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Abstract. This review article compiles the characteristics of the gas chlorine nitrate and discusses its role in atmospheric
chemistry. Chlorine nitrate is a reservoir of both stratospheric chlorine and nitrogen. It is formed by a termolecular reaction of
CIO and NOs. Sink processes include gas-phase chemistry, photo-dissociation, and heterogeneous chemistry on aerosols. The
latter sink is particularly important in the context of polar spring stratospheric chlorine activation. CIONO; has vibrational-
rotational bands in the infrared, notably at 779 cm~!, 809 cm™!, 1293 cm™!, and 1735 cm™*!, which are used for remote
sensing of CIONO., in the atmosphere. Mid-infrared emission and absorption spectroscopy have long been the only concepts
for atmospheric CIONO; measurements. More recently, fluorescence and mass spectroscopic in situ techniques have been
developed. Global CIONO- distributions have a maximum at polar winter latitudes at about 20-30 km altitude, where mixing
ratios can exceed 2 ppbv. The annual cycle is most pronounced in the polar stratosphere, where CIONO3 concentrations are an

indicator of chlorine activation and de-activation.

1 Introduction

The species NO3Cl was first discovered by Martin and Jacobson in 1955 and called ‘nitroxyl chloride’ (Martin and Jacobsen,
1955; Martin, 1958). In the literature of atmospheric sciences, this species is usually written CIONOs or CINO3 and called
‘chlorine nitrate’, although it can be challenged if this species is indeed rightly called a ‘nitrate’. It is also known as ‘chloro
nitrate’, ‘nitryl hypochlorite’ or ‘nitroxyl chloride’. It is a stratospheric species and acts as a reservoir of both reactive chlorine
and nitrogen. In polar spring it is involved in heterogenic reactions in the stratosphere that release active chlorine which destroys

ozone.

2 History

Rowland et al. (1976) proposed the existence of CIONO;, in the stratosphere. First observations of this species were reported
by Murcray et al. (1977) who used a balloon-borne mid-infrared solar occultation spectrometer. The spectral region near 780
cm ™! was used for analysis. These authors mentioned the possibility of CIONO, being a chlorine reservoir but then could only
infer upper limits from their measurements. Improved measurements by the same group (Murcray et al., 1979), now in the 1292
cm~! spectral region, allowed the first retrieval of a vertical CIONO, profile. In order to better constrain the knowledge on
stratospheric chemistry, further balloon-borne solar occultation measurements were carried out (Rinsland et al., 1985; Payan

et al., 1998; Toon et al., 1999). In addition, solar absorption measurements of CIONO, were performed from aircraft (Mankin
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and Coffey, 1989; Mankin et al., 1990; Toon et al., 1992). The discovery of the ozone hole in the Antarctic (Chubachi, 1984b;
Farman et al., 1985) had shifted the research interest towards polar latitudes but solar absorption measurements, requiring
sunlight, were not adequate to monitor related trace gases in the polar night. Emission spectroscopy was developed as an
alternative observational technique (Fischer et al., 1983; Brasunas et al., 1986), and the first measurements of nighttime profiles
of CIONO; were reported by von Clarmann et al. (1993), who used measurements recorded by a balloon-borne limb infrared
emission spectrometer. In the following, CIONO, infrared emission measurements were also made from aircraft (Blom et al.,
1995; Glatthor et al., 1998). Since then, numerous balloon-borne and aircraft missions provided CIONO5y measurements.

The then recognized importance of this gas triggered spectroscopic laboratory measurements with the goal to improve its
absorption cross-sections (Ballard et al., 1988; Birk and Wagner, 2000, e.g.).

CIONO, was first measured from space in solar occultation with the Atmospheric Trace Molecule Spectroscopy (ATMOS)
instrument, first from Spacelab 3 and later from further space shuttle missions (Zander et al., 1986; Rinsland et al., 1994).
Further space-borne solar occultation measurements were made with the Improved Limb Atmospheric Spectrometers (ILAS
and ILAS-II) on the Advanced Earth Observing Satellite (ADEOS and ADEOS-II) (Nakajima et al., 2006; Hayashida et al.,
2007; Griesfeller et al., 2008) and the Atmospheric Chemistry Experiment—Fourier Transform Spectrometer (ACE-FTS) on
Scisat (e.g., Wolff et al., 2008). The first global CIONO; measurements in limb emission were made with the Cryogenic
LIMB Array Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS) (Roche et al., 1993, 1994).
Another space-borne mission to measure CIONO5 limb emission was the Cryogenic Infrared Spectrometers and Telescopes
for the Atmosphere (CRISTA) instrument (Riese et al., 1997, 1999). The Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) provided the first long-term spaceborne measurements with global coverage of this reservoir gas. Being a
limb emission instrument, it provided data also for polar night regions (Hopfner et al., 2004). After an instrument failure in
2004 the MIPAS measurement allowed only measurements at reduced spectral resolution but CIONO could still be measured
(von Clarmann et al., 2009). Thermal dissociation/resonance fluorescence was the first in situ technique to measure CIONOq
(http://airbornescience.nasa.gov/instrument/CIONO2, retrieved on 23 January 2017). Meanwhile also mass-spectroscopy is
used for in situ detection of CIONO2 (Marcy et al., 2005; Jurkat et al., 2016).

