 1212 
representation of the IVOCs would not have substantially changed the findings in this work since the linear alkane 1213 
surrogates were chosen to reproduce the SOA formation in chamber experiments performed on combustion emissions. 1214 
However, future work should incorporate the more detailed speciation available to model the emissions and SOA 1215 

formation from IVOCs.  1216 
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 1217 
Loss of vapors to the Teflon walls has been shown to significantly bias SOA formation in environmental chamber 1218 
experiments (Krechmer et al., 2016; Zhao et al., 2014). Cappa et al. (2016) studied the influence of vapor wall loss 1219 
artifacts on ambient SOA mass concentrations from VOC precursors. In this work, we extended the work of Cappa et 1220 

al. (2016) by considering additional precursors of SOA, i.e., S/IVOCs. Correcting for vapor wall loss artifacts seemed 1221 
to increase SOA mass concentrations for all precursors but the enhancement varied by precursor. With a few exceptions, 1222 
the SOA enhancements correlated with carbon number where larger carbon number precursors had lower enhancements 1223 
and vice versa. The reason for this inverse relationship was that larger precursors and their oxidation products have 1224 
shorter chemical lifetimes and undergo fewer chemical reactions to form SOA, which made them less susceptible to 1225 
being lost to the chamber walls. Recent work suggests that the vapor wall loss rates to the Teflon wall might be two or 1226 
more times larger than the rates used in this work to develop the SOM parameters (Huang et al., 2018; Krechmer et al., 1227 
2016). The use of these faster rates will tend to increase the model predicted SOA mass concentrations and help explain 1228 

the underpredictions with ambient measurements.  1229 
 1230 
The emissions inputs and chemical treatment for OA was varied substantially in the sensitivity simulations performed 1231 
in this work. Yet, the simulations seemed to change the OA by less than a factor of 2 suggesting that the model 1232 
framework, except for the treatment of NOX, was generally reasonable in constraining in the total OA mass 1233 
concentrations in southern California. The total SOA enhancement was modified by the NOX level where low NOX 1234 
regions might see higher enhancements compared to high NOX regions. In southern California where urban SOA mass 1235 

concentrations might be higher than rural/remote continental SOA mass concentrations, the NOX-mediated enhancement 1236 
will tend to reduce the spatial gradients in SOA mass concentrations and make SOA a regional pollutant like O3. 1237 
Accounting for the influence of NOX seemed to improve OA model performance against routine measurements in 1238 
rural/remote environments (i.e., Interagency Monitoring of Protected Visual Environments network) where OA model 1239 
predictions were within a factor of 2 with very little bias (e.g., fractional bias of -16.6%). However, model predictions 1240 
of OA at routine monitoring sites in urban environments (i.e., Chemical Speciation Network) and at the Riverside site 1241 
during the SOAR-1 field campaign were still underpredicted by at least a factor of 2 (e.g., fractional bias of -49.2%). 1242 

This suggested a missing emissions or chemical source of OA in urban areas.  1243 
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 1244 
Figure 10: Ratios of 14-day averaged model predictions of (a) OA, (b) POA, (c) SOA, and (d) OH from 2035 to those 1245 
from 2005. The 2035 simulations were performed with 2005 meteorological inputs but scaling the anthropogenic 1246 
emissions for CO, NOX, VOC, PM2.5, SO2, and NH3 based on changes projected by the California Emission 1247 
Projections and Analysis Model (CARB, 2018). 1248 
 1249 
The future OA burden in southern California will depend not only on reductions in POA and SOA precursor emissions 1250 
but also on changes in oxidant concentrations and VOC:NOX ratios. We used the Base model to simulate the same time 1251 

period, July 20 to August 2, for the year 2035 to determine how emissions reductions and atmospheric conditions may 1252 
change in a future year to influence ambient OA-POA-SOA mass concentrations. The same meteorology and 1253 
environmental conditions were assumed, with the understanding that climatological changes in the future may alter the 1254 
findings presented here. Emissions reductions in CO, NOX, VOC, PM2.5, SO2, and NH3 were informed by net reductions 1255 
in statewide emissions between 2005 and 2035 as projected by the California Emission Projections and Analysis Model 1256 
(CARB, 2018). The 2005 inventory was scaled based on these emissions reductions for anthropogenic sources but the 1257 
biogenic emissions and VOC emissions profiles were kept the same. We did not resolve the emissions reductions in 1258 

these pollutants by source or by region since the goal was to examine the general trend in the OA-POA-SOA system 1259 
and not to predict future air quality; heterogeneity in the reduction in pollutant emissions by source and geography may 1260 
alter the results. Statewide emissions reductions in CO, NOX, and VOC of 78%, 83%, and 33% resulted in approximately 1261 
50%, 75%, 75%, and 30% reductions in ambient concentrations of CO, NO, NO2, and VOC in the urban airshed (Figure 1262 
S12 plots the ratio of CO, NO, NO2, and VOC concentrations in 2035 to those in 2005). Here, VOC is the sum of all 1263 
organic species tracked in the SAPRC-11 gas-phase chemical mechanism (excludes methane). Since the NOX reduction 1264 
was much more dramatic than that for VOCs, the VOC:NOX ratio in the urban airshed increased from ~1 to ~5 between 1265 
2005 and 2035, which was in line with recent modeled estimates by Fujita et al. (2016).  1266 
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 1267 
We plot the ratio of the mass concentrations for OA, POA, and SOA in 2035 to those in 2005 in Figure 10(a), (b), and 1268 
(c) respectively. SOA mass concentrations have been adjusted for the influence of NOX using equation 2. POA mass 1269 
concentrations in the urban airshed in 2035 were slightly higher (~5%) than those in 2005 primarily because PM2.5 1270 

emissions were higher in 2035 compared to 2005; according to CEPAM, increases in PM2.5 emissions were mostly from 1271 
increases in area source emissions and not mobile source emissions. Surprisingly, SOA mass concentrations in the urban 1272 
airshed were 30-40% higher in 2035 compared to 2005 despite a 30% reduction in VOC emissions and concentrations. 1273 
Some of the increase in the SOA mass concentrations was from a shifting VOC:NOX ratio that produced more SOA via 1274 
the low-NOX pathway. However, the primary reason for the SOA increase was that OH concentrations in the urban area 1275 
had increased by a factor of 2 to 4 (see Figure 10(d)) and had reacted more of the SOA precursors. The OH 1276 
concentrations were presumably higher in 2035 because lower NOX emissions resulted in a higher OH lifetime since 1277 
the NO2+OH reaction is the primary sink for OH in polluted environments (Jacob, 1999), including the Los Angeles 1278 

area (Griffith et al., 2016). These findings suggest that the SOA and OA mass concentrations may not necessarily 1279 
respond linearly to reductions in VOC and NOX emissions in the future but rather will be strongly influenced by the 1280 
changes in chemical regime. Similarly, Praske et al. (2018) argue that dramatic reductions in NOX emissions and 1281 
concentrations in urban environments may increasingly lead to SOA formation through autooxidation pathways and 1282 
alter the rate and quantity of SOA formed. Hence, attention needs to be paid to appropriately simulate the chemical 1283 
regime (e.g., oxidant concentrations, VOC:NOX ratios, autooxidation reactions) if we are to accurately simulate the 1284 
SOA burden in urban environments in the future.  1285 

 1286 
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