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Abstract. Biological particles, including bacteria and bacterial fragments, have been of much interest due to the special ability 

of some to nucleate ice at modestly low temperatures. This paper presents results from a recent study conducted on two strains 

of cultivated bacteria which suggest that bacterial fragments mixed with agar, and not whole bacterial cells, serve as cloud 

condensation nuclei (CCN). Due to the absence of whole bacteria cells in droplets, they are unable to serve as ice nucleating 

particles (INPs) in the immersion mode under the experimental conditions. Experiments were conducted at the Aerosol 15 

Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber at the Karlsruhe Institute of Technology (KIT) by 

injecting bacteria-containing aerosol samples into the cloud chamber and inducing cloud formation by expansion over a 

temperature range of -5 to -12 °C. Cloud droplets and ice crystals were sampled through a pumped counterflow virtual impactor 

inlet (PCVI) and their residuals were characterized with a single particle mass spectrometer (miniSPLAT). The size distribution 

of the overall aerosol was bimodal, with a large particle mode composed of intact bacteria and a mode of smaller particles 20 

composed of agar mixed with bacterial fragments that were present in higher concentrations. Results from three expansions 

with two bacterial strains indicate that the cloud droplet residuals had virtually the same size distribution as the smaller particle 

size mode and had mass spectra that closely matched those of agar and bacterial fragments. The characterization of ice residuals 

that were sampled through an ice-selecting PCVI (IS-PCVI) also shows that the same particles that activate to form cloud 

droplets, bacteria fragments mixed with agar, were the only particle type observed in ice residuals.  25 

1 Introduction 

Aerosols affect climate directly, by scattering and absorbing solar and terrestrial radiation and indirectly through interactions 

with clouds and precipitation (IPCC, 2013). In their role as cloud condensation nuclei (CCN) and ice nucleating particles 

(INPs), aerosol particles affect cloud microphysical properties (Pruppacher and Klett, 2010). Biological particles, including 

bacteria, which are found in the atmosphere in various forms but at relatively low number concentrations, might play an 30 
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important role globally as CCN or INPs. While a large body of work on the ice nucleating (IN) activity of biological particles 

exists, the extent of their role in ice formation within modestly supercooled clouds remains poorly understood ((Murray et al., 2012) 

and references therein).  

Previous studies that looked at the CCN activity of bacteria concluded that bacteria range from very hygroscopic, and hence 

CCN active under atmospherically relevant conditions (Bauer et al., 2003), to only slightly hygroscopic, activating only at 5 

critical supersaturations close to or exceeding those indicating wettability (Franc and DeMott, 1998). It has been suggested, 

based on contact angle measurements (Sharma and Rao, 2002), that these differences reflect a range of bacteria cell wall types, 

some of which are hydrophilic, while others are hydrophobic. However, most of these studies utilized aerosolized suspensions 

of cultured cells that include, in addition to intact bacteria with well-defined cell walls, bacterial fragments mixed with agar 

growth medium  in which the bacteria were cultured (Wolf et al., 2015). Particles composed of bacterial fragments mixed with 10 

hygroscopic agar are expected to activate into cloud droplets more efficiently than their whole cell counterparts, which are 

enclosed in a hydrophobic shell. Although it’s been suggested that biological particles may serve as giant CCN (Möhler et al., 

2007), in most cases, atmospheric air parcels contain many types of CCN active particles and few biological particles, 

diminishing the importance of bacteria for liquid cloud activation. In contrast, the fact that bacterial samples have been shown 

to induce ice formation at relatively warm temperatures suggests that they might play an important role as INPs in mixed phase 15 

clouds (Möhler et al., 2007).  

Depending on the INP composition and size, and on the temperature and relative humidity (RH), ice formation can occur by 

several pathways. The freezing modes most relevant to bacteria particles are immersion freezing, which is induced by a particle 

immersed in supercooled water ((Murray et al., 2012;Vali et al., 2015) and references therein); condensation freezing, in which 

water condensing on an INP freezes; and contact freezing that occurs when a liquid droplet hits an INP and freezes on contact. 20 

However, for the experiments presented here immersion freezing represents the primary ice formation mechanism. In immersion 

freezing, the INP first activates as a liquid cloud droplet, when the RH over water (RHw) exceeds 100% RH, and ice forms 

when this droplet freezes due to the presence of a solid nucleus, which means that this ice formation mechanism is tightly 

connected to the particle CCN activity. 

Many biological particle types including pollen (Hader et al., 2014;Augustin et al., 2013), fungi (Fröhlich-Nowoisky et al., 25 

2015), and decaying plant material (Schnell and Vali, 1976;Conen et al., 2016) have been identified as efficient INPs. 