Remote sensing of CIONO; from the ground relies entirely on high resolution Fourier transform spectrometry. First ground-
based measurements of this reservoir gas are reported by Zander and Demoulin (1988). The measurement site was Jungfraujoch
in the Swiss Alps, and its high elevation was advantageous for the measurements because the measured light does not pass
through the humid boundary layer, yielding a much clearer spectral signature of CIONOs. Today this gas is routinely measured
for monitoring purposes from stations cooperating in the framework of the Network for Detection of Atmospheric Composition
Change (NDACC) (e.g. Reisinger et al., 1995; Rinsland et al., 2003; Kohlhepp et al., 2011; De Maziére et al., 2018).

Summaries of stratospheric chlorine chemistry and its history are given by, e.g., Brasseur and Solomon (2005) or von

Clarmann (2013).
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Figure 1. The chemical structure of chlorine nitrate.

Involved atoms  Value

CI-O-N 113°

O-N-O 118.7°
108.8°
132.6 °

Table 1. Bond Angles of CIONOx, from Rankin and Robertson (1994)

3 The Geometrical Structure

While CIONO:s is a yellowish liquid at surface conditions below 295.5 K, in the stratosphere it is a trace gas with a significant
role in chlorine-related chemistry. Its molar mass is 97.46 g/mol. The structure of chlorine nitrate is shown in Fig. 1. Tables 1

and 2 show the bond angles and bond lengths.

4 Sources

In the atmosphere, chlorine nitrate is formed by a three body reaction of chlorine monoxide (ClO), nitrogen dioxide (NO3),
and a third body M which is required to deactivate the activated complex of Cl1O and NOy which otherwise would immediately
decompose to Cl1O and NO- (for details, see, e.g., Brasseur and Solomon 2005, Chapter 2.4.3., or Rowland et al. 1976).

(k1) ClO+NOs+M — CIONOy +M (R1)

While ClO is a radical which is directly involved in ozone destruction, the resulting CIONO; is harmless for the ozone layer
until the chlorine atoms are released again through heterogeneous reactions on polar stratospheric clouds in the polar winter
vortex (see, Section 5.3). Species which bind reactive chlorine are called ‘chlorine reservoir species’, as opposed to ‘source

gases’ or ‘active chlorine’. ‘Source gas’ is an overarching term for more or less stable species which are released at the Earth’s

Between nuclei of  Value

Cl-O 167.3 pm
(CI-0)-N 149.9pm
NO 119.6pm

Table 2. Bond lengths of CIONO3, from Rankin and Robertson (1994)
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surface and transported into the stratosphere. ‘Active chlorine’ designates the radicals which are directly involved in ozone
destruction.
The currently recommended value for rate coefficient k; as a function of temperature 7" is based on a low pressure limit of

T —3.4
k1o=18%10"3! 1
1,0 * (300> ) (1)

where laboratory measurements from Zahniser et al. (1977), Birks et al. (1977), Lee et al. (1982), Leu (1984), Wallington
and Cox (1986), Cox and Hayman (1988) and Molina et al. (1980) were accommodated. The corresponding high pressure
limit is based on calculations by Golden and Smith (2000), who used the Rice-Ramsberger-Kassel-Marcus (RKKM) theory of
chemical reactivity (Rice and Ramsperger, 1927; Kassel, 1928; Marcus, 1952):

T —1.9
inf = L.5x 1071 2
E1.int 5% 10 <300> 2

With these, the pressure and temperature-dependent rate coefficient can be estimated as a quasi bi-molecular rate coefficient as

(Burkholder et al., 2015)

ki ([M],t) = 3)
kl o(T)[M !
ko)) | (1 (eso (2571)) ")
E1,0(T)[M] ) ‘
1+ flﬂoﬁnf(T)
5 Sinks

The sinks of CIONO; are photolysis, gas phase reactions, and heterogeneous reactions.
5.1 Photolysis

CIONOs, is photolyzed by radiation of wavelengths between 196 and 432 nm. The temperature dependent absorption cross
sections currently recommended by Burkholder et al. (2015) have been measured by Burkholder et al. (1994). The absorption
cross section spectra for 200, 250, and 296 Kelvin are shown in Figure 2. The photodissociation can lead to different products.

