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This manuscript disentangles aerosol effects on the southeast Atlantic stratocu-9

muls deck from meteorological effects through the use of a machine learning10

approach labeled Gradient Boosting Regression Trees (GBRTs). It is welcome11

to see a recognition of both impacts, and the use of an innovate approach to12

discriminate them. The use of lat src and lon src is nice. The results are sensi-13

ble. I do however feel the study suffers from over-interpretation. One concern is14

the focus on only the cloud fraction and the cloud effective radius (REF) as the15

cloud properties. While the REF is influenced by aerosol, it is also a function16

of the liquid water path. A more straightforward physical relationship is that17

between AOD (CCN) and the cloud droplet number concentration (Nd), which18

can be estimated as a function of REF and the cloud optical depth. Cloud19

deepening is likewise better interpreted through the use of LWP than of REF.20

Another concern is the lumping of July-August-September. It is by now well21

appreciated that the biomass-burning aerosol is more likely to be present within22

the boundary layer in July, moving up in altitude through September, when it23

is more likely to be above the cloudy boundary layer. Different cloud responses24

would be anticipated as a function of the month. A useful additional analysis25

is to examine the GBRT results as a function of month, and interpret them as26

a function of the varying cloud-aerosol vertical structure.27

The study was designed to focus on cloud fraction and cloud effective radius28

in order to test and interpret the GBRT models on one relevant micro- and29

one relevant macrophysical cloud property during the biomass-burning season.30

Using the cloud droplet number concentration is appreciated, however, as it31

is derived from COT and REF, and based on assumptions on cloud vertical32

profile, additional uncertainties would be introduced (Grosvenor et al., 2018).33

We chose to avoid this, because we try to capture the cloud system as com-34

pletely as possible with the statistical model. As such, we include information35
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on factors that also determine LWP. As variability among these LWP-predictors36

is simulated in the computation of the sensitivities, we thereby indirectly con-37

strain LWP effects on REF. To account for the referee’s suggestion LWP as an38

essential cloud property is analyzed and results support the interpretation of39

cloud thickening under stable conditions in all subregions (Fig. 1a), as well as40

during westerly disturbances, especially in the western subregions (Fig. 1b).41

In the manuscript the LWP-effects refer to outcomes of a comparable study by42

Fuchs et al. (2017) where LWP is discussed and ’self-constraining model’ is now43

detailed more clearly.

Figure 1: Mean partial dependence of LWP on LTS (left) and source latitude
of air mass (right) in the four subregions (colors).

44

The aggregation of the months July-August-September (JAS) was conducted45

for better comparability to previous studies (Painemal et al., 2014; Andersen46

and Cermak, 2015; Adebiyi and Zuidema, 2018) investigating the same season.47

While we agree with referee 2, changes of the aerosol and boundary layer occur48

on all scales, so that the assumptions outlined by referee 2 need to be made49

independent of scale. The intraseasonal variability contained in the training of50

the GBRT model contribute to the relationships during the investigated season51

and must be taken into account for the interpretation of results. For this52

reason, we have now computed monthly GBRT models and included the results53

concerning the aerosol-cloud relationships in the manuscript. The following54

figure and text are added to the manuscript. ”Figure 7 shows AOD-REF55
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Figure 2: Mean partial dependence of REF on AOD in the four subregions
(colors) in July (a) and September (b).