Additionally, nano-INPs have been observed from fungi (O'Sullivan et al., 2016), pollen (Pummer et al., 2012), and proteins 

from IN active bacteria (Wolber et al., 1986). These IN active proteins were shown to be active on their own, in the absence 

of intact bacteria, demonstrating that a single protein is all that is required to initiate freezing (Govindarajan and Lindow, 

1988). Additionally, IN active bacterial fragments have been observed in the ambient environment (Šantl-Temkiv et al., 2015).  30 

A previous study at the AIDA cloud chamber concluded that both bacterial fragments and whole cells were CCN and IN active, 

with whole cells being slightly more IN active than the fragments, and the fragments having a higher hygroscopicity than the 
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whole cells (Oehm, 2012). Several other studies have reached similar conclusions indicating that both whole cells and bacterial 

fragments serve as INPs (Wex et al., 2015;Hartmann et al., 2013;Yankofsky et al., 1981). In contrast, an earlier study at the 

AIDA chamber suggested that only intact bacteria are IN active (Möhler et al., 2008). The distinction between whole cells and 

bacterial fragments is important from many perspectives, especially when calculating available surface area, surface site 

density, and active or frozen fraction of bacteria in laboratory experiments. More importantly, modeling studies suggest 5 

biological particles may be an important player in precipitation processes (Burrows et al., 2013;Morris et al., 2004), but because 

atmospheric concentrations of intact bacteria and bacterial fragments are poorly constrained and expected to be vastly different, 

it remains uncertain how big of a role bacteria play in mixed phase cloud formation globally.  

When interpreting previously published studies, it is important to keep in mind that when a solution containing cultivated 

bacterial cells is aerosolized, at least two types of particles form: Intact or whole bacterial cells and small particles, composed 10 

of bacterial fragments mixed with agar. The size distribution of the small particle mode depends on the particles generation, 

i.e. the size of aerosolized droplets, and the concentration of the agar and bacterial fragments in the solution/suspension. 

Therefore, it would not be surprising to find that its number concentration and size distribution differ from one experimental 

set-up to the next, and that it could even change with the age of the solution/suspension.  

The data presented here were acquired during cloud simulation experiments performed at the AIDA cloud chamber during the 15 

first part of the Fifth International Ice Nucleation Workshop (FIN-1). The single particle mass spectrometer, miniSPLAT 

(Zelenyuk et al., 2015), was utilized to characterize the size and chemical compositions of intact bacteria cells and bacterial 

fragments mixed with agar before and after cloud formation. Most importantly, it was used to characterize the residuals of 

liquid droplets and ice crystals formed during the expansions. Cloud particles were separated from interstitial particles with a 

pumped counterflow virtual impactor (PCVI) or an ice-selecting PCVI (IS-PCVI) (Hiranuma et al., 2016). Comparison 20 

between the properties of cloud residuals with the overall particle population in the chamber before and after the expansion 

allows for the determination of cloud and ice active versus interstitial particles.  

As it will be demonstrated below, the results of these measurements, on two different bacteria, indicate that bacterial fragments 

mixed with agar accounted for the clear majority of particles active as CCN and as INPs, while whole cells activated with 

much lower probability, if at all. 25 

2 Experimental 

The Fifth International Ice Nucleation Workshop (FIN) was a three-part study that aimed to compare a number of single 

particle mass spectrometers and ice nucleation instruments. The data presented here were collected during FIN-1, which took 

place in November of 2014 at the AIDA cloud chamber at KIT in Karlsruhe, Germany. Ten single particle mass spectrometers 

from several research groups around the world were brought together for FIN-1 to simultaneously characterize the size and 30 
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composition of various types of aerosol particles, including those being used in the AIDA chamber to study their activity as 

CCN and INPs.  

The AIDA cloud chamber and its operation were previously described in detail elsewhere (Möhler et al., 2003). Briefly, the 

AIDA cloud chamber is an 84 m3 aluminum vessel in a thermally insulated housing that can be set to a desired relative humidity 

(RH), temperature, and pressure. To induce cloud formation, the pressure of the chamber, filled with aerosol particles, is 5 

lowered by pumping on the chamber, which causes the gas to expand, the temperature to drop, and the relative humidity (RH) 

to increase above ice saturation, depending on the specific experiment. Once supersaturation with respect to water is reached 

at temperatures below 0°C, cloud droplets, and eventually ice crystals, form. The data presented in this paper are from 3 

expansions during the campaign, Expansions 36, 37, and 38, which are referred to as Expansions 1, 2, and 3, respectively, 

throughout this paper. The mobility size distributions of particles in the AIDA chamber are measured before and after 10 

expansions with a scanning mobility particle sizer (SMPS), comprised of a differential mobility analyzer (DMA, TSI Inc., 

Model 3080) and a condensation particle counter (CPC, TSI Inc., Model 3010). The SMPS sizes particles with mobility 

diameters larger than 14 nm and smaller than 740 nm, while larger particles, with aerodynamic diameters from 0.5 to 20 µm, 

are sized with an aerodynamic particle sizer (APS, TSI Inc., Model 3321). Throughout the manuscript the combined SMPS 

and APS data are shown as volume-equivalent diameters calculated using a particle density of 1.4 g/cm3 and a dynamic shape 15 

factor of 1. Total particle number concentrations are measured with a CPC (TSI Inc., Model 3076). Temperature and RH are 

measured using a number of calibrated sensors (Fahey et al., 2014;Möhler et al., 2003). Optical diameters of cloud droplets 

and ice crystals are determined using two optical particle counters (welas OPCs, Palas GmbH, sensor series 2300 and 2500). 