The first photolysis channel is:
CIONO;3 +hvy — Cl1+NOj3 (R2)

For this reaction, Burkholder et al. (2015) recommend the following wavelength-dependent quantum yield ®;:

P, =0.6 (A < 308 nm)
®; =7.143*¥10731-1.60 (308 nm < A\ < 364 nm)
¢, =10 (A > 364 nm),
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Figure 2. : CIONO2 UV absorption cross sections at 200 K (dotted), 250 K (dashed), and 296 K (solid).

where ) is the wavelength in nm. The second channel is
CIONOg + hy — Cl10 4+ NO» (R3)

and its recommended quantum yield ®5 is 1 — ®;. In earlier work a third channel was postulated (Brasseur and Solomon,
2005), namely

CIONO3 + hvy — CIONO + O. (R4)

In the most recent JPL recommendation on kinetic data (Burkholder et al., 2015), however, it is stated that there is no evidence
of any relevance of this channel. The recommended quantum yields are based on work by Nelson et al. (1996), Moore et al.

(1995), Nickolaisen et al. (1996), and Ravishankara (1995).
5.2 Gas Phase Reactions

The most important gas phase loss reactions of CIONOs are (Brasseur and Solomon, 2005)

(k2) CIONO3 + O — products (R5)
(k4) CIONO3 + OH — HOCI + NO3 (R7)
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Reaction Rate A E/R  Reference

Coefficient
R5 ko 3.6 x107'2 840  (Goldfarb et al., 1998)
(Molina et al., 1977)
(Kurylo, 1977)
R6 k3 6.5x 1072  -135 (Yokelson et al., 1995)
(Margitan, 1983)
R7 k4 1.2x107'% 330  (Zahniseretal., 1977)

Table 3. Rate constants of bi-molecular gas-phase sinks of CIONOz. The Arrhenius factors A are given in units of cm®molecule s ™!,

The temperature dependence F/R (activation energy over universal gas constant) is given in units of Kelvin. The values are taken from
Burkholder et al. (2015)

Although no photons are explicitly involved in reactions R5—R7, these sinks have an implicit dependence on sunlight, be-
cause the reactants have a diurnal cycle themselves and are more abundant in the sunlit atmosphere. The related rate coefficients

k; are temperature dependent, as described by the Arrhenius (1889) formalism:

k(T)= Aexpr—j/ﬂR )

The pre-exponential Arrhenius factors and the so-called ‘activation temperatures’ F/R, where E is the activation energy and
R the gas constant, are listed in Table 3. Further gas phase sinks are listed in Burkholder et al. (2015) but are reported to be too

slow to have any significant effect on atmospheric chemistry:

(k5) H50 + CIONOy — products (R8)
and
(k6) HCl+ CIONOg2 — products (R9)

5.3 Heterogeneous Reactions

The medium for heterogeneous reactions of CIONO,, are predominantly polar stratospheric clouds (PSCs), which form only in
particularly cold polar winter vortices. Drdla and Miiller (2012) also highlight the relevance of cold binary aerosol particles.
These reactions reactivate the inorganic chlorine which is available in the form of chlorine reservoir species HCl and CIONOs.
Stgrmer (1929, 1932) was the first to observe stratospheric clouds. These observations were a side effect of observations of the
aurora borealis. The altitude of these clouds was estimated at 21-25 km altitude. First space-borne PSC measurements were

made with the Stratospheric Aerosol Measurement II (SAM-II) on the Nimbus-7 satellite (McCormick et al., 1982). The role
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of heterogeneous reactions on surfaces of cloud particles in the explanation of the Antarctic ozone hole was first discussed
by Solomon et al. (1986), suggesting the relevance of Reaction R10. It was found that cold temperatures in the history of the
air parcel were essential for chlorine activation, i.e. for the release of reactive chlorine from its reservoirs. The heterogeneous
reactions of CIONO; relevant for chlorine activation (See, Section 6.2) are (Molina et al., 1987; Tolbert et al., 1987, 1988;
Hanson and Ravishankara, 1991a, 1992b, 1993a)

CIONOy(gqsy + HCl(s01id,1iquid) — Cla(gas) + HNO3(s01id) (R10)
CIONOQ(QGS) + HBr(salid,liquid) — BI‘ClgaS + HN03 (R11)
ClONOQ(gas) + HQO(liquid,solid) — HOCl(gas) +HNO3 (R12)

The product HOCI is a short-lived chlorine reservoir in itself and releases Cl, via heterogeneous reaction with HCI. The
product Cls is photolyzed by sunlight in polar spring to give atomic CI which is involved in catalytic ozone destruction.

