
We thank the reviewer for reading through our response, changes to the manuscript, and the 
additional comments, despite the length of the manuscript and the response to reviewer 
comments. We also thank the editor for being very responsive to our submissions. Like the 
earlier response, reviewer comments are in regular black, our response is in blue, text from the 
manuscript is in red, and additions/updates are in italic magenta. We are happy to include any 
more suggestions that the reviewer and editor have.  
 
(1) It is still hard to extract the "big picture" message from the paper, though this is mitigated to 
some extent by the sheer magnitude of the effort presented in the manuscript. In the response to 
reviews, the authors note 5 main points from this paper. Ideally it would be more like 2-3. 
 
If we had to choose 2 main points that are unique to our work, we would choose the primary 
take-aways to be: (i) S/IVOCs, after accounting for the influence of vapor wall losses, do not 
contribute as much to the SOA burden as traditional VOC precursors (e.g., aromatics), (ii) 
accounting for the influence of NOX may increase SOA mass concentrations in high NOX/urban 
regions, and (iii) updates included in this work seem to improve the model-measurement 
comparison for OA mass and composition in southern California. We have edited the abstract 
slightly (removed sentences) in the hope to sharpen its focus on the three points mentioned 
above. See tracked changes in the revised submission.  
 
 
(2) The entirety of section 4 on model evaluation could be moved to the supporting information. 
This might make the big picture results stand out more, but keeping this section in the main text 
should not hamper publication. 
 
The broad model evaluation undertaken in this work that included comparisons for SOA 
precursors and OA mass and composition is required to understanding the accuracy and 
limitations in modeling OA in chemical transport models. Hence, we have decided to keep this 
section within the main text, despite the length of the manuscript.  
 
 
(3) I think Figure 5 shows an important result that is maybe not stressed enough. The simulations 
in this paper push pretty hard on POA partitioning and SOA formation. Even with all of that 
pushing, the total OA only varies by a factor of ~2 at both high and low NOx. This suggests that 
while there are uncertainties to work out (e.g., I/SVOC emissions and volatility), OA is 
constrained reasonably well. 
 
We thank the reviewer for this insightful comment. We have added the following text to the 
discussion - “The emissions inputs and chemical treatment for OA was varied substantially in the 
sensitivity simulations performed in this work. Yet, the simulations seemed to change the OA by 
less than a factor of 2 suggesting that the model framework, except for the treatment of NOX, was 
generally reasonable in constraining in the total OA mass concentrations in southern 
California.” and the following text to the abstract “The updated model’s performance against 
measurements combined with the results from the sensitivity simulations suggest that the OA 
mass concentrations in southern California are constrained within a factor of two.”.  
 
 
(4) Page 10 describes the IVOC:NMOG ratios applied in the model. The specific ratios used in 



the model differ from Zhao et al's measurements. My understanding is that this is done to tune 
SOA mass formation - the IVOC:NMOG ratio needs to be adjusted to account for the use of a 
single SOA surrogate for each SOM grid. This tuning likely has an impact on model 
transferability in both space and time. If the combustion IVOC emissions mix is either spatially 
or temporally variable, the model may be biased when applied outside of the LA-Riverside 
domain or for predicting future cases. 
 
Yes, the reviewer is correct in that the IVOC:NMOG ratio and the surrogate used to model the 
SOA formation are coupled, i.e., if one were changed, the other would change too to be 
consistent with the chamber data. The two paragraphs on page 10 try to explain the differences in 
the IVOC:NMOG ratios and the SOA parameterizations for IVOCs used in this work to the way 
they were determined and modeled in Zhao et al. (2015, 2016). Overall, the treatment in this 
work and the work of Zhao et al. (2015, 2016) is consistent if we consider median model-
measurement comparison for SOA at the end of the chamber experiment. Both treatments are 
likely to produce differences in the time-dependent evolution of SOA as well as in the relative 
contributions of the different precursors to the total SOA. We have made a quick note about that 
on page 10: “In a future version of the model, we will aim to include the IVOC emissions 
estimates of Zhao et al. (2015, 2016) and update the SOA parameterizations accordingly. It is 
likely that these might slightly alter the spatiotemporal distribution of IVOC SOA in the modeled 
domain.”.  
 
 
(5) I still disagree that volatile chemical products are a major source of IVOCs that could 
produce enough SOA to reach mass closure with measurements. I think this is treated 
appropriately in the text but is stated too strongly in the abstract. 
 
We have removed the volatile chemical product-related hypothesis in the abstract.  
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 14 
Abstract 15 

Semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs) from anthropogenic sources are 16 
likely to be important precursors of secondary organic aerosol (SOA) in urban airsheds yet their treatment in most 17 
models is based on limited and obsolete data, or completely missing. Additionally, gas-phase oxidation of organic 18 
precursors to form SOA is influenced by the presence of nitric oxide (NO), but this influence is poorly constrained in 19 
chemical transport models. In this work, we updated the organic aerosol model in the UCD/CIT chemical transport 20 
model to include (i) a semi-volatile and reactive treatment of primary organic aerosol (POA), (ii) emissions and SOA 21 
formation from IVOCs, (iii) the NOX influence on SOA formation, and (iv) SOA parameterizations for SVOCs and 22 
IVOCs that are corrected for vapor wall loss artifacts during chamber experiments. All updates were implemented in 23 
the statistical oxidation model (SOM) that simulates the oxidation chemistry, thermodynamics, and gas/particle 24 
partitioning of organic aerosol (OA). Model treatment of POA, SVOCs, and IVOCs was based on an interpretation of a 25 
comprehensive set of source measurements available up to the year 2016 and resolved broadly by source type. The NOX 26 
influence on SOA formation was calculated offline based on measured and modeled VOC:NOX ratios. And finally, the 27 
SOA formation from all organic precursors (including SVOCs and IVOCs) was modeled based on recently derived 28 
parameterizations that accounted for vapor wall loss artifacts in chamber experiments. The updated model was used to 29 
simulate a two week summer episode over southern California at a model resolution of 8 km. 30 
 31 
When combustion-related POA was treated as semi-volatile, modeled POA mass concentrations were reduced by 15-32 
40% in the urban areas in southern California but were still too high when compared against “hydrocarbon-like organic 33 
aerosol” factor measurements made at Riverside, CA during the Study of Organic Aerosols at Riverside (SOAR-1) 34 
campaign of 2005. Treating all POA (except that from marine sources) to be semi-volatile, similar to diesel exhaust 35 
POA, resulted in a larger reduction in POA mass concentrations and allowed for a better model-measurement 36 
comparison at Riverside, but this scenario is unlikely to be realistic since this assumes that POA from sources such as 37 
road and construction dust are semi-volatile too. Model predictions suggested that both SVOCs (evaporated POA 38 
vapors) and IVOCs did not contribute as much as other anthropogenic precursors (e.g., alkanes, aromatics) to SOA mass 39 
concentrations in the urban areas (<5% and <15% of the total SOA respectively) as the timescales for SOA production 40 
appeared to be shorter than the timescales for transport out of the urban airshed. Comparisons of modeled IVOC 41 
concentrations with measurements of anthropogenic SOA precursors in southern California seemed to imply that IVOC 42 
emissions were underpredicted in our updated model by a factor of 2. Correcting for the vapor wall loss artifact in 43 
chamber experiments enhanced SOA mass concentrations although the enhancement was precursor- as well as NOX-44 
dependent. Accounting for the influence of NOX using the VOC:NOX ratios resulted in better predictions of OA mass 45 
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concentrations in rural/remote environments but still underpredicted OA mass concentrations in urban environments. 54 
The updated model’s performance against measurements combined with the results from the sensitivity simulations 55 
suggest that the OA mass concentrations in southern California are constrained within a factor of two. Finally, 56 
simulations performed for the year 2035 showed that despite reductions in VOC and NOX emissions in the future, SOA 57 
mass concentrations may be higher than in the year 2005, primarily from increased hydroxyl radical (OH) concentrations 58 
due to lower ambient NO2 concentrations.  59 
 60 

Glossary 61 

OA - Organic aerosol 62 
POA - Primary organic aerosol or direct emissions of organic aerosol 63 
SOA - Secondary OA or organic aerosol formed in the atmosphere 64 
VOC - Volatile organic compound 65 
NMOG - Non-methane organic gas 66 
SVOC - Semi-volatile organic compound 67 
IVOC - Intermediate-volatility organic compound 68 
HOA - Hydrocarbon-like organic aerosol measured by the aerosol mass spectrometer 69 
OOA - Oxygenated organic aerosol measured by the aerosol mass spectrometer 70 
aV-SOA - Anthropogenic SOA formed from VOC oxidation 71 
bV-SOA - Biogenic SOA formed from VOC oxidation 72 
aS-SOA - Anthropogenic SOA formed from SVOC oxidation 73 
aI-SOA - Anthropogenic SOA formed from IVOC oxidation 74 
 75 

1 Introduction 76 

Organic aerosol (OA) is an important yet uncertain component of atmospheric aerosol (Fuzzi et al., 2015; Jimenez et 77 
al., 2009) and has large impacts on air quality, climate, and human health (Pachauri et al., 2014). Combustion sources 78 
such as motor vehicles, biomass burning, and food cooking are significant contributors to atmospheric OA from urban 79 
to regional to global scales (Bond et al., 2004). Yet, in urban environments where combustion emissions are a dominant 80 
source, atmospheric models often underpredict total OA mass concentrations (e.g., Carlton et al. (2010)). Models based 81 
on older parameterizations also predict much lower contributions of secondary organic aerosol in urban areas (e.g., 82 
Volkamer et al. (2006); Jathar et al. (2017a)), and may overemphasize the role of mobile sources (e.g., Ensberg et al. 83 
(2014)), suggesting that combustion-related OA and other urban sources may not be well represented in models. There 84 
is a need to improve the treatment of combustion-related OA in atmospheric models since these improvements will 85 
allow for better predictions of air quality that are needed to mitigate climate and health impacts from anthropogenic 86 
combustion sources, and will facilitate improved understanding of additional potentially missing sources. 87 
 88 
Research over the past decade has made major inroads in understanding the sources and properties of combustion-89 
related OA (Gentner et al., 2017). Combustion sources directly emit organic particles (primary organic aerosol, POA) 90 
and also emit gaseous organic compounds that are oxidized in the atmosphere to form secondary organic aerosol (SOA). 91 
A significant fraction of the combustion-related POA mass is now understood to be semi-volatile, that is material that 92 
exists in a dynamic equilibrium between the vapor and particle phases (Grieshop et al., 2009a, 2009b; Huffman et al., 93 
2009; Kuwayama et al., 2015; Lipsky and Robinson, 2006; May et al., 2013a, 2013b, 2013c; Robinson et al., 2007). 94 
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This POA is formed as vapors in the combustion exhaust cool down to become supersaturated and condense on existing 97 
seed aerosol (Robinson et al., 2010). After emission, some of this POA evaporates with atmospheric dilution since the 98 
aerosol mass available for partitioning decreases as the POA is transported away from source regions. Further, diurnal 99 
changes in temperature leading to changes in the vapor pressure can also cycle POA between the two phases. Both vapor 100 
and particle forms of semi-volatile POA have been shown to photochemically react in the atmosphere to add or remove 101 
organic material from the particle-phase (Miracolo et al., 2010) and become more oxygenated (Kroll et al., 2009), 102 
although the vapors react much faster. In addition, all combustion processes are now believed to include emissions of 103 
an important additional class of SOA precursors: intermediate-volatility organic compounds (IVOCs) (Jathar et al., 104 
2014). Gas-chromatography mass-spectrometry applications have suggested that they are primarily composed of high 105 
molecular weight linear, branched, and cyclic alkanes (carbon numbers greater than 12) and aromatics (Gentner et al., 106 
2012; Zhao et al., 2014, 2017). Model IVOCs have been shown to form SOA efficiently in chamber experiments (Chan 107 
et al., 2009; Lim and Ziemann, 2009; Presto et al., 2010; Tkacik et al., 2012) and have been hypothesized to account for 108 
a large fraction of the SOA formed from the photooxidation of motor vehicle exhaust and biomass burning emissions 109 
(Jathar et al., 2014; Zhao et al., 2017). The emissions and atmospheric properties (e.g., volatility, reactivity, SOA mass 110 
yields) of POA and IVOCs are known (or very likely) to vary by source (e.g., mobile sources versus biomass burning) 111 
and hence atmospheric models need to include a source-resolved treatment to accurately predict source contributions to 112 
OA and fine particulate matter.  113 
 114 
Most commonly used chemical transport models (e.g., CMAQ, CAMx, PMCAMx, WRF-Chem, GEOS-Chem) have 115 
been updated to include a semi-volatile and reactive treatment of POA and emissions and SOA formation from IVOCs 116 
(Ahmadov et al., 2012; Koo et al., 2014; Murphy and Pandis, 2009; Pye and Seinfeld, 2010). However, their 117 
representation in models has been based on limited data and there are major differences between the implementations 118 
in different models. For example, in most models, with a few exceptions (e.g., most recent research version of the OA 119 
model in CMAQ developed by Koo et al. (2014)), the gas/particle partitioning of POA was modeled based on 120 
measurements performed on a small off-road diesel engine from more than a decade ago (Robinson et al., 2007) and 121 
IVOC emissions were based on data gathered from two medium duty diesel vehicles from two decades ago (Schauer et 122 
al., 1999). Models have assumed that these data are representative of emissions from modern diesel-powered sources 123 
and the POA/IVOC properties from diesel sources are similar to those from other sources. New source data are now 124 
available to update POA and IVOC emissions estimates in chemical transport models. Further, the most common 125 
schemes to model SOA formation from POA vapors and IVOCs use a single lumped precursor to simulate SOA 126 
formation from all sources (e.g., Pye and Seinfeld (2010)) or use an ad hoc aging routine that continuously reduces the 127 
volatility of the precursor/oxidation products until they partition into the particle phase (Robinson et al., 2007). While 128 
some of these schemes have been validated against experimental data (Fountoukis et al., 2016; Hodzic and Jimenez, 129 
2011; Murphy et al., 2017; Zhang et al., 2015), most have assumed that all sources have the same rate and potential to 130 
form SOA and, in some cases, ignore fragmentation reactions tied to multigenerational chemistry. Ad hoc aging schemes 131 
can overestimate net aerosol mass yields from an SOA precursor and can sometimes overpredict ambient SOA mass 132 
concentrations too, especially over larger regional scales (Dzepina et al., 2009, 2011; Hayes et al., 2015; Jathar et al., 133 
2016). Recently, a host of studies have quantified the volatility of POA emissions from over 100 unique sources and 134 
measured SOA formation in more than 100 chamber experiments across six broad source classes: on- and off-road 135 
gasoline and diesel sources, wood stoves, and biomass burning (Gordon et al., 2014a, 2014b; Hennigan et al., 2011; 136 
May et al., 2013a, 2013b, 2013c, 2014; Tkacik et al., 2017). These data offer a comprehensive set of measurements to 137 
inform and update the source-resolved semi-volatile and reactive behavior of POA and the emissions and SOA 138 
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formation from IVOCs in atmospheric models.  139 
 140 
SOA formation is strongly influenced by the presence of NOX (Camredon et al., 2007; Chhabra et al., 2010; Loza et al., 141 
2014; Ng et al., 2007b). For most SOA precursors, with the exception of alkanes (Loza et al., 2014) and certain 142 
sesquiterpenes (Ng et al., 2007b), environmental chamber data suggest that the reaction chemistry at low NOx, or more 143 
precisely low NO, conditions (<2 ppbv) produces more SOA than at high NOX conditions (>50 ppbv and up to ~1 ppmv)  144 
(Camredon et al., 2007; Chhabra et al., 2010; Loza et al., 2014; Ng et al., 2007; Zhang et al., 2014). The consensus 145 
seems to be that at low NOX conditions such as those found in remote continental or marine regions the peroxy radical 146 
(RO2) – formed immediately after the reaction of the precursor with the oxidant – combines with the hydroperoxy radical 147 
(HO2) or RO2 to form lower volatility hydroperoxides or organic peroxides (Kroll and Seinfeld, 2008). Low NO 148 
conditions in remote regions, and in some cases in urban regions that have recently witnessed dramatic reductions in 149 
NOX concentrations, can promote autooxidation reactions to form extremely low-volatility organic compounds (Ehn et 150 
al., 2014; Praske et al., 2018). At high NOX, or more precisely high NO, conditions such as those found in urban regions 151 
or biomass burning plumes, the RO2 reaction with NO either leads to the formation of alkoxy radicals that can then 152 
fragment the carbon backbone, or to the formation of organic nitrates where both reactions result in more volatile 153 
products (Kroll and Seinfeld, 2008). Most atmospheric models (e.g., CMAQ, WRF-Chem, GEOS-Chem) have 154 
incorporated this knowledge to account for the influence of NOx on the magnitude, composition, and spatial distribution 155 
of SOA.  156 
 157 
In the mostly commonly used scheme (i.e., Henze et al. (2008)), RO2 reacts with HO2 to form ‘low-NO’ SOA or with 158 
NO to form ‘high-NO’ SOA. The HO2:NO ratio determines the branching ratio for RO2 and controls the SOA formed 159 
under varying NOX levels. The SOA yields under the low and high NOX conditions are parameterized based on chamber 160 
data gathered under low and high NOx conditions respectively. Despite being widely implemented, this scheme has one 161 
key limitation that might tend to bias the NOX-dependent predictions of SOA. This scheme relies on an accurate 162 
prediction of NO and HO2 to determine the branching ratio for the RO2 radical. Although NO predictions can be 163 
validated against routine measurements and most chemical mechanisms seem to predict NOX (NO+NO2) within a factor 164 
of 2, there are very few ambient data to validate model predictions of HO2. For example, as will be shown later, we find 165 
that predictions of HO2 concentrations from the use of a typical gas-phase chemical mechanism (SAPRC-11) in a 3D 166 
model at Pasadena, CA were almost an order of magnitude lower when compared against measurements at the same 167 
site in 2010 (Griffith et al., 2016). In this case, underpredicting HO2 concentrations by an order of magnitude could shift 168 
the scheme to produce most of the SOA via the high NO pathway. In contrast, box models that have used the regional 169 
atmospheric chemistry mechanism (RACM) have shown good model-measurement comparisons for HO2 170 
concentrations in polluted regions (Griffith et al., 2016; Hofzumahaus et al., 2009). Regardless, gas-phase chemical 171 
mechanisms that use the aforementioned scheme need to ensure accurate predictions of HO2 and NO concentrations to 172 
simulate the influence of NOX on SOA formation. 173 
 174 
In this work, we update the organic aerosol model in the UCD/CIT chemical transport model to include a semi-volatile 175 
and reactive treatment of POA, emissions and SOA formation from IVOCs, the NOX influence on SOA formation, and 176 
SOA parameterizations for SVOCs and IVOCs that are corrected for vapor wall loss artifacts during chamber 177 
experiments. All of these updates are implemented in the statistical oxidation model (SOM) that simulates the oxidation 178 
chemistry, thermodynamics, and gas/particle partitioning of OA. Model inputs for POA and IVOCs are based on an 179 
interpretation of a comprehensive set of source measurements and resolved broadly by the source type. The NOX 180 
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influence on SOA formation is calculated offline based on measured and modeled VOC:NOX ratios and NOX 181 
concentrations. And finally, the SOA formation from SVOCs and IVOCs is modeled based on recently derived 182 
parameterizations that account for vapor wall loss artifacts in chamber experiments. Building on our earlier work (Cappa 183 
et al., 2016; Jathar et al., 2015, 2016), these updates within the framework of the SOM have improved the representation 184 
of OA in a chemical transport model.  185 
 186 
To help the reader, we provide a brief overview of the different sections in this manuscript (section numbers in 187 
parentheses). Section 2 discusses details of the chemical transport model (2.1), organic aerosol model (2.2), simulations 188 
performed (2.3), and measurements used for model evaluation (2.4). In Section 3, we first describe the emissions (3.1), 189 
spatial distribution (3.2), and precursor contributions to OA (3.3), followed by the influence of vapor wall losses (3.4) 190 
and NOX (3.6) on SOA formation. In the same section, we describe results from sensitivity simulations performed on 191 
the most sensitive inputs (3.5). Next, we compare model predictions of SOA precursors (4.1), OA (4.2), POA, and SOA 192 
(4.3) mass concentrations, and OA elemental composition (4.4) against measurements in southern California. Finally, 193 
we highlight key findings from this work in the summary and discussion section (5). 194 
 195 