The detection size ranges of the two OPCs, referred to as welas1 and welas2, are ~0.7 to 46 µm and ~5 to 240 µm, respectively 

(Wagner and Möhler, 2013). The simultaneous use of these two OPCs effectively spans the size range of droplets and ice 20 

crystals formed in the chamber. 

A pumped counterflow virtual impactor (PCVI) (Boulter et al., 2006) and an ice-selecting PCVI (IS-PCVI) (Hiranuma et al., 

2016) were used to selectively sample cloud droplet and ice crystals, the residuals of which were counted with the CPC and 

characterized by miniSPLAT and other instruments. PCVIs use a counterflow to reject smaller, interstitial particles, while 

particles that have enough inertia to pass through the counterflow are transmitted through the inlet. The ratio of the counterflow 25 

to the pumped flow changes the inlet cut-size. One advantage of using the PCVI system is to provide residual-laden flows, in 

which particles are virtually concentrated by a flow concentration factor (i.e., the ratio of input flow to output flow), to the 

downstream instruments. The IS-PCVI, which has a higher cut-size than other PCVIs (Hiranuma et al., 2016), is intended to 

be used to reject both interstitial particles and small cloud droplets and allow the larger ice crystals through. The heated 

evaporation sections installed downstream of each PCVI are maintained at a temperature above 35 °C to evaporate water from 30 

the cloud particles leaving the residuals behind.  

Vacuum aerodynamic diameters (dva) and chemical compositions of individual aerosol particles and cloud residuals were 

measured with miniSPLAT, a single particle mass spectrometer, a detailed description of which is given elsewhere (Zelenyuk 
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et al., 2015). Briefly, individual aerosol particles enter miniSPLAT through an aerodynamic lens inlet (Vaden et al., 2011a) 

and are detected by light scattering in two optical stages 10.9 cm apart. The time it takes the particles to pass between the two 

continuous laser beams (532 nm Nd:YAG CrystaLaser, Model CL-300-LO) yields particle velocity, which for a given inlet 

pressure is related to particle dva. Given that the inlet pressure is changing during expansions, a pressure-dependent size 

calibration was developed and used. The dual particle detection is also used to generate a trigger for the excimer laser (GAM 5 

Lasers Inc., Model EX-5), operated at 193 nm, which ablates the particles and generates positive and negative ions. Single 

particle mass spectra are obtained with a dual-polarity, z-configuration reflectron time-of-flight mass spectrometer (Z-TOF, 

Tofwerk AG). All data generated by miniSPLAT are processed, analyzed, and visualized using custom software (Zelenyuk et 

al., 2008;Zelenyuk et al., 2006).  

Suspensions of cultured Pseudomonas syringae and PF CGina 01 were prepared, as described in Hiranuma et al. (2016), by 10 

suspending ~109 bacteria cells mL-1 in sterile water and a small amount of Kings Base Agar. The solutions were atomized 

using a custom atomizer (Wex et al., 2015), dried by flowing through two diffusion driers (TOPAS, Model DDU 570), and 

injected into the AIDA chamber prior to expansions.  

3 Results and Discussion 

Prior to each experiment, the AIDA cloud chamber was preconditioned overnight to reach the desired experimental 15 

temperature. Before the 1st expansion presented here (Expansion 1), a suspension of Pseudomonas syringae bacteria was 

aerosolized, dried, and the resulting particles were introduced into the chamber. Figure 1 shows the calculated volume 

equivalent diameter (dve)size distributions of particles present in AIDA before the expansion, which was obtained by combining 

measurements by the SMPS (black line) and the APS (red line). Figure 1a shows a smaller size mode that peaks at ~70 nm and 

a broad peak at ~800 nm. The miniSPLAT-measured vacuum aerodynamic size (dva) distribution, shown in Figure 1b, also has 20 

two distinct peaks at 180 nm and ~850 nm, for the small and large size modes, respectively. The difference between the small 

particle peak positions of the measured dva and dve size distributions is due to particle density (ρ > 1 g cm-3) and the 

miniSPLAT’s small particle detection limit (50% cut off at 85 nm, marked with a green line in Figure 1a) (Vaden et al., 2011b). 

This type of bimodal size distribution has been observed previously with other aerosolized suspensions of cultivated bacteria 

(Wex et al., 2015;Wolf et al., 2015;Möhler et al., 2008). The large size mode corresponds to intact/whole bacteria cells and 25 

the smaller mode is composed of bacterial fragments mixed with agar.  