Such heterogeneous reactions are typically modeled as pseudo-first-order reactions, where the reaction rate depends only on
the concentration of the reactant and a rate coefficient (Brasseur and Solomon, 2005):

d[CIONO,]

= ~kCIONO, (5)

t is time and brackets indicate concentrations. The rate coefficient k of the respective heterogeneous reaction is

_eA
k= 1 (0)

~y is the surface reaction probability. Its values are tabulated in Table 4. A is the surface area density of the aerosol, and ¢ is the

mean thermal speed of a CIONOy molecule. It is calculated as

_ [8ksT e
™m

where kg is the Boltzmann constant, 7 is temperature, and m is the molecular mass of CIONOs.

Heterogeneous reactions of CIONOs on other surfaces have been investigated, e.g., by Hanson and Ravishankara (1991b);
Hanson and Lovejoy (1995); Ball et al. (1998) for sulfuric acid solutions, Finlayson-Pitts et al. (1989) for NaCl particles, Berko
et al. (1991) for NaBr particles, and Molina et al. (1997) for alumium oxide. The reader is referred to Burkholder et al. (2015)
for a compilation of related reaction probabilities. In addition, hydrolysis reactions of CIONOy on TiO5 and SiOs surfaces

have been investigated by Tang et al. (2016).



Table 4. Relevant surface reaction probabilities as recommended by Burkholder et al. (2015). Their document contains reaction probabilities

for further surfaces not mentioned here.

Reaction ~ Surface Temperature / K v Reference
R10 Water Ice (H20O(s)) 180-200 0.3 Hanson and Ravishankara (1991a)
Chu et al. (1993)
Leu (1988)
Nitric Acid Ice (HNO3-3H2O-HCI) 185-210 0.2 Abbatt and Molina (1992)
Carslaw and Peter (1997)
Sulfuric Acid (H2SO4-nH2O(1)-HCI(1))  195-235 see, Burkholder et al. ~ Shi et al. (2001)
(2015, p. 5-114)
R11 Water Ice (H20(s)-HBr(s)) 200 >0.3 Hanson and Ravishankara (1992b)
Allanic et al. (2000)
Nitric Acid Ice (HNO3-3H2O-HB1(s)) 200 >0.3 Hanson and Ravishankara (1992b)
Allanic et al. (2000)
R12 Water Ice (H2O(s)) 180-200 0.3 Hanson and Ravishankara (1991a, 1992a, 1993b)
Chu et al. (1993)
Liquid Water (H20(1)) 270-290 0.025 Deiber et al. (2004)
Nitric Acid Ice (HNO3-3H>0(s)) 200-202 0.004 Hanson and Ravishankara (1991a, 1992a, 1993b)
Barone et al. (1997)
Sulfuric Acid (H2SO4-nH2O(1)) 200-265 see, Burkholder et al. ~ Shi et al. (2001)

(2015, p. 5-111)

6 The Role of CIONO; in Atmospheric Chemistry
6.1 CIONOx as a stratospheric chlorine reservoir

Chlorine source gases — chiefly CH3Cl, CFC-12, CFC-11, CCly, HCFC-22, CH3CCl3 — are decomposed in the stratosphere
by photolysis, OH chemistry or O'D chemistry and finally release chlorine radicals Cl or ClO. These reactive chlorine species

5 in principle have the potential to destroy large amounts of ozone via the the catalytic reaction cycle (Stolarski and Cicerone,
1974; Molina and Rowland, 1974)

Cl+ 03 — CIO + 09 (R13)
ClO+ 0 — C1+ 0y (R14)
10 net: 03+ 0 — 20, (R15)



10

15

20

In the lower stratosphere, however, the equilibrium of O and Og is shifted massively towards the latter, making the above
ClO,-cycle inefficient due to the lack of atomic oxygen (Salawitch et al., 1993; Molina, 1996). Here, the following, so-called
‘dimer cycle’ gains relevance (Molina and Molina, 1987; Cox and Hayman, 1988; Barrett et al., 1988; Anderson et al., 1989):

2 x (C14 03 — C10 + 0,) (R16)
ClO + ClO + M — Cl,05 + M (R17)
Cl,04 + hv — C100 + C1 (R18)
ClOO +M — Cl+ 05 + M (R19)
net : 205 + hv —» 30, (R20)

Similarly, the coupled catalytic cycle involving also bromine radicals Br and BrO is also independent of atomic oxygen McEI-

roy et al. (1986b); Barrett et al. (1988).