2 Methods 196 

2.1 Chemical Transport Model 197 

We used the UCD/CIT regional chemical transport model (Kleeman and Cass, 2001) to simulate the emissions, 198 
transport, chemistry, and deposition of air pollutants over the state of California at a grid resolution of 24 km and over 199 
southern California (see Fig. S1) using a nested 8 km grid from 20th July to 2nd August 2005. The results and analysis 200 
were focused on model predictions over Southern California because the region, with approximately 15 million people, 201 
is home to one of the most polluted cities in the United States (Los Angeles; ALA (2017)). The time period for simulation 202 
was primarily chosen because the model has been previously evaluated for this time period (Jathar et al., 2016) and 203 
applied to examine important sources and formation pathways of OA (Cappa et al., 2016; Jathar et al., 2015, 2016, 204 
2017b). The recent literature describes the latest version of the UCD/CIT model but we provide a very brief description 205 
of the models and inputs used in this work. Anthropogenic emissions for California were developed using the California 206 
Regional PM10/PM2.5 Air Quality Study (CRPAQS) inventory of 2000 but scaled to match conditions in 2005. Wildfire 207 
emissions were based on the model FINN (Fire Inventory for National Center for Atmospheric Research) (Wiedinmyer 208 
et al., 2011) although they were not found to significantly contribute to OA during the simulated time period (Docherty 209 
et al., 2011). Biogenic emissions were based on the model MEGAN (Model of Emissions of Gases and Aerosols from 210 
Nature) (Guenther et al., 2006). The Weather Research and Forecasting (WRF) v3.4 model (www.wrf-model.org) was 211 
used to produce hourly meteorological fields. National Center for Environmental Protection’s NAM (North American 212 
Mesoscale) analysis data were used to set the initial and boundary conditions for WRF. The gas- and particle-phase 213 
initial and hourly varying boundary conditions were based on the results from the global model MOZART-4/NCEP 214 
(Emmons et al., 2010). The gas-phase chemistry was modeled using SAPRC-11 (Carter, 2010). 215 

 216 

2.2 Organic Aerosol Model 217 

2.2.1 Statistical Oxidation Model (SOM) 218 

In this work, we use the Statistical Oxidation Model (SOM) developed by (Cappa and Wilson, 2012). The SOM is a 219 
semi-explicit and parameterizable model that simulates the oxidation chemistry, thermodynamics, and gas/particle 220 
partitioning of OA and its precursors. The SOM has been used to model SOA formation in chamber (Cappa et al., 2013; 221 
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Cappa and Wilson, 2012; Zhang et al., 2014) and flow reactor (Eluri et al., 2017) experiments. and was recently coupled 222 
with SAPRC-11 (gas-phase chemical mechanism) in the UCD/CIT model (Jathar et al., 2015) to investigate the role of 223 
chamber-based vapor wall losses (Cappa et al., 2016) and multigenerational aging (Jathar et al., 2016) on the ambient 224 
SOA burden. In this work, we used an updated version of the SAPRC-SOM model embedded in the UCD/CIT model 225 
that included the POA and IVOC updates described in Section 2.2.2. A detailed description of the mathematical and 226 
numerical formulation of the SOM can be found in earlier literature but a brief description of the SOM framework 227 
follows. The SOM uses a 2-dimensional carbon-oxygen grid to describe and track the evolution of the gas- and particle-228 
phase organic carbon that is known to yield OA. Each grid cell in the SOM represents an organic species with the 229 
molecular formula: CXH2X+2-ZOZ, where X=NC, and Z=NO. This species is expected to capture the average properties 230 
(e.g. volatility, reaction rate constants) of species with the same number of carbon (NC) and oxygen (NO) atoms that are 231 
formed from a given SOA precursor. Each species, in the gas and particle phases, is assumed to react with the hydroxyl 232 
radical (OH). Operationally, OH is not consumed within the SOM as the chemistry captured in the SOM overlaps with 233 
that represented in the gas-phase mechanism (i.e., SAPRC-11). Reactions with the OH radical result in functionalization 234 
or fragmentation of the organic species and the distribution of the reaction products is tracked in the carbon-oxygen 235 
grid. Six precursor-specific adjustable parameters are assigned for each SOM grid: four parameters that define the molar 236 
yields of the four functionalized, oxidized products (Pfunc), one parameter that determines the probability of 237 
functionalization or fragmentation (mfrag) and one parameter that describes the relationship between NC, NO and volatility 238 
(ΔLVP). In the model, the probability of fragmentation is modeled as a function of the O:C ratio since species with 239 
higher O:C ratios have been shown to fragment much more easily than species with lower O:C ratios (Chacon-Madrid 240 
and Donahue, 2011). All SOM species properties (e.g., OH reactivity, volatility) are described in terms of NC and NO. 241 
  242 
Seven SOM grids were used to represent SOA formation from nine different precursor classes: (i) long alkanes, (ii) 243 
benzene, (iii) high-yield aromatics, (iv) low-yield aromatics, (v) isoprene, (vi) monoterpenes, (vii) sesquiterpenes, (viii) 244 
semi-volatile POA (SVOC), and (ix) IVOCs. Long alkanes as a precursor class includes linear, branched, and cyclic 245 
alkanes roughly up to a carbon number of C13 and represent they speciated alkanes present in existing emissions 246 
inventories. These long alkanes are distinct from the alkanes that might be present in SVOC and IVOCs. High-yield and 247 
lower-yield aromatics include all speciated aromatic compounds present in existing emissions inventories and, similar 248 
to the long alkanes precursor class, are distinct from the aromatics that might be present in SVOC and IVOCs. Classes 249 
(i) through (vii) have been included in previous applications of the SOM and we refer the reader to our earlier 250 
publications for more details (Cappa et al., 2016; Jathar et al., 2015, 2016). Classes (viii) and (ix) were included in this 251 
work for the first time. The SOA formation from monoterpenes and sesquiterpenes (classes vi and vii) was modeled in 252 
the same SOM grid since both precursors used the SOM parameter sets for α-pinene. Similarly, the SOA formation 253 
from SVOCs and IVOCs was modeled in the same SOM grid and both used the SOM parameter sets for n-dodecane; 254 
sensitivity simulations were performed using the SOM parameter set for toluene. SOM parameters were determined 255 
from fitting the observed SOA volume produced in chamber experiments, with and without accounting for losses of 256 
vapors to the chamber walls. Details about how the vapor wall losses were modeled are described in Zhang et al. (2014) 257 
and Cappa et al. (2016). Briefly, loss of vapors to the Teflon walls of the chamber was modeled reversibly where the 258 
first-order uptake to the walls was assumed to be 2.5×10-4 s-1 and the release of vapors from the walls was modeled 259 
using absorptive partitioning theory with the Teflon wall serving as an absorbing mass with an effective mass 260 
concentration of 10 mg m-3. Recent work has argued that vapor wall loss rates in Teflon chambers are much higher 261 
(larger than a factor of 5) than those used by Cappa et al. (2016) to derive the SOM parameterizations (Huang et al., 262 
2018; Krechmer et al., 2016; Sunol et al., 2018). The use of a higher wall loss rate will tend to increase SOA aerosol 263 
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mass yields further. This new understanding will need to be considered in the future.  264 
 265 
We used low and high NOx-specific parameter sets to simulate SOA formation separately under low and high NOx 266 
conditions respectively since the current version of the SOM cannot account for continuous variation in NOx. The SOM 267 
parameters used for the nine different classes and seven different grids are listed in Table 1. Parameters for all species 268 
except for isoprene were from Cappa et al. (2016). The parameters for isoprene were from Hodzic et al. (2016) that 269 
included updates for the reactions rate constants for the first generation products from isoprene photooxidation. Jathar 270 
et al. (2016) investigated the influence of oligomerization reactions by allowing irreversible conversion of particle-271 
phase SOM species into a single non-volatile species and found that the oligomerization pathway (as simulated) did not 272 
substantially affect the OA mass concentration in Southern California. Hence, the oligomerization pathway was not 273 
considered in this work. We also did not include the formation of extremely low-volatility organic compounds from 274 
oxidation of SOA precursors such as α-pinene (Ehn et al., 2014) and alkanes (Praske et al., 2018) through autooxidation 275 
pathways, which will very likely be addressed in future versions of the SOM.  276 

 277 

Table 1: SOA precursors and SOM parameters used in this work. VWL=Vapor Wall Loss Corrected, ΔLVP = 278 

change in vapor pressure linked to addition of one oxygen atom, Pfunc = molar yields of species that add 1 to 4 oxygens 279 
per reaction (Pf1 through Pf4), mfrag = exponent influencing the probability of fragmentation. 280 

SOA Precursors SAPRC Species 
/SOM Grid 

SOM 
Surrogate VWL NOx ΔLVP 

Pfunc 
mfrag Reference 

Pf1 Pf2 Pf3 Pf4 

SVOC/IVOC  POA+IVOC 
n-dodecane/ 

toluene 

No Low 1.54 0.717 0.278 0.0028 0.0022 0.122 
Loza et al. 
(2014) 

High 1.39 0.927 0.0101 0.018 0.0445 0.098 

Alkanes ALK Yes Low 1.83 0.999 0.001 0.001 0.001 2 
High 1.47 0.965 0.001 0.002 0.032 0.266 

Benzene BENZ benzene 
No Low 2.01 0.769 0.001 0.0505 0.180 2.010 

Ng et al. 
(2007a) 

High 1.7 0.079 0.001 0.919 0.001 0.535 

Yes Low 1.97 0.637 0.001 0.002 0.360 0.0807 
High 1.53 0.008 0.001 0.991 0.001 0.824 

High-yield 
aromatics ARO1 toluene 

No Low 1.84 0.561 0.001 0.001 0.438 0.010 
Zhang et al. 
(2014) 

High 1.24 0.003 0.001 0.001 1.010 0.222 

Yes Low 1.77 0.185 0.001 0.002 0.812 1.31 
High 1.42 0.856 0.001 0.002 0.141 4.61 

Low-yield 
aromatics ARO2 m-xylene 

No Low 1.76 0.735 0.001 0.002 0.262 0.010 
Ng et al. 
(2007a) 

High 1.68 0.936 0.001 0.002 0.061 0.010 

Yes Low 2.05 0.102 0.001 0.878 0.019 1.08 
High 1.46 0.001 0.001 0.942 0.056 0.0671 

Isoprene ISOP isoprene 
No Low 2.26 0.973 0.001 0.001 0.026 0.010 

Chhabra et al. 
(2011); Hodzic 
et al. (2016) 

High 1.94 0.952 0.001 0.030 0.016 0.063 

Yes Low 2.25 0.1646 0.5164 0.3012 0.0179 0.0244 
High 1.93 0.988 0.0002 0.0116 0.0009 0.51 

Monoterpenes 
/Sesquiterpenes TRP α-pinene 

No 
Low 1.87 0.001 0.869 0.078 0.053 0.010 

Chhabra et al. 
(2011) 