Representative positive and negative ion mass spectra (MS) of the two particle modes are shown in Figure 2. The reference 

MS of the small particle mode includes MS of particles smaller than 300 nm and that of the large particle mode/intact bacteria 

includes the MS of particles larger than 700 nm. Comparison between the reference MS of the two particle modes shows that 

nearly all the peaks are present in the MS of both modes. However, the positive ion MS of the two modes exhibit significantly 30 

different relative peak intensities, while the negative ion MS are very similar. The positive ion MS indicate the presence of 
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many organics and metal ions, including sodium (23Na+), potassium (39/41K+), calcium (40Ca+) and calcium oxides (56CaO+, 
113(CaO)2H+). The negative ion MS show the presence of organic nitrogen (26CN-, 42CNO-), chloride (35/37Cl-), and phosphates 

(63PO2
-, 79PO3

-). The positive ion MS for intact cells show relatively lower intensities for the metal ions (23Na+, 39/41K+, 40Ca+) 

and significantly higher intensities for the organic peaks as compared to those of the small particle mode, which are dominated 

by the potassium peak. The same MS are presented in Figure S1 in expanded scale together with the MS of pure agar particles. 5 

Comparison between MS of agar and the small particle mode shows their positive ion MS to be nearly identical, while the 

negative ion MS are significantly different, with the agar MS containing no phosphate peaks. The size distributions and MS 

provide direct evidence that the smaller particles are composed of agar mixed with bacterial fragments, while the larger size 

particle mode corresponds to intact bacteria cells. The MS of intact bacteria shown in Figures 2 and S1 are similar to previously 

published single particle mass spectra of laboratory-generated Pseudomonas syringae acquired by two other single particle 10 

mass spectrometers (Pratt et al., 2009;Zawadowicz et al., 2017). The negative ion MS are virtually the same, while the positive 

ion MS presented here exhibit significantly higher intensity in organic peaks, most likely due to the differences in the ablation 

laser wavelength or power. Moreover, these studies do not mention the presence of two particle size modes.  

The size distributions shown in Figure 1a indicate a total number concentration of particles in the chamber of ~2,500 particles 

cm-3, ~1,000 particles cm-3 of which are larger than 100 nm, and only ~100 particles cm-3, or 4%, are intact bacteria. In 15 

comparison, the dva size distribution (Figure 1b) yields 7% for the fraction of intact bacteria, since more than half of the 

particles in the smaller size mode are too small to be detected by miniSPLAT. It is important to point out that the size, number 

concentration, and the relative fraction of the small particles containing bacterial fragments can vary from experiment to 

experiment and that they are determined by the solution/suspension concentrations of agar, intact bacteria, and cell fragments, 

as well as how the bacteria culture is grown and prepared for the experiment (Wolf et al., 2015), and could even change with 20 

the age of the solution/suspension. Given the differences in dry size, composition, and hygroscopicity of these two particle 

types, they might be expected to have different cloud droplet and ice nucleation activities. 

Cloud formation is induced by lowering the pressure in the AIDA chamber, using active pumping, which lowers the pressure 

and temperature of the gas in the chamber and increases the RH, which is shown in Figure 3a. As the chamber became 

supersaturated with respect to both ice and water, cloud droplets and ice crystals formed, which is illustrated in Figure 3b with 25 

a false color plot of the welas2-measured size distribution as a function of expansion time. As the temperature decreased and 

the RH increased, the number concentrations of droplets larger than 5 µm rapidly increased. After ~500 sec, as pumping 

stopped, the temperature increased, RH dropped, and the droplet number concentration decreased mainly due to evaporation. 

During the expansion, the vast majority of the droplets remained smaller than 14 µm. The few ice crystals that formed are 

apparent in the figure as a second mode of much larger particles (marked in Figure 3b) mainly visible at ~100 to 200 sec, after 30 

which point their numbers rapidly decreased mainly because of settling losses.  

The welas2 data are also plotted in Figure 3c in a 2D plot format. The figure shows that the number concentration of cloud 

droplets and ice crystals (particles larger than 5 µm, plotted as a black line) quickly reaches ~900 particle cm-3 and then 
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decreases slowly to 400 particles cm-3, before it rapidly drops to zero. Ice crystal concentrations derived from welas2-measured 

number concentrations of particles larger than 30 µm are indicated by the pink line in Figure 3c. Ice crystals appear later in 

the expansion, and their numbers reach a maximum of 3 particles cm-3, or more than 200 times lower than droplets. As a 

reminder, before the expansion, there were ~ 2,500 particles cm-3 in the chamber, including only ~100 intact bacteria cm-3. 

Early in the expansion when there were mostly droplets present in the chamber, the number of cloud particles reached 900 5 

particles cm-3, signifying a very high CCN activation efficiency of particles composed of bacterial fragments mixed with agar. 

The CPC and miniSPLAT-measured number concentrations of cloud residuals transmitted through the PCVI, shown in Figure 

3c in yellow and green, respectively, exhibit very similar behavior. These data indicate a rapid increase early in the expansion 

and a relatively fast drop to zero after ~250 sec, with the temporal evolution of the two independently measured residuals 

number concentrations showing good agreement. Figures 3b and 3c show that during Expansion 1 the PCVI transmitted 10 

predominantly droplets, the residuals of which were characterized by the CPC and miniSPLAT.  

The dva size distribution of cloud residuals measured by miniSPLAT is presented together with the dva size distribution of the 

particles in the chamber before the expansion in Figure 4. The miniSPLAT-measured size distribution of particles composed 

of agar and bacterial fragments before the expansion and of cloud residuals are virtually the same, and the intact bacteria, i.e. 

the large particle mode, is “missing” from the size distribution of the cloud residuals. These data provide direct evidence that 15 

under the experimental conditions in Expansion 1, particles composed of bacterial fragments mixed with agar preferentially 

activated to form cloud droplets, a small fraction of which became ice crystals, as illustrated in Figure 3. 