Cl+ 03 — ClO+ Oq (R21)
Br+ 03 — BrO+ O, (R22)
ClO + BrO — Br + ClOO (R23)
CIOO+M — Cl4+ 02+ M (R24)
net : 203 — 304 (R25)

Under normal conditions, these catalytic cycles are much less disastrous than one might think. The reason is that there is
typically not all of the reactive chlorine released from the chlorine source gases is available for ozone destruction. Instead,

reaction of the chlorine radicals with other atmospheric species binds them, forming so-called reservoir gases, which are
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relatively inert (Rowland et al., 1976; Zahniser et al., 1977; Birks et al., 1977). HCI and CIONO- are the most important
chlorine reservoir gases in the atmosphere. The latter is formed by reaction R1. The importance of these reservoirs consists not
only in the temporary deactivation of reactive chlorine but also allow chlorine to be transported over long distances without
reaction. Release of reactive chlorine from its reservoirs is essential to understand stratospheric chemistry. In the case of
chlorine nitrate, the heterogeneous reactions R10 — R12 are particularly important release reactions. After finding evidence of
CIONO:s in the stratosphere, Murcray et al. (1977) were the first to suggest that CIONO; can act as a chlorine reservoir.

There exists, however, a catalytic ozone destruction cycle which involves CIONO4 (Brasseur and Solomon, 2005). Its im-

portance lies in the fact that there exists a CIONO photolysis pathway which generates atomic chlorine.

Cl1O +NOy +M —s CIONOs + M (R26)
CIONO, + hvy —3 Cl1+NOs3 (R27)
Cl+ 05 —> CIO+ O, (R28)
NO3 + hvy — NO + 02 (R29)
NO + 03 —» NO3 + O, (R30)
203 + huy + hvy — 30, (R31)

Further catalytic cycles exist, involving HO,, and NO,, chemistry (Hampson, 1964; Crutzen, 1970)
6.2 CIONO; and Polar Stratospheric Ozone Chemistry

The detection of the Antarctic ozone hole by Chubachi (1984a) and Farman et al. (1985) puzzled the scientific community. This
massive destruction of ozone in the lower polar spring stratosphere begged for explanation, because it could be quantitatively
reproduced neither with the chlorine cycles (R13-R15) nor similar cycles involving NO and NOs or OH and HO,. Models
predicted largest ozone destruction in the middle and upper stratosphere at mid-latitudes where most reactive chlorine was
expected due to the decomposition of chlorine source gases.

Ozone loss, however, was expected much weaker than the observed Antarctic ozone loss and not to be a seasonal but a

steady phenomenon. Soon, the relevance of heterogeneous reactions to the release of reactive chlorine from its reservoirs was

10
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recognized (Solomon et al., 1986). Measurements of reduced amounts of CIONO, and HCI (Farmer et al., 1987; Coffey et al.,
1989; Toon et al., 1989) along with increased amounts of ClO (de Zafra et al., 1987; Solomon et al., 1987; Brune et al.,
1989) supported this hypothesis. Re-appearance of sunlight after the polar night entailed photolysis of Cls resulting from the
heterogeneous decomposition of CIONO- (and similarly of HOCI resulting from the heterogeneous decomposition of HCI).
Largest lower stratospheric C1O concentrations were indeed measured in sunlit air masses which had passed polar stratospheric
clouds allowing heterogeneous processing (Yudin et al., 1997). Since sunlight is essential for large ozone loss, the severity of
an ozone hole depends largely on how long heterogeneous chlorine activation still competes with the reformation of reservoirs
in spring when enough sunlight is available for keeping the catalytic cycles going. With the catalytic dimer cycle (R16-R20)
a mechanism was available, which did not depend on atomic oxygen, which is only available in sizeable amounts at higher
altitudes than those of the ozone hole. With this, the puzzle of the seasonality and the altitude range of polar stratospheric
ozone destruction was solved, and measured CIO concentrations and ozone loss could be modeled reasonably well under
consideration of heterogeneous chlorine activation (Jones et al., 1989). Anderson et al. (1991) estimated the contribution of
the ClO dimer cycle to Antarctic ozone destruction at about 75%. For a more thorough summary of the history of ozone hole
research and hypotheses suggested to explain this massive ozone depletion, see Solomon (1990), Brasseur and Solomon (2005),
Solomon (1999), or von Clarmann (2013). An updated view on polar ozone chemistry, including also reactions involving sulfate
aerosols, is presented by Solomon et al. (2015).

