We thank the reviewer for reading through our response, changes to the manuscript, and the
additional comments, despite the length of the manuscript and the response to reviewer
comments. We also thank the editor for being very responsive to our submissions. Like the
earlier response, reviewer comments are in regular black, our response is in blue, text from the
manuscript is in red, and additions/updates are in i7a/ic magenta. We are happy to include any
more suggestions that the reviewer and editor have.

(1) It is still hard to extract the "big picture" message from the paper, though this is mitigated to
some extent by the sheer magnitude of the effort presented in the manuscript. In the response to
reviews, the authors note 5 main points from this paper. Ideally it would be more like 2-3.

If we had to choose 2 main points that are unique to our work, we would choose the primary
take-aways to be: (i) S/IVOC:s, after accounting for the influence of vapor wall losses, do not
contribute as much to the SOA burden as traditional VOC precursors (e.g., aromatics), (ii)
accounting for the influence of NOx may increase SOA mass concentrations in high NOx/urban
regions, and (iii) updates included in this work seem to improve the model-measurement
comparison for OA mass and composition in southern California. We have edited the abstract
slightly (removed sentences) in the hope to sharpen its focus on the three points mentioned
above. See tracked changes in the revised submission.

(2) The entirety of section 4 on model evaluation could be moved to the supporting information.
This might make the big picture results stand out more, but keeping this section in the main text
should not hamper publication.

The broad model evaluation undertaken in this work that included comparisons for SOA
precursors and OA mass and composition is required to understanding the accuracy and
limitations in modeling OA in chemical transport models. Hence, we have decided to keep this
section within the main text, despite the length of the manuscript.

(3) I think Figure 5 shows an important result that is maybe not stressed enough. The simulations
in this paper push pretty hard on POA partitioning and SOA formation. Even with all of that
pushing, the total OA only varies by a factor of ~2 at both high and low NOx. This suggests that
while there are uncertainties to work out (e.g., I/SVOC emissions and volatility), OA is
constrained reasonably well.

We thank the reviewer for this insightful comment. We have added the following text to the
discussion - “The emissions inputs and chemical treatment for OA was varied substantially in the
sensitivity simulations performed in this work. Yet, the simulations seemed to change the OA by
less than a factor of 2 suggesting that the model framework, except for the treatment of NOx, was
generally reasonable in constraining in the total OA mass concentrations in southern
California.” and the following text to the abstract “7/e updated model’s performance against
measurements combined with the results from the sensitivity simulations suggest that the OA
mass concentrations in southern California are constrained within a factor of two.”.

(4) Page 10 describes the IVOC:NMOG ratios applied in the model. The specific ratios used in



the model differ from Zhao et al's measurements. My understanding is that this is done to tune
SOA mass formation - the [IVOC:NMOG ratio needs to be adjusted to account for the use of a
single SOA surrogate for each SOM grid. This tuning likely has an impact on model
transferability in both space and time. If the combustion IVOC emissions mix is either spatially
or temporally variable, the model may be biased when applied outside of the LA-Riverside
domain or for predicting future cases.

Yes, the reviewer is correct in that the [IVOC:NMOG ratio and the surrogate used to model the
SOA formation are coupled, i.e., if one were changed, the other would change too to be
consistent with the chamber data. The two paragraphs on page 10 try to explain the differences in
the IVOC:NMOG ratios and the SOA parameterizations for IVOCs used in this work to the way
they were determined and modeled in Zhao et al. (2015, 2016). Overall, the treatment in this
work and the work of Zhao et al. (2015, 2016) is consistent if we consider median model-
measurement comparison for SOA at the end of the chamber experiment. Both treatments are
likely to produce differences in the time-dependent evolution of SOA as well as in the relative
contributions of the different precursors to the total SOA. We have made a quick note about that
on page 10: “In a future version of the model, we will aim to include the IVOC emissions
estimates of Zhao et al. (2015, 2016) and update the SOA parameterizations accordingly. It is
likely that these might slightly alter the spatiotemporal distribution of IVOC SOA in the modeled
domain.”.

(5) I still disagree that volatile chemical products are a major source of IVOCs that could
produce enough SOA to reach mass closure with measurements. I think this is treated
appropriately in the text but is stated too strongly in the abstract.

We have removed the volatile chemical product-related hypothesis in the abstract.
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Abstract

Semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs) from anthropogenic sources are
likely to be important precursors of secondary organic aerosol (SOA) in urban airsheds yet their treatment in most
models is based on limited and obsolete data, or completely missing. Additionally, gas-phase oxidation of organic
precursors to form SOA is influenced by the presence of nitric oxide (NO), but this influence is poorly constrained in
chemical transport models. In this work, we updated the organic aerosol model in the UCD/CIT chemical transport
model to include (i) a semi-volatile and reactive treatment of primary organic aerosol (POA), (ii) emissions and SOA
formation from IVOCs, (iii) the NOx influence on SOA formation, and (iv) SOA parameterizations for SVOCs and
IVOC:s that are corrected for vapor wall loss artifacts during chamber experiments. All updates were implemented in
the statistical oxidation model (SOM) that simulates the oxidation chemistry, thermodynamics, and gas/particle
partitioning of organic aerosol (OA). Model treatment of POA, SVOCs, and IVOCs was based on an interpretation of a
comprehensive set of source measurements available up to the year 2016 and resolved broadly by source type. The NOx
influence on SOA formation was calculated offline based on measured and modeled VOC:NOx ratios. And finally, the
SOA formation from all organic precursors (including SVOCs and IVOCs) was modeled based on recently derived
parameterizations that accounted for vapor wall loss artifacts in chamber experiments. The updated model was used to

simulate a two week summer episode over southern California at a model resolution of 8 km.

When combustion-related POA was treated as semi-volatile, modeled POA mass concentrations were reduced by 15-

40% in the urban areas in southern California but were still too high when compared against “hydrocarbon-like organic
aerosol” factor measurements made at Riverside, CA during the Study of Organic Aerosols at Riverside (SOAR-1)

campaign of 2005. Treating all POA (except that from marine sources) to be semi-volatile, similar to diesel exhaust

POA, resulted in a larger reduction in POA mass concentrations and allowed for a better model-measurement
comparison at Riverside, but this scenario is unlikely to be realistic since this assumes that POA from sources such as
road and construction dust are semi-volatile too. Model predictions suggested that both SVOCs (evaporated POA
vapors) and IVOCs did not contribute as much as other anthropogenic precursors (e.g., alkanes, aromatics) to SOA mass
concentrations in the urban areas (<5% and <15% of the total SOA respectively) as the timescales for SOA production
appeared to be shorter than the timescales for transport out of the urban airshed. Comparisons of modeled IVOC
concentrations with measurements of anthropogenic SOA precursors in southern California seemed to imply that IVOC

emissions were underpredicted in our updated model by a factor of 2. Correcting for the vapor wall loss artifact in

chamber experiments enhanced SOA mass concentrations although the enhancement was precursor- as well as NOx-

dependent. Accounting for the influence of NOx using the VOC:NOx ratios resulted in better predictions of OA mass
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concentrations in rural/remote environments but still underpredicted OA mass concentrations in urban environments,

The updated model’s performance against measurements combined with the results from the sensitivity simulations

suggest that the OA mass concentrations in southern California are constrained within a factor of two. Finally,

simulations performed for the year 2035 showed that despite reductions in VOC and NOx emissions in the future, SOA
mass concentrations may be higher than in the year 2005, primarily from increased hydroxyl radical (OH) concentrations

due to lower ambient NO, concentrations.

Glossary

OA - Organic aerosol

POA - Primary organic aerosol or direct emissions of organic aerosol

SOA - Secondary OA or organic aerosol formed in the atmosphere

VOC - Volatile organic compound

NMOG - Non-methane organic gas

SVOC - Semi-volatile organic compound

IVOC - Intermediate-volatility organic compound

HOA - Hydrocarbon-like organic aerosol measured by the aerosol mass spectrometer
OOA - Oxygenated organic aerosol measured by the aerosol mass spectrometer
aV-SOA - Anthropogenic SOA formed from VOC oxidation

bV-SOA - Biogenic SOA formed from VOC oxidation

aS-SOA - Anthropogenic SOA formed from SVOC oxidation

al-SOA - Anthropogenic SOA formed from IVOC oxidation

1 Introduction

Organic aerosol (OA) is an important yet uncertain component of atmospheric aerosol (Fuzzi et al., 2015; Jimenez et

al., 2009) and has large impacts on air quality, climate, and human health (Pachauri et al., 2014). Combustion sources

such as motor vehicles, biomass burning, and food cooking are significant contributors to atmospheric OA from urban

to regional to global scales (Bond et al., 2004). Yet, in urban environments where combustion emissions are a dominant

source, atmospheric models often underpredict total OA mass concentrations (e.g., Carlton et al. (2010)). Models based

on older parameterizations also predict much lower contributions of secondary organic aerosol in urban areas (e.g.,

Volkamer et al. (2006); Jathar et al. (2017a)), and may overemphasize the role of mobile sources (e.g., Ensberg et al.

(2014)), suggesting that combustion-related OA and other urban sources may not be well represented in models. There
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is a need to improve the treatment of combustion-related OA in atmospheric models since these improvements will
allow for better predictions of air quality that are needed to mitigate climate and health impacts from anthropogenic

combustion sources, and will facilitate improved understanding of additional potentially missing sources.

Research over the past decade has made major inroads in understanding the sources and properties of combustion-

related OA (Gentner et al., 2017). Combustion sources directly emit organic particles (primary organic aerosol, POA)

and also emit gaseous organic compounds that are oxidized in the atmosphere to form secondary organic aerosol (SOA).
A significant fraction of the combustion-related POA mass is now understood to be semi-volatile, that is material that

exists in a dynamic equilibrium between the vapor and particle phases (Grieshop et al., 2009a, 2009b; Huffman et al.,

2009; Kuwayama et al., 2015; Lipsky and Robinson, 2006; May et al., 2013a, 2013b, 2013c; Robinson et al., 2007).
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This POA is formed as vapors in the combustion exhaust cool down to become supersaturated and condense on existing

seed aerosol (Robinson et al., 2010). After emission, some of this POA evaporates with atmospheric dilution since the

aerosol mass available for partitioning decreases as the POA is transported away from source regions. Further, diurnal
changes in temperature leading to changes in the vapor pressure can also cycle POA between the two phases. Both vapor
and particle forms of semi-volatile POA have been shown to photochemically react in the atmosphere to add or remove

organic material from the particle-phase (Miracolo et al., 2010) and become more oxygenated (Kroll et al., 2009),

although the vapors react much faster. In addition, all combustion processes are now believed to include emissions of
an important additional class of SOA precursors: intermediate-volatility organic compounds (IVOCs) (Jathar et al.,

2014). Gas-chromatography mass-spectrometry applications have suggested that they are primarily composed of high

molecular weight linear, branched, and cyclic alkanes (carbon numbers greater than 12) and aromatics (Gentner et al.,

2012; Zhao et al., 2014, 2017). Model IVOCs have been shown to form SOA efficiently in chamber experiments (Chan
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et al., 2009; Lim and Ziemann, 2009; Presto et al., 2010; Tkacik et al., 2012) and have been hypothesized to account for
a large fraction of the SOA formed from the photooxidation of motor vehicle exhaust and biomass burning emissions

(Jathar et al., 2014; Zhao et al., 2017). The emissions and atmospheric properties (e.g., volatility, reactivity, SOA mass

yields) of POA and IVOCs are known (or very likely) to vary by source (e.g., mobile sources versus biomass burning)
and hence atmospheric models need to include a source-resolved treatment to accurately predict source contributions to

OA and fine particulate matter.

Most commonly used chemical transport models (e.g., CMAQ, CAMx, PMCAMx, WRF-Chem, GEOS-Chem) have
been updated to include a semi-volatile and reactive treatment of POA and emissions and SOA formation from IVOCs
(Ahmadov et al., 2012; Koo et al., 2014; Murphy and Pandis, 2009; Pye and Seinfeld, 2010). However, their

representation in models has been based on limited data and there are major differences between the implementations
in different models. For example, in most models, with a few exceptions (e.g., most recent research version of the OA

model in CMAQ developed by Koo et al. (2014)), the gas/particle partitioning of POA was modeled based on

measurements performed on a small off-road diesel engine from more than a decade ago (Robinson et al., 2007) and

IVOC emissions were based on data gathered from two medium duty diesel vehicles from two decades ago (Schauer et
al., 1999). Models have assumed that these data are representative of emissions from modern diesel-powered sources
and the POA/IVOC properties from diesel sources are similar to those from other sources. New source data are now
available to update POA and IVOC emissions estimates in chemical transport models. Further, the most common
schemes to model SOA formation from POA vapors and IVOCs use a single lumped precursor to simulate SOA

formation from all sources (e.g., Pye and Seinfeld (2010)) or use an ad hoc aging routine that continuously reduces the

volatility of the precursor/oxidation products until they partition into the particle phase (Robinson et al., 2007). While

some of these schemes have been validated against experimental data (Fountoukis et al., 2016; Hodzic and Jimenez,

2011; Murphy et al., 2017; Zhang et al., 2015), most have assumed that all sources have the same rate and potential to
form SOA and, in some cases, ignore fragmentation reactions tied to multigenerational chemistry. Ad hoc aging schemes
can overestimate net aerosol mass yields from an SOA precursor and can sometimes overpredict ambient SOA mass

concentrations too, especially over larger regional scales (Dzepina et al., 2009, 2011; Hayes et al., 2015; Jathar et al.,

2016). Recently, a host of studies have quantified the volatility of POA emissions from over 100 unique sources and
measured SOA formation in more than 100 chamber experiments across six broad source classes: on- and off-road

gasoline and diesel sources, wood stoves, and biomass burning (Gordon et al., 2014a, 2014b; Hennigan et al., 2011;

May et al., 2013a, 2013b, 2013c, 2014; Tkacik et al., 2017). These data offer a comprehensive set of measurements to

inform and update the source-resolved semi-volatile and reactive behavior of POA and the emissions and SOA
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formation from IVOCs in atmospheric models.

SOA formation is strongly influenced by the presence of NOx (Camredon et al., 2007; Chhabra et al., 2010; Loza et al.,

2014; Ng et al., 2007b). For most SOA precursors, with the exception of alkanes (Loza et al., 2014) and certain

sesquiterpenes (Ng et al., 2007b), environmental chamber data suggest that the reaction chemistry at low NO,, or more

precisely low NO, conditions (<2 ppbv) produces more SOA than at high NOx conditions (>50 ppbv and up to ~1 ppmv)
[(Camredon et al., 2007, Chhabra et al., 2010; Loza et al., 2014; Ng et al., 2007, Zhang et al., 2014). The consensus

seems to be that at low NOx conditions such as those found in remote continental or marine regions the peroxy radical
(RO») — formed immediately after the reaction of the precursor with the oxidant — combines with the hydroperoxy radical

(HO») or RO; to form lower volatility hydroperoxides or organic peroxides (Kroll and Seinfeld, 2008). Low NO

conditions in remote regions, and in some cases in urban regions that have recently witnessed dramatic reductions in
NOx concentrations, can promote autooxidation reactions to form extremely low-volatility organic compounds (Ehn et
al., 2014; Praske et al., 2018). At high NOx, or more precisely high NO, conditions such as those found in urban regions
or biomass burning plumes, the RO; reaction with NO either leads to the formation of alkoxy radicals that can then
fragment the carbon backbone, or to the formation of organic nitrates where both reactions result in more volatile
products (Kroll and Seinfeld, 2008). Most atmospheric models (e.g., CMAQ, WRF-Chem, GEOS-Chem) have

incorporated this knowledge to account for the influence of NOy on the magnitude, composition, and spatial distribution
of SOA.