High 1.62 0.068 0.633 0.275 0.024 0.035 

Yes 
Low 1.97 0.419 0.426 0.140 0.014 0.305 

High 1.91 0.500 0.422 0.070 0.008 0.16 

 281 

 282 

2.2.2 Model Inputs 283 

Semi-Volatile and Reactive POA (SVOC). POA from gasoline, diesel, biomass burning, and food cooking sources was 284 
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treated as semi-volatile and reactive. POA from all other sources (e.g., marine, dust) was assumed to be non-volatile in 285 
all simulations except one where we explored the sensitivity in model predictions to this assumption (see Section 2.3 286 
for more details). Semi-volatile POA was modeled by distributing POA emissions from the emissions inventory in the 287 
SOM grid as hydrocarbon species modeled as linear alkanes, i.e. as species with no oxygen (i.e., CXHY). The 288 
hydrocarbon/linear alkane distribution in the SOM grid was determined by refitting the volatility distributions published 289 
by May and coworkers (May et al., 2013a, 2013b, 2013c) such that the hydrocarbon distribution reproduced the observed 290 
gas/particle partitioning behavior; the hydrocarbon distributions are listed in Table S1. We assumed all on- and off-road 291 
gasoline exhaust POA to have the same hydrocarbon/linear alkane distribution as the volatility distribution determined 292 
by May et al. (2013a) from data for 51 light-duty gasoline vehicles. Almost three-quarters of the light-duty gasoline 293 
vehicles used in May et al. (2013a) were manufactured in or prior to 2005 (the year modeled in this work) and they did 294 
not find the POA volatility distribution data to be sensitive to the model year of the vehicle. Hence, the volatility 295 
distribution used in this work should still be representative of the vehicle fleet in 2005. Based on tests performed on 296 
eight light-duty gasoline vehicles, Kuwayama et al. (2015) found that the POA volatility for their vehicles was consistent 297 
with that determined by (May et al., 2013a) for about half the vehicles but substantially lower for the other half. They 298 
hypothesized that the lower POA volatility could be attributed to fuel oxidation products. The findings of Kuwayama 299 
et al. (2015) suggest that the volatility distribution used in this work may overestimate the evaporation of POA with 300 
dilution. We assumed all on- and off-road diesel exhaust POA to have the same hydrocarbon/linear alkane distribution 301 
as the volatility distribution determined by May et al. (2013b) from data for two medium-duty diesel trucks, three heavy-302 
duty diesel trucks, and a single off-road diesel engine. May et al. (2013b) did not report on differences in the POA 303 
volatility distribution between vehicles that did or did not use a modern emissions control system (diesel particulate 304 
filter (DPF) and/or diesel oxidation catalyst (DOC)). Hence, we assumed that the volatility distribution used here was 305 
still representative of the mostly non-DPF and non-DOC vehicle fleet in 2005. We assumed residential wood combustion 306 
and wildfires to have the same hydrocarbon/linear alkane distribution as the volatility distribution determined by May 307 
et al. (2013c) from a selection of fifteen different fuels. We assumed food cooking to have the same hydrocarbon/linear 308 
alkane distribution as that for wildfires. Recent work suggests that food cooking OA may be significantly less volatile 309 
than wildfire OA (Louvaris et al., 2017; Woody et al., 2016). To examine the influence of this finding, we performed 310 
sensitivity simulations to model the POA from food cooking sources using the volatility distribution of Louvaris et al. 311 
(2017). This work, similar to the most recent implementation in the Community Multiscale Air Quality (CMAQ) model 312 
(Koo et al., 2014; Woody et al., 2016), included a source-resolved treatment of semi-volatile POA that was tied to a 313 
comprehensive set of source measurements. 314 
  315 
The reactive behavior of POA was modeled by assuming that the POA vapors (i.e. SVOCs) (represented as a 316 
hydrocarbon distribution) and their products participated in gas-phase oxidation and formed SOA similar to linear 317 
alkanes and utilized the SOM parameter set for n-dodecane. The surrogate, in this case n-dodecane, only informs the 318 
multi-generational oxidation chemistry of the precursor and the actual compound of interest (e.g., a C15 linear alkane) 319 
can have a different SOA mass yield than that of n-dodecane. The reaction rate constants with OH for the parent 320 
hydrocarbons were assumed to be similar to the carbon-equivalent linear alkane. We should note that the presence of 321 
branched/cyclic alkane and aromatic compounds in the SVOCs would require the use of a higher reaction rate constant 322 
with OH as these compounds are more reactive with OH than carbon-equivalent linear alkanes. The equivalence to 323 
linear alkanes while not perfect was probably a good assumption for gasoline and diesel sources since alkanes account 324 
for a substantial fraction of gasoline and diesel fuel (Gentner et al., 2012) and lubricating oil (Caravaggio et al., 2007) 325 
and are a dominant organic class in both gas- and particle-phase emissions from mobile sources (Brandenberger et al., 326 
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2005; Hays et al., 2017; Schauer et al., 1999, 2002b)(Worton et al., 2014). However, alkanes do not make up a significant 327 
fraction of the gas- and particle-phase emissions from biomass burning (Hatch et al., 2015; Schauer et al., 2001; 328 
Stockwell et al., 2015) or food cooking (Schauer et al., 2002a) and hence it is unlikely that linear alkanes are good 329 
surrogates to model the oxidation of SVOCs from these sources. To test the sensitivity of the model predictions to the 330 
surrogate used to model SOA formation from SVOCs, we ran sensitivity simulations where we modeled the SVOCs as 331 
a mixture of aromatic compounds using the SOM parameter set for toluene (see rationale in Section 2.4). 332 
  333 
Intermediate-Volatility Organic Compounds. We included IVOC emissions from gasoline, diesel, and biomass burning. 334 
We assumed none of the other sources emitted IVOCs for all simulations except one where we explored the sensitivity 335 
in model predictions to this assumption (see Section 2.4 for more details). The IVOC emissions estimates and their 336 
potential to form SOA was based on the work of Jathar et al. (2014). In Jathar et al. (2014), IVOC emissions, defined 337 
as the sum of all unspeciated compounds, were determined as a mass fraction of the total non-methane organic gas 338 
(NMOG) emissions for three different source categories: gasoline vehicles, diesel vehicles, and biomass burning. Here, 339 
the IVOCs, as unspeciated organic compounds, are new SOA precursors added to the emissions inventory and regardless 340 
of their chemical makeup are distinct from the speciated precursors such as long alkanes and aromatics already present 341 
in existing emissions inventories. IVOCs were assumed to be 25% of the NMOG emissions for on- and off-road gasoline 342 
exhaust, 20% of the NMOG emissions for on- and off-road diesel exhaust, and 7% of the NMOG emissions for 343 
residential wood combustion and wildfires. The IVOC:NMOG fractions did not appear to be statistically different for 344 
the gasoline and diesel sources manufactured before or after 2005 and hence those fractions were assumed to be 345 
representative of the source fleet in 2005. No IVOCs were considered for the food cooking source but recent work 346 
suggests that they might play a role in influencing the OA evolution from a multitude of food cooking sources 347 
(Kaltsonoudis et al., 2017; Liu et al., 2017). We assumed that the NMOG emissions in the emissions inventory accounted 348 
for most of the gas-phase organic compound mass that included the IVOCs and hence the addition of IVOC emissions 349 
meant that the non-IVOC emissions had to be reduced to conserve total NMOG mass. Recent literature suggests that 350 
IVOCs could be lost to walls of the sampling hardware (e.g., tubing, bags) (Pagonis et al., 2017) and therefore would 351 
be excluded in the NMOG measurement. Our assumption should result in conservative estimates for the influence of 352 
IVOC emissions on SOA formation.  353 
 354 
Following Jathar et al. (2014), the IVOCs were modeled as a C13 hydrocarbon for those from on- and off-road gasoline 355 
sources and as a C15 hydrocarbon for those from on- and off-road diesel sources and biomass burning. The oxidation of 356 
the IVOC hydrocarbons and their reaction products and the subsequent SOA formation was modeled assuming 357 
equivalence to a linear alkane and used the SOM parameter set for n-dodecane. As mentioned earlier, n-dodecane only 358 
informs the multi-generational oxidation chemistry of the precursor and the actual compound of interest (e.g., a C13 or 359 
C15 linear alkane) can have a different SOA mass yield than that of n-dodecane. The equivalent linear alkane to model 360 
SOA formation from IVOCs in Jathar et al. (2014) was based on fitting the SOA formation observed in chamber 361 
experiments (Gordon et al., 2014a, 2014b; Hennigan et al., 2011) and hence the choice of the hydrocarbon in this work 362 
was experimentally constrained. Jathar et al. (2014) used linear alkanes as a surrogate as the SOA formation from linear 363 
alkanes was well studied when they developed the parameterization and the SOA mass yields increased predictably with 364 
the carbon number of the precursor. Recent application of gas-chromatography mass-spectrometry to combustion 365 
emissions has found that IVOCs are mostly composed of branched/cyclic alkane and aromatic compounds (Gentner et 366 
al., 2012; Koss et al., 2018; Zhao et al., 2016, 2017). So while it would have been more appropriate to model the IVOCs 367 
as an alkane-aromatic mixture, this choice would not have substantially changed the model predictions in the work as 368 
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the SOA formation from this alkane-aromatic mixture would still be constrained to the same chamber experiments. We 369 
will consider the recent detailed speciation work surrounding IVOCs in future applications of this model. In this work, 370 
we also investigated the sensitivity in model predictions to the use of an aromatic compound (i.e., toluene) as a surrogate 371 
instead of an alkane (i.e., n-dodecane) to model SOA formation from IVOCs (see rationale in Section 2.4). 372 
  373 
Recently, Zhao and coworkers (Zhao et al., 2015, 2016) used thermal desorption gas-chromatography mass 374 
spectrometry (TD-GC-MS) to measure IVOC emissions in gasoline and diesel exhaust and speciated/classified the 375 
IVOCs as a mixture of linear, branched, and cyclic compounds resolved by carbon number. We should note that Zhao 376 
et al. (2015, 2016) defined IVOCs as the sum of speciated and unspeciated hydrocarbons roughly larger than a C12 377 
alkane, which was different from the definition adopted by Jathar et al. (2014). In their first paper, Zhao et al. (2015) 378 
found IVOCs to be about 60% of the NMOG mass emissions for tailpipe exhaust from older diesel vehicles/engines 379 
(ones without particle filters or oxidation/reduction catalysts). In this work we used an IVOC:NMOG ratio of 0.2 and 380 
likely underestimated IVOC emissions from diesel sources by a factor of 2.5. Zhao et al. (2015) concluded that the 381 
effective IVOC yield based on their speciation was comparable to the yield of the C15 linear alkane used in this work 382 
but the application of that yield over-predicted the chamber SOA data from Gordon et al. (2014a) by a factor of 1.8; 383 
virtually all of the SOA predicted by Zhao et al. (2016) was from the oxidation of IVOCs. If one assumed that the effects 384 
from lower IVOC emissions (factor of 2.5) were roughly balanced by the use of higher SOA yields (factor of 1.8), then 385 
the SOA formation from diesel sources was probably well represented in our work.  386 
 387 
In their second paper, Zhao et al. (2016) found the IVOCs to be only about 4% of the NMOG mass emissions in gasoline 388 
exhaust but we used an IVOC:NMOG ratio of 0.25 in this work. This suggests that we may be overestimating the 389 
gasoline exhaust IVOC emissions by approximately a factor of six in this work. Based on the speciation performed, 390 
Zhao et al. (2016) estimated that the IVOCs collectively had an SOA yield between 19 and 24% at an OA mass 391 
concentration of 9 µg m-3 (9 µg m-3 was the average end-of-experiment concentration in the chamber experiments of 392 
Gordon et al. (2014a)), which was slightly more than twice the SOA yield for a C13 linear alkane (7-12%) – used to 393 
model gasoline IVOCs in this work – at the same OA mass concentration. However, application of the Zhao et al. (2016) 394 
SOA yields for IVOCs underpredicted the observed chamber SOA formation for newer gasoline vehicles by a factor of 395 
~2. Since IVOC oxidation accounted for slightly less than half of the SOA formed (with the other half coming from 396 
single-ring aromatics), the IVOC SOA yields in Zhao et al. (2016) would need to be tripled to explain the chamber SOA 397 
measurements. If we assumed that the effects from higher IVOC emissions (factor of 6) were approximately balanced 398 
by the use of lower SOA yields (factor of 2×3=6), then the SOA formation from gasoline sources in this work was 399 
probably well represented in our work. To summarize, the IVOC emissions estimates and the surrogates used to model 400 
SOA formation from IVOCs from gasoline and diesel sources in this work, while different from those suggested in Zhao 401 
et al. (2015, 2016), are still consistent with the SOA measurements made by Gordon et al. (2014a, 2014b). In a future 402 
version of the model, we will aim to include the IVOC emissions estimates of Zhao et al. (2015, 2016) and update the 403 
SOA parameterizations accordingly. It is likely that these might slightly alter the spatiotemporal distribution of IVOC 404 
SOA in the modeled domain.  405 

 406 

2.2.3 Modeling the NOX Dependence on SOA Formation 407 

Previous applications of the SOM have simulated SOA under low and high NOX conditions separately since the SOM, 408 
in its current form, cannot model the continuous evolution of SOA under varying NOX conditions using the local 409 
NO/HO2. Predictions from either of these simulations (Jathar et al., 2016) or the average of these simulations (Cappa et 410 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



 

11 
 

al., 2016) likely do not accurately characterize the evolution or spatial distribution of SOA since NOX concentrations 411 
exhibit strong spatial variability with higher concentrations in urban (e.g., traffic) and source (e.g., wildfires) regions. 412 
For example, since most precursors have higher SOA yields under low NOX conditions than under high NOx conditions, 413 
the use of an average is expected to overestimate SOA in high-NOX urban areas and underestimate SOA in low-NOX 414 
rural/remote continental areas.  415 
 416 
In this work, we used two different offline techniques to account for the influence of NOX on SOA formation. For both 417 
methods, we assumed that the 3D model predictions based on the low and high NOX SOA parameterizations bounded 418 
the minimum and maximum ambient SOA mass concentrations. Xu et al. (2015) found that the SOA formation from 419 
isoprene photooxidation was maximized at intermediate NOX levels with lower values at the extreme NOX levels, 420 
suggesting that our bounding assumption may not necessarily hold for all precursor species. Presto and Donahue (2006) 421 
found that the SOA from α-pinene ozonolysis under varying NOX conditions could be estimated by interpolating the 422 
SOA formed between the low and high NOX conditions using the VOC:NOX ratio. Hence, in the first method, we used 423 
the VOC:NOX ratios from the low and high NOX chamber experiments as our bounds and used the 3D model predicted 424 
VOC:NOX ratio to interpolate between the minimum and maximum SOA mass concentrations predicted from the low 425 
and high NOX simulations. Previous work (e.g., Camredon et al. (2007), Xu et al. (2015)) has also found SOA formation 426 
to vary along a NOX scale and hence, in the second method, we used NOX concentrations from the low and high NOX 427 
chamber experiments and the 3D model predictions to perform the interpolation. For each method, we performed the 428 
interpolation on the SOA mass concentrations assuming a linear or logarithmic dependence on the VOC:NOX ratios and 429 
NOX concentrations. The linear dependency was chosen for simplicity while the logarithmic dependency was chosen to 430 
mimic the visual trends in SOA and VOC:NOX or NOX reported in previous work and also to produce the highest 431 
response in the SOA formation with NOX. The VOC:NOX ratio and the NOX concentration served as an approximate 432 
surrogate for the HO2:NO ratio used in most atmospheric models to simulate the NOX-dependent SOA formation. The 433 

NOX-adjusted SOA concentrations (!"#$%%) from each precursor at each grid cell were calculated from model 434 

predictions from the low and high NOx simulations using the following equations: 435 
 436 

!"#$%% = !"#'()'	+,- +
/,0123	45-6/,07897	45-

(;,<:+,-)123	45-6(;,<:+,-)7897	45-
× ((@"A:B"C)DEF$G − (@"A:B"C)'()'	+,-)- (1) 437 

!"#$%% = !"#'()'	+,- +
/,0123	45-6/,07897	45-

GE)(;,<:+,-)123	45-6GE)(;,<:+,-)7897	45-
× (IJK(@"A:B"C)DEF$G −438 

IJK(@"A:B"C)'()'	+,-)- (2) 439 

!"#$%% = !"#GEL	+,- −
/,0123	45-6/,07897	45-

(+,-)7897	45-6(+,-)123	45-
× ((B"C)DEF$G − (B"M)GEL	+,N) - (3) 440 

!"#$%% = !"#GEL	+,- −
/,0123	45-6/,07897	45-

GE)(+,-)7897	45-6GE)(+,-)123	45-
× (IJK(B"C)DEF$G − IJK(B"C)GEL	+,-) - (4) 441 

 442 

where !"#GEL	+,Nand !"#'()'	+,Nare model predictions of SOA from using the low and high NOX parameterizations 443 

respectively, (@"A:B"M)GEL	+,N and (@"A:B"M)'()'	+,Nare the initial VOC:NOX ratios from the chamber 444 

experiments used to develop the low and high NOX SOA parameterizations, (@"A:B"M)DEF$G is the model predicted 445 

VOC:NOX ratio in the model grid cell, (B"M)GEL	+,Nand (B"M)'()'	+,Nare the NOX concentrations from the chamber 446 

experiments used to develop the low and high NOX parameterizations, and (B"M)DEF$Gis the model predicted NOX 447 

concentration in the model grid cell. Equations (1) and (3) assume linear dependence while equations (2) and (4) assume 448 

logarithmic dependence. For the (@"A:B"C)DEF$G ratio, the VOC is the sum of all organic species tracked in the 449 
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SAPRC-11 gas-phase chemical mechanism, including all IVOCs and gas-phase SVOCs. NOX is the sum of NO and 450 

NO2. The (@"A:B"C) ratios and the B"M concentrations from the chamber experiments used in the equations were 451 

gathered directly from the primary references and are listed in Table 2. When the (@"A:B"M)DEF$G or (B"M)DEF$G 452 

values were lower or higher than the chamber values in Table 2, the SOA formation was set to model predictions from 453 
the bounding simulations.  454 
 455 
Table 2: Low and high VOC:NOx ratios in ppb ppb-1 from chamber experiments used to model the influence of NOX on 456 
SOA formation.  457 