The reformation of CIONO- via R1 would make the catalytic ozone destruction cycle (R16-R20) less efficient. However,
particles of polar stratospheric clouds can remove gaseous HNOs3 from the air, which leads to reduced amounts of reactive
nitrogen, viz. NO and NO; (McElroy et al., 1986a). Nitrogen compounds are irreversibly removed from altitudes where the
cloud particles are formed through sedimentation of HNOs-laden particles grown by condensation (Toon et al., 1986; Salawitch
et al., 1988). This denitrification slows down reformation of CIONO5 and thus has the potential to accelerate catalytic ozone
destruction. While denitrification was indeed observed in polar winter vortices, (Fahey et al., 1990; Toon et al., 1990; Deshler
et al., 1991), it is not necessarily correlated with the depth of the ozone hole (Santee et al., 1998; Brasseur and Solomon,
2005). Denitrification in early winter goes along with dehydration of the stratosphere, which prevents sustained springtime
heterogeneous chlorine reactivation (Portmann et al., 1996; Chipperfield and Pyle, 1998). This tends to counter-balance the
effect of denitrification on chlorine activation and ozone destruction.

In summary and roughly speaking, interaction of the following processes bring about the ozone hole: In the cold polar winter
vortex, where subsidence has brought air from higher altitudes rich in chlorine reservoirs down into the lower stratosphere,
polar stratospheric clouds form, on the surfaces of which the chlorine reservoirs are broken up by heterogeneous reaction.
Polar spring sunlight photolyzes the intermediate products and produces reactive chlorine which, chiefly via the ClO dimer
cycle, destroys ozone. Denitrification contributes by removing reactive nitrogen and thus impedes efficient reformation of
CIONOs. More recent studies mention the importance of cold binary sulphate aerosol particles as surface for heterogeneous
chlorine activation besides polar stratospheric clouds (Drdla and Miiller, 2012).

Antarctic and Arctic polar winter ozone depletion follows roughly the same mechanisms. The most pronounced differences

are that the Arctic vortex is typically not as cold as its Antarctic counterpart, entailing less frequent occurrence of polar strato-

11
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spheric clouds. Stratospheric final warmings occur typically earlier in the season than in the Antarctic, terminating chlorine
activation on polar stratospheric clouds. Stratospheric major and minor warmings which interrupt chlorine activation tem-
porarily are common in the Arctic but occur very rarely in Antarctic winters. Due to stronger wave activity on the Northern
hemisphere there are more frequent excursions of the polar vortex to sunlit lower latitudes.

Evidence of Arctic chlorine activation was furnished either by observations of C1O (Manney et al., 1994) or by measurement
of largely reduced amounts of the reservoirs HCl and CIONOs by ground-based mid-infrared spectrometry (Adrian et al.,
1994; Blumenstock et al., 1997; Notholt et al., 1994, 1995, just to name a few). The differences in typical meteorological
conditions discussed above lead to differences in chlorine deactivation in Antarctic versus Arctic spring. The lack of NO, after
denitrification rules out formation of sizeable amounts of CIONOs in the Antarctic, and HCl is the chiefly formed reservoir
there. Conversely, ozone is usually too high in the Arctic to allow efficient HCl formation, and denitrification is much less of
an issue in the Arctic. In the sunlit atmosphere, HNOj3 is photolyzed and sufficient abundances of NOs thus allow re-formation
of CIONO,, which in some winters largely exceeds HCI formation (Miiller et al., 1994; Adrian et al., 1994; Douglass et al.,
1995; Rinsland et al., 1995; Santee et al., 1996; Payan et al., 1998; Santee et al., 2008). Huge amounts of CIONOs, in Arctic
spring were measured by, e.g., von Clarmann et al. (1993); Roche et al. (1994); Blom et al. (1995); von Clarmann et al. (1997).
A sensitivity study showing how PSC formation and denitrification affects CIONO5 and ozone chemistry is shown in Rex et al.
(1997) in order to explain large Arctic ozone loss in the particular cold winter of 1995/96.

Since CIONO, formation depends on photolysis of HNOs, largest CIONO; concentrations are found close to the edge of
the Arctic vortex while chlorine in the dark part of the vortex remains activated longer (e.g., Toon et al., 1992). In Figure 3 the
seasonal formation of CIONOs, at polar latitudes as seen by MIPAS can be clearly seen. Figure 4 shows MIPAS measurements
of CIONO,, over the Arctic at 18 km altitude in March 2011. The ‘collar’ of enhanced values, a phenomenon first described
by Toon et al. (1989) and first attributed to mixing of vortex air rich in ClO with air from lower latitudes with larger NO4
concentrations, is clearly visible. More recent explanations of enhanced CIONO- abundances in this region involve in situ
deactivation of CIO with NOs released from HNOj3 in the sunlit part of the vortex, either via phololysis or OH chemistry
(Chipperfield et al., 1997).