In the mostly commonly used scheme (i.e., Henze et al. (2008)), RO, reacts with HO» to form ‘low-NO’ SOA or with

NO to form ‘high-NO’ SOA. The HO2:NO ratio determines the branching ratio for RO; and controls the SOA formed
under varying NOx levels. The SOA yields under the low and high NOx conditions are parameterized based on chamber
data gathered under low and high NOy conditions respectively. Despite being widely implemented, this scheme has one
key limitation that might tend to bias the NOx-dependent predictions of SOA. This scheme relies on an accurate
prediction of NO and HO; to determine the branching ratio for the RO, radical. Although NO predictions can be
validated against routine measurements and most chemical mechanisms seem to predict NOx (NO+NO,) within a factor
of 2, there are very few ambient data to validate model predictions of HO,. For example, as will be shown later, we find
that predictions of HO, concentrations from the use of a typical gas-phase chemical mechanism (SAPRC-11) in a 3D
model at Pasadena, CA were almost an order of magnitude lower when compared against measurements at the same

site in 2010 (Griffith et al., 2016). In this case, underpredicting HO, concentrations by an order of magnitude could shift

the scheme to produce most of the SOA via the high NO pathway. In contrast, box models that have used the regional
atmospheric chemistry mechanism (RACM) have shown good model-measurement comparisons for HO»

concentrations in polluted regions (Griffith et al., 2016; Hofzumahaus et al., 2009). Regardless, gas-phase chemical

mechanisms that use the aforementioned scheme need to ensure accurate predictions of HO; and NO concentrations to

simulate the influence of NOx on SOA formation.

In this work, we update the organic aerosol model in the UCD/CIT chemical transport model to include a semi-volatile
and reactive treatment of POA, emissions and SOA formation from IVOCs, the NOx influence on SOA formation, and
SOA parameterizations for SVOCs and IVOCs that are corrected for vapor wall loss artifacts during chamber
experiments. All of these updates are implemented in the statistical oxidation model (SOM) that simulates the oxidation
chemistry, thermodynamics, and gas/particle partitioning of OA. Model inputs for POA and IVOCs are based on an

interpretation of a comprehensive set of source measurements and resolved broadly by the source type. The NOx
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influence on SOA formation is calculated offline based on measured and modeled VOC:NOx ratios and NOx
concentrations. And finally, the SOA formation from SVOCs and IVOCs is modeled based on recently derived
parameterizations that account for vapor wall loss artifacts in chamber experiments. Building on our earlier work (Cappa
etal., 2016; Jathar et al., 2015, 2016), these updates within the framework of the SOM have improved the representation

of OA in a chemical transport model.

To help the reader, we provide a brief overview of the different sections in this manuscript (section numbers in
parentheses). Section 2 discusses details of the chemical transport model (2.1), organic aerosol model (2.2), simulations
performed (2.3), and measurements used for model evaluation (2.4). In Section 3, we first describe the emissions (3.1),
spatial distribution (3.2), and precursor contributions to OA (3.3), followed by the influence of vapor wall losses (3.4)
and NOx (3.6) on SOA formation. In the same section, we describe results from sensitivity simulations performed on
the most sensitive inputs (3.5). Next, we compare model predictions of SOA precursors (4.1), OA (4.2), POA, and SOA
(4.3) mass concentrations, and OA elemental composition (4.4) against measurements in southern California. Finally,

we highlight key findings from this work in the summary and discussion section (5).

2 Methods
2.1 Chemical Transport Model

We used the UCD/CIT regional chemical transport model (Kleeman and Cass, 2001) to simulate the emissions,

transport, chemistry, and deposition of air pollutants over the state of California at a grid resolution of 24 km and over
southern California (see Fig. S1) using a nested 8 km grid from 20" July to 2" August 2005. The results and analysis
were focused on model predictions over Southern California because the region, with approximately 15 million people,

is home to one of the most polluted cities in the United States (Los Angeles; ALA (2017)). The time period for simulation

was primarily chosen because the model has been previously evaluated for this time period (Jathar et al., 2016) and

applied to examine important sources and formation pathways of OA (Cappa et al., 2016; Jathar et al., 2015, 2016,

2017b). The recent literature describes the latest version of the UCD/CIT model but we provide a very brief description
of the models and inputs used in this work. Anthropogenic emissions for California were developed using the California
Regional PM10/PM2.5 Air Quality Study (CRPAQS) inventory of 2000 but scaled to match conditions in 2005. Wildfire
emissions were based on the model FINN (Fire Inventory for National Center for Atmospheric Research) (Wiedinmyer
et al., 2011) although they were not found to significantly contribute to OA during the simulated time period (Docherty

et al., 2011). Biogenic emissions were based on the model MEGAN (Model of Emissions of Gases and Aerosols from

Nature) (Guenther et al., 2006). The Weather Research and Forecasting (WRF) v3.4 model (www.wrf-model.org) was _

used to produce hourly meteorological fields. National Center for Environmental Protection’s NAM (North American i

Mesoscale) analysis data were used to set the initial and boundary conditions for WRF. The gas- and particle-phase
initial and hourly varying boundary conditions were based on the results from the global model MOZART-4/NCEP
(Emmons et al., 2010). The gas-phase chemistry was modeled using SAPRC-11 (Carter, 2010).

2.2 Organic Aerosol Model
2.2.1 Statistical Oxidation Model (SOM)
In this work, we use the Statistical Oxidation Model (SOM) developed by (Cappa and Wilson, 2012). The SOM is a

semi-explicit and parameterizable model that simulates the oxidation chemistry, thermodynamics, and gas/particle

partitioning of OA and its precursors. The SOM has been used to model SOA formation in chamber (Cappa et al., 2013;
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Cappa and Wilson, 2012; Zhang et al., 2014) and flow reactor (Eluri et al., 2017) experiments. and was recently coupled

with SAPRC-11 (gas-phase chemical mechanism) in the UCD/CIT model (Jathar et al., 2015) to investigate the role of

chamber-based vapor wall losses (Cappa et al., 2016) and multigenerational aging (Jathar et al., 2016) on the ambient

SOA burden. In this work, we used an updated version of the SAPRC-SOM model embedded in the UCD/CIT model
that included the POA and IVOC updates described in Section 2.2.2. A detailed description of the mathematical and
numerical formulation of the SOM can be found in earlier literature but a brief description of the SOM framework
follows. The SOM uses a 2-dimensional carbon-oxygen grid to describe and track the evolution of the gas- and particle-
phase organic carbon that is known to yield OA. Each grid cell in the SOM represents an organic species with the
molecular formula: CxHx+2.20z, where X=N¢, and Z=No. This species is expected to capture the average properties
(e.g. volatility, reaction rate constants) of species with the same number of carbon (Nc¢) and oxygen (Nop) atoms that are
formed from a given SOA precursor. Each species, in the gas and particle phases, is assumed to react with the hydroxyl
radical (OH). Operationally, OH is not consumed within the SOM as the chemistry captured in the SOM overlaps with
that represented in the gas-phase mechanism (i.e., SAPRC-11). Reactions with the OH radical result in functionalization
or fragmentation of the organic species and the distribution of the reaction products is tracked in the carbon-oxygen
grid. Six precursor-specific adjustable parameters are assigned for each SOM grid: four parameters that define the molar
yields of the four functionalized, oxidized products (Pfu), one parameter that determines the probability of
functionalization or fragmentation (.¢) and one parameter that describes the relationship between Nc, No and volatility
(4LVP). In the model, the probability of fragmentation is modeled as a function of the O:C ratio since species with
higher O:C ratios have been shown to fragment much more easily than species with lower O:C ratios (Chacon-Madrid

and Donahue, 2011). All SOM species properties (e.g., OH reactivity, volatility) are described in terms of N¢ and No.

Seven SOM grids were used to represent SOA formation from nine different precursor classes: (i) long alkanes, (ii)
benzene, (iii) high-yield aromatics, (iv) low-yield aromatics, (v) isoprene, (vi) monoterpenes, (vii) sesquiterpenes, (viii)
semi-volatile POA (SVOC), and (ix) IVOCs. Long alkanes as a precursor class includes linear, branched, and cyclic
alkanes roughly up to a carbon number of Ci3 and represent they speciated alkanes present in existing emissions
inventories. These long alkanes are distinct from the alkanes that might be present in SVOC and IVOCs. High-yield and
lower-yield aromatics include all speciated aromatic compounds present in existing emissions inventories and, similar
to the long alkanes precursor class, are distinct from the aromatics that might be present in SVOC and IVOCs. Classes
(i) through (vii) have been included in previous applications of the SOM and we refer the reader to our earlier

publications for more details (Cappa et al., 2016; Jathar et al., 2015, 2016). Classes (viii) and (ix) were included in this

work for the first time. The SOA formation from monoterpenes and sesquiterpenes (classes vi and vii) was modeled in
the same SOM grid since both precursors used the SOM parameter sets for o-pinene. Similarly, the SOA formation
from SVOCs and IVOCs was modeled in the same SOM grid and both used the SOM parameter sets for n-dodecane;
sensitivity simulations were performed using the SOM parameter set for toluene. SOM parameters were determined
from fitting the observed SOA volume produced in chamber experiments, with and without accounting for losses of
vapors to the chamber walls. Details about how the vapor wall losses were modeled are described in Zhang et al. (2014)
and Cappa et al. (2016). Briefly, loss of vapors to the Teflon walls of the chamber was modeled reversibly where the
first-order uptake to the walls was assumed to be 2.5x10* s! and the release of vapors from the walls was modeled
using absorptive partitioning theory with the Teflon wall serving as an absorbing mass with an effective mass
concentration of 10 mg m>. Recent work has argued that vapor wall loss rates in Teflon chambers are much higher

(larger than a factor of 5) than those used by Cappa et al. (2016) to derive the SOM parameterizations (Huang et al.,

2018; Krechmer et al., 2016; Sunol et al., 2018). The use of a higher wall loss rate will tend to increase SOA aerosol
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mass yields further. This new understanding will need to be considered in the future.

We used low and high NOx-specific parameter sets to simulate SOA formation separately under low and high NOx
conditions respectively since the current version of the SOM cannot account for continuous variation in NOy. The SOM
parameters used for the nine different classes and seven different grids are listed in Table 1. Parameters for all species

except for isoprene were from Cappa et al. (2016). The parameters for isoprene were from Hodzic et al. (2016) that

included updates for the reactions rate constants for the first generation products from isoprene photooxidation. Jathar

et al. (2016) investigated the influence of oligomerization reactions by allowing irreversible conversion of particle-

phase SOM species into a single non-volatile species and found that the oligomerization pathway (as simulated) did not
substantially affect the OA mass concentration in Southern California. Hence, the oligomerization pathway was not
considered in this work. We also did not include the formation of extremely low-volatility organic compounds from

oxidation of SOA precursors such as a-pinene (Ehn et al., 2014) and alkanes (Praske et al., 2018) through autooxidation

pathways, which will very likely be addressed in future versions of the SOM.

Table 1: SOA precursors and SOM parameters used in this work. VWL=Vapor Wall Loss Corrected, ALVP =
change in vapor pressure linked to addition of one oxygen atom, Psn. = molar yields of species that add 1 to 4 oxygens

per reaction (Pf; through Pfy), msa.g = exponent influencing the probability of fragmentation.

ISAPRC Species] SOM Prine )
ISOA Precursors /SOM Grid | Surrogate VWL | NOx|ALVP P | s | Ps | PR my.,.g |Reference
Low| 1.54 |0.717]0.278 [0.0028]|0.0022{ 0.122
+
Svocivoc POAFIVOC n-dodecane/ No High| 1.39 10.927(0.0101/0.0180.0445]| 0.098 |Loza et al.
Alkanes ALK toluene Yes Low| 1.83 |0.999(0.001 | 0.001|0.001 2 |(2014)

High| 1.47 ]0.965]0.001 [0.002]0.032 | 0.266

Low| 2.01 |0.769{0.001 |0.0505|0.180 | 2.010

No -
High| 1.7 |0.079]0.001]0.919]0.001 | 0.535 |Ng et al.
Benzene BENZ benzene Voo [Eow] 1.97 [0.637]0.001[0.0020.3600.0807 |(2007)
High| 1.53 |0.008 |0.0010.991 | 0.001 | 0.824
No |Eow] 184 [0.561]0.001 [0.001[0.438 | 0.010
High-yield AROI oluene High| 1.24 |0.003 [0.001 [ 0.001 | 1.010 | 0.222 [Zhang et al.

laromatics Low| 1.77 |0.185[0.001 |0.002 | 0.812| 1.31 |(2014)
High| 1.42 |0.856|0.001 |0.002 [ 0.141 | 4.61

Low| 1.76 |0.735]0.001 |0.002]0.262 | 0.010
High| 1.68 {0.936 |0.001 [0.002|0.061 | 0.010 |Ng et al.
Low| 2.05 [0.102{0.001 | 0.878 |0.019| 1.08 [(2007a)
High| 1.46 |0.001 |0.001 |0.942|0.056 | 0.0671

Low-yield
laromatics

ARO2 m-xylene

No [owl 2.26 [09730.001[0.001 [0.026 ] 0010 | |
© |migh| 1.94 [0.952]0.001 [0.0300.016 | 0.063 aora et al.
Low| 2.25 [0.1646/0.5164/0.3012[0.0179]0.0244

High| 1.93 |0.988 ]0.0002/0.0116/0.0009| 0.51

[soprene ISOP isoprene

tal. (2016)

((2011); Hodzic

Low| 1.87 |0.001{0.869 [0.0780.053 | 0.010

No [High| 1.62 [0.068|0.633 [0.275[0.024 | 0.035
Monoterpenes . Chhabra et al.
Sesquiterpenes TRP a-pinene Low| 1.97 [0.419[0.426[0.140 [0.014 [ 0.305 |2011)

High[ 1.91 |{0.500|0.422|0.070 [0.008 | 0.16

2.2.2 Model Inputs

Semi-Volatile and Reactive POA (SVOC). POA from gasoline, diesel, biomass burning, and food cooking sources was
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treated as semi-volatile and reactive. POA from all other sources (e.g., marine, dust) was assumed to be non-volatile in
all simulations except one where we explored the sensitivity in model predictions to this assumption (see Section 2.3
for more details). Semi-volatile POA was modeled by distributing POA emissions from the emissions inventory in the
SOM grid as hydrocarbon species modeled as linear alkanes, i.e. as species with no oxygen (i.e., CxHy). The
hydrocarbon/linear alkane distribution in the SOM grid was determined by refitting the volatility distributions published
by May and coworkers (May et al., 2013a, 2013b, 2013c) such that the hydrocarbon distribution reproduced the observed

gas/particle partitioning behavior; the hydrocarbon distributions are listed in Table S1. We assumed all on- and off-road
gasoline exhaust POA to have the same hydrocarbon/linear alkane distribution as the volatility distribution determined

by May et al. (2013a) from data for 51 light-duty gasoline vehicles. Almost three-quarters of the light-duty gasoline

vehicles used in May et al. (2013a) were manufactured in or prior to 2005 (the year modeled in this work) and they did
not find the POA volatility distribution data to be sensitive to the model year of the vehicle. Hence, the volatility
distribution used in this work should still be representative of the vehicle fleet in 2005. Based on tests performed on

eight light-duty gasoline vehicles, Kuwayama et al. (2015) found that the POA volatility for their vehicles was consistent

with that determined by (May et al., 2013a) for about half the vehicles but substantially lower for the other half. They

hypothesized that the lower POA volatility could be attributed to fuel oxidation products. The findings of Kuwayama

et al. (2015) suggest that the volatility distribution used in this work may overestimate the evaporation of POA with

dilution. We assumed all on- and off-road diesel exhaust POA to have the same hydrocarbon/linear alkane distribution

as the volatility distribution determined by May et al. (2013b) from data for two medium-duty diesel trucks, three heavy-

duty diesel trucks, and a single off-road diesel engine. May et al. (2013b) did not report on differences in the POA
volatility distribution between vehicles that did or did not use a modern emissions control system (diesel particulate
filter (DPF) and/or diesel oxidation catalyst (DOC)). Hence, we assumed that the volatility distribution used here was
still representative of the mostly non-DPF and non-DOC vehicle fleet in 2005. We assumed residential wood combustion
and wildfires to have the same hydrocarbon/linear alkane distribution as the volatility distribution determined by May

et al. (2013c) from a selection of fifteen different fuels. We assumed food cooking to have the same hydrocarbon/linear

alkane distribution as that for wildfires. Recent work suggests that food cooking OA may be significantly less volatile

than wildfire OA (Louvaris et al., 2017; Woody et al., 2016). To examine the influence of this finding, we performed

sensitivity simulations to model the POA from food cooking sources using the volatility distribution of Louvaris et al.
(2017). This work, similar to the most recent implementation in the Community Multiscale Air Quality (CMAQ) model
(Koo et al., 2014; Woody et al., 2016), included a source-resolved treatment of semi-volatile POA that was tied to a

comprehensive set of source measurements.