In addition to the dva size distribution, miniSPLAT measured positive and negative ion MS of individual cloud residuals, which 

are presented in Figure 5 superimposed on the reference MS of intact bacteria (large mode particles) (Figure 5a and b) and on 

the reference MS of the small particle mode composed of agar and bacterial fragments (Figure 5c and d) measured before the 20 

expansion. Comparison between the three particle types shows that the cloud residuals have nearly the same MS as that plotted 

in Figure 2a for the small particle mode in the chamber before the expansion. This suggests that the bacteria fragments mixed 

with agar are serving as CCN, which is consistent with the conclusions based on the measured dva size distributions. The small 

differences between the MS of residuals and the small particle mode suggest a slightly higher content of organics in the 

residuals, which is due to the fact that the MS of residuals includes all detected particles, while the reference MS of the small 25 

particle mode includes only particles smaller than 300 nm. These MS differences will be further examined below in a detailed 

analysis of data obtained during Expansion 2, where the observed differences are larger and, therefore, easier to analyze.  

In summary, prior to Expansion 1 there were ~2,500 particles cm-3 in the chamber, ~10% of which were intact bacteria. During 

the expansion, the maximum number of droplets formed reached 900 particles cm-3, and the average droplet concentration was 

650 particles cm-3, while the maximum ice crystal concentration was 3 particles cm-3 and the average was slightly less than 1 30 

crystal cm-3. As a result, the clear majority of the particles transmitted through the PCVI were droplets. The miniSPLAT-

measured dva size distribution of the cloud residuals is nearly identical to that of the small particle mode. Consistent with the 
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size distribution, the MS of the cloud residuals is nearly the same as the reference MS of the small particle mode, demonstrating 

preferential droplet activation of smaller particles composed of bacterial fragments mixed with agar, as well as, the absence of 

intact cells in droplets residuals.  

Expansion 2 was performed in the same exact manner as Expansion 1, except that a different bacteria, cultivated PF CGina01, 

was used. Figure 6a presents the size distributions of particles in the chamber prior to Expansion 2, showing two particle 5 

modes, the small size mode, composed of agar and bacterial fragments, which peaks at 60 nm, and the intact bacteria, which 

peaks at dve ≈700 nm. There were 1,800 particles cm-3, ~4% of which were intact bacteria. Similarly, the dva size distribution, 

shown in Figure 6b, indicates two particle modes: the small size mode peaking at dva≈160 nm, composed of agar and bacterial 

fragments , and the intact bacteria mode, which peaks at dva≈850 nm and represents ~9% of particles detected and sized by 

miniSPLAT prior to Expansion 2. Comparison between the reference MS of the two particle modes present before Expansion 10 

2 is presented in Figure 7, where the small mode includes particles smaller than 300 nm, and the large mode represents particles 

larger than 700 nm. As in the case of Expansion 1, the MS show that the small particles are composed of agar and bacterial 

fragments, as evident by the presence of phosphate peaks in the negative ion MS. The difference between the two positive ion 

reference MS for PF CGina01 is very similar to the pattern observed for Pseudomonas syringae bacteria (Figure 2).  

The temporal evolution of pressure, temperature, and RH during Expansion 2 are shown in Figure 8a. The welas2-measured 15 

size distributions of cloud particles as a function of time, shown in Figure 8b as a false color image, reveal that most of the 

activated particles were liquid droplets smaller than 10 µm, and that only a small number of cloud particles were ice crystals, 

as determined by their significantly larger optical diameters. The analysis of the welas2-measured number concentrations of 

cloud droplets and ice crystals as a function of time presented in Figure 8c indicates that the average droplet and ice crystal 

concentrations were ~730 particles cm-3 and ~1 particle cm-3, respectively, with ice crystal peak concentrations reaching ~3 20 

particles cm-3 at 150 to 250 seconds from the start of the expansion. As a result, particles transmitted through the PCVI to the 

CPC and miniSPLAT during Expansion 2 were predominantly liquid droplets. The CPC- and miniSPLAT-measured number 

concentrations of particles transmitted by the PCVI, also presented in Figure 8c, show rapid increases early in the expansion 

and slower decreases thereafter, displaying the same behavior as in Expansion 1.  

The miniSPLAT-measured dva distributions of cloud residuals (blue) and particles in the chamber prior to the expansion (green) 25 

are shown in Figure 9. As with Expansion 1, the dva distribution of cloud residuals is nearly identical to that of the small particle 

mode present in the chamber before the expansion. An expanded scale of the intact bacteria size region, shown in the figure 

inset, indicates no detectable intact bacteria in cloud residuals.  

The average positive ion MS of cloud residuals is shown in Figure 10. For comparison, it is superimposed on the reference 

MS of the small particle mode (Figure 10a) and intact bacteria (Figure 10b). The MS of residuals shows that they contain 30 

slightly more organics than the particles that were included in the reference MS of the small particle mode. It is important, 

however, to note that the residual MS includes all particles, while the reference MS contains only particles smaller than 300 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-594
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 June 2018
c© Author(s) 2018. CC BY 4.0 License.