Volcanic eruptions such as that of Mount Pinatubo can cause large stratospheric aerosol loading (e.g. Browell et al., 1993).
The role of this volcanic sulfate aerosol as a medium for heterogeneous reactions releasing reactive chlorine has been discussed
by (e.g. Prather, 1992; Brasseur, 1992; Toon et al., 1993b; Wilson et al., 1993; Dessler et al., 1993). Borrmann et al. (1997),
however, found that chlorine activation by heterogeneous reactions on volcanic cloud droplets is much less efficient than
chlorine activation by polar stratospheric clouds. According to Cox et al. (1994), CIONOs, hydrolysis on sulfate aerosol could
have sizeable effects if temperatures are below 190 K and a lot of aerosol particles are available. The role of sulfate aerosols

for chlorine activation in polar vortices seems limited due to the predominant chlorine activation on polar stratospheric clouds.
6.3 CIONO- and Extra-Polar Stratospheric Chlorine Chemistry

Polar stratospheric clouds are the most efficient but not the only medium to provide liquid or solid surfaces on which het-

erogeneous reactions can take place. In middle and low latitudes where temperatures are too high for the formation of polar

12
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Figure 3. The temporal development of CIONO. at 20 km, based on MIPAS monthly mean mixing ratios. White stripes represent data gaps

due to missing measurements. Figure from von Clarmann et al. (2009), used under CC Attribution 3.0 license.
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Figure 4. Chlorine nitrate measurements by MIPAS over the Arctic at 18 km altitude on 12 March 2011. The ‘collar’ of large mixing

ratios surrounds the core area of the polar vortex where CIONO3 values are lower. Figure from von Clarmann et al. (2009), used under CC

Attribution 3.0 license.
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stratospheric clouds, sulfate aerosol is the most likely candidate (Pitari et al., 1991). The aerosol cloud of the Mount Pinatubo
eruption served as an ideal test case to investigate the role which sulfate aerosols play in mid-latitudinal stratospheric ozone
depletion (McCormick et al., 1995). Both in the tropical stratosphere (Grant et al., 1992) and globally (Randel et al., 1995) less
ozone was found in the aerosol-loaded atmosphere after the eruption. Weaver et al. (1993) could not corroborate this hypothesis
because no correlations between ozone depletion and aerosol surface area density was found. Hofmann et al. (1994), however,
found that low ozone concentrations were measured in air which came from high latitudes. There cold air along with the expo-
nential decrease of the reaction probability of R12 with temperature (Robinson et al., 1997) provided more favorable conditions
for the hydrolysis of CIONO,. Wilson et al. (1993) and Avallone et al. (1993) indeed report enhanced ClO concentrations in
air masses with higher aerosol loading. Chlorine activation was found to strongly depend on aerosol-loaded air being exposed
to temperatures below 195 K (Kawa et al., 1997). Solomon et al. (2016) found chlorine activation on liquid sulfate aerosols
near the northern monsoon regions in their model calculations.

Along with increased chlorine activation, reactive nitrogen is removed in the aerosol cloud (Fahey et al., 1993). It is for this
reason that in the aerosol-loaded air after the Pinatubo eruption the chlorine catalytic cycle outweighed the nitrogen cycle and
was second in efficiency only to the HO,, catalytic cycle (Kinnison et al., 1994). As described above for polar ozone chemistry,
removal of NO» via sequestering of HNOg3 on aerosol leads to reduced reformation of CIONOy(Tie and Brasseur, 1996), and

buildup of HCI gains importance as reservoir reformation process (Webster et al., 1998).
6.4 CIONO; and Solar Proton Events

Solar activity does affect atmospheric chemistry in multiple ways. In particular, the role of solar proton events has been studied.
Most investigations focus on these events as a source of NO, (e.g. Jackman et al., 1990) but Solomon and Crutzen (1981)
highlight the importance of ClO, chemistry in this context. The question is if solar proton events accelerate or decelerate
ozone destruction by active chlorine. According to theoretical studies by Jackman et al. (2000) the increased abundance of
NO, would accelerate CIONO, formation and thus reduce the amount of reactive chlorine and decelerate ozone destruction
by ClO,. This hypothesis seemed to be refuted by von Clarmann et al. (2005) who found in MIPAS data measured after the
Halloween 2003 solar proton event increased amounts of ClO in the sunlit part of the polar vortex. Only in the dark part of
the polar vortex pole-ward of 70°N CIO was observed to decrease (Funke et al., 2011). Damiani et al. (2012), however, found
a negative response of ClO to the January 2005 solar proton event. This result is consistent with that of von Clarmann et al.
(2005) insofar as protons in a sunlit atmosphere lead to chlorine activation, while protons in a dark atmosphere lead to chlorine
de-activation via CIONO; formation. Ionization rates of the solar proton event in 2012 were too small to cause significant C10