The reactive behavior of POA was modeled by assuming that the POA vapors (i.e. SVOCs) (represented as a
hydrocarbon distribution) and their products participated in gas-phase oxidation and formed SOA similar to linear
alkanes and utilized the SOM parameter set for n-dodecane. The surrogate, in this case n-dodecane, only informs the
multi-generational oxidation chemistry of the precursor and the actual compound of interest (e.g., a Cis linear alkane)
can have a different SOA mass yield than that of n-dodecane. The reaction rate constants with OH for the parent
hydrocarbons were assumed to be similar to the carbon-equivalent linear alkane. We should note that the presence of
branched/cyclic alkane and aromatic compounds in the SVOCs would require the use of a higher reaction rate constant
with OH as these compounds are more reactive with OH than carbon-equivalent linear alkanes. The equivalence to
linear alkanes while not perfect was probably a good assumption for gasoline and diesel sources since alkanes account

for a substantial fraction of gasoline and diesel fuel (Gentner et al., 2012) and lubricating oil (Caravaggio et al., 2007)
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and are a dominant organic class in both gas- and particle-phase emissions from mobile sources (Brandenberger et al.,
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2005; Hays et al., 2017; Schauer et al., 1999, 2002b)(Worton et al., 2014). However, alkanes do not make up a significant

fraction of the gas- and particle-phase emissions from biomass burning (Hatch et al., 2015; Schauer et al., 2001;

Stockwell et al., 2015) or food cooking (Schauer et al., 2002a) and hence it is unlikely that linear alkanes are good

surrogates to model the oxidation of SVOCs from these sources. To test the sensitivity of the model predictions to the
surrogate used to model SOA formation from SVOCs, we ran sensitivity simulations where we modeled the SVOCs as

a mixture of aromatic compounds using the SOM parameter set for toluene (see rationale in Section 2.4).

Intermediate-Volatility Organic Compounds. We included IVOC emissions from gasoline, diesel, and biomass burning.
‘We assumed none of the other sources emitted IVOCs for all simulations except one where we explored the sensitivity
in model predictions to this assumption (see Section 2.4 for more details). The IVOC emissions estimates and their
potential to form SOA was based on the work of Jathar et al. (2014). In Jathar et al. (2014), IVOC emissions, defined

as the sum of all unspeciated compounds, were determined as a mass fraction of the total non-methane organic gas
(NMOG) emissions for three different source categories: gasoline vehicles, diesel vehicles, and biomass burning. Here,
the IVOCs, as unspeciated organic compounds, are new SOA precursors added to the emissions inventory and regardless
of their chemical makeup are distinct from the speciated precursors such as long alkanes and aromatics already present
in existing emissions inventories. IVOCs were assumed to be 25% of the NMOG emissions for on- and off-road gasoline
exhaust, 20% of the NMOG emissions for on- and off-road diesel exhaust, and 7% of the NMOG emissions for
residential wood combustion and wildfires. The IVOC:NMOG fractions did not appear to be statistically different for
the gasoline and diesel sources manufactured before or after 2005 and hence those fractions were assumed to be
representative of the source fleet in 2005. No IVOCs were considered for the food cooking source but recent work
suggests that they might play a role in influencing the OA evolution from a multitude of food cooking sources

(Kaltsonoudis et al., 2017; Liu et al., 2017). We assumed that the NMOG emissions in the emissions inventory accounted

for most of the gas-phase organic compound mass that included the IVOCs and hence the addition of IVOC emissions
meant that the non-IVOC emissions had to be reduced to conserve total NMOG mass. Recent literature suggests that

IVOC:s could be lost to walls of the sampling hardware (e.g., tubing, bags) (Pagonis et al., 2017) and therefore would

be excluded in the NMOG measurement. Our assumption should result in conservative estimates for the influence of

IVOC emissions on SOA formation.

Following Jathar et al. (2014), the IVOCs were modeled as a Ci3 hydrocarbon for those from on- and off-road gasoline

sources and as a C;s hydrocarbon for those from on- and off-road diesel sources and biomass burning. The oxidation of
the IVOC hydrocarbons and their reaction products and the subsequent SOA formation was modeled assuming
equivalence to a linear alkane and used the SOM parameter set for n-dodecane. As mentioned earlier, n-dodecane only
informs the multi-generational oxidation chemistry of the precursor and the actual compound of interest (e.g., a Ci3 or
Cis linear alkane) can have a different SOA mass yield than that of n-dodecane. The equivalent linear alkane to model

SOA formation from IVOCs in Jathar et al. (2014) was based on fitting the SOA formation observed in chamber

experiments (Gordon et al., 2014a, 2014b; Hennigan et al., 2011) and hence the choice of the hydrocarbon in this work

was experimentally constrained. Jathar et al. (2014) used linear alkanes as a surrogate as the SOA formation from linear
alkanes was well studied when they developed the parameterization and the SOA mass yields increased predictably with

the carbon number of the precursor. Recent application of gas-chromatography mass-spectrometry to combustion

emissions has found that IVOCs are mostly composed of branched/cyclic alkane and aromatic compounds (Gentner et

al., 2012; Koss et al., 2018; Zhao et al., 2016, 2017). So while it would have been more appropriate to model the IVOCs

as an alkane-aromatic mixture, this choice would not have substantially changed the model predictions in the work as
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the SOA formation from this alkane-aromatic mixture would still be constrained to the same chamber experiments. We
will consider the recent detailed speciation work surrounding IVOCs in future applications of this model. In this work,
we also investigated the sensitivity in model predictions to the use of an aromatic compound (i.e., toluene) as a surrogate

instead of an alkane (i.e., n-dodecane) to model SOA formation from IVOCs (see rationale in Section 2.4).

Recently, Zhao and coworkers (Zhao et al., 2015, 2016) used thermal desorption gas-chromatography mass

spectrometry (TD-GC-MS) to measure IVOC emissions in gasoline and diesel exhaust and speciated/classified the
IVOCs as a mixture of linear, branched, and cyclic compounds resolved by carbon number. We should note that Zhao

et al. (2015, 2016) defined IVOCs as the sum of speciated and unspeciated hydrocarbons roughly larger than a C),

alkane, which was different from the definition adopted by Jathar et al. (2014). In their first paper, Zhao et al. (2015)

found IVOCs to be about 60% of the NMOG mass emissions for tailpipe exhaust from older diesel vehicles/engines
(ones without particle filters or oxidation/reduction catalysts). In this work we used an IVOC:NMOG ratio of 0.2 and
likely underestimated IVOC emissions from diesel sources by a factor of 2.5. Zhao et al. (2015) concluded that the

effective IVOC yield based on their speciation was comparable to the yield of the Cis linear alkane used in this work

but the application of that yield over-predicted the chamber SOA data from Gordon et al. (2014a) by a factor of 1.8;

virtually all of the SOA predicted by Zhao et al. (2016) was from the oxidation of IVOCs. If one assumed that the effects

from lower IVOC emissions (factor of 2.5) were roughly balanced by the use of higher SOA yields (factor of 1.8), then

the SOA formation from diesel sources was probably well represented in our work.

In their second paper, Zhao et al. (2016) found the IVOCs to be only about 4% of the NMOG mass emissions in gasoline

exhaust but we used an IVOC:NMOG ratio of 0.25 in this work. This suggests that we may be overestimating the
gasoline exhaust IVOC emissions by approximately a factor of six in this work. Based on the speciation performed,
Zhao et al. (2016) estimated that the IVOCs collectively had an SOA yield between 19 and 24% at an OA mass

concentration of 9 pg m> (9 ug m= was the average end-of-experiment concentration in the chamber experiments of

Gordon et al. (2014a)), which was slightly more than twice the SOA yield for a C; linear alkane (7-12%) — used to

model gasoline IVOCs in this work — at the same OA mass concentration. However, application of the Zhao et al. (2016)
SOA yields for IVOCs underpredicted the observed chamber SOA formation for newer gasoline vehicles by a factor of
~2. Since IVOC oxidation accounted for slightly less than half of the SOA formed (with the other half coming from
single-ring aromatics), the IVOC SOA yields in Zhao et al. (2016) would need to be tripled to explain the chamber SOA

measurements. If we assumed that the effects from higher IVOC emissions (factor of 6) were approximately balanced
by the use of lower SOA yields (factor of 2x3=6), then the SOA formation from gasoline sources in this work was
probably well represented in our work. To summarize, the IVOC emissions estimates and the surrogates used to model

SOA formation from IVOCs from gasoline and diesel sources in this work, while different from those suggested in Zhao

et al. (2015, 2016), are still consistent with the SOA measurements made by Gordon et al. (2014a, 2014b). In a future

version of the model, we will aim to include the IVOC emissions estimates of Zhao et al. (2015, 2016) and update the
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SOA parameterizations accordingly. It is likely that these might slightly alter the spatiotemporal distribution of IVOC

SOA in the modeled domain.

2.2.3 Modeling the NOx Dependence on SOA Formation
Previous applications of the SOM have simulated SOA under low and high NOx conditions separately since the SOM,
in its current form, cannot model the continuous evolution of SOA under varying NOx conditions using the local

NO/HO:. Predictions from either of these simulations (Jathar et al., 2016) or the average of these simulations (Cappa et
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al., 2016) likely do not accurately characterize the evolution or spatial distribution of SOA since NOx concentrations
exhibit strong spatial variability with higher concentrations in urban (e.g., traffic) and source (e.g., wildfires) regions.
For example, since most precursors have higher SOA yields under low NOx conditions than under high NO, conditions,
the use of an average is expected to overestimate SOA in high-NOx urban areas and underestimate SOA in low-NOx

rural/remote continental areas.

In this work, we used two different offline techniques to account for the influence of NOx on SOA formation. For both
methods, we assumed that the 3D model predictions based on the low and high NOx SOA parameterizations bounded

the minimum and maximum ambient SOA mass concentrations. Xu et al. (2015) found that the SOA formation from

isoprene photooxidation was maximized at intermediate NOx levels with lower values at the extreme NOx levels,

suggesting that our bounding assumption may not necessarily hold for all precursor species. Presto and Donahue (2006)

found that the SOA from a-pinene ozonolysis under varying NOx conditions could be estimated by interpolating the
SOA formed between the low and high NOx conditions using the VOC:NOx ratio. Hence, in the first method, we used
the VOC:NOx ratios from the low and high NOx chamber experiments as our bounds and used the 3D model predicted
VOC:NOx ratio to interpolate between the minimum and maximum SOA mass concentrations predicted from the low

and high NOx simulations. Previous work (e.g., Camredon et al. (2007), Xu et al. (2015)) has also found SOA formation

to vary along a NOx scale and hence, in the second method, we used NOx concentrations from the low and high NOx
chamber experiments and the 3D model predictions to perform the interpolation. For each method, we performed the
interpolation on the SOA mass concentrations assuming a linear or logarithmic dependence on the VOC:NOx ratios and
NOx concentrations. The linear dependency was chosen for simplicity while the logarithmic dependency was chosen to
mimic the visual trends in SOA and VOC:NOx or NOx reported in previous work and also to produce the highest
response in the SOA formation with NOx. The VOC:NOx ratio and the NOx concentration served as an approximate
surrogate for the HO,:NO ratio used in most atmospheric models to simulate the NOx-dependent SOA formation. The
NOx-adjusted SOA concentrations (SOA.ff) from each precursor at each grid cell were calculated from model

predictions from the low and high NO, simulations using the following equations:

SOAiow N0, —SOAR;, N
SOAeff = SOAhigh No, T (VOC:NOx)iaw:Zx—(VOS:i’hU:)omghnax X ((VOC: NOy)moger — (VOC: NOx)high NOX)' 1

_ ) SOAiow N0y —=SOAhigh NOy . _
$0Aers = SOAnighNo. ¥ 1og0eNO o wox—100V0CN O mgnay < 0TV OC: NODmoder

log(VOC: NOy)nigh no,)- (2)

_ SO0A1ow NOx—SOAnigh NO.
SOAeff - SOAIOW NOy — (Nox)highN;x_(Nox)low:Ox X ((Nox)model - (NOX)IDW NOX) - (3)

_ _ SOAjow NOx—SOAhigh NOx _ _
SOAeff - SOAIOW NOyx 10g(NOhigh Nox—10g(NOx) 10w NOx X (log(NOx)model log(Nox)low NOX) (4)

where SOAo nyoyand SOApign noare model predictions of SOA from using the low and high NOx parameterizations
respectively, (VOC:NOx)iownoy and (VOC:NOx)pigh noyare the initial VOC:NOx ratios from the chamber
experiments used to develop the low and high NOx SOA parameterizations, (VOC: NOx)moder 18 the model predicted
VOC:NOx ratio in the model grid cell, (NOx)ow noyand (NOx)rign noyare the NOx concentrations from the chamber
experiments used to develop the low and high NOx parameterizations, and (NOyx)moderis the model predicted NOx
concentration in the model grid cell. Equations (1) and (3) assume linear dependence while equations (2) and (4) assume

logarithmic dependence. For the (VOC: NO,)pmoger ratio, the VOC is the sum of all organic species tracked in the
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SAPRC-11 gas-phase chemical mechanism, including all IVOCs and gas-phase SVOCs. NOx is the sum of NO and
NO.. The (VOC: NO,) ratios and the NOy concentrations from the chamber experiments used in the equations were
gathered directly from the primary references and are listed in Table 2. When the (VOC: NOx)modger 0 (NOx)moder
values were lower or higher than the chamber values in Table 2, the SOA formation was set to model predictions from

the bounding simulations.