9 
 

nm. A possible explanation for the observed difference between the two MS is that the organic content of the small particle 

mode increases with particle size, i.e. larger particles contain more or larger bacterial fragments and, hence, relatively less 

agar. Indeed, Figure 11 shows that the fraction of organics (peaks at m/z ≥ 44) relative to K+, which serves as a simple 

qualitative measure of the relative fraction of bacterial fragments and agar in these particles, is increasing with particle size. 

As a reminder, a schematic representation of the measured dva size distribution of cloud residuals, is shown in dashed blue line. 5 

For comparison, the same analysis applied to the MS of pure agar and intact bacteria particles yields 86% and 13% for the K+ 

MS peak, respectively. The MS of cloud residuals smaller than 300 nm, shown in Figure S2a, are nearly identical to the 

reference MS of the small particle mode, i.e. bacterial fragment mixed with agar particles smaller than 300 nm, while the MS 

of cloud residuals that are larger than 300 nm, which in this expansion were dominated by particles whose dva is ~500 nm, is 

similar, but not exactly the same, as the reference MS of intact bacteria, as shown in Figure S2b. These small differences are 10 

not sufficient to eliminate the possibility that some of the cloud activated larger particles are in fact small intact bacteria.  

Overall, the dva size distributions and MS of cloud residuals are like those of the small particle mode, although the larger 

residuals, which contain more organics, could be smaller intact bacteria. The data clearly show that the vast majority of intact 

bacteria in the chamber did not activate. In all respects, the miniSPLAT data for PF CGina01 are consistent with those for 

Pseudomonas syringae (Expansion 1) and confirm the preferential droplet activation of particles composed of agar mixed with 15 

bacterial fragments. 

Expansion 3 followed the same pumping strategy and expansion temperatures as the previous expansions, but was conducted 

on particles which remained in the AIDA chamber after Expansion 2. The dve size distributions of these particles, shown in 

Figure 6a as dashed lines, are nearly identical to those measured before Expansion 2, despite a decrease in the total particle 

number concentration. During Expansion 3, the cloud residual particles, sampled by the CPC and miniSPLAT, were 20 

transmitted through the IS-PCVI in order to reduce the number of droplets transmitted to allow for characterization of ice 

crystal residuals.  

Changes in chamber pressure, temperature, and RH for Expansion 3 are shown in Figure 12a. A false color plot of the activated 

particles size distribution measured by welas2, as a function of time, is presented in Figure 12b. Figure 12c displays the welas2-

measured total number of activated particles as a function of time (black), which almost reaches 700 particles cm-3, indicating 25 

a very high CCN activation efficiency. In addition, it shows the number concentrations of cloud particles with optical diameters 

larger than 15 µm but smaller than 20 µm (light blue) and the number of particles larger than 20 µm (pink). The former may 

correspond to the number of droplets transmitted by the IS-PCVI, while the latter may be relevant to transmitted ice crystals. 

Comparison between the two shows that the IS-PCVI transmitted nearly equal numbers of ice crystals and droplets to 

miniSPLAT and the CPC. miniSPLAT and the CPC-measured particle number concentrations are also shown in Figure 12c. 30 

Both instruments show a rapid rise in the concentration of cloud residuals, followed by a significant drop in concentration with 

time. Early in the expansion, most of the transmitted particles are droplets, but later the number of droplets and ice crystal 

residuals becomes comparable, as shown in Figure 12c.  
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Two particle modes are present in the dva size distribution of particles in the chamber before Expansion 3 (Figure 13, green 

trace). Figure 13 also shows the dva size distributions of all cloud residuals detected throughout the expansion (blue) and cloud 

residuals detected late in the expansion, when the number concentration of droplets and ice crystals were approximately equal 

(light blue). Both cloud residual size distributions are nearly the same as that of the small particle mode and show no distinct 

peak in the size region of intact bacteria.  5 

The average MS of particles sampled through the IS-PCVI throughout the expansion and later in the expansion are shown in 

Figure 14. The fact that the two MS are virtually identical suggests that the compositions of particles that remain as droplets 

and those that activate into ice crystals are not different, which is consistent with the finding that the size distributions are the 

same.  

The residual size distributions and compositions combined again confirm that the majority of particles that served as CCN and 10 

INPs were bacterial fragments mixed with agar. While there is no clear indication that intact bacterial cells were activated, it 

cannot be ruled out that larger cloud residuals were small intact bacteria mixed with agar. 