partial dependencies for the months of July and September separately. While56

during July, REF seems to decrease with increasing AOD, especially in the57

SW subregion, during September the opposite relationship is found. The con-58

trasting relationships may be related to differences in the vertical distribution59

of aerosols and clouds in the Southeast Atlantic. During July, aerosol and60

cloud layers are frequently entangled, facilitating ACI, whereas in September61

they can be well separated (Adebiyi et al. 2018). During this time, absorbing62

aerosol may increase the stability and trap humidity in the boundary layer,63

potentially leading to the observed relationship. The JAS partial dependence64

between AOD and REF can thus be viewed as a summary of these patterns.65

However, it is not the study’s focus to separate the different aerosol effects66

mentioned earlier, but to analyze the overall influence of aerosols on clouds67

during the biomass-burning season.”(p.14, l.10)68

69

Other comments follow:70

1. I am not completely comfortable with the use of the 8-day MODIS L371

product used as opposed to shorter time scale, as the 8-day time scale will72

average over the synoptic time scale and is far longer than the cloud adjustment73
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time scale of 1-2 days. The authors mention that an 8-day time scale ”allows74

for the large-scale and thermodynamic forcings of cloud properties to be75

combined”, but I remain unclear what this means exactly. In several places in76

the manuscript the authors refer to processes that occur at much smaller time77

scales, such as the cloud microphysical response to aerosol. Instead it seems78

to me the 8-day time scale is primarily capturing a portion of the monthly79

evolution in the aerosol-cloud vertical structure and seasonal meteorological80

cycle. Also, the 8-day time scale should be explicitly mentioned in the abstract.81

The study focuses on processes on aggregated time scales (8-day), assuming82

that cloud adjustments due to aerosols, though acting on smaller time scales,83

are detectable in the aggregated data set at the same time as changes of84

thermodynamic and dynamic conditions. While daily or hourly data might85

underestimate e.g. the effect of LTS on the cloud cover, the influence of aerosols86

on the cloud cover might be underestimated by the 8-day aggregation. In87

particular, since aerosol and cloud properties are not retrieved at the same time88

in a given location. Eight-day averages are taken to represent the mean states89

of both at that time scale. These aspects are important and now more explicitly90

addressed in the manuscript. ”The temporal resolution of 8 days allows to91

combine large-scale, thermodynamic and aerosol forcings of cloud properties92

simultaneously on a synoptical scale. However, it must be taken into account93

that clouds adjust on different time scales (hours to several days) to their94

environment (Klein, 1997; McCoy et al., 2017; Adebiyi and Zuidema, 2018) and95

thus processes relevant on shorter time scales might be underrepresented in the96

data set.”(p.3, l.8) The 8-day time scale is now introduced in the abstract (p.1,97

l.5).98

2. an issue with using the relative humidity at 950 hPa is that changes in99

RH are more likely to reflect co-variations with other factors such as the100
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cold-temperature advection (I suspect this explains the stronger relationship101

between RH 950hpa and REF in the SE sub-region) and cloud-top inversion102

strength. Have the authors examined the cross-correlations between their103

predictors?104

Thank you for pointing out this issue. Correlations between the predictors105

were examined in advance and influenced the choice of predictors to reduce the106

covariation. Cold-temperature advection and cloud-top inversion strength are107

not explicitly chosen as predictors, but are assumed to be represented in the108

data set by other parameters such as wind speed, sea surface temperature and109

LTS. The manuscript is modified on p.6, l.26: ”The predictor set was selected110

in a way to reduce covariation.”111

3. how is it that the machine learning approach is able to grasp non-linear112

relationships? The description of the technique presented on p. 4 still seems to113

present it as a basically linear technique.114

The GBRT algorithm is based on decision trees which are capable of represent-115

ing non-linear dependencies between predictor and predictand. The parameter116

space is iteratively split with the goal to minimize a loss function. The sum of117

the linear decisions of each tree in the ensemble can then represent non-linear118

relationships. The manuscript is modified on p.3, l.24.119

4. It is worth mentioning that the larger region encompassing the 4 subregions120

has been previously examined in Klein and Hartmann 1993.121

This reference is added on p. 3, l.13: ”In this study CF and REF are simulated122

based on a selected predictor set (AOD and meteorological parameters) in the123

SEA (10◦–20◦ S, 0◦–10◦ E, as analyzed in Klein and Hartmann (1993)) using124

Gradient Boosting Regression Trees (GBRTs).”125

126
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