Table 2: Low and high VOC:NO, ratios in ppb ppb™ from chamber experiments used to model the influence of NOx on
SOA formation.

/

AN ANEV/N

ISOM (VOC: NOY)iow NOy (NOx)1ow NOx voc: Nox)high NOy (NOX)high nojReference

surrogate

n-dodecane 17.0% <2 ppbv 0.09 343 ILoza et al. (2014) (‘Field Code Changed
benzene 207% <2 ppbv 1.98 169 INg et al. (2007a) ('Field Code Changed
toluene 46.3% <0.8 ppbv 0.76 50 Zhang et al. (2014) (Field Code Changed
m-xylene 12.1%% <2 ppbv 0.10 943 INg et al. (2007a) err—
isoprene 24.5% <2 ppbv 0.29 937 (Chhabra et al. (2010) e oce e
lo-pinene 33.1% <2 ppbv 0.05 844 Chhabra et al. (2010) { Field Code Changed

Eminimum VOC:NOx ratios since these assume a NOx concentration of 0.8 ppbv in the chamber
*average of six experiments performed by Zhang et al. (2014)

*average of two experiments performed by Ng et al. (2007a)

We acknowledge that this approach to modeling the NOx influence on SOA formation is limited and is sensitive to the
following assumptions: (i) the VOC:NOx ratio plus NOx concentration is a good proxy to model the HO»:NO ratio and
the branching between low and high NOx SOA formation, (ii) the low and high NOx chamber experiments for a
particular precursor bound the minimum and maximum SOA formed, (iii) the SOA response between the low and high
NOx levels varies linearly or logarithmically with VOC:NOx ratios/NOx concentrations, and (iv) the model predicted
VOC concentrations at each grid cell, summed across a mixture of organic compounds, are analogous to the initial VOC
concentrations from the chamber experiment to calculate VOC:NOx ratios. There are few experimental data to test these
assumptions and these need to be investigated in future work. In addition to modeling the influence of NOx on ambient
SOA concentrations, this approach allowed us to explore the influence of reductions in NOx emissions and

concentrations on ambient OA concentrations in the future.

2.3 Simulations

Table 3: Names and descriptions of the simulations performed in this work
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Semi-volatile & Vapor Wall Losses for .. .
[No. Name Reactive P04 (5v00)| 1O€ | sV0C, 1V0C, and Joc Additional Details
1 [Traditional No No No Same as model of Cappa et al. (2016) \(Field Code Changed
2 ISvoC Yes® No No -
3 [Ivoc Yes? Yes No -
4 [Base [Base case model used in this work
5 | SVOC,.! SVOCs mgde}ed as per diesel
arameterization
| IVOCs modeled as per diesel
or IVOC’"’“ Yes? arameterization_ .
7 |- No-Aging' Yes Yes INo multi-generational aging
| IVOC speciation from May et al.
8 [ VOCuee (2014) \(Field Code Changed
9 | Aromatic! S/TVOCs modeled using the toluene
arameterization
10 |- SVOCeooking® Yes® SVOCs from food cooking modeled
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using the volatility distribution of
ILouvaris et al. (2017).

Same as the Base simulation but with differences noted in the ‘Additional Details’ section. *Assumes volatility of food

cooking POA to be similar to volatility of biomass burning. 3Uses measured volatility of food cooking POA.

The Base simulation — representing our most comprehensive simulation — included the updates described in Section
2.2.2; a source-resolved semi-volatile and reactive treatment of POA, source-resolved SOA formation from SVOCs and
IVOCs, and correction of the subsequent SOA formation for vapor wall losses in chambers. The Base simulation

included sub-simulations at two resolutions (24 km and 8 km) with two NOx parameterizations (low and high NOx).

Additional simulations were designed and performed with two objectives in mind: (i) to examine the influence of each
update included in this work and (ii) to test the sensitivity in model predictions to uncertainties inherent in the updates
and other model inputs. A set of four simulations were performed to systematically study the influence of model updates.
These included the following simulations where only one update (as underlined) was made over the previous
configuration: (1) Traditional — Non-volatile POA, no IVOCs, SOA from VOCs, and no correction for chamber vapor
wall losses, (2) SVOC — Semi-volatile POA, no IVOCs, SOA from SVOCs and VOCs, and no correction for chamber

vapor wall losses, (3) IVOC — Semi-volatile POA, JVOCs, SOA from SVOCs, IVOCs, and VOCs, and no correction

- (Formatted: No underline

h (Formatted: No underline

for chamber vapor wall losses, and (4) Base — Semi-volatile POA, IVOCs, SOA from SVOCs, IVOCs, and VOCs, and

correction for chamber vapor wall losses. Successive differences in model predictions between the Traditional, SVOC,

IVOC, and Base simulations were used to systematically examine the influence of the semi-volatile and reactive POA,

IVOCs, and chamber vapor wall losses respectively.

A set of six simulations were performed to study uncertainties in model inputs. The SVOCax simulation (5) assumed
that POA from all sources (all POA except marine POA) was semi-volatile and modeled using the volatility distribution
for diesel exhaust POA. Diesel POA was chosen since it was the most volatile of the volatility distributions used in this
work. This simulation bounded the maximum loss in POA mass to evaporation. The IVOCnax (6) simulation assumed
that all sources (combustion and non-combustion except biogenic sources) emitted IVOCs, which were estimated using
an IVOC:NMOG ratio of 0.2 and allowed to form SOA equivalent to a C;s alkane. This simulation provided an upper
bound estimate to the contribution of IVOCs to ambient SOA although the IVOC emissions and their potential to form
SOA could be even higher than that assumed here. The No-Aging (7) simulation assumed no multi-generational aging
or in other words, the emitted precursor was allowed to react with OH and form four functionalized products with no
further oxidation. This simulation investigated the influence of multi-generational aging on ambient SOA. The VOCigpe.
(8) simulation updated the VOC speciation for on- and off-road gasoline and diesel vehicles based on a comprehensive

set of measurements performed on an in-use fleet (May et al., 2013a, 2013b). This simulation examined the influence

of updated emissions profiles on the non-IVOC contribution to SOA. The Aromatic (9) simulation assumed that the
oxidation of SVOCs and IVOCs to form SOA was modeled using toluene. There were two reasons for choosing toluene.

First, both mono- and poly-cyclic aromatic compounds are found in gasoline and diesel fuel (Gentner et al., 2012) and

in tailpipe emissions from mobile sources (Zhao et al., 2015, 2016), and oxygenated aromatic compounds such as

phenols, guaiacols, and syringols are found in biomass burning emissions (Schauer et al., 2001; Stockwell et al., 2015).

Second, aromatic compounds, similar to alkanes, have been studied in detail for their potential to form SOA and are
recognized to form more SOA than linear alkanes for the same carbon number. This simulation provided an upper bound
estimate for SOA formation from the oxidation of SVOCs and IVOCs. Finally, the SVOCeooking (10) simulation used a

hydrocarbon/linear alkane distribution based on the measured volatility distribution of Louvaris et al. (2017) to represent
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POA from food cooking sources. This simulation examined the effect a more realistic volatility distribution for food
cooking POA on mass concentrations of POA and SOA from SVOCs.

The UCD/CIT model was run on the High Performance Computing cluster run by Engineering Network Services at
Colorado State University. Although the number of cores varied based on availability, on average each simulation used
96 cores and required 5 days to execute 19 simulated days. Since each set included four sub-simulations, each simulation

required ~5 days and all simulations in this work required ~180 days of computational time.

2.4 Measurements for Model Evaluation

Model predictions were evaluated against gas-phase measurements of SOA precursors and particle-phase measurements
of OA mass concentrations and composition. Here, we briefly describe the primary measurement data and any post-

processing of the data we performed prior to undertaking the model evaluation.

Gas-phase measurements of SOA precursors were from two different sources. The first source was routine daily-
averaged measurements of single-ring aromatics made by the South Coast Air Quality Management District (SCAQMD,
2017) in southern California at three different sites: North Los Angeles, Riverside, and Long Beach. While measurement
data were available at three other sites, data were not available for 2005, our modeled year and hence not included.
These gas-chromatography-based measurements were available every twelfth day and included the following aromatic
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and styrene. Since there was little overlap between the modeled
episode (14 day period over July-August) and available aromatic data, the measurement data were averaged over a three
month period in the summer (May 15th to September 15th) and then compared to the episode-averaged model
predictions. The second source was gas-chromatography mass-spectrometry measurements of single-ring aromatics

[(Borbon et al., 2013) and IVOCs (Zhao et al., 2014) made at the Pasadena ground site in the months of May and June

0f2010 as part of the CalNex campaign. The single-ring aromatics were measured every hour and included the following
species: benzene, toluene, o/m/p-xylene, ethyl-benzene, and styrene. The IVOCs were measured every three hours and
included most of the reduced and oxidized organic species with a carbon number larger than 12. Since these
measurements were from a different time period, we compared campaign-averaged measurements against episode-

averaged model predictions.

Particle-phase measurements were from two different sources as well. The first source was routine daily-integrated
measurements of organic carbon (OC) in southern California from four sites in the Chemical Speciation Network (CSN;
Central Los Angeles, Riverside, Simi Valley, and Escondido) and six sites in the Interagency Monitoring of Protected
Visual Environments (IMPROVE) network (San Rafael, Rubidoux-Riverside, San Gorgonio Wilderness, Joshua Tree
NP, Agua Tibia, and San Gabriel). The CSN is a network of ~50 urban measurement sites across the United States
where pollutant concentrations are typically higher, more variable, and representative of local sources and measurements
are made once every three days. The IMPROVE is a network of ~200 rural/remote continental sites typically located in
national parks across the United States where pollutant concentrations are lower, less variable, and representative of
regional influences and measurements are made once every three days. Over the 14 day episode modeled in this work,
three measurements from the CSN and five measurements from the IMPROVE network were available for comparison.
We used an organic aerosol to organic carbon ratio (OA:OC) of 1.6 to calculate OA at the CSN sites (Docherty et al.
(2011) measured an OA:OC ratio of 1.77 during the SOAR-1 campaign, after correction with the updated calibration of

Canagaratna et al. (2015)) and a ratio of 2.1 to calculate OA at the IMPROVE sites (Turpin and Lim, 2001). The CSN
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data are artifact corrected but we subtracted 0.5 pg m from the calculated OA mass concentrations to blank correct the

data (Subramanian et al., 2004). The IMPROVE data are both blank and artifact corrected. We note that a negative

evaporation artifact has been reported for at IMPROVE sites in the southeast US (Kim et al., 2015) but it is not known

whether such an artifact may be present in this region and no correction has been made. The second source was particle
measurements made at the ground site in Riverside as part of the SOAR-1 campaign during the summer of 2005

[(Docherty et al., 2008, 2011). These measurements included hourly-averaged mass concentrations and elemental ratios

of H:C and O:C for OA, and estimates of the POA-SOA split based on results from a positive matrix factorization

analysis.

3 Results

3.1 POA and SOA Precursor Emissions

Gas- and particle-phase emissions of organic compounds in the 8 km southern California domain, averaged over the 14-
day episode, are shown in Figure 1. The 8 km domain, shown in Figure S1, includes the entire Los Angeles metropolitan
statistical area, parts of the Pacific Ocean, and forested areas surrounding the urban area. The emissions are color-coded
by source type and include all species that contribute to direct emissions and atmospheric formation of OA. These do
not include emissions of marine POA since those were calculated inline in the UCD/CIT model. Since the POA
repartitioned between the gas and particle phases after emission, POA was split into POA and SVOC that represented
the particle and gas portions of POA partitioned at an urban OA mass concentration of 9 pg m>. We chose 9 ug m™ to
partition POA because the campaign-averaged OA mass concentration at Riverside during SOAR-1 was 9 pg m>. If
one discounts the POA emissions in the ‘Other’ category (which is mostly made of road, agricultural, and construction
dust), the re-partitioning resulted in about 60% of the POA emitted to evaporate as SVOC vapors; these vapors will
oxidize in the atmosphere to form SOA. As noted earlier, a relatively more volatile treatment compared to that described
in the recent literature suggests that we may have overestimated the POA evaporation from food cooking sources.
Mobile sources accounted for 20% of the POA and 35% of the SVOC vapors and competed with food cooking as an
important source of primary emissions and one which accounted for 15% of the POA and 44% of the SVOC vapors.
IVOC, long alkane, and aromatic emissions were roughly on the same order of magnitude but taken together were
approximately an order of magnitude larger than the POA emissions. This suggests that even at low SOA mass yields

(say <10%), the OA formed from the oxidation of these precursors could quickly exceed direct emissions of POA.
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Figure 1: Episode-averaged gas- and particle-phase organic emissions in tons per day over the 8 km southern
California domain resolved by source. POA and SVOC represent the particle- and gas-phase emissions partitioned to
an OA mass concentration of 9 ug m=. SVOC, IVOC, long alkanes, aromatics, and biogenics represent gas-phase
emissions of precursor species that are modeled to form SOA. We note that recent measurements suggest that POA from

food cooking sources is less volatile than assumed in these results.

Emissions of total IVOCs were slightly lower than those for long alkanes (by ~30%) and aromatics (by ~40%) but a
factor of 2 higher than the sum of POA and SVOCs. Previously, IVOC emissions have been estimated by scaling POA

emissions by a factor of 1.5 to 4 derived from gas/particle partitioning calculations (Dzepina et al., 2009; Shrivastava et

al., 2008) and from atmospheric measurements (Ma et al., 2017). While our estimate for IVOC emissions are within the

previously used range, our estimates were informed by a broader suite of source measurements, which will help reduce
the uncertainty in IVOC emissions and related SOA formation in atmospheric models. IVOC emissions from mobile
sources were similar to aromatic emissions but twice the long alkane emissions. Hence, we anticipated IVOCs to
contribute meaningfully to the anthropogenic SOA burden. We note that in this work we only considered IVOC
emissions from combustion sources but recent work suggests that volatile chemical products present in sources such as
pesticides, coatings, cleaning agents, and personal care products may be a large source of SVOCs and IVOCs in urban

environments (McDonald et al., 2018).

Mobile sources —dominated by gasoline use —accounted for a much larger fraction of the anthropogenic SOA precursors
(85% of IVOCs, 27% of long alkanes, and 55% of aromatics) in this study. Hence, mobile source regulation on precursor
emissions from gasoline vehicles (e.g., limits on emissions of unburned hydrocarbons) has and could have a much larger
influence on controlling ambient OA than regulating direct emissions of POA, although this ultimately depends on the
extent of conversion of these species to SOA. Finally, biogenic precursor emissions of isoprene, monoterpenes, and
sesquiterpenes were about a factor of three higher than the combined emissions of SVOCs, IVOCs, long alkanes, and
aromatics and will continue to be an important source of SOA in southern California. However, their impact on urban

OA/SOA will be smaller since these emissions are primarily limited to regions outside the urban areas.
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Figure 2: 14-day averaged model predictions of mass concentrations for OA, POA, SOA, aV-SOA, aS/I-SOA, and bV-
SOA in ug m over the southern California domain firom the Base simulation. We note that recent measurements

suggest that POA from food cooking sources is less volatile than assumed in these results.