SOM 
surrogate 

(@"A:B"C)GEL	+,-
 (B"M)GEL	+,N (@"A:B"C)'()'	+,- (B"M)'()'	+,N Reference 

n-dodecane 17.0& <2 ppbv 0.09 343 Loza et al. (2014) 
benzene 207& <2 ppbv 1.98 169 Ng et al. (2007a) 
toluene 46.3&* <0.8 ppbv 0.76* 50 Zhang et al. (2014) 
m-xylene 12.1&# <2 ppbv 0.10 943 Ng et al. (2007a) 
isoprene 24.5& <2 ppbv 0.29 937 Chhabra et al. (2010) 
α-pinene 33.1& <2 ppbv 0.05 844 Chhabra et al. (2010) 
&minimum VOC:NOx ratios since these assume a NOX concentration of 0.8 ppbv in the chamber 458 
*average of six experiments performed by Zhang et al. (2014) 459 
#average of two experiments performed by Ng et al. (2007a) 460 
 461 
We acknowledge that this approach to modeling the NOX influence on SOA formation is limited and is sensitive to the 462 
following assumptions: (i) the VOC:NOX ratio plus NOX concentration is a good proxy to model the HO2:NO ratio and 463 
the branching between low and high NOX SOA formation, (ii) the low and high NOX chamber experiments for a 464 
particular precursor bound the minimum and maximum SOA formed, (iii) the SOA response between the low and high 465 
NOX levels varies linearly or logarithmically with VOC:NOX ratios/NOX concentrations, and (iv) the model predicted 466 
VOC concentrations at each grid cell, summed across a mixture of organic compounds, are analogous to the initial VOC 467 
concentrations from the chamber experiment to calculate VOC:NOx ratios. There are few experimental data to test these 468 
assumptions and these need to be investigated in future work. In addition to modeling the influence of NOX on ambient 469 
SOA concentrations, this approach allowed us to explore the influence of reductions in NOX emissions and 470 
concentrations on ambient OA concentrations in the future. 471 

2.3 Simulations 472 

Table 3: Names and descriptions of the simulations performed in this work 473 

No. Name Semi-volatile & 
Reactive POA (SVOC) IVOC Vapor Wall Losses for 

SVOC, IVOC, and VOC  Additional Details 

1 Traditional No No No Same as model of Cappa et al. (2016) 
2 SVOC Yes2 No No - 
3 IVOC Yes2 Yes No - 
4 Base 

Yes2 Yes Yes 

Base case model used in this work 

5 - SVOCmax
1 SVOCs modeled as per diesel 

parameterization 

6 - IVOCmax
1

 
IVOCs modeled as per diesel 
parameterization 

7 - No-Aging1 No multi-generational aging 

8 - VOCspec
1

 
VOC speciation from May et al. 
(2014) 

9 - Aromatic1 S/IVOCs modeled using the toluene 
parameterization 

10 - SVOCcooking
3 Yes3 SVOCs from food cooking modeled 
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using the volatility distribution of 
Louvaris et al. (2017).  

1Same as the Base simulation but with differences noted in the ‘Additional Details’ section. 2Assumes volatility of food 474 
cooking POA to be similar to volatility of biomass burning. 3Uses measured volatility of food cooking POA. 475 
 476 
The Base simulation – representing our most comprehensive simulation – included the updates described in Section 477 
2.2.2; a source-resolved semi-volatile and reactive treatment of POA, source-resolved SOA formation from SVOCs and 478 
IVOCs, and correction of the subsequent SOA formation for vapor wall losses in chambers. The Base simulation 479 
included sub-simulations at two resolutions (24 km and 8 km) with two NOX parameterizations (low and high NOX).  480 
  481 
Additional simulations were designed and performed with two objectives in mind: (i) to examine the influence of each 482 
update included in this work and (ii) to test the sensitivity in model predictions to uncertainties inherent in the updates 483 
and other model inputs. A set of four simulations were performed to systematically study the influence of model updates. 484 
These included the following simulations where only one update (as underlined) was made over the previous 485 
configuration: (1) Traditional – Non-volatile POA, no IVOCs, SOA from VOCs, and no correction for chamber vapor 486 
wall losses, (2) SVOC – Semi-volatile POA, no IVOCs, SOA from SVOCs and VOCs, and no correction for chamber 487 
vapor wall losses, (3) IVOC – Semi-volatile POA, IVOCs, SOA from SVOCs, IVOCs, and VOCs, and no correction 488 
for chamber vapor wall losses, and (4) Base – Semi-volatile POA, IVOCs, SOA from SVOCs, IVOCs, and VOCs, and 489 
correction for chamber vapor wall losses. Successive differences in model predictions between the Traditional, SVOC, 490 
IVOC, and Base simulations were used to systematically examine the influence of the semi-volatile and reactive POA, 491 
IVOCs, and chamber vapor wall losses respectively.  492 
  493 
A set of six simulations were performed to study uncertainties in model inputs. The SVOCmax simulation (5) assumed 494 
that POA from all sources (all POA except marine POA) was semi-volatile and modeled using the volatility distribution 495 
for diesel exhaust POA. Diesel POA was chosen since it was the most volatile of the volatility distributions used in this 496 
work. This simulation bounded the maximum loss in POA mass to evaporation. The IVOCmax (6) simulation assumed 497 
that all sources (combustion and non-combustion except biogenic sources) emitted IVOCs, which were estimated using 498 
an IVOC:NMOG ratio of 0.2 and allowed to form SOA equivalent to a C15 alkane. This simulation provided an upper 499 
bound estimate to the contribution of IVOCs to ambient SOA although the IVOC emissions and their potential to form 500 
SOA could be even higher than that assumed here. The No-Aging (7) simulation assumed no multi-generational aging 501 
or in other words, the emitted precursor was allowed to react with OH and form four functionalized products with no 502 
further oxidation. This simulation investigated the influence of multi-generational aging on ambient SOA. The VOCspec 503 
(8) simulation updated the VOC speciation for on- and off-road gasoline and diesel vehicles based on a comprehensive 504 
set of measurements performed on an in-use fleet (May et al., 2013a, 2013b). This simulation examined the influence 505 
of updated emissions profiles on the non-IVOC contribution to SOA. The Aromatic (9) simulation assumed that the 506 
oxidation of SVOCs and IVOCs to form SOA was modeled using toluene. There were two reasons for choosing toluene. 507 
First, both mono- and poly-cyclic aromatic compounds are found in gasoline and diesel fuel (Gentner et al., 2012) and 508 
in tailpipe emissions from mobile sources (Zhao et al., 2015, 2016), and oxygenated aromatic compounds such as 509 
phenols, guaiacols, and syringols are found in biomass burning emissions (Schauer et al., 2001; Stockwell et al., 2015). 510 
Second, aromatic compounds, similar to alkanes, have been studied in detail for their potential to form SOA and are 511 
recognized to form more SOA than linear alkanes for the same carbon number. This simulation provided an upper bound 512 
estimate for SOA formation from the oxidation of SVOCs and IVOCs. Finally, the SVOCcooking (10) simulation used a 513 
hydrocarbon/linear alkane distribution based on the measured volatility distribution of Louvaris et al. (2017) to represent 514 
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POA from food cooking sources. This simulation examined the effect a more realistic volatility distribution for food 515 
cooking POA on mass concentrations of POA and SOA from SVOCs.  516 
  517 
The UCD/CIT model was run on the High Performance Computing cluster run by Engineering Network Services at 518 
Colorado State University. Although the number of cores varied based on availability, on average each simulation used 519 
96 cores and required 5 days to execute 19 simulated days. Since each set included four sub-simulations, each simulation 520 
required ~5 days and all simulations in this work required ~180 days of computational time.  521 

2.4 Measurements for Model Evaluation 522 

Model predictions were evaluated against gas-phase measurements of SOA precursors and particle-phase measurements 523 
of OA mass concentrations and composition. Here, we briefly describe the primary measurement data and any post-524 
processing of the data we performed prior to undertaking the model evaluation.  525 
 526 
Gas-phase measurements of SOA precursors were from two different sources. The first source was routine daily-527 
averaged measurements of single-ring aromatics made by the South Coast Air Quality Management District (SCAQMD, 528 
2017) in southern California at three different sites: North Los Angeles, Riverside, and Long Beach. While measurement 529 
data were available at three other sites, data were not available for 2005, our modeled year and hence not included. 530 
These gas-chromatography-based measurements were available every twelfth day and included the following aromatic 531 
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and styrene. Since there was little overlap between the modeled 532 
episode (14 day period over July-August) and available aromatic data, the measurement data were averaged over a three 533 
month period in the summer (May 15th to September 15th) and then compared to the episode-averaged model 534 
predictions. The second source was gas-chromatography mass-spectrometry measurements of single-ring aromatics 535 
(Borbon et al., 2013) and IVOCs (Zhao et al., 2014) made at the Pasadena ground site in the months of May and June 536 
of 2010 as part of the CalNex campaign. The single-ring aromatics were measured every hour and included the following 537 
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and styrene. The IVOCs were measured every three hours and 538 
included most of the reduced and oxidized organic species with a carbon number larger than 12. Since these 539 
measurements were from a different time period, we compared campaign-averaged measurements against episode-540 
averaged model predictions.  541 
 542 
Particle-phase measurements were from two different sources as well. The first source was routine daily-integrated 543 
measurements of organic carbon (OC) in southern California from four sites in the Chemical Speciation Network (CSN; 544 
Central Los Angeles, Riverside, Simi Valley, and Escondido) and six sites in the Interagency Monitoring of Protected 545 
Visual Environments (IMPROVE) network (San Rafael, Rubidoux-Riverside, San Gorgonio Wilderness, Joshua Tree 546 
NP, Agua Tibia, and San Gabriel). The CSN is a network of ~50 urban measurement sites across the United States 547 
where pollutant concentrations are typically higher, more variable, and representative of local sources and measurements 548 
are made once every three days. The IMPROVE is a network of ~200 rural/remote continental sites typically located in 549 
national parks across the United States where pollutant concentrations are lower, less variable, and representative of 550 
regional influences and measurements are made once every three days. Over the 14 day episode modeled in this work, 551 
three measurements from the CSN and five measurements from the IMPROVE network were available for comparison. 552 
We used an organic aerosol to organic carbon ratio (OA:OC) of 1.6 to calculate OA at the CSN sites (Docherty et al. 553 
(2011) measured an OA:OC ratio of 1.77 during the SOAR-1 campaign, after correction with the updated calibration of 554 
Canagaratna et al. (2015)) and a ratio of 2.1 to calculate OA at the IMPROVE sites (Turpin and Lim, 2001). The CSN 555 
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data are artifact corrected but we subtracted 0.5 µg m-3 from the calculated OA mass concentrations to blank correct the 556 
data (Subramanian et al., 2004). The IMPROVE data are both blank and artifact corrected. We note that a negative 557 
evaporation artifact has been reported for at IMPROVE sites in the southeast US (Kim et al., 2015) but it is not known 558 
whether such an artifact may be present in this region and no correction has been made. The second source was particle 559 
measurements made at the ground site in Riverside as part of the SOAR-1 campaign during the summer of 2005 560 
(Docherty et al., 2008, 2011). These measurements included hourly-averaged mass concentrations and elemental ratios 561 
of H:C and O:C for OA, and estimates of the POA-SOA split based on results from a positive matrix factorization 562 
analysis.  563 
 564 

3 Results 565 

3.1 POA and SOA Precursor Emissions 566 

Gas- and particle-phase emissions of organic compounds in the 8 km southern California domain, averaged over the 14-567 
day episode, are shown in Figure 1. The 8 km domain, shown in Figure S1, includes the entire Los Angeles metropolitan 568 
statistical area, parts of the Pacific Ocean, and forested areas surrounding the urban area. The emissions are color-coded 569 
by source type and include all species that contribute to direct emissions and atmospheric formation of OA. These do 570 
not include emissions of marine POA since those were calculated inline in the UCD/CIT model. Since the POA 571 
repartitioned between the gas and particle phases after emission, POA was split into POA and SVOC that represented 572 
the particle and gas portions of POA partitioned at an urban OA mass concentration of 9 µg m-3. We chose 9 µg m-3 to 573 
partition POA because the campaign-averaged OA mass concentration at Riverside during SOAR-1 was 9 µg m-3. If 574 
one discounts the POA emissions in the ‘Other’ category (which is mostly made of road, agricultural, and construction 575 
dust), the re-partitioning resulted in about 60% of the POA emitted to evaporate as SVOC vapors; these vapors will 576 
oxidize in the atmosphere to form SOA. As noted earlier, a relatively more volatile treatment compared to that described 577 
in the recent literature suggests that we may have overestimated the POA evaporation from food cooking sources. 578 
Mobile sources accounted for 20% of the POA and 35% of the SVOC vapors and competed with food cooking as an 579 
important source of primary emissions and one which accounted for 15% of the POA and 44% of the SVOC vapors. 580 
IVOC, long alkane, and aromatic emissions were roughly on the same order of magnitude but taken together were 581 
approximately an order of magnitude larger than the POA emissions. This suggests that even at low SOA mass yields 582 
(say <10%), the OA formed from the oxidation of these precursors could quickly exceed direct emissions of POA.  583 
 584 
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 585 

Figure 1: Episode-averaged gas- and particle-phase organic emissions in tons per day over the 8 km southern 586 
California domain resolved by source. POA and SVOC represent the particle- and gas-phase emissions partitioned to 587 
an OA mass concentration of 9 µg m-3. SVOC, IVOC, long alkanes, aromatics, and biogenics represent gas-phase 588 
emissions of precursor species that are modeled to form SOA. We note that recent measurements suggest that POA from 589 
food cooking sources is less volatile than assumed in these results. 590 
 591 
Emissions of total IVOCs were slightly lower than those for long alkanes (by ~30%) and aromatics (by ~40%) but a 592 
factor of 2 higher than the sum of POA and SVOCs. Previously, IVOC emissions have been estimated by scaling POA 593 
emissions by a factor of 1.5 to 4 derived from gas/particle partitioning calculations (Dzepina et al., 2009; Shrivastava et 594 
al., 2008) and from atmospheric measurements (Ma et al., 2017). While our estimate for IVOC emissions are within the 595 
previously used range, our estimates were informed by a broader suite of source measurements, which will help reduce 596 
the uncertainty in IVOC emissions and related SOA formation in atmospheric models. IVOC emissions from mobile 597 
sources were similar to aromatic emissions but twice the long alkane emissions. Hence, we anticipated IVOCs to 598 
contribute meaningfully to the anthropogenic SOA burden. We note that in this work we only considered IVOC 599 
emissions from combustion sources but recent work suggests that volatile chemical products present in sources such as 600 
pesticides, coatings, cleaning agents, and personal care products may be a large source of SVOCs and IVOCs in urban 601 
environments (McDonald et al., 2018).  602 
 603 
Mobile sources – dominated by gasoline use – accounted for a much larger fraction of the anthropogenic SOA precursors 604 
(85% of IVOCs, 27% of long alkanes, and 55% of aromatics) in this study. Hence, mobile source regulation on precursor 605 
emissions from gasoline vehicles (e.g., limits on emissions of unburned hydrocarbons) has and could have a much larger 606 
influence on controlling ambient OA than regulating direct emissions of POA, although this ultimately depends on the 607 
extent of conversion of these species to SOA. Finally, biogenic precursor emissions of isoprene, monoterpenes, and 608 
sesquiterpenes were about a factor of three higher than the combined emissions of SVOCs, IVOCs, long alkanes, and 609 
aromatics and will continue to be an important source of SOA in southern California. However, their impact on urban 610 
OA/SOA will be smaller since these emissions are primarily limited to regions outside the urban areas. 611 
 612 
 613 
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 614 
Figure 2: 14-day averaged model predictions of mass concentrations for OA, POA, SOA, aV-SOA, aS/I-SOA, and bV-615 
SOA in µg m-3 over the southern California domain from the Base simulation. We note that recent measurements 616 
suggest that POA from food cooking sources is less volatile than assumed in these results. 617 
 618 
3.2 Spatial Distribution of OA Concentrations and Bulk Composition 619 