These results are consistent with previous studies that show that whole cells are not necessary for ice formation because IN 

active proteins and protein complexes can serve as INPs (Lindow et al., 1989;Maki and Willoughby, 1978;Hartmann et al., 

2013;Govindarajan and Lindow, 1988). However, it has generally been assumed that whole cells will also nucleate ice (Möhler 15 

et al., 2008;Wex et al., 2015;Lindow et al., 1989) and are more active than a single IN active protein (Govindarajan and 

Lindow, 1988) or bacterial fragment (Yankofsky et al., 1981;Hartmann et al., 2013). The suggestion is that IN active proteins 

collect in the cell membrane (Lindow et al., 1989;Govindarajan and Lindow, 1988) and become concentrated on the surface 

of intact cells enhancing the IN activity of intact bacteria. Nevertheless, the data presented here show that bacterial fragments 

mixed with agar preferentially activate as droplets and are the only particles observed in ice residuals. 20 

4 Conclusions 

This paper presents the results of measurements of particle number concentrations, size distributions, and compositions of 

aerosol particles produced from two types of bacteria particles in the AIDA chamber for three expansions, before and after the 

expansions. In all cases, the data show the presence of two distinct particle types in the chamber: particles larger than ~ 700 

nm that are intact bacteria, and small particles, with a dve distribution that peaks at ~65 nm, that are composed of agar mixed 25 

with bacterial fragments. The MS show that the small and large particles have distinct MS, representing differences in particle 

compositions. The small particles are composed of a mixture of bacterial fragments and agar, as determined by comparison 

with the MS of pure agar particles and intact bacteria. In addition, a detailed analysis of the MS of all particles shows that the 

organic content of particles relative to potassium increases with particle size, indicating that smaller particles are dominated 

by agar, whereas larger particles have more organics, i.e. bacterial fragments and/or bacterial cells.  30 
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The concentration of small particles in the chamber was about thirty times higher than that of intact bacteria for all expansions. 

The two particle modes in the chamber were detected before and after the three expansions, providing direct evidence that 

intact bacteria remain intact throughout the expansion.  

In the three expansions presented here, cloud activation occurred between –5 and -12 °C to form cloud droplets, a small fraction 

of which froze into ice crystals. The cloud droplets had a wide size distribution of optical diameters that peaked at about 8 µm 5 

with some being as large as 15 µm. Ice crystals had a very wide size distribution with some having optical diameters as large 

as 200 µm. Cloud droplet concentrations were ~30% of the total particle number concentration in the AIDA chamber, which 

is significantly higher than the concentration of intact bacteria.  

The cloud particles were separated with the PCVI or IS-PCVI, and their residuals were characterized with miniSPLAT. The 

data in all three expansions present virtually the same picture. The dva size distributions of cloud residuals were devoid of the 10 

large particle/ intact bacteria mode and were nearly the same as the miniSPLAT-measured dva distributions of the small particle/ 

bacterial fragment mode acquired before and after the expansions, providing direct evidence that most of the particles that 

activated to form either droplets or ice crystals were bacterial fragments mixed with agar. The similarity between the dva 

distributions of the small particle mode and the cloud residuals is consistent with the relatively high droplet activation 

probability and the fact that on the small particle side the dva distribution is determined by the instrument detection limit.  15 

MS analysis of the cloud residuals confirms that, while both intact bacterial cells and bacterial fragments mixed with agar were 

present in the AIDA chamber before and after the expansions, the latter represented a clear majority of particles that served as 

CCN and as INPs. These results were replicated for two different bacteria strains, Pseudomonas syringae and PF CGina 01, 

suggesting that this behavior may be representative of bacteria in general, or at least of cultivated bacteria used in most 

laboratory experiments.  20 

It is important to note that at the activation temperatures and RHs of the three expansions presented here, particles first activate 

as CCN to form cloud droplets and ice crystals form by immersion freezing. If the reports suggesting that intact bacteria are 

not hygroscopic are correct, it is not surprising to find that intact bacteria have limited CCN activity, and by necessity, a 

negligible amount can serve as INP in the immersion mode. Drop freezing and other bulk immersion freezing techniques 

bypass the issue of limited hygroscopicity by submerging whole cells in a droplet or well of water, artificially overcoming the 25 

barrier of CCN activation. These distinctions are important to consider when relating laboratory INP measurements to 

estimations of ice formation in clouds. A recent modeling study has shown that competition for water vapor can inhibit ice 

formation in clouds due to the most CCN-active particles taking up all the water and leaving the more IN active, but less CCN 

active, particles as interstitial aerosol and thus, unable to form ice in clouds (Simpson et al., 2017). The study presented here 

shows that, in contrast to intact bacteria, particles composed of bacterial fragments mixed with agar are CCN active and a 30 

fraction of their resulting cloud droplets freeze to make ice crystals. While agar is hygroscopic, pure agar particles do not 
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freeze to form ice crystals at the temperature range examined in this study, indicating that the bacterial fragments served as 

INPs in these expansions.  

If agar is essential to transforming bacterial fragments into effective CCN and INP, as the data presented here suggest, then in 

the ambient atmosphere bacterial fragments might not be IN active unless mixed with hygroscopic substances that can enhance 

the CCN activity. Thus, it is important to quantify the role agar plays in CCN and IN activity of bacteria by conducting 5 

experiments on bacterial samples that contain no agar. Similarly, it is important to investigate the effect of atmospherically 

relevant hygroscopic compounds, like sulfates and nitrates, which could coat bacterial fragments suspended in the atmosphere 