3.2 Spatial Distribution of OA Concentrations and Bulk Composition

In Figure 2 we plot predictions of the 14-day averaged mass concentrations for OA, POA, SOA, and contributions
from three lumped SOA precursors (long alkanes and aromatics, SVOC and IVOCs, and biogenic VOCs) from the
Base case simulation. We used the terminology developed by Murphy et al. (2014) to describe the SOA from the

different sources. To reiterate, the Base case simulation included a semi-volatile treatment of POA, SOA formation
from oxidation of SVOCs, IVOCs, and VOCs, multi-generational aging, and SOA parameterizations that accounted
for the influence of chamber vapor wall losses. The mass concentrations in Figure 2 account for SOA formation under
varying NOx levels as per equation 2 (logarithmic dependence on the VOC:NOx ratio). We chose equation 2 because

it produced the highest SOA mass concentrations and presented an upper bound on SOA formation.

The highest OA mass concentrations were found in three general regions: the densely-populated Los Angeles-Orange-
Riverside County region likely attributed to heavy transportation emissions, along the coast as a result of sea spray
emissions, and in biogenic VOC dominated areas. In central Los Angeles (grid cell containing the CSN site), OA
accounted for 38% of the modeled non-refractory PM, s mass concentration with 20, 25, and 18% contributions from
sulfate, nitrate, and ammonium aerosol. A sensitivity simulation that turned emissions of marine POA off suggested
that the marine POA mass concentrations in central Los Angeles were ~0.9 ug m™, which were considerably higher

than the coastal measurements made during CalNex in 2010 (Hayes et al., 2013). Measured mass concentrations of

POA over the open ocean west of California were ~0.2 pg m~ during CalNex in 2010 and it was expected that these
mass concentrations would be substantially lower by the time they were transported to central Los Angeles (Hayes et
al., 2013). Sea spray emissions in the UCD/CIT model are based on the parameterization of Gong et al. (2003) and

may need to be revisited in the future.
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The broader spatial trends of OA, POA, and SOA were in line with results from earlier chemical transport model

studies that have treated POA as semi-volatile and modeled SOA formation from SVOCs and IVOCs (Ahmadov et \(Field Code Changed

al., 2012; Jathar et al., 2017a; Koo et al., 2014; Robinson et al., 2007; Tsimpidi et al., 2010). POA mass
concentrations were highest in upwind (e.g., 3.4 ug m in central Los Angeles) and lower in downwind (e.g., 2.7 pg
m? in Riverside) locations as the POA emissions that were transported away from the source region evaporated with
dilution. SOA mass concentrations, in contrast to POA, had a more regional presence with lesser differences between
the upwind and downwind regions (e.g., 2.4 ug m in Riverside versus 2.2 pg m? in central Los Angeles) or in
regions with high emissions of biogenic VOCs (e.g., 2.5 ug m™ inside the Los Padres National Forest). To assess the
relative contribution of POA and SOA to total OA, we plot the POA:SOA ratio in Figure S2, which suggests a
POA:SOA ratio of ~1.6 in near-source regions and lower elsewhere, e.g., ~0.4, 0.8, and 1.2 in representative marine,
biogenic-dominated, and urban downwind regions. These POA:SOA splits qualitatively aligned with the hydrocarbon-

like and oxygenated organic aerosol (HOA and OOA) splits estimated in aerosol mass spectrometer datasets in urban

locations worldwide (Jimenez et al., 2009; Zhang et al., 2007). However, we predict POA:SOA ~1 for Riverside \(Field Code Changed

_/

AN

during SOAR-1, compared to a measured ratio of ~0.25 (Docherty et al., 2008), which indicates that SOA may still be \(Field Code Changed

N

underestimated in the model. A comparison of the OA composition predictions with the aerosol mass spectrometer

measurements is described in Section 4.

Panels (d) through (f) show contributions of three distinct SOA precursor classes to total SOA. Alkane and aromatic
VOCs — included as SOA precursors in most atmospheric models — appeared to contribute a maximum of 1.2 pg m
of what we refer to as aV-SOA downwind of the source region. The majority of this aV-SOA (75% ) originated from

aromatic precursors implying that alkane VOCs are unlikely to contribute much to the anthropogenic SOA or total OA

burden in urban areas, consistent with our earlier work (Cappa et al., 2016; Jathar et al., 2016). We note that emissions ('Field Code Changed

_/

A\
inventories typically only include alkane species with carbon numbers less than 12 (Pye and Pouliot, 2012) and longer \(Field Code Changed

NN

alkanes with carbon numbers larger than 12 are included as part of the POA, SVOC, and IVOC emissions. Together
aS-SOA and al-SOA mass concentrations exhibited a similar spatial pattern over the domain but were substantially
lower than the aV-SOA mass concentrations — reaching a maximum of only 0.5 pg m?. The lower aS-SOA and al-

SOA mass concentrations were somewhat contrary to earlier work that has argued that SVOCs and IVOCs are an

equal or dominant precursor of anthropogenic SOA when compared to aV-SOA, especially in urban areas (Jathar et \(Field Code Changed

_/

al., 2014, 2017a; Woody et al., 2016). The reason for these lower concentrations can be partially attributed to the
precursor-dependent influence of accounting for vapor wall losses in chamber experiments (probed in greater detail in
Section 3.4). Biogenic SOA or bV-SOA mass concentrations exceeded 3.2 pg m™ in regions with high biogenic
emissions but were slightly less than 1 pg m™ in urban regions where the POA mass concentrations were the highest.

Previous work has suggested that the bV-SOA in urban regions is formed outside but later transported to the urban

region (Hayes et al., 2015; Heo et al., 2015). Overall, the averaged results over the urban areas appeared to be split \( Field Code Changed

evenly between POA, anthropogenic SOA (aV-SOA+aS-POA+al-SOA), and biogenic SOA (bV-SOA).

3.3 Precursor Contributions to OA and SOA

We examined the absolute OA mass concentrations and precursor contributions to SOA in central Los Angeles across
four different simulations to better understand the effect of successive updates: semi-volatile and reactive POA,
IVOCs, and accounting for vapor wall losses. We chose central Los Angeles (grid cell containing the CSN site) as our
study area as it is representative of an urban location with a large population density and suffers from some of the

poorest air quality in the United States (ALA, 2017); results from the sensitivity simulations in Section 3.5 are also
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discussed at this specific site. Results at other urban locations (e.g., Riverside, Simi Valley) had similar SOA
precursor fractional contributions although the absolute concentrations did vary a little (see Figure S3). In Figure 3,
we plot the 14-day averaged, precursor-resolved OA mass concentrations and precursor contributions to SOA in Los
Angeles from two pairs of four different simulations. The two pairs represent model predictions based on the low and

high NOx parameterizations.

Semi-volatile and Reactive POA. Differences in the Traditional and SVOC simulations were used to highlight the
influence of including a semi-volatile and reactive treatment of POA. The semi-volatile POA treatment resulted in
evaporation of the primary POA emissions from combustion sources (on- and non-road gasoline and diesel,
woodsmoke, biomass burning, and food cooking) and reduced POA mass concentrations by 35% in central Los
Angeles. A ratio of the POA mass concentrations from the SVOC simulation to those from the Traditional simulation
suggested that the POA mass was reduced by approximately 30 to 50% in the urban environment around the central
Los Angeles site (Figure S4). Overall, the POA reductions appeared to be smaller than those implied by the volatility
distributions of May and coworkers (May et al., 2013a, 2013b, 2013c¢) and those simulated in other atmospheric

models (Robinson et al., 2007). For gasoline, diesel, and biomass burning, May and coworkers (May et al., 2013a,

2013b, 2013c) proposed a 45 to 80% reduction in POA mass concentrations at ambient OA mass concentrations
between 1 and 10 pg m™. This difference was mainly because we only modeled certain combustion-related POA to be
semi-volatile (i.e., gasoline, diesel, biomass burning, and food cooking sources) while earlier modeling work has
considered POA from all sources to be semi-volatile (e.g., marine, dust). The use of a less volatile and more realistic

food cooking POA than that used in this work (informed by the works of Woody et al. (2016) and Louvaris et al.

(2017)) would tend to further increase the discrepancy between our work and the findings of May and coworkers. Hu

et al. (2014) found that the combustion sources considered to be semi-volatile in this work accounted for about half of

PM,.s mass concentrations in Los Angeles. The POA mass reductions shown here are conservative and might have
been larger if there was evidence that sources other than those considered here (e.g., marine, dust) produced POA that

was semi-volatile too, although this scenario seems unlikely.
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Figure 3: 14-day averaged model predictions of POA and SOA mass concentrations and precursor contributions at
the central Los Angeles site from the sensitivity simulations that examined the influence of updates made in this work.
Panel (a) shows absolute concentrations and panel (b) shows precursor contributions. The legend at the bottom
tracks how the different pathways (i.e., SOA formation from SVOCs, SOA formation from IVOCs, and correction for
chamber vapor wall losses (VWL)) were turned on for the different simulations. Model predictions from the low and
high NOx simulations are shown separately. Model predictions to the extreme right are from accounting for the
influence of NOx on SOA formation using equation 2. We note that recent measurements suggest that POA from food

cooking sources is less volatile than assumed in these results.

Allowing the POA vapors or SVOCs to react resulted in only a small fraction of their oxidation products to condense
back as aS-SOA. For example, of the 1.75 ug m™ of POA lost at the central Los Angeles site, only 0.082 pg m* for
the low NOx and 0.068 pg m™ for the high NOx simulations was regained as aS-SOA from oxidation reactions. This
implied a very low chemical conversion efficiency (~4%) for the POA-to-SVOC-to-aS-SOA pump within the urban

area (Miracolo et al., 2010). The SVOCs, at an ambient concentration of 9 pg m>, from gasoline exhaust, diesel

exhaust, and biomass burning emissions had an average carbon number between 18 and 20. Calculations with a box
model version of the SOM suggested that the SOA mass yields for Cis and Cy alkanes were between 33 and 86%
where the range includes yields for low NOx and high NOx parameterizations. One possible explanation for the
difference between the chemical conversion efficiency in the 3D model and box model yields was that only a small
fraction of the SVOCs had the opportunity to react with OH and form SOA before they were transported out of the
urban area. If we assume that most of the sS-SOA in the grid cell that contains the Los Angeles site was from the

oxidation of SVOCs released in that grid cell and from grid cells that are up to two grid cells away, our results do not
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appear unrealistic. For example, for an SOA precursor with an OH reaction rate constant of 2.4x10™'! cm™ molecules™
s! (average value from a Cis and Cy linear alkane) and an SOA mass yield of 60% (average from the SOA mass yield
range described earlier for a Cis and Cy linear alkane), the chemical conversion efficiency would be 3.5-15% with a
daily-averaged OH concentration of 1.5x10° molecules cm™ and a reaction time of 0.5-2.3 hours. A reaction time of
0.5 to 2.3 hours corresponds to a transport of 2.5 (half a grid cell) and 12.5 (2.5 grid cells) miles at an average wind
speed of 5.4 miles per hour (Weather Spark).

The low and high NOx parameterizations had little effect on the aS-SOA mass concentrations presumably because the
n-dodecane based parameterization used for semi-volatile POA exhibited marginal differences in SOA production

under low and high NOx environments (Loza et al., 2014). Finally, SOA parameterizations based on including the

vapor wall loss effect only marginally increased the aS-SOA mass concentrations, especially when viewed in light of
the SOA increases from other precursors. We examine the precursor-resolved vapor wall loss effect in more detail in
Section 3.4. For the Base simulations, the aS-SOA mass concentrations were a factor of 10 and 2 lower than the aV-

SOA mass concentrations for the low and high NOx parameterizations respectively.

IVOC. Differences in the SVOC and IVOC simulations were used to determine the influence of including SOA
formation from IVOCs. For both the low and high NOx simulations, IVOCs contributed marginally to the al-SOA
mass concentrations in Los Angeles (~0.045- pg m~) and elsewhere too (see Figures S3 and S4). The al-SOA mass
concentrations were about half of the aS-SOA mass concentrations for both the low and high NOx simulations. When
compared to the aV-SOA mass concentrations, the al-SOA mass concentrations were slightly lower for the high NOx
simulations (~40%) but about a factor of five lower for the low NOx simulations. The inclusion of vapor wall losses
seemed to make al-SOA as or more important than aS-SOA but still less important than aV-SOA; the al-SOA mass
concentrations were a factor of 3.3 and 2.9 lower than the aV-SOA mass concentrations for the Base simulations for
the low and high NOx simulations respectively. Our simulations imply that IVOCs might be as influential as SVOCs
as a bulk class of SOA precursors but they were still less important than the traditional SOA precursors (that included
long alkanes and aromatics) in contributing to ambient SOA levels. In this work, the IVOC contribution to SOA was
smaller compared to that from traditional SOA precursors mostly because IVOC emissions were only about a third of
the traditional SOA precursors (see Section 3.1 for details on emissions). So although IVOCs have higher SOA yields
than most of the traditional SOA precursors, the significantly lower IVOC emissions more than offset the increased

SOA formation from higher yields. While there are exceptions (e.g., Tsimpidi et al. (2010); Jathar et al. (2017a)), our

results did not align with previous box (e.g., Dzepina et al. (2009); Hayes et al. (2015); Ma et al. (2017)) and 3D (e.g.,

(Field Code Changed

(‘Field Code Changed

(Field Code Changed

Bergstrom et al. (2012); Zhang et al. (2013)) modeling literature that has found IVOCs to be similar or more important

than traditional SOA precursors in contributing to ambient SOA levels. Below we discuss three main reasons for this

inconsistency.

First, some previous estimates of IVOC emissions are likely to be less representative of the in-use gasoline- and
diesel-powered sources and unconstrained for biomass burning sources. IVOC emissions in most atmospheric models
have previously been determined by scaling emissions of POA or by calculating partitioning with the measured POA,

with scaling factors typically on the order of 1.5 (e.g., Shrivastava et al. (2008)) but as large as 3 (e.g., Dzepina et al.

(2009)). These factors have been calculated from emissions data from two medium-duty gasoline vehicles built more

than two decades ago and a POA volatility distribution from a small off-road diesel engine (Robinson et al., 2007).

Additionally, since POA is semi-volatile the POA mass in the particle phase will change with OA loading, which can
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complicate the use of a scaling based on POA (but this is addressed by the partitioning method used in some studies).