In Figure 2 we plot predictions of the 14-day averaged mass concentrations for OA, POA, SOA, and contributions 620 
from three lumped SOA precursors (long alkanes and aromatics, SVOC and IVOCs, and biogenic VOCs) from the 621 
Base case simulation. We used the terminology developed by Murphy et al. (2014) to describe the SOA from the 622 
different sources. To reiterate, the Base case simulation included a semi-volatile treatment of POA, SOA formation 623 
from oxidation of SVOCs, IVOCs, and VOCs, multi-generational aging, and SOA parameterizations that accounted 624 
for the influence of chamber vapor wall losses. The mass concentrations in Figure 2 account for SOA formation under 625 
varying NOX levels as per equation 2 (logarithmic dependence on the VOC:NOX ratio). We chose equation 2 because 626 
it produced the highest SOA mass concentrations and presented an upper bound on SOA formation.  627 
 628 
The highest OA mass concentrations were found in three general regions: the densely-populated Los Angeles-Orange-629 
Riverside County region likely attributed to heavy transportation emissions, along the coast as a result of sea spray 630 
emissions, and in biogenic VOC dominated areas. In central Los Angeles (grid cell containing the CSN site), OA 631 
accounted for 38% of the modeled non-refractory PM2.5 mass concentration with 20, 25, and 18% contributions from 632 
sulfate, nitrate, and ammonium aerosol. A sensitivity simulation that turned emissions of marine POA off suggested 633 
that the marine POA mass concentrations in central Los Angeles were ~0.9 µg m-3, which were considerably higher 634 
than the coastal measurements made during CalNex in 2010 (Hayes et al., 2013). Measured mass concentrations of 635 
POA over the open ocean west of California were ~0.2 µg m-3 during CalNex in 2010 and it was expected that these 636 
mass concentrations would be substantially lower by the time they were transported to central Los Angeles (Hayes et 637 
al., 2013). Sea spray emissions in the UCD/CIT model are based on the parameterization of Gong et al. (2003) and 638 
may need to be revisited in the future.  639 
 640 
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The broader spatial trends of OA, POA, and SOA were in line with results from earlier chemical transport model 641 
studies that have treated POA as semi-volatile and modeled SOA formation from SVOCs and IVOCs (Ahmadov et 642 
al., 2012; Jathar et al., 2017a; Koo et al., 2014; Robinson et al., 2007; Tsimpidi et al., 2010). POA mass 643 
concentrations were highest in upwind (e.g., 3.4 µg m-3 in central Los Angeles) and lower in downwind (e.g., 2.7 µg 644 
m-3 in Riverside) locations as the POA emissions that were transported away from the source region evaporated with 645 
dilution. SOA mass concentrations, in contrast to POA, had a more regional presence with lesser differences between 646 
the upwind and downwind regions (e.g., 2.4 µg m-3 in Riverside versus 2.2 µg m-3 in central Los Angeles) or in 647 
regions with high emissions of biogenic VOCs (e.g., 2.5 µg m-3 inside the Los Padres National Forest). To assess the 648 
relative contribution of POA and SOA to total OA, we plot the POA:SOA ratio in Figure S2, which suggests a 649 
POA:SOA ratio of ~1.6 in near-source regions and lower elsewhere, e.g., ~0.4, 0.8, and 1.2 in representative marine, 650 
biogenic-dominated, and urban downwind regions. These POA:SOA splits qualitatively aligned with the hydrocarbon-651 
like and oxygenated organic aerosol (HOA and OOA) splits estimated in aerosol mass spectrometer datasets in urban 652 
locations worldwide (Jimenez et al., 2009; Zhang et al., 2007). However, we predict POA:SOA ~1 for Riverside 653 
during SOAR-1, compared to a measured ratio of ~0.25 (Docherty et al., 2008), which indicates that SOA may still be 654 
underestimated in the model.  A comparison of the OA composition predictions with the aerosol mass spectrometer 655 
measurements is described in Section 4.  656 
 657 
Panels (d) through (f) show contributions of three distinct SOA precursor classes to total SOA. Alkane and aromatic 658 
VOCs – included as SOA precursors in most atmospheric models – appeared to contribute a maximum of 1.2 µg m-3 659 
of what we refer to as aV-SOA downwind of the source region. The majority of this aV-SOA (75% ) originated from 660 
aromatic precursors implying that alkane VOCs are unlikely to contribute much to the anthropogenic SOA or total OA 661 
burden in urban areas, consistent with our earlier work (Cappa et al., 2016; Jathar et al., 2016). We note that emissions 662 
inventories typically only include alkane species with carbon numbers less than 12 (Pye and Pouliot, 2012) and longer 663 
alkanes with carbon numbers larger than 12 are included as part of the POA, SVOC, and IVOC emissions. Together 664 
aS-SOA and aI-SOA mass concentrations exhibited a similar spatial pattern over the domain but were substantially 665 
lower than the aV-SOA mass concentrations – reaching a maximum of only 0.5 µg m-3. The lower aS-SOA and aI-666 
SOA mass concentrations were somewhat contrary to earlier work that has argued that SVOCs and IVOCs are an 667 
equal or dominant precursor of anthropogenic SOA when compared to aV-SOA, especially in urban areas (Jathar et 668 
al., 2014, 2017a; Woody et al., 2016). The reason for these lower concentrations can be partially attributed to the 669 
precursor-dependent influence of accounting for vapor wall losses in chamber experiments (probed in greater detail in 670 
Section 3.4). Biogenic SOA or bV-SOA mass concentrations exceeded 3.2 µg m-3 in regions with high biogenic 671 
emissions but were slightly less than 1 µg m-3 in urban regions where the POA mass concentrations were the highest. 672 
Previous work has suggested that the bV-SOA in urban regions is formed outside but later transported to the urban 673 
region (Hayes et al., 2015; Heo et al., 2015). Overall, the averaged results over the urban areas appeared to be split 674 
evenly between POA, anthropogenic SOA (aV-SOA+aS-POA+aI-SOA), and biogenic SOA (bV-SOA). 675 
 676 
3.3 Precursor Contributions to OA and SOA 677 

We examined the absolute OA mass concentrations and precursor contributions to SOA in central Los Angeles across 678 
four different simulations to better understand the effect of successive updates: semi-volatile and reactive POA, 679 
IVOCs, and accounting for vapor wall losses. We chose central Los Angeles (grid cell containing the CSN site) as our 680 
study area as it is representative of an urban location with a large population density and suffers from some of the 681 
poorest air quality in the United States (ALA, 2017); results from the sensitivity simulations in Section 3.5 are also 682 
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discussed at this specific site. Results at other urban locations (e.g., Riverside, Simi Valley) had similar SOA 683 
precursor fractional contributions although the absolute concentrations did vary a little (see Figure S3). In Figure 3, 684 
we plot the 14-day averaged, precursor-resolved OA mass concentrations and precursor contributions to SOA in Los 685 
Angeles from two pairs of four different simulations. The two pairs represent model predictions based on the low and 686 
high NOX parameterizations.  687 
 688 
Semi-volatile and Reactive POA. Differences in the Traditional and SVOC simulations were used to highlight the 689 
influence of including a semi-volatile and reactive treatment of POA. The semi-volatile POA treatment resulted in 690 
evaporation of the primary POA emissions from combustion sources (on- and non-road gasoline and diesel, 691 
woodsmoke, biomass burning, and food cooking) and reduced POA mass concentrations by 35% in central Los 692 
Angeles. A ratio of the POA mass concentrations from the SVOC simulation to those from the Traditional simulation 693 
suggested that the POA mass was reduced by approximately 30 to 50% in the urban environment around the central 694 
Los Angeles site (Figure S4). Overall, the POA reductions appeared to be smaller than those implied by the volatility 695 
distributions of May and coworkers (May et al., 2013a, 2013b, 2013c) and those simulated in other atmospheric 696 
models (Robinson et al., 2007). For gasoline, diesel, and biomass burning, May and coworkers (May et al., 2013a, 697 
2013b, 2013c) proposed a 45 to 80% reduction in POA mass concentrations at ambient OA mass concentrations 698 
between 1 and 10 µg m-3. This difference was mainly because we only modeled certain combustion-related POA to be 699 
semi-volatile (i.e., gasoline, diesel, biomass burning, and food cooking sources) while earlier modeling work has 700 
considered POA from all sources to be semi-volatile (e.g., marine, dust). The use of a less volatile and more realistic 701 
food cooking POA than that used in this work (informed by the works of Woody et al. (2016) and Louvaris et al. 702 
(2017)) would tend to further increase the discrepancy between our work and the findings of May and coworkers. Hu 703 
et al. (2014) found that the combustion sources considered to be semi-volatile in this work accounted for about half of 704 
PM2.5 mass concentrations in Los Angeles. The POA mass reductions shown here are conservative and might have 705 
been larger if there was evidence that sources other than those considered here (e.g., marine, dust) produced POA that 706 
was semi-volatile too, although this scenario seems unlikely.  707 
 708 
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  709 
Figure 3: 14-day averaged model predictions of POA and SOA mass concentrations and precursor contributions at 710 
the central Los Angeles site from the sensitivity simulations that examined the influence of updates made in this work. 711 
Panel (a) shows absolute concentrations and panel (b) shows precursor contributions. The legend at the bottom 712 
tracks how the different pathways (i.e., SOA formation from SVOCs, SOA formation from IVOCs, and correction for 713 
chamber vapor wall losses (VWL)) were turned on for the different simulations. Model predictions from the low and 714 
high NOX simulations are shown separately. Model predictions to the extreme right are from accounting for the 715 
influence of NOX on SOA formation using equation 2. We note that recent measurements suggest that POA from food 716 
cooking sources is less volatile than assumed in these results. 717 
 718 
Allowing the POA vapors or SVOCs to react resulted in only a small fraction of their oxidation products to condense 719 
back as aS-SOA. For example, of the 1.75 µg m-3 of POA lost at the central Los Angeles site, only 0.082 µg m-3 for 720 
the low NOX and 0.068 µg m-3 for the high NOX simulations was regained as aS-SOA from oxidation reactions. This 721 
implied a very low chemical conversion efficiency (~4%) for the POA-to-SVOC-to-aS-SOA pump within the urban 722 
area (Miracolo et al., 2010). The SVOCs, at an ambient concentration of 9 µg m-3, from gasoline exhaust, diesel 723 
exhaust, and biomass burning emissions had an average carbon number between 18 and 20. Calculations with a box 724 
model version of the SOM suggested that the SOA mass yields for C18 and C20 alkanes were between 33 and 86% 725 
where the range includes yields for low NOX and high NOX parameterizations. One possible explanation for the 726 
difference between the chemical conversion efficiency in the 3D model and box model yields was that only a small 727 
fraction of the SVOCs had the opportunity to react with OH and form SOA before they were transported out of the 728 
urban area. If we assume that most of the sS-SOA in the grid cell that contains the Los Angeles site was from the 729 
oxidation of SVOCs released in that grid cell and from grid cells that are up to two grid cells away, our results do not 730 
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appear unrealistic. For example, for an SOA precursor with an OH reaction rate constant of 2.4×10-11 cm-3 molecules-1 731 
s-1 (average value from a C18 and C20 linear alkane) and an SOA mass yield of 60% (average from the SOA mass yield 732 
range described earlier for a C18 and C20 linear alkane), the chemical conversion efficiency would be 3.5-15% with a 733 
daily-averaged OH concentration of 1.5×106 molecules cm-3 and a reaction time of 0.5-2.3 hours. A reaction time of 734 
0.5 to 2.3 hours corresponds to a transport of 2.5 (half a grid cell) and 12.5 (2.5 grid cells) miles at an average wind 735 
speed of 5.4 miles per hour (Weather Spark).   736 
 737 
The low and high NOX parameterizations had little effect on the aS-SOA mass concentrations presumably because the 738 
n-dodecane based parameterization used for semi-volatile POA exhibited marginal differences in SOA production 739 
under low and high NOX environments (Loza et al., 2014). Finally, SOA parameterizations based on including the 740 
vapor wall loss effect only marginally increased the aS-SOA mass concentrations, especially when viewed in light of 741 
the SOA increases from other precursors. We examine the precursor-resolved vapor wall loss effect in more detail in 742 
Section 3.4. For the Base simulations, the aS-SOA mass concentrations were a factor of 10 and 2 lower than the aV-743 
SOA mass concentrations for the low and high NOX parameterizations respectively.  744 
 745 
IVOC. Differences in the SVOC and IVOC simulations were used to determine the influence of including SOA 746 
formation from IVOCs. For both the low and high NOX simulations, IVOCs contributed marginally to the aI-SOA 747 
mass concentrations in Los Angeles (~0.045- µg m-3) and elsewhere too (see Figures S3 and S4). The aI-SOA mass 748 
concentrations were about half of the aS-SOA mass concentrations for both the low and high NOX simulations. When 749 
compared to the aV-SOA mass concentrations, the aI-SOA mass concentrations were slightly lower for the high NOX 750 
simulations (~40%) but about a factor of five lower for the low NOX simulations. The inclusion of vapor wall losses 751 
seemed to make aI-SOA as or more important than aS-SOA but still less important than aV-SOA; the aI-SOA mass 752 
concentrations were a factor of 3.3 and 2.9 lower than the aV-SOA mass concentrations for the Base simulations for 753 
the low and high NOX simulations respectively. Our simulations imply that IVOCs might be as influential as SVOCs 754 
as a bulk class of SOA precursors but they were still less important than the traditional SOA precursors (that included 755 
long alkanes and aromatics) in contributing to ambient SOA levels. In this work, the IVOC contribution to SOA was 756 
smaller compared to that from traditional SOA precursors mostly because IVOC emissions were only about a third of 757 
the traditional SOA precursors (see Section 3.1 for details on emissions). So although IVOCs have higher SOA yields 758 
than most of the traditional SOA precursors, the significantly lower IVOC emissions more than offset the increased 759 
SOA formation from higher yields. While there are exceptions (e.g., Tsimpidi et al. (2010); Jathar et al. (2017a)), our 760 
results did not align with previous box (e.g., Dzepina et al. (2009); Hayes et al. (2015); Ma et al. (2017)) and 3D (e.g., 761 
Bergstrom et al. (2012); Zhang et al. (2013)) modeling literature that has found IVOCs to be similar or more important 762 
than traditional SOA precursors in contributing to ambient SOA levels. Below we discuss three main reasons for this 763 
inconsistency. 764 
 765 
First, some previous estimates of IVOC emissions are likely to be less representative of the in-use gasoline- and 766 
diesel-powered sources and unconstrained for biomass burning sources. IVOC emissions in most atmospheric models 767 
have previously been determined by scaling emissions of POA or by calculating partitioning with the measured POA, 768 
with scaling factors typically on the order of 1.5 (e.g., Shrivastava et al. (2008)) but as large as 3 (e.g., Dzepina et al. 769 
(2009)). These factors have been calculated from emissions data from two medium-duty gasoline vehicles built more 770 
than two decades ago and a POA volatility distribution from a small off-road diesel engine (Robinson et al., 2007). 771 
Additionally, since POA is semi-volatile the POA mass in the particle phase will change with OA loading, which can 772 
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complicate the use of a scaling based on POA (but this is addressed by the partitioning method used in some studies). 773 
Zhao et al. (2015) provided some evidence for this where they found that the POA-based scaling did not work that 774 
well for modern diesel vehicles and instead recommended the use of an NMOG-based scaling. We note that Ma et al. 775 
(2017) used the IVOC estimates of Zhao et al. (2015) and still found IVOCs to be comparable to VOCs in terms of 776 
SOA production in the Los Angeles area. Second, the SOA formation from IVOCs in most models to date has not 777 
been experimentally constrained. Most schemes to model SOA formation from IVOCs have relied on an ad hoc aging 778 
scheme where IVOCs and their oxidation products react with the OH radical to form lower volatility products with 779 
ultimate SOA yields of 100% (Robinson et al., 2007). These schemes do not account for fragmentation reactions and 780 
have not been comprehensively validated against experimental data. Jathar et al. (2016) showed that such schemes 781 
may significantly overestimate the net aerosol production from SOA precursors. And finally, most models do not use 782 
SOA parameters that yet account for the effect of vapor wall losses in chamber experiments. This effect and its 783 
particular influence on the IVOC contribution to SOA is discussed in Section 3.4. In this work, we (i) rely on a 784 
comprehensive set of IVOC emissions estimates made from measurements performed on more representative sources, 785 
(ii) model fragmentation reactions during IVOC oxidation, (iii) to some degree constrain SOA formation from IVOCs 786 
with chamber experiments, (iv) to some degree account for the influence of vapor wall losses in chamber experiments, 787 
and (v) include all of the previously mentioned updates in a chemical transport model. Hence, we argue that our 788 
findings on the IVOC contribution to SOA might be more robust than those modeled in earlier studies.  789 
 790 
Traditional VOCs. For the Base simulations in Los Angeles, aromatics accounted for 33% of the total SOA in Los 791 
Angeles and were the most important anthropogenic precursor of SOA. Alkane contributions to SOA were less than 792 
10% for both the low and high NOx simulations. Biogenic VOCs accounted for 46% and 55% of the total SOA for the 793 
low and high NOX simulations respectively and were clearly the most important precursor of SOA at the central Los 794 
Angeles site. After accounting for the influence of NOX based on equation (2), the isoprene, monoterpene, and 795 
sesquiterpene contributions to bV-SOA were 23%, 68%, and 9% respectively, suggesting a strong monoterpene 796 
contribution to SOA in southern California. As biogenic VOCs react very quickly with OH and O3 (chemical lifetimes 797 
of a few hours), most of the biogenic SOA at this site was likely formed outside the urban airshed and transported to 798 
this location, as suggested by Kleeman et al. (2007), Hayes et al. (2015) and Heo et al. (2015). 799 