transforming them into CCN and IN active particles.  
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Figure 1: Size distributions of an aerosolized suspension of Pseudomonas syringae in the AIDA cloud chamber before Expansion 1, 
calculated based on the SMPS and the APS measurements (a) and miniSPLAT (b). The miniSPLAT small particle detection limit is 
denoted by the green line in (a). 
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Figure 2: Positive (a) and negative (b) mass spectra of the particles in the AIDA chamber, measured before Expansion 1. Reference 
mass spectra of the small size mode, made up of agar mixed with bacterial fragments, which includes particles smaller than 300 nm, 
are marked in black, and the mass spectra of the large size mode particles (dva > 700 nm), composed of intact Pseudomonas syringae 5 
bacterial cells, are marked in red. 
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Figure 3: Data from Expansion 1. (a) The pressure (black) and the temperature of the gas (red) inside the AIDA chamber. The 
measured RH with respect to ice (RHi) and water (RHw) are indicated in solid and dashed blue lines, respectively; (b) the size 
distributions of the particles measured with welas2 during the expansion. Particles smaller than ~15 µm are liquid droplets, while 
particles with larger optical diameters are ice; (c) The welas2-measured total particle  number concentrations (black) and the 5 
number concentrations of particles larger than 30 µm (pink). The number concentrations of particles transmitted by the PCVI and 
measured by CPC and miniSPLAT are marked in yellow and green, respectively.  
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Figure 4: Normalized miniSPLAT-measured dva size distributions of particles in the AIDA chamber before Expansion 1 (green) and 
of cloud residuals transmitted through the PCVI during the expansion (blue). The inset presents in expanded scale the size 
distributions of the intact bacteria, showing that cloud residuals do not exhibit the distinct peak for intact bacteria. 
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Figure 5: Positive (a) and negative (b) ion mass spectra of cloud residuals sampled during Expansion 1 (blue) superimposed on the 
MS of intact bacteria (red); (c) and (d) The same cloud residuals MS superimposed on the reference MS of the small particle mode, 
composed of bacterial fragments mixed with agar (black). 
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Figure 6: (a) Size distributions of an aerosolized suspension of PF CGina particles in the AIDA cloud chamber before and after 
Expansion 2 calculated from the SMPS and the APS measurements; (b) miniSPLAT-measured size distribution of PF CGina 
particles in the chamber before Expansion 2. The miniSPLAT small particle detection limit is denoted by the green line in (a). 
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Figure 7: Positive (a) and negative (b) mass spectra of the particles in the AIDA chamber, measured before Expansion 2. Reference 
mass spectra of the small size mode, made up of particles smaller than 300 nm (black), and the mass spectra of the large size mode 
(>700 nm) composed of intact PF CGina bacterial cells are marked in red. 
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Figure 8: Data from Expansion 2. (a) The pressure (black) and the temperature of the gas (red) inside the AIDA chamber. The 
measured RH with respect to ice (RHi) and water (RHw) are indicated in solid and dashed blue lines, respectively; (b) the size 
distributions of the particles measured with welas2 during the expansion. Particles smaller than ~15 µm are liquid droplets, while 
larger particles are ice; (c) The welas2-measured total particle number concentrations (black) and the number concentrations of 5 
particles larger than 30 µm (pink). The number concentrations of particles transmitted by the PCVI and measured by CPC and 
miniSPLAT are marked in yellow and green, respectively. 
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Figure 9: Normalized miniSPLAT-measured dva size distributions of particles in the AIDA chamber before Expansion 2 (green) and 
of cloud residuals transmitted through the PCVI during the expansion (blue). The inset presents in expanded scale the size 
distributions of the intact bacteria, showing that nearly no distinct peak for intact bacteria. 
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Figure 10: (a) Reference MS of the small particle mode, composed of agar and bacterial fragments, (black) and the MS of cloud 
residuals acquired during Expansion 2 (blue); (b) MS of intact bacteria (red) and the MS of cloud residuals acquired during 
Expansion 2 (blue). 5 
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Figure 11: The relative mass spectral intensity of peaks assigned to organics and potassium as a function of particle dva, showing that 
larger particles contain more organics. The dashed line represents the measured dva distribution of cloud residuals. 
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Figure 12: Data from Expansion 3. (a) The pressure (black) and the temperature of the gas (red) inside the AIDA chamber. The 
measured RH with respect to ice (RHi) and water (RHw) are indicated in solid and dashed blue lines, respectively; (b) the size 
distributions of the particles measured with welas2 during the expansion. Particles smaller than ~15 µm are liquid droplets, while 
larger particles are ice; (c) The welas2-measured total particle number concentrations (black), the number concentrations of 5 
particles larger than 15 µm, but smaller than 20 µm (light blue), and the number concentrations of particles larger than 20 µm 
(pink). The CPC and miniSPLAT measured number concentrations of particles transmitted by the PCVI are marked in yellow and 
green, respectively. 
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Figure 13: dva size distribution measured by miniSPLAT before Expansion 3 (green), of cloud residuals (blue), and of cloud residuals 
measured during the later part of the expansion when the number concentration of sampled droplets and ice crystals were nearly 
the same (light blue). The inset shows an expanded scale of the region of intact bacteria. 
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Figure 14: Average mass spectrum of cloud residuals measured during Expansion 3 (blue) super imposed on the mass spectrum of 
particles characterized later in the expansion when the number of sampled ice crystals and cloud droplets were comparable (light 
blue). 
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