Zhao et al. (2015) provided some evidence for this where they found that the POA-based scaling did not work that

well for modern diesel vehicles and instead recommended the use of an NMOG-based scaling. We note that Ma et al.
(2017) used the IVOC estimates of Zhao et al. (2015) and still found IVOCs to be comparable to VOCs in terms of

SOA production in the Los Angeles area. Second, the SOA formation from IVOCs in most models to date has not
been experimentally constrained. Most schemes to model SOA formation from IVOCs have relied on an ad hoc aging
scheme where IVOCs and their oxidation products react with the OH radical to form lower volatility products with

ultimate SOA yields of 100% (Robinson et al., 2007). These schemes do not account for fragmentation reactions and

have not been comprehensively validated against experimental data. Jathar et al. (2016) showed that such schemes

may significantly overestimate the net acrosol production from SOA precursors. And finally, most models do not use
SOA parameters that yet account for the effect of vapor wall losses in chamber experiments. This effect and its
particular influence on the IVOC contribution to SOA is discussed in Section 3.4. In this work, we (i) rely on a
comprehensive set of IVOC emissions estimates made from measurements performed on more representative sources,
(i) model fragmentation reactions during IVOC oxidation, (iii) to some degree constrain SOA formation from IVOCs
with chamber experiments, (iv) to some degree account for the influence of vapor wall losses in chamber experiments,
and (v) include all of the previously mentioned updates in a chemical transport model. Hence, we argue that our

findings on the IVOC contribution to SOA might be more robust than those modeled in earlier studies.

Traditional VOCs. For the Base simulations in Los Angeles, aromatics accounted for 33% of the total SOA in Los
Angeles and were the most important anthropogenic precursor of SOA. Alkane contributions to SOA were less than
10% for both the low and high NOy simulations. Biogenic VOCs accounted for 46% and 55% of the total SOA for the
low and high NOx simulations respectively and were clearly the most important precursor of SOA at the central Los
Angeles site. After accounting for the influence of NOx based on equation (2), the isoprene, monoterpene, and
sesquiterpene contributions to bV-SOA were 23%, 68%, and 9% respectively, suggesting a strong monoterpene
contribution to SOA in southern California. As biogenic VOCs react very quickly with OH and Os (chemical lifetimes
of a few hours), most of the biogenic SOA at this site was likely formed outside the urban airshed and transported to

this location, as suggested by Kleeman et al. (2007), Hayes et al. (2015) and Heo et al. (2015).

3.4 Influence of Vapor Wall Losses

SOA parameterizations that accounted for the influence of vapor wall losses in chambers seemed to have had a large
effect on the absolute mass concentrations of SOA. This can be seen by comparing model results between the IVOC
and Base simulations in Figure 3. The SOA mass concentrations were enhanced by a factor of 10.1 and 2.6 for the low

and high NOx simulations respectively and consistent with previous 3D simulations (Cappa et al., 2016). However, they

were slightly higher than the range of enhancements reported by Zhang et al. (2014) and estimated by Krechmer et al.

(2016) based on analyses of chamber data. The SOA enhancements resulted in an OA enhancement of 1.66 and 1.14 in

the low and high NO, simulations, which were lower than the SOA enhancements since SOA only accounted for a
fraction of the OA mass. Differences in enhancements in the low and high NOx simulations suggest that the vapor wall
loss effect was modified by the NOx level where the enhancement may be lower in urban/source regions with higher
NOx but higher in rural/remote continental regions with lower NOx. Since urban SOA mass concentrations are usually
higher than those in rural/remote continental regions, an implication of this NOx-modified enhancement is that
accounting for vapor wall loss artifacts will tend to reduce gradients in SOA mass concentrations between urban and

rural/remote continental regions and make SOA more of a regional pollutant similar to ozone (O3).
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Figure 4: Ratio of model predictions from the Base simulation that accounts for the influence of vapor wall losses to
model predictions from the IVOC simulation that does not account for the influence of vapor wall losses. Ratios are
calculated from the 14-day averaged results for the whole domain and are resolved by precursor. Panels (a) and (b)

show results from the low and high NOy simulations respectively.

Different precursors contributed in varying degrees to the SOA enhancement. The precursor-resolved enhancements are
visualized in Figure 4 where we plot the ratio of the 14-day averaged model predictions of the SOA mass concentrations
from the Base simulation to those from the IVOC simulation for each grid cell in the southern California domain (dots)
and overlay box-whisker plots based on those data. For all precursors the enhancements were higher for the low NOx
simulations compared to the high NOx simulations. SVOCs showed the smallest enhancement at both the low and high
NOx levels (median of 1.6 and 1.2) and hence their fractional contribution to total SOA was reduced in the Base
simulation when compared to the IVOC simulation. Alkanes showed the largest enhancement in the low NOx
simulations (median of 94) and the second largest enhancement in the high NOx simulations (median of 4.5). Despite
the large enhancements, alkanes still contributed marginally to total SOA in the Base simulations because the baseline
contribution of alkanes to SOA was small in the IVOC simulations (<3%). IVOCs exhibited a larger enhancement
(median of 17 and 2.9) compared to SVOCs and a smaller enhancement compared to alkanes in both simulations, despite
using the same surrogate (i.e., n-dodecane) to model SOA formation. The reason for varying enhancements in SVOC,
IVOCs, and alkanes, despite using the same surrogate (i.e., n-dodecane), was that the vapor wall loss-related
enhancement was inversely related to the carbon number where larger carbon number precursors (e.g., SVOC that had
an average carbon number of 18 to 20) showed smaller enhancements and smaller carbon number precursors (e.g.,
alkanes that included species between carbon numbers of 6 and 12) showed larger enhancements. The simplest
explanation for this inverse relationship is that larger precursors and their oxidation products, relatively speaking, have
shorter chemical lifetimes and undergo fewer chemical reactions before condensing, which make them less susceptible
to being lost to the walls (see Figure S5 where we plot the vapor wall loss-related enhancement in SOA yields as a
function of the carbon number at an OA mass concentration of 9 pg m>). Of the two other important precursors,
aromatics displayed the largest enhancement in the high NOx simulations (median of 6.6) and were tied with IVOCs
for the second largest enhancement in the low NOx simulations (median of 16) while biogenic VOCs showed the lowest
enhancement after SVOC in both the low NOx and high NOx simulations. Accounting for vapor wall loss artifacts is
expected to result in an increase in the aromatic contribution to SOA when compared against biogenic VOCs. Vapor

wall loss rates in Teflon chambers might be much higher (~factor of 5) than those used in this work to develop the SOM
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parameterizations ((Huang et al., 2018; Krechmer et al., 2016; Sunol et al., 2018), the use of which will be will tend to

increase SOA mass concentrations even further. This new understanding will need to be considered in the future.

3.5 Sensitivity Analysis

Results from the sensitivity simulations that examined uncertainties in select model inputs are shown in Figure 5 where
we plot the 14-day averaged model predictions from these simulations at the central Los Angeles site. We also plot
model predictions from the Base simulations as all the sensitivity simulations have been performed using the Base
simulation as the reference (see Table 3 for details about the simulations). Model predictions from the low and high
NOx simulations are shown separately. The No Aging simulations decreased the SOA mass concentrations by almost
an order of magnitude demonstrating the importance of modeling multi-generational aging in the SOM. The inclusion
of oligomerization reactions that may enhance the partitioning of semi-volatile species may alter this finding. The No-
Aging simulations produced a very different precursor contribution to total SOA compared to the Base simulations and
the changes in the precursor contribution were also different between the low and high NOx simulations. For instance,
the aV-SOA contributions to total SOA increased from 39% to 41% for the low NOx simulations but decreased from
26% to less than 5% in the high NOx simulations. This implied that the treatment of multi-generational aging in the
SOM did not proportionately enhance the SOA mass concentrations from the different precursors but rather produced
varying levels of enhancement for the different precursors that was further modified by the NOx levels. This finding is
of note because CTMs that have employed schemes such as the volatility basis set (VBS) have typically assumed that
multi-generational aging has an approximately similar effect on SOA mass concentrations from different precursors,
regardless of the NOx levels, and one which does not significantly change the precursor contribution to SOA. With the
VBS, one may observe some differences with multi-generational aging from the use of different starting VBS

distributions for SOA from different precursors.

The SVOCax simulations that assumed all POA (except marine POA) to be semi-volatile saw POA mass concentrations
decrease by 36% compared to the Base simulations and by 56% compared to the Traditional simulations (not shown
here but inferred from results in Figure 3). The increase in SVOCs from the additional evaporation of POA mass resulted
in about a three-fold increase in the aS-SOA mass concentrations and a proportionate increase in the SVOC contribution
to total SOA. Similar to the findings discussed in Section 3.3, only a fraction of the evaporated POA mass lost was
regained as aS-SOA mass concentrations. For instance, when compared to the Traditional simulations, of the 2.9/3.3 pg
m of POA mass lost 0.32/0.22 pg m™ was regained as aS-SOA reflecting a chemical conversion efficiency of 11/7%
for the low/high NOx simulations. These simulations predicted the maximum decrease in POA mass concentrations
from treating all POA as semi-volatile and reactive but the results still found POA to be 40% and 69% of the total OA
in the low and high NOx simulations respectively. Direct emissions of POA were still a sizeable fraction of the ambient

OA and PM burden using the current state-of-the-science treatment.

Estimating IVOCs to be 20% of the NMOG emissions for all combustion sources and modeling the SOA formation
from IVOCs using a Cis linear alkane — as modeled in the IVOCiax simulations — resulted in an approximately four-fold
increase in the al-SOA mass concentrations over the Base simulations. The increases were partly attributed to additional
IVOC emissions from sources other than mobile and biomass burning (factor of 2.8 compared to IVOC emissions from
the Base simulations) and partly to using a larger alkane (Cs linear alkane) with a higher SOA mass yield to model
SOA formation from IVOCs emitted by gasoline sources. Simulating SOA formation from IVOCs using an aromatic

surrogate in the S-IVOCaromaic simulations had the same effect as the IVOCuax simulations and increased al-SOA mass
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concentrations by a factor of 2.6/6.3 for the low/high NOx simulations. The al-SOA mass concentrations were higher
because aromatics for the same carbon number have a higher SOA mass yield than alkanes. The IVOCnax and S-
IVOCaromaiic simulations potentially present an upper bound contribution of IVOCs to SOA formation and in both these
simulations were ~30% of the total SOA and a factor of ~1.5-2 larger than the aromatic VOC contribution. While the
IVOCax and S-IVOCiaromaiic Simulations dramatically increased the al-SOA mass concentrations, these simulations only
modestly increased the total OA mass concentrations over the low and high NOx simulations (average increase of 10%).
Over the urban area, the OA mass concentrations in the IVOCpax and S-IVOCaromaiic Simulations were on average 10-
12% higher compared to the Base simulations (see Figure S6). Updating the emissions profiles based on the work of

May et al. (2014) had a negligible effect on the SOA mass concentrations and its precursor contribution implying that

the emissions profiles from more than a decade and a half ago may be sufficient to model the modern mobile source
fleet. Finally, a lower volatility (i.e., more realistic) POA in the SVOCcooking Simulations, informed by the measurements

of Louvaris et al. (2017), resulted in a 20% increase in POA mass concentrations when compared to both the low and

high NOx Base simulations. POA mass concentrations in these low and high NOx simulations accounted for
approximately 55 and 85% of the OA respectively. The SOA mass concentrations between the SVOCcooking and Base

simulations remained the same. ,
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Figure 5: 14-day averaged model predictions of POA and SOA mass concentrations and precursor contributions from
the sensitivity simulations. Panel (a) shows absolute concentrations and panel (b) shows precursor contributions.
Model predictions from the low and high NOx simulations are shown separately. Simulation legend: Base = Base
case, No Aging = only models first generation chemistry in the SOM, SVOCyax = all POA treated as semi-volatile,
1VOC,uux = all combustion sources assumed to have 20% IVOC emissions and a C;5 SOA yield, S-IVOCaromatic =
SVOCs and 1IVOCs modeled as high-yield aromatic compounds, VOCgec = mobile source emissions profiles based on

May et al. (2014), SVOCleooking = POA volatility distribution for food cooking sources based on the measurements of
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Louvaris et al. (2017). All simulations besides SVOCeooking assumed food cooking POA to have the same volatility as

biomass burning POA. More details about these simulation inputs can be found in Section 2.3.

3.6 NOx-Adjusted SOA Formation

The SOM currently does not model the continuous evolution of SOA under varying NOx concentrations. One of the
challenges in modeling the NOx influence on SOA formation has been in quantifying the branching of the VOC
oxidation under low and high NOx conditions. Most commonly used schemes in atmospheric models use the NO:HO»
ratio to determine the initial branching of the precursor to form SOA via the low or the high NOx pathway. However,
this scheme depends on an accurate prediction of NO and HO». To assess, at least qualitatively, the ability of the model
to capture NO and HO, concentrations, we compare 14-day averaged diurnal profiles from this work to those measured
in Pasadena in 2010 during the CalNex campaign in Figure S7. We found that the model predictions were within a factor
of two for NO concentrations but were about a factor of 10 lower than the measured HO," concentrations. We should
note that the HO," measurements included HO, and a fraction of RO, radicals, where RO, radicals contributed to ~30%
of the HO," measurements (Griffith et al., 2016). The inclusion of RO, should not change the findings reported here. If

the results from our modeling are representative of results from other atmospheric models that use SAPRC or other gas-
phase chemical mechanisms, underestimating the HO, concentrations may lead NO:HO- ratio-based schemes to
overestimate the SOA formed via the high NOx pathway. Given this limitation and the fact that the SOM does not model
the model the continuous evolution of SOA under varying NOx concentrations, we attempted to model the NOx-

dependent SOA formation using VOC:NOx ratios and NOx concentrations.

Four different methods — described in equations (1) through (4) — were used to adjust the SOA mass concentrations
from each individual precursor to account for the influence of NOx. To remind the reader, equations (1) and (2) assume
a linear and logarithmic dependence respectively between the SOA mass concentration and the VOC:NOx ratio.
Equations (3) and (4) assume a linear and logarithmic dependence respectively between the SOA mass concentration
and the NOx concentration. The adjusted SOA mass concentrations, referred to as SOA.f, were summed to calculate
the total SOA mass concentrations. Equation (2) produced the highest SOA mass concentrations while equation (3)
produced the lowest SOA mass concentrations amongst the four equations. Scatter plots comparing the SOA mass
concentrations calculated using equation (2) to those calculated using other equations, in Figure S8, show that the SOA
mass concentrations based on equation (2) were, on average, a factor of 1.27, 3.19, and 1.92 higher than those with
equations (1), (3), and (4) respectively. This meant that a calculation based on the VOC:NOx ratio produced a stronger
response of NOx on SOA mass concentrations than the NOx concentrations themselves. In the subsequent sections,
where we evaluate the model predictions (Section 4) and predicted future changes in the OA burden (Section 5), we
used the SOA. calculations based on equation 2 since they represented an upper bound estimate of the NOx effect on

SOA mass concentrations. The validity of equation 2 needs to be examined in future work.
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Figure 6: 14-day averaged ratio of the SOA.y mass concentration to the SOA mass concentration from the (a) high
NOy and (b) low NOy Base simulations.