3.4 Influence of Vapor Wall Losses 800 

SOA parameterizations that accounted for the influence of vapor wall losses in chambers seemed to have had a large 801 
effect on the absolute mass concentrations of SOA. This can be seen by comparing model results between the IVOC 802 
and Base simulations in Figure 3. The SOA mass concentrations were enhanced by a factor of 10.1 and 2.6 for the low 803 
and high NOX simulations respectively and consistent with previous 3D simulations (Cappa et al., 2016). However, they 804 
were slightly higher than the range of enhancements reported by Zhang et al. (2014) and estimated by Krechmer et al. 805 
(2016) based on analyses of chamber data. The SOA enhancements resulted in an OA enhancement of 1.66 and 1.14 in 806 
the low and high NOx simulations, which were lower than the SOA enhancements since SOA only accounted for a 807 
fraction of the OA mass. Differences in enhancements in the low and high NOX simulations suggest that the vapor wall 808 
loss effect was modified by the NOX level where the enhancement may be lower in urban/source regions with higher 809 
NOX but higher in rural/remote continental regions with lower NOX. Since urban SOA mass concentrations are usually 810 
higher than those in rural/remote continental regions, an implication of this NOx-modified enhancement is that 811 
accounting for vapor wall loss artifacts will tend to reduce gradients in SOA mass concentrations between urban and 812 
rural/remote continental regions and make SOA more of a regional pollutant similar to ozone (O3). 813 
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 814 

 815 

Figure 4: Ratio of model predictions from the Base simulation that accounts for the influence of vapor wall losses to 816 
model predictions from the IVOC simulation that does not account for the influence of vapor wall losses. Ratios are 817 
calculated from the 14-day averaged results for the whole domain and are resolved by precursor. Panels (a) and (b) 818 
show results from the low and high NOX simulations respectively.  819 
 820 
Different precursors contributed in varying degrees to the SOA enhancement. The precursor-resolved enhancements are 821 
visualized in Figure 4 where we plot the ratio of the 14-day averaged model predictions of the SOA mass concentrations 822 
from the Base simulation to those from the IVOC simulation for each grid cell in the southern California domain (dots) 823 
and overlay box-whisker plots based on those data. For all precursors the enhancements were higher for the low NOX 824 
simulations compared to the high NOX simulations. SVOCs showed the smallest enhancement at both the low and high 825 
NOX levels (median of 1.6 and 1.2) and hence their fractional contribution to total SOA was reduced in the Base 826 
simulation when compared to the IVOC simulation. Alkanes showed the largest enhancement in the low NOX 827 
simulations (median of 94) and the second largest enhancement in the high NOX simulations (median of 4.5). Despite 828 
the large enhancements, alkanes still contributed marginally to total SOA in the Base simulations because the baseline 829 
contribution of alkanes to SOA was small in the IVOC simulations (<3%). IVOCs exhibited a larger enhancement 830 
(median of 17 and 2.9) compared to SVOCs and a smaller enhancement compared to alkanes in both simulations, despite 831 
using the same surrogate (i.e., n-dodecane) to model SOA formation. The reason for varying enhancements in SVOC, 832 
IVOCs, and alkanes, despite using the same surrogate (i.e., n-dodecane), was that the vapor wall loss-related 833 
enhancement was inversely related to the carbon number where larger carbon number precursors (e.g., SVOC that had 834 
an average carbon number of 18 to 20) showed smaller enhancements and smaller carbon number precursors (e.g., 835 
alkanes that included species between carbon numbers of 6 and 12) showed larger enhancements. The simplest 836 
explanation for this inverse relationship is that larger precursors and their oxidation products, relatively speaking, have 837 
shorter chemical lifetimes and undergo fewer chemical reactions before condensing, which make them less susceptible 838 
to being lost to the walls (see Figure S5 where we plot the vapor wall loss-related enhancement in SOA yields as a 839 
function of the carbon number at an OA mass concentration of 9 µg m-3). Of the two other important precursors, 840 
aromatics displayed the largest enhancement in the high NOX simulations (median of 6.6) and were tied with IVOCs 841 
for the second largest enhancement in the low NOX simulations (median of 16) while biogenic VOCs showed the lowest 842 
enhancement after SVOC in both the low NOX and high NOX simulations. Accounting for vapor wall loss artifacts is 843 
expected to result in an increase in the aromatic contribution to SOA when compared against biogenic VOCs. Vapor 844 
wall loss rates in Teflon chambers might be much higher (~factor of 5) than those used in this work to develop the SOM 845 
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parameterizations ((Huang et al., 2018; Krechmer et al., 2016; Sunol et al., 2018), the use of which will be will tend to 846 
increase SOA mass concentrations even further. This new understanding will need to be considered in the future.  847 

3.5 Sensitivity Analysis 848 

Results from the sensitivity simulations that examined uncertainties in select model inputs are shown in Figure 5 where 849 
we plot the 14-day averaged model predictions from these simulations at the central Los Angeles site. We also plot 850 
model predictions from the Base simulations as all the sensitivity simulations have been performed using the Base 851 
simulation as the reference (see Table 3 for details about the simulations). Model predictions from the low and high 852 
NOX simulations are shown separately. The No Aging simulations decreased the SOA mass concentrations by almost 853 
an order of magnitude demonstrating the importance of modeling multi-generational aging in the SOM. The inclusion 854 
of oligomerization reactions that may enhance the partitioning of semi-volatile species may alter this finding. The No-855 
Aging simulations produced a very different precursor contribution to total SOA compared to the Base simulations and 856 
the changes in the precursor contribution were also different between the low and high NOX simulations. For instance, 857 
the aV-SOA contributions to total SOA increased from 39% to 41% for the low NOX simulations but decreased from 858 
26% to less than 5% in the high NOX simulations. This implied that the treatment of multi-generational aging in the 859 
SOM did not proportionately enhance the SOA mass concentrations from the different precursors but rather produced 860 
varying levels of enhancement for the different precursors that was further modified by the NOX levels. This finding is 861 
of note because CTMs that have employed schemes such as the volatility basis set (VBS) have typically assumed that 862 
multi-generational aging has an approximately similar effect on SOA mass concentrations from different precursors, 863 
regardless of the NOX levels, and one which does not significantly change the precursor contribution to SOA. With the 864 
VBS, one may observe some differences with multi-generational aging from the use of different starting VBS 865 
distributions for SOA from different precursors.  866 
 867 
The SVOCmax simulations that assumed all POA (except marine POA) to be semi-volatile saw POA mass concentrations 868 
decrease by 36% compared to the Base simulations and by 56% compared to the Traditional simulations (not shown 869 
here but inferred from results in Figure 3). The increase in SVOCs from the additional evaporation of POA mass resulted 870 
in about a three-fold increase in the aS-SOA mass concentrations and a proportionate increase in the SVOC contribution 871 
to total SOA. Similar to the findings discussed in Section 3.3, only a fraction of the evaporated POA mass lost was 872 
regained as aS-SOA mass concentrations. For instance, when compared to the Traditional simulations, of the 2.9/3.3 µg 873 
m-3 of POA mass lost 0.32/0.22 µg m-3 was regained as aS-SOA reflecting a chemical conversion efficiency of 11/7% 874 
for the low/high NOX simulations. These simulations predicted the maximum decrease in POA mass concentrations 875 
from treating all POA as semi-volatile and reactive but the results still found POA to be 40% and 69% of the total OA 876 
in the low and high NOX simulations respectively. Direct emissions of POA were still a sizeable fraction of the ambient 877 
OA and PM burden using the current state-of-the-science treatment. 878 
 879 
Estimating IVOCs to be 20% of the NMOG emissions for all combustion sources and modeling the SOA formation 880 
from IVOCs using a C15 linear alkane – as modeled in the IVOCmax simulations – resulted in an approximately four-fold 881 
increase in the aI-SOA mass concentrations over the Base simulations. The increases were partly attributed to additional 882 
IVOC emissions from sources other than mobile and biomass burning (factor of 2.8 compared to IVOC emissions from 883 
the Base simulations) and partly to using a larger alkane (C15 linear alkane) with a higher SOA mass yield to model 884 
SOA formation from IVOCs emitted by gasoline sources. Simulating SOA formation from IVOCs using an aromatic 885 
surrogate in the S-IVOCaromatic simulations had the same effect as the IVOCmax simulations and increased aI-SOA mass 886 

Field Code Changed



 

25 
 

concentrations by a factor of 2.6/6.3 for the low/high NOX simulations. The aI-SOA mass concentrations were higher 887 
because aromatics for the same carbon number have a higher SOA mass yield than alkanes. The IVOCmax and S-888 
IVOCaromatic simulations potentially present an upper bound contribution of IVOCs to SOA formation and in both these 889 
simulations were ~30% of the total SOA and a factor of ~1.5-2 larger than the aromatic VOC contribution. While the 890 
IVOCmax and S-IVOCaromatic simulations dramatically increased the aI-SOA mass concentrations, these simulations only 891 
modestly increased the total OA mass concentrations over the low and high NOX simulations (average increase of 10%). 892 
Over the urban area, the OA mass concentrations in the IVOCmax and S-IVOCaromatic simulations were on average 10-893 
12% higher compared to the Base simulations (see Figure S6). Updating the emissions profiles based on the work of 894 
May et al. (2014) had a negligible effect on the SOA mass concentrations and its precursor contribution implying that 895 
the emissions profiles from more than a decade and a half ago may be sufficient to model the modern mobile source 896 
fleet. Finally, a lower volatility (i.e., more realistic) POA in the SVOCcooking simulations, informed by the measurements 897 
of Louvaris et al. (2017), resulted in a 20% increase in POA mass concentrations when compared to both the low and 898 
high NOX Base simulations. POA mass concentrations in these low and high NOX simulations accounted for 899 
approximately 55 and 85% of the OA respectively. The SOA mass concentrations between the SVOCcooking and Base 900 
simulations remained the same.  901 

  902 
Figure 5: 14-day averaged model predictions of POA and SOA mass concentrations and precursor contributions from 903 
the sensitivity simulations. Panel (a) shows absolute concentrations and panel (b) shows precursor contributions. 904 
Model predictions from the low and high NOX simulations are shown separately. Simulation legend: Base = Base 905 
case, No Aging = only models first generation chemistry in the SOM, SVOCmax = all POA treated as semi-volatile, 906 
IVOCmax = all combustion sources assumed to have 20% IVOC emissions and a C15 SOA yield, S-IVOCaromatic = 907 
SVOCs and IVOCs modeled as high-yield aromatic compounds, VOCspec = mobile source emissions profiles based on 908 
May et al. (2014), SVOCcooking = POA volatility distribution for food cooking sources based on the measurements of 909 
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Louvaris et al. (2017). All simulations besides SVOCcooking assumed food cooking POA to have the same volatility as 912 
biomass burning POA. More details about these simulation inputs can be found in Section 2.3.  913 

3.6 NOX-Adjusted SOA Formation 914 

The SOM currently does not model the continuous evolution of SOA under varying NOX concentrations. One of the 915 
challenges in modeling the NOX influence on SOA formation has been in quantifying the branching of the VOC 916 
oxidation under low and high NOX conditions. Most commonly used schemes in atmospheric models use the NO:HO2 917 
ratio to determine the initial branching of the precursor to form SOA via the low or the high NOX pathway. However, 918 
this scheme depends on an accurate prediction of NO and HO2. To assess, at least qualitatively, the ability of the model 919 
to capture NO and HO2 concentrations, we compare 14-day averaged diurnal profiles from this work to those measured 920 
in Pasadena in 2010 during the CalNex campaign in Figure S7. We found that the model predictions were within a factor 921 
of two for NO concentrations but were about a factor of 10 lower than the measured HO2

* concentrations. We should 922 
note that the HO2

* measurements included HO2 and a fraction of RO2 radicals,  where RO2 radicals contributed to  ~30% 923 
of the HO2

* measurements (Griffith et al., 2016). The inclusion of RO2 should not change the findings reported here. If 924 
the results from our modeling are representative of results from other atmospheric models that use SAPRC or other gas-925 
phase chemical mechanisms, underestimating the HO2 concentrations may lead NO:HO2 ratio-based schemes to 926 
overestimate the SOA formed via the high NOX pathway. Given this limitation and the fact that the SOM does not model 927 
the model the continuous evolution of SOA under varying NOX concentrations, we attempted to model the NOX-928 
dependent SOA formation using VOC:NOX ratios and NOX concentrations.  929 
 930 
Four different methods – described in equations (1) through (4) – were used to adjust the SOA mass concentrations 931 
from each individual precursor to account for the influence of NOX. To remind the reader, equations (1) and (2) assume 932 
a linear and logarithmic dependence respectively between the SOA mass concentration and the VOC:NOX ratio. 933 
Equations (3) and (4) assume a linear and logarithmic dependence respectively between the SOA mass concentration 934 
and the NOX concentration. The adjusted SOA mass concentrations, referred to as SOAeff, were summed to calculate 935 
the total SOA mass concentrations. Equation (2) produced the highest SOA mass concentrations while equation (3) 936 
produced the lowest SOA mass concentrations amongst the four equations. Scatter plots comparing the SOA mass 937 
concentrations calculated using equation (2) to those calculated using other equations, in Figure S8, show that the SOA 938 
mass concentrations based on equation (2) were, on average, a factor of 1.27, 3.19, and 1.92 higher than those with 939 
equations (1), (3), and (4) respectively. This meant that a calculation based on the VOC:NOX ratio produced a stronger 940 
response of NOX on SOA mass concentrations than the NOX concentrations themselves. In the subsequent sections, 941 
where we evaluate the model predictions (Section 4) and predicted future changes in the OA burden (Section 5), we 942 
used the SOAeff calculations based on equation 2 since they represented an upper bound estimate of the NOX effect on 943 
SOA mass concentrations. The validity of equation 2 needs to be examined in future work.  944 
 945 

 946 
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Figure 6: 14-day averaged ratio of the SOAeff mass concentration to the SOA mass concentration from the (a) high 947 
NOX and (b) low NOX Base simulations. 948 
 949 
In Figure 6, we plot the ratio of the total SOAeff mass concentrations based on equation (2) to the total SOA mass 950 
concentrations from the (a) high NOX and (b) low NOX Base simulations. The SOAeff mass concentrations were higher 951 
than the SOA mass concentrations predicted using the high NOX parameterizations, with an average factor of two 952 
increase in urban areas and a maximum factor of four increase in non-urban areas. This was because the model predicted 953 
VOC:NOX ratios in the urban areas were higher than the VOC:NOX ratios produced in the high NOX chamber 954 
experiments and based on equation (2) the SOA mass concentrations were adjusted upwards to include the SOA 955 
predicted using the low NOX parameterizations. The adjustments increased the SOA mass concentrations because the 956 
SOA mass concentrations from each precursor were universally higher with the use of the low NOX parameterizations 957 
compared to the high NOX parameterizations. The SOAeff mass concentrations were 30-40% lower than the SOA mass 958 
concentrations predicted using the low NOX parameterizations in urban areas, suggesting that the SOAeff mass 959 
concentrations were approximately midway between the SOA predictions using the high and low NOX 960 
parameterizations. In contrast, the SOAeff mass concentrations were only marginally lower (10-20%) in the non-urban 961 
areas implying that the VOC:NOX ratios in these regions were very similar to the VOC:NOX ratios produced in the low 962 
NOX chamber experiments. In summary, a modest fraction of the SOA mass may be formed through the ‘low-NOX’ 963 
pathway in high NOX urban areas, which may result in substantial increases in the predicted SOA mass concentration 964 
when compared against predictions purely based on the use of high NOX parameterizations. This low-NOX SOA will 965 
continue to increase in the future as NOX concentrations are reduced in urban areas through controls on mobile sources. 966 
In contrast, only a small fraction of the SOA mass may be formed through the ‘high-NOX’ pathway in low NOX non-967 
urban areas and the use of a low NOX parameterization in these regions will only marginally bias model predictions of 968 
SOA mass concentrations.  969 
 970 

4 Model Evaluation 971 

Model predictions from the Base simulation were evaluated against gas-phase measurements of SOA precursors and 972 
particle-phase measurements of OA mass concentrations and composition. For the particle-phase measurements, we 973 
focused the model evaluation on predictions adjusted for the NOX influence on SOA formation using equation 2 974 
(logarithmic dependence on VOC:NOX ratio).  975 

4.1 SOA Precursors 976 

In Figure 7(a), we compare 14-day averaged model predictions of aromatic concentrations for our 2005 episode against 977 
measured temporal trends in summer-averaged single-ring aromatic concentrations at three different sites in Southern 978 
California (Los Angeles-North Main Street, Riverside-Rubidoux, and Long Beach) (SCAQMD, 2017); model 979 
predictions of aromatic concentrations are a sum of the benzene, ARO1, and ARO2 concentrations. On the same figure, 980 
we also plot model predictions of aromatic concentrations at Pasadena for our 2005 episode and measured single-ring 981 
aromatic concentrations made at the Pasadena ground site in 2010 as part of the CalNex campaign (Zhao et al., 2014). 982 
The summertime single-ring aromatic concentrations in southern California have decreased by a factor of 2 to 3 between 983 
2000 and 2011 presumably from regulations that have targeted emissions from mobile sources. These reductions agreed 984 
well with reported temporal trends in carbon monoxide, nitrogen oxides, and non-methane organic compounds for Los 985 
Angeles over the same time period (Warneke et al. (2012); MacDonald et al. (2013)). Aromatic measurements at 986 
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Pasadena in 2010 compared well with the 2010 measurements made ~12 km southwest of Pasadena at the Los Angeles-987 
North Main Street location suggesting that the summer/campaign-averaged aromatic concentrations were spatially 988 
homogeneous over urban Los Angeles and findings from the model-measurement comparison at a particular site could 989 
be generalized for the larger modeled domain. The model-measurement comparison for aromatics in 2005 was mixed. 990 
Concentrations were overpredicted by a factor of ~1.5 at the Los Angeles-North Main Street and Long Beach sites but 991 
agreed well with measurements at Riverside-Rubidoux. The predictions might have been overestimated because we 992 
were using an older emissions inventory developed for the year 2000 but adapted for use for the year 2005 based on 993 
activity data (Hu et al., 2015). Another possibility for the over prediction was that the lumped model species ARO1 and 994 
ARO2 in SAPRC-11 also included emissions from oxygenated aromatic (e.g., phenols) and aromatic-like compounds 995 
(e.g., furans) while the measurements were limited to a handful of single-ring reduced aromatic compounds. Despite 996 
differences in the absolute concentrations, the model seemed to capture the measured spatial differences between the 997 
three sites, i.e. Los Angeles-North Main Street > Riverside-Rubidoux > Long Beach.  998 
 999 

 1000 
Figure 7: (a) Mass concentrations of single-ring aromatics in southern California at different sites between 2000 and 1001 
2011. Measurements show the temporal trend in the summertime mean (solid line) and 10th-90th percentile (bands) at 1002 
Los Angeles, Riverside, and Long Beach from 2000 to 2011 (ARB, 2017) and the campaign-averaged measurement 1003 
from CalNex at the Pasadena ground site in 2010 (Zhao et al., 2014). Model predictions show the 14-day averaged 1004 
concentration simulated in this work at four different sites (solid symbols) in 2005. (b) Mass concentrations of single-1005 
ring aromatics and IVOCs compared between the model predictions from 2005 (this work) to measurements in 2010 1006 
(Zhao et al., 2014). 1007 
 1008 
In Figure 7(b), model predictions of aromatics and IVOCs in Pasadena in 2005 are compared against measurements 1009 
made at the Pasadena ground site in 2010. The model predictions in Pasadena were calculated by averaging predictions 1010 
from the grid cell that contained the Pasadena ground site and the grid cell immediately to the south. This was done 1011 
because the ground site location was very close to the cell boundary to the south and the grid cell containing the Pasadena 1012 
ground site included mountains to the north of Pasadena that tended to dilute the concentrations in that grid cell. The 1013 
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measurements in Figure 7(b) included primary IVOCs but did not include the oxygenated IVOCs measured by Zhao et 1014 
al. (2014) since the primary IVOCs, according to the authors, relate most closely to IVOC emissions from mobile 1015 
sources. The IVOCs included in this work were mostly (>95%) from mobile sources (see Figure 1) and the hence the 1016 
comparison with primary IVOCs was appropriate. The model predicted aromatic concentrations at Pasadena in 2005 1017 
were twice the measured aromatic concentrations at Pasadena in 2010. This 2005(modeled)-to-2010(measured) ratio 1018 
was slightly higher but still consistent with the measured 2005-to-2010 ratio in aromatic concentrations at the Los 1019 
Angeles-North Main Street site (1.67). That the 2005(modeled)-to-2010(measured) ratio for IVOCs in Pasadena was 1020 
~1.0 is some evidence that the model predictions of IVOCs might be underpredicted in 2005, assuming that the ambient 1021 
IVOC-to-aromatic ratio did not change between 2005 and 2010. The IVOCmax sensitivity simulation (the only sensitivity 1022 
simulation that modeled an increase in IVOC emissions) predicted a 2005(modeled)-to-2010(measured) ratio of 3.15 1023 
for IVOCs in Pasadena, which was closer to the measured aromatic concentrations ratios between 2005 and 2010 at the 1024 
Los Angeles-North Main Street site. This provides additional evidence for higher IVOC emissions to be included in the 1025 
model and it is possible that these additional IVOC emissions might come from volatile chemical products such as 1026 
pesticides, coatings, cleaning agents, and personal care products (McDonald et al., 2018). While this model-1027 
measurement comparison validates the aromatic SOA precursors and to some extent the mobile source IVOC SOA 1028 
precursors, our model does not account for the oxygenated IVOCs that Zhao et al. (2014) measured and we recommend 1029 
that future work investigate the sources, composition, and the SOA potential for these IVOCs.  1030 
 1031 

 1032 
Figure 8: Model-measurement comparison for daily-averaged OA mass concentrations at (a) CSN and (b) IMPROVE 1033 
sites in southern California. Panel (c) shows the geographic locations where the comparisons were made.  1034 

4.2 OA Mass Concentrations 1035 

Scatter plots comparing model predictions of OA from the Base simulations to (a) CSN and (b) IMPROVE 1036 
measurements in southern California are shown in Figure 8(a) and (b). Predictions from the low and high NOX 1037 
simulations are presented in grey while predictions accounting for the influence of NOX are shown in color. The colors 1038 
denote different sites and the site locations are shown in Figure 8(c). The model-measurement performance is also 1039 
captured using statistical metrics of fractional bias, fractional error, and the coefficient of determination in Table 4. At 1040 
all CSN sites, model predictions of OA that included SOA mass concentrations adjusted for the influence of NOX were 1041 
in-between those predicted between the low and high NOX simulations. As explained earlier, this was because the 1042 
VOC:NOX ratios at all these sites (see Figure S9(a)) were always higher than those in the high NOX chamber experiments 1043 
(see Table 2) and hence the SOA mass concentrations calculated using equation 2 were always higher than those 1044 
predicted in the high NOX simulations. At all the CSN sites, correcting for NOX improved model performance compared 1045 
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to the high NOX experiments but was still inferior compared to the predictions from the low NOX simulations (see Table 1046 
4). The mean predicted OA mass concentration across all the CSN sites was about 30% lower than the measurements 1047 
(5.96 versus 8.86 µg m-3). Model predictions of OA were very similar to those predicted in the low NOX simulations at 1048 
the IMPROVE sites where the VOC:NOX ratios were higher (e.g., San Rafael–green square). But, similar to the finding 1049 
at the CSN sites, model predictions of OA were in-between the predictions between the low and high NOX simulations 1050 
at the IMPROVE sites where the VOC:NOX ratios were lower as a result of their proximity to urban areas (e.g., Agua 1051 
Tibia–blue square and Riverside–brown square). Accounting for NOX seemed to improve the model performance at the 1052 
IMPROVE sites when compared to predictions from the high NOX simulations and were slightly inferior to those from 1053 
the low NOX simulations (see Table 4). Of the 27 IMPROVE measurements available for comparison, 22 or ~80% of 1054 
the model predictions corrected for NOX were within a factor of two of measurements with little bias (fractional bias=-1055 
16.63%). The model skill, captured by the R2 values, for all model simulations at both the CSN and IMPROVE sites 1056 
was quite poor, but still slightly better than that found in earlier work for the southern California region with the CMAQ 1057 
model (Baker et al., 2015). However, the model skill was much worse than that reported in earlier work with CMAQ 1058 
(e.g., Murphy et al. (2017)) and WRF-Chem (e.g., Ahmadov et al. (2012)) over regions other than southern California, 1059 
suggesting that there might be missing emissions sources and/or chemical pathways or meteorological considerations 1060 
that contribute to the poor model skill in southern California.  1061 
 1062 
Given the differences in the model-measurement comparison between the CSN (or urban) and IMPROVE (rural/remote 1063 
continental) sites, the underprediction at the CSN sites might be indicative of a missing urban source or pathway of OA 1064 
formation. Recently, McDonald et al. (2018) found that volatile chemical products such as pesticides, coatings, cleaning 1065 
agents, and personal care products may contribute substantially to IVOC emissions and account for more than half of 1066 
the anthropogenic SOA formation in southern California. Our underprediction at urban sites might be evidence of 1067 
missing SOA from volatile chemical product-related IVOC emissions. However, it is also possible that the urban versus 1068 
rural/remote continental difference is an artifact of how the SOM models the oxidation chemistry and/or accounts for 1069 
the influence of vapor wall losses. Within the CSN and IMPROVE sites, we did not find the model-measurement 1070 
comparison to vary systematically by location. The model-measurement comparison over all of California using the 24 1071 
km simulations produced a similar result (Figure S10). 1072 
 1073 
Table 4: Statistical metrics of averages, fractional bias, fractional error, and R2 for the model-measurement comparison 1074 
in southern California.  1075 

Simulation 

CSN IMPROVE 
Measured 
Average 
(µg m-3) 

Modeled 
Average 
(µg m-3) 

Fractional 
Bias 

Fractional 
Error R2 

Measured 
Average 
(µg m-3) 

Modeled 
Average 
(µg m-3) 

Fractional 
Bias 

Fractional 
Error R2 

Base - 
Low NOx 

8.86 7.96 -31.5% 46.0% 0.16 3.72 4.87 -1.38 % 41.8% 0.116 

Base - 
Effective 8.86 5.96 -53.4% 49.2% 0.13 3.72 4.02 -16.6 % 44.8% 0.079 

Base - 
High NOx 8.86 3.97 -83.1% 83.1% 0.013 3.72 2.00 -74.1 % 75.9% 0.317 

 1076 
Model predictions of the OA:ΔCO diurnal profile and daytime OA versus CO (between 10 am and 8 pm local time) are 1077 
compared against measurements made at the Riverside site during the SOAR-1 campaign in Figure 9(a) and (b); SOA 1078 
mass concentrations have been adjusted for the influence of NOX using equation (2). The ΔCO for the measurements 1079 
was calculated by assuming a background concentration of 105 ppbv (Hayes et al., 2013) while the ΔCO for the model 1080 
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predictions was calculated by using the model predicted background concentration of CO over the ocean to the west of 1081 
Los Angeles. This model-measurement comparison was not completely coincident in time since the model results were 1082 
between July 20 and August 2 while the SOAR-1 campaign spanned from July 15 to August 15. The measurements did 1083 
not point to any substantial differences in results between the coincident and non-coincident time and hence we did not 1084 
anticipate any issues in our comparisons here. The model predictions were able to capture the general trends in the 1085 
measured diurnal profile in Figure 9(a) with low ratios during the night, high ratios attributed to photochemistry in the 1086 
mid-afternoon, and a peak between 1 and 2 pm (local time). However, the modeled OA:ΔCO ratios at all times in the 1087 
diurnal profile in Figure 9(a) and the slope of the OA:CO ratios in Figure 9(b) was approximately a factor of 2 to 3 1088 
lower than the measured ratios, indicating a significant underprediction of urban SOA, which was consistent with the 1089 
much higher POA/SOA ratios predicted by the model compared to the observations, as discussed above. This 1090 
underprediction cannot be blamed on the model grid resolution since a ratio with CO should to first order account for 1091 
the influence of dilution in the grid cell. Cappa et al. (2016) showed much better model performance than this work 1092 
when they assumed a non-volatile POA and SOA formed under low NOX conditions. In this work, despite forming 1093 
additional SOA from SVOCs and IVOCs, the evaporation of the POA mass and an SOA estimate adjusted for NOX 1094 
meant that the model performance was worse in comparison to Cappa et al. (2016). The sensitivity simulations of 1095 
IVOCmax and S-IVOCaromatic produced slightly higher OA mass concentrations (~10-15%) compared to the Base 1096 
simulations but not dramatically different to influence the comparison in Figure 9(a) and (b). As mentioned earlier, SOA 1097 
formation from IVOC emissions from volatile chemical products, or other future improvements in the SOM, have the 1098 
potential to reduce the model underprediction at Riverside during the SOAR-1 campaign.  1099 
 1100 

 1101 
Figure 9: (a) Diurnal profile of the modeled and measured OA/ΔCO ratios at Riverside, CA. The box plots capture the 1102 
10th-25th-50th-75th-90th in model predictions over the simulated episode while the gray bands and solid orange line 1103 
represent the 10th and 90th percentile and median of the measured data. (b) Modeled and measured OA mass 1104 
concentrations plotted against CO concentrations between 10 am and 8 pm local time. The solid and dashed black 1105 
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lines represent lines fitted to the modeled and measured data by forcing the X-intercept to be the corresponding 1106 
modeled and measured background CO concentration. Diurnal profiles of the modeled and measured (c) H:C and (d) 1107 
O:C ratios of the OA (corrected as per Canagaratna et al. (2015)). The three different predictions show results from 1108 
the Base simulations for OA assuming no change, the POA O:C was fixed to 0.078 based on the measurements of 1109 
Docherty et al. (2011), and no POA.  1110 