In Figure 6, we plot the ratio of the total SOA.x mass concentrations based on equation (2) to the total SOA mass
concentrations from the (a) high NOx and (b) low NOx Base simulations. The SOA.sr mass concentrations were higher
than the SOA mass concentrations predicted using the high NOx parameterizations, with an average factor of two
increase in urban areas and a maximum factor of four increase in non-urban areas. This was because the model predicted
VOC:NOx ratios in the urban areas were higher than the VOC:NOx ratios produced in the high NOx chamber
experiments and based on equation (2) the SOA mass concentrations were adjusted upwards to include the SOA
predicted using the low NOx parameterizations. The adjustments increased the SOA mass concentrations because the
SOA mass concentrations from each precursor were universally higher with the use of the low NOx parameterizations
compared to the high NOx parameterizations. The SOA.« mass concentrations were 30-40% lower than the SOA mass
concentrations predicted using the low NOx parameterizations in urban areas, suggesting that the SOA.r mass
concentrations were approximately midway between the SOA predictions using the high and low NOx
parameterizations. In contrast, the SOA.+ mass concentrations were only marginally lower (10-20%) in the non-urban
areas implying that the VOC:NOx ratios in these regions were very similar to the VOC:NOx ratios produced in the low
NOx chamber experiments. In summary, a modest fraction of the SOA mass may be formed through the ‘low-NOx’
pathway in high NOx urban areas, which may result in substantial increases in the predicted SOA mass concentration
when compared against predictions purely based on the use of high NOx parameterizations. This low-NOx SOA will
continue to increase in the future as NOx concentrations are reduced in urban areas through controls on mobile sources.
In contrast, only a small fraction of the SOA mass may be formed through the ‘high-NOx’ pathway in low NOx non-
urban areas and the use of a low NOx parameterization in these regions will only marginally bias model predictions of

SOA mass concentrations.

4 Model Evaluation

Model predictions from the Base simulation were evaluated against gas-phase measurements of SOA precursors and
particle-phase measurements of OA mass concentrations and composition. For the particle-phase measurements, we
focused the model evaluation on predictions adjusted for the NOx influence on SOA formation using equation 2

(logarithmic dependence on VOC:NOx ratio).

4.1 SOA Precursors

In Figure 7(a), we compare 14-day averaged model predictions of aromatic concentrations for our 2005 episode against
measured temporal trends in summer-averaged single-ring aromatic concentrations at three different sites in Southern
California (Los Angeles-North Main Street, Riverside-Rubidoux, and Long Beach) (SCAQMD, 2017); model
predictions of aromatic concentrations are a sum of the benzene, ARO1, and ARO2 concentrations. On the same figure,
we also plot model predictions of aromatic concentrations at Pasadena for our 2005 episode and measured single-ring
aromatic concentrations made at the Pasadena ground site in 2010 as part of the CalNex campaign (Zhao et al., 2014).
The summertime single-ring aromatic concentrations in southern California have decreased by a factor of 2 to 3 between
2000 and 2011 presumably from regulations that have targeted emissions from mobile sources. These reductions agreed
well with reported temporal trends in carbon monoxide, nitrogen oxides, and non-methane organic compounds for Los

Angeles over the same time period (Warneke et al. (2012); MacDonald et al. (2013)). Aromatic measurements at
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Pasadena in 2010 compared well with the 2010 measurements made ~12 km southwest of Pasadena at the Los Angeles-
North Main Street location suggesting that the summer/campaign-averaged aromatic concentrations were spatially
homogeneous over urban Los Angeles and findings from the model-measurement comparison at a particular site could
be generalized for the larger modeled domain. The model-measurement comparison for aromatics in 2005 was mixed.
Concentrations were overpredicted by a factor of ~1.5 at the Los Angeles-North Main Street and Long Beach sites but
agreed well with measurements at Riverside-Rubidoux. The predictions might have been overestimated because we
were using an older emissions inventory developed for the year 2000 but adapted for use for the year 2005 based on

activity data (Hu et al., 2015). Another possibility for the over prediction was that the lumped model species ARO1 and

ARO?2 in SAPRC-11 also included emissions from oxygenated aromatic (e.g., phenols) and aromatic-like compounds
(e.g., furans) while the measurements were limited to a handful of single-ring reduced aromatic compounds. Despite
differences in the absolute concentrations, the model seemed to capture the measured spatial differences between the

three sites, i.e. Los Angeles-North Main Street > Riverside-Rubidoux > Long Beach.
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Figure 7: (a) Mass concentrations of single-ring aromatics in southern California at different sites between 2000 and
2011. Measurements show the temporal trend in the summertime mean (solid line) and 10"-90" percentile (bands) at

Los Angeles, Riverside, and Long Beach from 2000 to 2011 (ARB, 2017) and the campaign-averaged measurement

from CalNex at the Pasadena ground site in 2010 (Zhao et al., 2014). Model predictions show the 14-day averaged

concentration simulated in this work at four different sites (solid symbols) in 2005. (b) Mass concentrations of single-
ring aromatics and IVOCs compared between the model predictions from 2005 (this work) to measurements in 2010
[(Zhao et al., 2014).

In Figure 7(b), model predictions of aromatics and IVOCs in Pasadena in 2005 are compared against measurements
made at the Pasadena ground site in 2010. The model predictions in Pasadena were calculated by averaging predictions
from the grid cell that contained the Pasadena ground site and the grid cell immediately to the south. This was done
because the ground site location was very close to the cell boundary to the south and the grid cell containing the Pasadena

ground site included mountains to the north of Pasadena that tended to dilute the concentrations in that grid cell. The
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measurements in Figure 7(b) included primary IVOCs but did not include the oxygenated IVOCs measured by Zhao et

al. (2014) since the primary IVOCs, according to the authors, relate most closely to IVOC emissions from mobile

sources. The IVOCs included in this work were mostly (>95%) from mobile sources (see Figure 1) and the hence the
comparison with primary IVOCs was appropriate. The model predicted aromatic concentrations at Pasadena in 2005
were twice the measured aromatic concentrations at Pasadena in 2010. This 2005(modeled)-to-2010(measured) ratio
was slightly higher but still consistent with the measured 2005-to-2010 ratio in aromatic concentrations at the Los
Angeles-North Main Street site (1.67). That the 2005(modeled)-to-2010(measured) ratio for IVOCs in Pasadena was
~1.0 is some evidence that the model predictions of IVOCs might be underpredicted in 2005, assuming that the ambient
IVOC-to-aromatic ratio did not change between 2005 and 2010. The IVOCax sensitivity simulation (the only sensitivity
simulation that modeled an increase in IVOC emissions) predicted a 2005(modeled)-to-2010(measured) ratio of 3.15
for IVOCs in Pasadena, which was closer to the measured aromatic concentrations ratios between 2005 and 2010 at the
Los Angeles-North Main Street site. This provides additional evidence for higher IVOC emissions to be included in the
model and it is possible that these additional IVOC emissions might come from volatile chemical products such as

pesticides, coatings, cleaning agents, and personal care products (McDonald et al., 2018). While this model-

measurement comparison validates the aromatic SOA precursors and to some extent the mobile source IVOC SOA

precursors, our model does not account for the oxygenated IVOCs that Zhao et al. (2014) measured and we recommend

that future work investigate the sources, composition, and the SOA potential for these IVOCs.
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Figure 8: Model-measurement comparison for daily-averaged OA mass concentrations at (a) CSN and (b) IMPROVE

sites in southern California. Panel (c) shows the geographic locations where the comparisons were made.

4.2 OA Mass Concentrations

Scatter plots comparing model predictions of OA from the Base simulations to (a) CSN and (b) IMPROVE
measurements in southern California are shown in Figure 8(a) and (b). Predictions from the low and high NOx
simulations are presented in grey while predictions accounting for the influence of NOx are shown in color. The colors
denote different sites and the site locations are shown in Figure 8(c). The model-measurement performance is also
captured using statistical metrics of fractional bias, fractional error, and the coefficient of determination in Table 4. At
all CSN sites, model predictions of OA that included SOA mass concentrations adjusted for the influence of NOx were
in-between those predicted between the low and high NOx simulations. As explained earlier, this was because the
VOC:NOx ratios at all these sites (see Figure S9(a)) were always higher than those in the high NOx chamber experiments
(see Table 2) and hence the SOA mass concentrations calculated using equation 2 were always higher than those

predicted in the high NOx simulations. At all the CSN sites, correcting for NOx improved model performance compared
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to the high NOx experiments but was still inferior compared to the predictions from the low NOx simulations (see Table
4). The mean predicted OA mass concentration across all the CSN sites was about 30% lower than the measurements
(5.96 versus 8.86 pg m*). Model predictions of OA were very similar to those predicted in the low NOx simulations at
the IMPROVE sites where the VOC:NOx ratios were higher (e.g., San Rafael-green square). But, similar to the finding
at the CSN sites, model predictions of OA were in-between the predictions between the low and high NOx simulations
at the IMPROVE sites where the VOC:NOx ratios were lower as a result of their proximity to urban areas (e.g., Agua
Tibia—blue square and Riverside—brown square). Accounting for NOx seemed to improve the model performance at the
IMPROVE sites when compared to predictions from the high NOx simulations and were slightly inferior to those from
the low NOx simulations (see Table 4). Of the 27 IMPROVE measurements available for comparison, 22 or ~80% of
the model predictions corrected for NOx were within a factor of two of measurements with little bias (fractional bias=-
16.63%). The model skill, captured by the R? values, for all model simulations at both the CSN and IMPROVE sites
was quite poor, but still slightly better than that found in earlier work for the southern California region with the CMAQ
model (Baker et al., 2015). However, the model skill was much worse than that reported in earlier work with CMAQ

(e.g., Murphy et al. (2017)) and WRF-Chem (e.g., Ahmadov et al. (2012)) over regions other than southern California, _
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suggesting that there might be missing emissions sources and/or chemical pathways or meteorological considerations

that contribute to the poor model skill in southern California.

Given the differences in the model-measurement comparison between the CSN (or urban) and IMPROVE (rural/remote
continental) sites, the underprediction at the CSN sites might be indicative of a missing urban source or pathway of OA

formation. Recently, McDonald et al. (2018) found that volatile chemical products such as pesticides, coatings, cleaning

agents, and personal care products may contribute substantially to IVOC emissions and account for more than half of
the anthropogenic SOA formation in southern California. Our underprediction at urban sites might be evidence of
missing SOA from volatile chemical product-related IVOC emissions. However, it is also possible that the urban versus
rural/remote continental difference is an artifact of how the SOM models the oxidation chemistry and/or accounts for
the influence of vapor wall losses. Within the CSN and IMPROVE sites, we did not find the model-measurement
comparison to vary systematically by location. The model-measurement comparison over all of California using the 24

km simulations produced a similar result (Figure S10).

Table 4: Statistical metrics of averages, fractional bias, fractional error, and R? for the model-measurement comparison

in southern California.

CSN IMPROVE
Simulation Measured| Modeled Fractional|Fractional 2 Measured| Modeled Fractional|Fractional 5
Average | Average Bi R Average | Average . R
3 3 1as Error 3 3 Bias Error
(ugm™) | (ugm™) (ugm™) | (ugm™)
ng:{\lo 3.86 796 | -31.5% | 46.0% | 0.16 3.72 487 |-138% | 41.8% | 0.116
E?;eect'ive 8.86 596 | -53.4% | 49.2% | 0.13 3.72 4.02 |-16.6% | 44.8% | 0.079
E?;E No. | 886 397 | -83.1% | 83.1% | 0.013 | 3.72 200 |-74.1% | 75.9% | 0317

Model predictions of the OA:ACO diurnal profile and daytime OA versus CO (between 10 am and 8 pm local time) are
compared against measurements made at the Riverside site during the SOAR-1 campaign in Figure 9(a) and (b); SOA
mass concentrations have been adjusted for the influence of NOx using equation (2). The ACO for the measurements

was calculated by assuming a background concentration of 105 ppbv (Hayes et al., 2013) while the ACO for the model
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predictions was calculated by using the model predicted background concentration of CO over the ocean to the west of
Los Angeles. This model-measurement comparison was not completely coincident in time since the model results were
between July 20 and August 2 while the SOAR-1 campaign spanned from July 15 to August 15. The measurements did
not point to any substantial differences in results between the coincident and non-coincident time and hence we did not
anticipate any issues in our comparisons here. The model predictions were able to capture the general trends in the
measured diurnal profile in Figure 9(a) with low ratios during the night, high ratios attributed to photochemistry in the
mid-afternoon, and a peak between 1 and 2 pm (local time). However, the modeled OA:ACO ratios at all times in the
diurnal profile in Figure 9(a) and the slope of the OA:CO ratios in Figure 9(b) was approximately a factor of 2 to 3
lower than the measured ratios, indicating a significant underprediction of urban SOA, which was consistent with the
much higher POA/SOA ratios predicted by the model compared to the observations, as discussed above. This
underprediction cannot be blamed on the model grid resolution since a ratio with CO should to first order account for

the influence of dilution in the grid cell. Cappa et al. (2016) showed much better model performance than this work

when they assumed a non-volatile POA and SOA formed under low NOx conditions. In this work, despite forming
additional SOA from SVOCs and IVOCs, the evaporation of the POA mass and an SOA estimate adjusted for NOx

meant that the model performance was worse in comparison to Cappa et al. (2016). The sensitivity simulations of

IVOCiax and S-IVOCgromaiic produced slightly higher OA mass concentrations (~10-15%) compared to the Base
simulations but not dramatically different to influence the comparison in Figure 9(a) and (b). As mentioned earlier, SOA
formation from IVOC emissions from volatile chemical products, or other future improvements in the SOM, have the

potential to reduce the model underprediction at Riverside during the SOAR-1 campaign.
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Figure 9: (a) Diurnal profile of the modeled and measured OA/ACO ratios at Riverside, CA. The box plots capture the
10™-25"-50"-75"-90" in model predictions over the simulated episode while the gray bands and solid orange line
represent the 10" and 90" percentile and median of the measured data. (b) Modeled and measured OA mass

concentrations plotted against CO concentrations between 10 am and 8 pm local time. The solid and dashed black
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lines represent lines fitted to the modeled and measured data by forcing the X-intercept to be the corresponding
modeled and measured background CO concentration. Diurnal profiles of the modeled and measured (c) H:C and (d)
O:C ratios of the OA (corrected as per Canagaratna et al. (2015)). The three different predictions show results from

the Base simulations for OA assuming no change, the POA O:C was fixed to 0.078 based on the measurements of
Docherty et al. (2011), and no POA.

4.3 POA and SOA Mass Concentrations

The 14-day averaged results predicted POA and SOA mass concentrations of 3.4 and 2.2 pg m™ and an approximate
60:40 POA-SOA split at Riverside. Docherty et al. (2011) estimated average POA and SOA mass concentrations of 1.9

and 7.0 pg m* and a POA-SOA split of 20:80 at Riverside during the SOAR-1 campaign. On an absolute basis model
predictions of POA mass concentrations were overpredicted by ~80%. A sensitivity simulation that turned sea spray
emissions off suggested that the 14-day averaged marine POA mass concentrations at Riverside were ~0.8 ug m=, which

are very likely to be overestimated (Hayes et al., 2013). If the emissions of marine POA were updated to align better

with the observations and in the limiting case where the marine POA mass concentrations at Riverside were negligible,
model predicted POA mass concentrations at Riverside (3.4-0.8=2.6 ug m*) would compare well with the measured
values (1.9 pg m™). As the POA mass concentrations in the SVOCecooking sSimulations increased and the SOA mass
concentrations remained the same compared to the Base simulations, a low volatility and more realistic treatment of the
POA from food cooking sources increased the discrepancy in the modeled and measured POA:SOA ratio at Riverside.
It is also possible that the model might be over predicting POA because we only considered POA from certain sources

(gasoline and diesel use, woodsmoke, and food cooking) to be semi-volatile.