4.3 POA and SOA Mass Concentrations 1111 

The 14-day averaged results predicted POA and SOA mass concentrations of 3.4 and 2.2 µg m-3 and an approximate 1112 
60:40 POA-SOA split at Riverside. Docherty et al. (2011) estimated average POA and SOA mass concentrations of 1.9 1113 
and 7.0 µg m-3 and a POA-SOA split of 20:80 at Riverside during the SOAR-1 campaign. On an absolute basis model 1114 
predictions of POA mass concentrations were overpredicted by ~80%. A sensitivity simulation that turned sea spray 1115 
emissions off suggested that the 14-day averaged marine POA mass concentrations at Riverside were ~0.8 µg m-3, which 1116 
are very likely to be overestimated (Hayes et al., 2013). If the emissions of marine POA were updated to align better 1117 
with the observations and in the limiting case where the marine POA mass concentrations at Riverside were negligible, 1118 
model predicted POA mass concentrations at Riverside (3.4-0.8=2.6 µg m-3) would compare well with the measured 1119 
values (1.9 µg m-3). As the POA mass concentrations in the SVOCcooking simulations increased and the SOA mass 1120 
concentrations remained the same compared to the Base simulations, a low volatility and more realistic treatment of the 1121 
POA from food cooking sources increased the discrepancy in the modeled and measured POA:SOA ratio at Riverside. 1122 
It is also possible that the model might be over predicting POA because we only considered POA from certain sources 1123 
(gasoline and diesel use, woodsmoke, and food cooking) to be semi-volatile.  1124 
 1125 
Figure 1 shows that more than half of the partitioned POA (that excludes marine POA) in southern California belonged 1126 
to other sources (e.g., road and construction dust) and this POA was treated as non-volatile in the Base simulations. 1127 
Model predictions from the SVOCmax simulations that treated all POA except marine POA as semi-volatile predicted a 1128 
14-day averaged POA mass concentration of 2.1 µg m-3, which was much closer to the measured value of 1.9 µg m-3. 1129 
This suggests that all POA, regardless of source, might be semi-volatile and could be modeled so in atmospheric models. 1130 
While these results are in better agreement with measurements, PM2.5 from road and construction dust sources is not 1131 
created in a high temperature process followed by rapid cooling and so it is unknown whether the POA portion in it 1132 
would evaporate with atmospheric dilution. We also compared the hydrocarbon-like OA (HOA) estimate from the 1133 
measurements, which was more representative of POA from mobile sources, against model predictions of POA from 1134 
mobile sources. We did not model POA from mobile sources separately but if we assumed that mobile sources only 1135 
accounted for about a quarter of the partitioned POA mass in southern California (based on Figure 1), our estimated 1136 
Base model predictions of POA mass concentrations from mobile sources of 0.85 µg m-3 (=3.4×0.25) would compare 1137 
reasonably with the measured HOA mass concentrations of 1.20 µg m-3.  1138 
 1139 
On an absolute basis, SOA mass concentrations were underpredicted by a factor of 3 compared to measurements. Based 1140 
on the discussion in the previous paragraph, if we added the non-mobile source POA to SOA, the net SOA mass 1141 
concentration (3.4×0.75+2.2=4.75 µg m-3) was still 33% lower than the measured value. The SOA mass concentrations 1142 
in the IVOCmax simulations – sensitivity simulations that modeled a fixed IVOC:NMOG ratio of 20% for all sources 1143 
except biogenic sources, assumed IVOCs formed SOA similar to a C15 linear alkane, and which produced the maximum 1144 
SOA mass concentrations amongst all the simulations – were 33% higher than those in the Base simulation but still 1145 
~60% lower than the measured SOA mass concentration of 7 µg m-3. A combination of the two, i.e., adding the non-1146 
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mobile source POA to the SOA formation in the IVOCmax simulations, resulted in a net SOA mass concentration that 1147 
was only 22% lower than the measured SOA value. Since the IVOCmax simulations produced ambient IVOC 1148 
concentrations that were more in line with the measurement trends (see Section 4.1), it is likely that the IVOCmax 1149 
simulations were better in predicting IVOC concentrations and their contribution to SOA. However, there are no bottom 1150 
up (i.e., source) or top down (i.e., atmospheric) data to directly constrain the emissions of and SOA formation from 1151 
IVOCs in the IVOCmax simulations and hence this finding provides motivation for more detailed studies of IVOCs in 1152 
the future.  1153 

4.4 OA Elemental Composition 1154 

The SOM tracks the carbon and oxygen numbers for the OA species and hence we were able to compare model 1155 
predictions of the diurnal profiles for the OA H:C and O:C ratios to measurements made at the Riverside site during the 1156 
SOAR-1 campaign. The comparisons are shown in Figure 9(c) and (d). For the Base simulations (shown as orange box 1157 
plots), model predictions of H:C were significantly overpredicted and those for O:C were significantly underpredicted 1158 
although the predictions did capture dips in the H:C and the peaks in the O:C ratios in the mid-afternoon, coincident 1159 
with peak photochemical activity. The model predictions did not capture the slight increase in H:C and the decrease in 1160 
O:C in the early morning attributed to emissions from rush hour traffic. The high H:C and low O:C predictions were a 1161 
result of OA being dominated by POA (~60%), which in this work was modeled as a hydrocarbon distribution that had 1162 
an H:C slightly larger than 2.0 and an O:C of 0. Docherty et al. (2011) found that POA had a campaign-averaged H:C 1163 
of 1.92 and an O:C of 0.078. If the POA O:C were fixed to the values estimated by Docherty et al. (2011), model 1164 
predictions (shown as blue box plots) improved – as shown in Figure 9(c) and (d) – but still over and under predicted 1165 
the H:C and O:C, respectively; since SOM only tracks carbon and oxygen numbers for an organic species and determines 1166 
the hydrogen number based on the remaining valence, specifying the O:C dictates the H:C. To assess the ability of the 1167 
model to predict the elemental composition of SOA, we plot the diurnal profile of H:C and O:C of the SOA in Figure 1168 
9(c) and (d). Model predictions of SOA H:C and O:C (shown as green box plots) compared well with the measured 1169 
range of values but did not reproduce the diurnal changes. Docherty et al. (2011) argued that the H:C and O:C of OA at 1170 
Riverside was mostly controlled by the SOA composition, which did not change dramatically during the day, and was 1171 
modified by POA at certain times when POA emissions dominated over SOA production (e.g., nights, rush-hour traffic). 1172 
This suggests that if absolute predictions of the SOA mass concentrations and the POA-SOA splits were improved, our 1173 
model would be able to predict both the magnitude and diurnal changes in OA H:C and O:C ratios. We found that the 1174 
SOA H:C and O:C ratio predictions did not vary significantly and produced similarly flat diurnal profiles across a subset 1175 
of sensitivity simulations performed (Figure S11), suggesting that the modeled elemental composition of SOA was not 1176 
very sensitive to the distribution of precursor contributions to SOA.  1177 
 1178 

5 Summary and Discussion 1179 

Organic aerosol (OA) is an important contributor to urban fine particle pollution yet remains one of its most uncertain 1180 
components. In this work, we updated the organic aerosol treatment in the UCD/CIT chemical transport model to include 1181 
a semi-volatile and reactive treatment of POA, emissions and SOA formation from IVOCs, the NOX influence on SOA 1182 
formation, and SOA parameterizations for SVOCs and IVOCs that were corrected for vapor wall loss artifacts during 1183 
chamber experiments. All updates were implemented in the statistical oxidation model (SOM), which simulates the 1184 
multigenerational aging and gas/particle partitioning of organic aerosol and is embedded in the UCD/CIT model (Cappa 1185 
et al., 2016; Jathar et al., 2015, 2016). POA, SVOC, and IVOC updates were based on an interpretation of a 1186 
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comprehensive set of source measurements. The influence of NOX on SOA formation was estimated offline using 1187 
methods based on the VOC:NOX ratios/NOX concentrations. 1188 
 1189 
Despite treating the POA from gasoline, diesel, biomass burning, and food cooking sources as semi-volatile, the updated 1190 
model only predicted a 30-50% decrease in POA mass concentrations in the urban airshed even when the volatility data 1191 
used to simulate POA projected a much larger decrease (45 to 80%). The primary reason for the weaker response was 1192 
that a large fraction of the POA mass came from sources other than those modeled as semi-volatile, e.g., road and 1193 
construction dust, marine. When all POA, except for marine POA, was modeled as semi-volatile, more than 60% of the 1194 
POA mass evaporated and the POA mass concentrations under this scenario compared well with measurements made 1195 
in Riverside, CA as part of the SOAR-1 field campaign. While this sensitivity analysis was informative, it is unlikely 1196 
that the POA from sources such as road and construction dust is semi-volatile and recent measurements suggest that 1197 
POA from food cooking sources has much lower volatility than assumed in the Base simulations in this work.  These 1198 
findings indicate that model predictions continue to overestimate POA relative to measured concentrations. Sea spray 1199 
emissions accounted for a quarter of the POA mass concentrations in the urban airshed but more recent observations 1200 
suggest that the sea spray emissions or the organic fraction attributed to the sea spray emissions might be overestimated 1201 
(Hayes et al., 2013). This needs to be examined in future applications of the UCD/CIT model. Atmospheric oxidation 1202 
of the evaporated POA vapors or SVOCs did not contribute significantly to the SOA burden (<0.1 µg m-3), even after 1203 
accounting for the influence of vapor wall loss artifacts, since the timescales for SOA production appeared to be longer 1204 
than the timescales for transport out of the urban airshed.  1205 
 1206 
We found IVOCs to be more important than SVOCs but less important than traditional VOCs such as single-ring 1207 
aromatics and biogenics in forming SOA. IVOCs accounted for less than 0.5 µg m-3 of SOA while single-ring aromatics 1208 
and biogenics each contributed to approximately 1 µg m-3 in the Base simulations. The IVOC contribution to SOA was 1209 
smaller than that for aromatics partly because IVOC SOA was relatively less sensitive to corrections of vapor wall loss 1210 
artifacts in chamber experiments. Another reason for the small IVOC contribution to SOA was that we only considered 1211 
IVOC emissions from gasoline, diesel, and biomass burning. On analyzing trends in SOA precursor concentrations in 1212 
southern California, the modeled IVOC concentrations in this scenario appeared to be underpredicted by a factor of ~2. 1213 
Allowing all sources that emit non-methane organic gases (NMOG) to emit IVOCs (using an IVOC:NMOG ratio of 1214 
0.2) and form SOA similar to a C15 linear alkane seemed to increase the IVOC contribution to SOA (⅓ of total SOA) 1215 
and produced better comparisons against ambient measurements of IVOC concentrations, OA composition, and SOA 1216 
mass concentrations. This might be indicative of missing IVOC emissions in the model. These missing emissions might 1217 
be from volatile chemical products such as pesticides, coatings, cleaning agents, and personal care products, which have 1218 
been found to contribute substantially to urban SOA burdens (McDonald et al., 2018). It is also likely that the missing 1219 
IVOC emissions are from sources considered in this work (i.e., gasoline, diesel, and biomass burning sources) but were 1220 
not accounted in the emissions inventories because they have been shown to be very easily lost to sampling tubes 1221 
(Pagonis et al., 2017). The IVOCs in this work were modeled using a linear alkane surrogate despite recent evidence 1222 
that IVOCs in combustion emissions are a mixture of branched and cyclic alkanes, aromatics, and oxygenated 1223 
compounds with very few linear alkanes (Koss et al., 2018; Zhao et al., 2016, 2017). A more chemically appropriate 1224 
representation of the IVOCs would not have substantially changed the findings in this work since the linear alkane 1225 
surrogates were chosen to reproduce the SOA formation in chamber experiments performed on combustion emissions. 1226 
However, future work should incorporate the more detailed speciation available to model the emissions and SOA 1227 
formation from IVOCs.  1228 
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 1229 
Loss of vapors to the Teflon walls has been shown to significantly bias SOA formation in environmental chamber 1230 
experiments (Krechmer et al., 2016; Zhao et al., 2014). Cappa et al. (2016) studied the influence of vapor wall loss 1231 
artifacts on ambient SOA mass concentrations from VOC precursors. In this work, we extended the work of Cappa et 1232 
al. (2016) by considering additional precursors of SOA, i.e., S/IVOCs. Correcting for vapor wall loss artifacts seemed 1233 
to increase SOA mass concentrations for all precursors but the enhancement varied by precursor. With a few exceptions, 1234 
the SOA enhancements correlated with carbon number where larger carbon number precursors had lower enhancements 1235 
and vice versa. The reason for this inverse relationship was that larger precursors and their oxidation products have 1236 
shorter chemical lifetimes and undergo fewer chemical reactions to form SOA, which made them less susceptible to 1237 
being lost to the chamber walls. Recent work suggests that the vapor wall loss rates to the Teflon wall might be two or 1238 
more times larger than the rates used in this work to develop the SOM parameters (Huang et al., 2018; Krechmer et al., 1239 
2016). The use of these faster rates will tend to increase the model predicted SOA mass concentrations and help explain 1240 
the underpredictions with ambient measurements.  1241 
 1242 
The emissions inputs and chemical treatment for OA was varied substantially in the sensitivity simulations performed 1243 
in this work. Yet, the simulations seemed to change the OA by less than a factor of 2 suggesting that the model 1244 
framework, except for the treatment of NOX, was generally reasonable in constraining in the total OA mass 1245 
concentrations in southern California. The total SOA enhancement was modified by the NOX level where low NOX 1246 
regions might see higher enhancements compared to high NOX regions. In southern California where urban SOA mass 1247 
concentrations might be higher than rural/remote continental SOA mass concentrations, the NOX-mediated enhancement 1248 
will tend to reduce the spatial gradients in SOA mass concentrations and make SOA a regional pollutant like O3. 1249 
Accounting for the influence of NOX seemed to improve OA model performance against routine measurements in 1250 
rural/remote environments (i.e., Interagency Monitoring of Protected Visual Environments network) where OA model 1251 
predictions were within a factor of 2 with very little bias (e.g., fractional bias of -16.6%). However, model predictions 1252 
of OA at routine monitoring sites in urban environments (i.e., Chemical Speciation Network) and at the Riverside site 1253 
during the SOAR-1 field campaign were still underpredicted by at least a factor of 2 (e.g., fractional bias of -49.2%). 1254 
This suggested a missing emissions or chemical source of OA in urban areas.  1255 
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 1256 
Figure 10: Ratios of 14-day averaged model predictions of (a) OA, (b) POA, (c) SOA, and (d) OH from 2035 to those 1257 
from 2005. The 2035 simulations were performed with 2005 meteorological inputs but scaling the anthropogenic 1258 
emissions for CO, NOX, VOC, PM2.5, SO2, and NH3 based on changes projected by the California Emission 1259 
Projections and Analysis Model (CARB, 2018). 1260 
 1261 
The future OA burden in southern California will depend not only on reductions in POA and SOA precursor emissions 1262 
but also on changes in oxidant concentrations and VOC:NOX ratios. We used the Base model to simulate the same time 1263 
period, July 20 to August 2, for the year 2035 to determine how emissions reductions and atmospheric conditions may 1264 
change in a future year to influence ambient OA-POA-SOA mass concentrations. The same meteorology and 1265 
environmental conditions were assumed, with the understanding that climatological changes in the future may alter the 1266 
findings presented here. Emissions reductions in CO, NOX, VOC, PM2.5, SO2, and NH3 were informed by net reductions 1267 
in statewide emissions between 2005 and 2035 as projected by the California Emission Projections and Analysis Model 1268 
(CARB, 2018). The 2005 inventory was scaled based on these emissions reductions for anthropogenic sources but the 1269 
biogenic emissions and VOC emissions profiles were kept the same. We did not resolve the emissions reductions in 1270 
these pollutants by source or by region since the goal was to examine the general trend in the OA-POA-SOA system 1271 
and not to predict future air quality; heterogeneity in the reduction in pollutant emissions by source and geography may 1272 
alter the results. Statewide emissions reductions in CO, NOX, and VOC of 78%, 83%, and 33% resulted in approximately 1273 
50%, 75%, 75%, and 30% reductions in ambient concentrations of CO, NO, NO2, and VOC in the urban airshed (Figure 1274 
S12 plots the ratio of CO, NO, NO2, and VOC concentrations in 2035 to those in 2005). Here, VOC is the sum of all 1275 
organic species tracked in the SAPRC-11 gas-phase chemical mechanism (excludes methane). Since the NOX reduction 1276 
was much more dramatic than that for VOCs, the VOC:NOX ratio in the urban airshed increased from ~1 to ~5 between 1277 
2005 and 2035, which was in line with recent modeled estimates by Fujita et al. (2016).  1278 Field Code Changed
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 1279 
We plot the ratio of the mass concentrations for OA, POA, and SOA in 2035 to those in 2005 in Figure 10(a), (b), and 1280 
(c) respectively. SOA mass concentrations have been adjusted for the influence of NOX using equation 2. POA mass 1281 
concentrations in the urban airshed in 2035 were slightly higher (~5%) than those in 2005 primarily because PM2.5 1282 
emissions were higher in 2035 compared to 2005; according to CEPAM, increases in PM2.5 emissions were mostly from 1283 
increases in area source emissions and not mobile source emissions. Surprisingly, SOA mass concentrations in the urban 1284 
airshed were 30-40% higher in 2035 compared to 2005 despite a 30% reduction in VOC emissions and concentrations. 1285 
Some of the increase in the SOA mass concentrations was from a shifting VOC:NOX ratio that produced more SOA via 1286 
the low-NOX pathway. However, the primary reason for the SOA increase was that OH concentrations in the urban area 1287 
had increased by a factor of 2 to 4 (see Figure 10(d)) and had reacted more of the SOA precursors. The OH 1288 
concentrations were presumably higher in 2035 because lower NOX emissions resulted in a higher OH lifetime since 1289 
the NO2+OH reaction is the primary sink for OH in polluted environments (Jacob, 1999), including the Los Angeles 1290 
area (Griffith et al., 2016). These findings suggest that the SOA and OA mass concentrations may not necessarily 1291 
respond linearly to reductions in VOC and NOX emissions in the future but rather will be strongly influenced by the 1292 
changes in chemical regime. Similarly, Praske et al. (2018) argue that dramatic reductions in NOX emissions and 1293 
concentrations in urban environments may increasingly lead to SOA formation through autooxidation pathways and 1294 
alter the rate and quantity of SOA formed. Hence, attention needs to be paid to appropriately simulate the chemical 1295 
regime (e.g., oxidant concentrations, VOC:NOX ratios, autooxidation reactions) if we are to accurately simulate the 1296 
SOA burden in urban environments in the future.  1297 
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