Figure 1 shows that more than half of the partitioned POA (that excludes marine POA) in southern California belonged
to other sources (e.g., road and construction dust) and this POA was treated as non-volatile in the Base simulations.
Model predictions from the SVOCax simulations that treated all POA except marine POA as semi-volatile predicted a
14-day averaged POA mass concentration of 2.1 pg m, which was much closer to the measured value of 1.9 pg m™.
This suggests that all POA, regardless of source, might be semi-volatile and could be modeled so in atmospheric models.
While these results are in better agreement with measurements, PM, s from road and construction dust sources is not
created in a high temperature process followed by rapid cooling and so it is unknown whether the POA portion in it
would evaporate with atmospheric dilution. We also compared the hydrocarbon-like OA (HOA) estimate from the
measurements, which was more representative of POA from mobile sources, against model predictions of POA from
mobile sources. We did not model POA from mobile sources separately but if we assumed that mobile sources only
accounted for about a quarter of the partitioned POA mass in southern California (based on Figure 1), our estimated
Base model predictions of POA mass concentrations from mobile sources of 0.85 pg m (=3.4x0.25) would compare

reasonably with the measured HOA mass concentrations of 1.20 ug m>.

On an absolute basis, SOA mass concentrations were underpredicted by a factor of 3 compared to measurements. Based
on the discussion in the previous paragraph, if we added the non-mobile source POA to SOA, the net SOA mass
concentration (3.4x0.75+2.2=4.75 ug m™) was still 33% lower than the measured value. The SOA mass concentrations
in the IVOCrax simulations — sensitivity simulations that modeled a fixed IVOC:NMOG ratio of 20% for all sources
except biogenic sources, assumed IVOCs formed SOA similar to a C;s linear alkane, and which produced the maximum
SOA mass concentrations amongst all the simulations — were 33% higher than those in the Base simulation but still

~60% lower than the measured SOA mass concentration of 7 pg m>. A combination of the two, i.e., adding the non-
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mobile source POA to the SOA formation in the IVOChax simulations, resulted in a net SOA mass concentration that
was only 22% lower than the measured SOA value. Since the IVOCna simulations produced ambient IVOC
concentrations that were more in line with the measurement trends (see Section 4.1), it is likely that the TVOCmax
simulations were better in predicting IVOC concentrations and their contribution to SOA. However, there are no bottom
up (i.e., source) or top down (i.e., atmospheric) data to directly constrain the emissions of and SOA formation from
IVOCs in the IVOCnax simulations and hence this finding provides motivation for more detailed studies of IVOCs in

the future.

4.4 OA Elemental Composition

The SOM tracks the carbon and oxygen numbers for the OA species and hence we were able to compare model
predictions of the diurnal profiles for the OA H:C and O:C ratios to measurements made at the Riverside site during the
SOAR-1 campaign. The comparisons are shown in Figure 9(c) and (d). For the Base simulations (shown as orange box
plots), model predictions of H:C were significantly overpredicted and those for O:C were significantly underpredicted
although the predictions did capture dips in the H:C and the peaks in the O:C ratios in the mid-afternoon, coincident
with peak photochemical activity. The model predictions did not capture the slight increase in H:C and the decrease in
0:C in the early morning attributed to emissions from rush hour traffic. The high H:C and low O:C predictions were a
result of OA being dominated by POA (~60%), which in this work was modeled as a hydrocarbon distribution that had
an H:C slightly larger than 2.0 and an O:C of 0. Docherty et al. (2011) found that POA had a campaign-averaged H:C

of 1.92 and an O:C of 0.078. If the POA O:C were fixed to the values estimated by Docherty et al. (2011), model
predictions (shown as blue box plots) improved — as shown in Figure 9(c) and (d) — but still over and under predicted
the H:C and O:C, respectively; since SOM only tracks carbon and oxygen numbers for an organic species and determines
the hydrogen number based on the remaining valence, specifying the O:C dictates the H:C. To assess the ability of the
model to predict the elemental composition of SOA, we plot the diurnal profile of H:C and O:C of the SOA in Figure
9(c) and (d). Model predictions of SOA H:C and O:C (shown as green box plots) compared well with the measured
range of values but did not reproduce the diurnal changes. Docherty et al. (2011) argued that the H:C and O:C of OA at

Riverside was mostly controlled by the SOA composition, which did not change dramatically during the day, and was
modified by POA at certain times when POA emissions dominated over SOA production (e.g., nights, rush-hour traffic).
This suggests that if absolute predictions of the SOA mass concentrations and the POA-SOA splits were improved, our
model would be able to predict both the magnitude and diurnal changes in OA H:C and O:C ratios. We found that the
SOA H:C and O:C ratio predictions did not vary significantly and produced similarly flat diurnal profiles across a subset
of sensitivity simulations performed (Figure S11), suggesting that the modeled elemental composition of SOA was not

very sensitive to the distribution of precursor contributions to SOA.

5 Summary and Discussion

Organic aerosol (OA) is an important contributor to urban fine particle pollution yet remains one of its most uncertain
components. In this work, we updated the organic aerosol treatment in the UCD/CIT chemical transport model to include
a semi-volatile and reactive treatment of POA, emissions and SOA formation from IVOCs, the NOx influence on SOA
formation, and SOA parameterizations for SVOCs and IVOCs that were corrected for vapor wall loss artifacts during
chamber experiments. All updates were implemented in the statistical oxidation model (SOM), which simulates the
multigenerational aging and gas/particle partitioning of organic aerosol and is embedded in the UCD/CIT model (Cappa
et al.,, 2016; Jathar et al., 2015, 2016). POA, SVOC, and IVOC updates were based on an interpretation of a
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comprehensive set of source measurements. The influence of NOx on SOA formation was estimated offline using

methods based on the VOC:NOx ratios/NOx concentrations.

Despite treating the POA from gasoline, diesel, biomass burning, and food cooking sources as semi-volatile, the updated
model only predicted a 30-50% decrease in POA mass concentrations in the urban airshed even when the volatility data
used to simulate POA projected a much larger decrease (45 to 80%). The primary reason for the weaker response was
that a large fraction of the POA mass came from sources other than those modeled as semi-volatile, e.g., road and
construction dust, marine. When all POA, except for marine POA, was modeled as semi-volatile, more than 60% of the
POA mass evaporated and the POA mass concentrations under this scenario compared well with measurements made
in Riverside, CA as part of the SOAR-1 field campaign. While this sensitivity analysis was informative, it is unlikely
that the POA from sources such as road and construction dust is semi-volatile and recent measurements suggest that
POA from food cooking sources has much lower volatility than assumed in the Base simulations in this work. These
findings indicate that model predictions continue to overestimate POA relative to measured concentrations. Sea spray
emissions accounted for a quarter of the POA mass concentrations in the urban airshed but more recent observations
suggest that the sea spray emissions or the organic fraction attributed to the sea spray emissions might be overestimated

(Hayes et al., 2013). This needs to be examined in future applications of the UCD/CIT model. Atmospheric oxidation

of the evaporated POA vapors or SVOCs did not contribute significantly to the SOA burden (<0.1 pg m), even after
accounting for the influence of vapor wall loss artifacts, since the timescales for SOA production appeared to be longer

than the timescales for transport out of the urban airshed.

We found IVOCs to be more important than SVOCs but less important than traditional VOCs such as single-ring
aromatics and biogenics in forming SOA. TVOCs accounted for less than 0.5 pg m™ of SOA while single-ring aromatics
and biogenics each contributed to approximately 1 pg m™ in the Base simulations. The IVOC contribution to SOA was
smaller than that for aromatics partly because IVOC SOA was relatively less sensitive to corrections of vapor wall loss
artifacts in chamber experiments. Another reason for the small IVOC contribution to SOA was that we only considered
IVOC emissions from gasoline, diesel, and biomass burning. On analyzing trends in SOA precursor concentrations in
southern California, the modeled IVOC concentrations in this scenario appeared to be underpredicted by a factor of ~2.
Allowing all sources that emit non-methane organic gases (NMOG) to emit IVOCs (using an IVOC:NMOG ratio of
0.2) and form SOA similar to a C;s linear alkane seemed to increase the IVOC contribution to SOA (% of total SOA)
and produced better comparisons against ambient measurements of IVOC concentrations, OA composition, and SOA
mass concentrations. This might be indicative of missing IVOC emissions in the model. These missing emissions might
be from volatile chemical products such as pesticides, coatings, cleaning agents, and personal care products, which have

been found to contribute substantially to urban SOA burdens (McDonald et al., 2018). It is also likely that the missing

IVOC emissions are from sources considered in this work (i.e., gasoline, diesel, and biomass burning sources) but were
not accounted in the emissions inventories because they have been shown to be very easily lost to sampling tubes

(Pagonis et al., 2017). The IVOCs in this work were modeled using a linear alkane surrogate despite recent evidence

that IVOCs in combustion emissions are a mixture of branched and cyclic alkanes, aromatics, and oxygenated

compounds with very few linear alkanes (Koss et al., 2018; Zhao et al., 2016, 2017). A more chemically appropriate

representation of the IVOCs would not have substantially changed the findings in this work since the linear alkane
surrogates were chosen to reproduce the SOA formation in chamber experiments performed on combustion emissions.
However, future work should incorporate the more detailed speciation available to model the emissions and SOA

formation from IVOCs.
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Loss of vapors to the Teflon walls has been shown to significantly bias SOA formation in environmental chamber

experiments (Krechmer et al., 2016; Zhao et al., 2014). Cappa et al. (2016) studied the influence of vapor wall loss

artifacts on ambient SOA mass concentrations from VOC precursors. In this work, we extended the work of Cappa et
al. (2016) by considering additional precursors of SOA, i.e., S/IVOCs. Correcting for vapor wall loss artifacts seemed
to increase SOA mass concentrations for all precursors but the enhancement varied by precursor. With a few exceptions,
the SOA enhancements correlated with carbon number where larger carbon number precursors had lower enhancements
and vice versa. The reason for this inverse relationship was that larger precursors and their oxidation products have
shorter chemical lifetimes and undergo fewer chemical reactions to form SOA, which made them less susceptible to
being lost to the chamber walls. Recent work suggests that the vapor wall loss rates to the Teflon wall might be two or

more times larger than the rates used in this work to develop the SOM parameters (Huang et al., 2018; Krechmer et al.,

2016). The use of these faster rates will tend to increase the model predicted SOA mass concentrations and help explain

the underpredictions with ambient measurements.

The emissions inputs and chemical treatment for OA was varied substantially in the sensitivity simulations performed

in this work. Yet, the simulations seemed to change the OA by less than a factor of 2 suggesting that the model

framework, except for the treatment of NOx, was generally reasonable in constraining in the total OA mass

concentrations in southern California. The total SOA enhancement was modified by the NOx level where low NOx

regions might see higher enhancements compared to high NOx regions. In southern California where urban SOA mass
concentrations might be higher than rural/remote continental SOA mass concentrations, the NOx-mediated enhancement
will tend to reduce the spatial gradients in SOA mass concentrations and make SOA a regional pollutant like Os.
Accounting for the influence of NOx seemed to improve OA model performance against routine measurements in
rural/remote environments (i.e., Interagency Monitoring of Protected Visual Environments network) where OA model
predictions were within a factor of 2 with very little bias (e.g., fractional bias of -16.6%). However, model predictions
of OA at routine monitoring sites in urban environments (i.e., Chemical Speciation Network) and at the Riverside site
during the SOAR-1 field campaign were still underpredicted by at least a factor of 2 (e.g., fractional bias of -49.2%).

This suggested a missing emissions or chemical source of OA in urban areas.
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Figure 10: Ratios of 14-day averaged model predictions of (a) OA, (b) POA, (c) SOA, and (d) OH from 2035 to those
from 2005. The 2035 simulations were performed with 2005 meteorological inputs but scaling the anthropogenic
emissions for CO, NOy, VOC, PM:s, SO:, and NH; based on changes projected by the California Emission
Projections and Analysis Model (CARB, 2018).

The future OA burden in southern California will depend not only on reductions in POA and SOA precursor emissions
but also on changes in oxidant concentrations and VOC:NOx ratios. We used the Base model to simulate the same time
period, July 20 to August 2, for the year 2035 to determine how emissions reductions and atmospheric conditions may
change in a future year to influence ambient OA-POA-SOA mass concentrations. The same meteorology and
environmental conditions were assumed, with the understanding that climatological changes in the future may alter the
findings presented here. Emissions reductions in CO, NOx, VOC, PMz s, SO, and NH; were informed by net reductions
in statewide emissions between 2005 and 2035 as projected by the California Emission Projections and Analysis Model
(CARB, 2018). The 2005 inventory was scaled based on these emissions reductions for anthropogenic sources but the
biogenic emissions and VOC emissions profiles were kept the same. We did not resolve the emissions reductions in
these pollutants by source or by region since the goal was to examine the general trend in the OA-POA-SOA system
and not to predict future air quality; heterogeneity in the reduction in pollutant emissions by source and geography may
alter the results. Statewide emissions reductions in CO, NOx, and VOC of 78%, 83%, and 33% resulted in approximately
50%, 75%, 75%, and 30% reductions in ambient concentrations of CO, NO, NO,, and VOC in the urban airshed (Figure
S12 plots the ratio of CO, NO, NO,, and VOC concentrations in 2035 to those in 2005). Here, VOC is the sum of all
organic species tracked in the SAPRC-11 gas-phase chemical mechanism (excludes methane). Since the NOx reduction
was much more dramatic than that for VOCs, the VOC:NOx ratio in the urban airshed increased from ~1 to ~5 between
2005 and 2035, which was in line with recent modeled estimates by Fujita et al. (2016).
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We plot the ratio of the mass concentrations for OA, POA, and SOA in 2035 to those in 2005 in Figure 10(a), (b), and
(c) respectively. SOA mass concentrations have been adjusted for the influence of NOx using equation 2. POA mass
concentrations in the urban airshed in 2035 were slightly higher (~5%) than those in 2005 primarily because PMa s
emissions were higher in 2035 compared to 2005; according to CEPAM, increases in PM» s emissions were mostly from
increases in area source emissions and not mobile source emissions. Surprisingly, SOA mass concentrations in the urban
airshed were 30-40% higher in 2035 compared to 2005 despite a 30% reduction in VOC emissions and concentrations.
Some of the increase in the SOA mass concentrations was from a shifting VOC:NOx ratio that produced more SOA via
the low-NOx pathway. However, the primary reason for the SOA increase was that OH concentrations in the urban area
had increased by a factor of 2 to 4 (see Figure 10(d)) and had reacted more of the SOA precursors. The OH
concentrations were presumably higher in 2035 because lower NOx emissions resulted in a higher OH lifetime since

the NO,+OH reaction is the primary sink for OH in polluted environments (Jacob, 1999), including the Los Angeles

area (Griffith et al., 2016). These findings suggest that the SOA and OA mass concentrations may not necessarily

respond linearly to reductions in VOC and NOx emissions in the future but rather will be strongly influenced by the

changes in chemical regime. Similarly, Praske et al. (2018) argue that dramatic reductions in NOx emissions and

concentrations in urban environments may increasingly lead to SOA formation through autooxidation pathways and
alter the rate and quantity of SOA formed. Hence, attention needs to be paid to appropriately simulate the chemical
regime (e.g., oxidant concentrations, VOC:NOx ratios, autooxidation reactions) if we are to accurately simulate the

SOA burden in urban environments in the future.
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