changes.
6.5 CIONOx in the Polar Troposphere and the Marine Boundary Layer

CIONOs, is predicted to be important in the springtime Arctic boundary layer ozone chemistry (Wang and Pratt, 2017). Via

multiphase reaction it contributes to the generation of Cls. Associated snowpack chemistry, however, is reported to be still
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Figure 5. Example of an absorption cross section of CIONO2 (a) v4, v3 and (b) v» bands, measured by Wagner and Birk (2003) in a cuvette

at a temperature of 297.4 K and pressure of 100 hPa.

poorly understood. In a model study by Sander et al. (1999), heterogeneous reactions of CIONO- had only a negligible effect

in the marine boundary layer.

7 Spectroscopy

As discussed in Sec. 5.1, CIONO2 makes a contribution to the absorption cross section spectrum in the UV, where photolyzing
radiation is absorbed. The UV absorption cross section is for radiation of wavelengths between 196 and 432 nm is shown in
Fig. 2.

The infrared spectrum of CIONO is only marginally resolved (Butler et al., 2007), thus measured absorption cross section
spectra are used instead of line parameters as a reference in atmospheric radiative transfer calculations. In the infrared spectral
region, Birk and Wagner (2000); Wagner and Birk (2003) measured the absorption cross section for CIONOy in a laboratory
study. They synthesized CIONO; from nitrogen pentoxide (N2Os) and dichlorine monoxide (ClO) under vacuum conditions
into a gas cuvette and measured the absorption cross sections with a high-resolution Fourier transform spectrometer. The tem-

perature range was 190-296 K and the pressure range 0—150 hPa. An example of these cross sections is shown in Fig. 5 for
+4.5

(@) v4 (780 cm™1), 13 (810 cm™1) and (b) v, (1290 cm™!). Worst-case relative errors are reported as =5 %. These absorption
cross sections are recommended for use in atmospheric research by the most recent version of the HITRAN (high resolution
transmission) spectral database (Gordon et al., 2017) and have been the recommendation since the 2004 version of HITRAN

(Rothman et al., 2005).”

A typical spectral signal of enhanced CIONO; in the atmosphere is shown in Fig. 6. This measurement of MIPAS/Envisat

(black line) during the Arctic springtime 2003 at a tangent altitude of 17.3 km corresponds to a retrieved volume mixing ratio
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Figure 6. Example of an atmospheric limb emission infrared spectrum measured by MIPAS/Envisat (orbit 05371) on 11 March 2003 07:36:25
UTC at a tangent altitude of 17.3 km (black solid line). The contributions of single gases are calculated with the radiative transfer model
KOPRA (Karlsruhe Optimized and Precis Radiative Transfer Algorithm, Stiller 2000) and shown as colored lines (CIONO is shown as red

solid line).

of 2.3 ppbv of CIONOs. In this spectral region of the CIONO, v, and v3 band (see Fig. 6, red solid line), also other atmospheric
trace (mainly O3 and COs) gases have absorption features (see Fig. 6, colored lines).

Butler et al. (2007) try to understand the rotational structure of CIONO, from measurements in the mm and sub-mm spectral
regions where the transitions are better resolved and to apply this knowledge to the infrared bands. These activities are meant
as one step towards line-by-line modeling of the infrared spectrum of CIONO,. The paper also summarizes existing high-
resolution studies of the CIONO; spectroscopy in the microwave and infrared regions, but these are of no direct relevance to

atmospheric spectrometry yet.

8 Measurement Techniques

8.1 Remote Sensing

The only remote sensing technique by which CIONOs, is measured is mid infrared spectrometry. CIONO» has suitable spectral
bands at 779 cm™ !, 809 cm™!, 1293 cm~! and 1735 cm™!. The bands at lower wavenumbers are used both in emission
and absorption geometry, while the bands at higher wavenumbers are used in absorption spectrometry only. By far the most
common remote sensing technique for CIONO; is Fourier transform spectrometry (FTS). Some earlier measurements have

been made with grating spectrometers.
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8.1.1 Absorption Spectrometry

Earth observation by absorption spectroscopy uses a natural background light source. The most common source of radiation
is the sun. Occasionally the moon is used (e.g., Notholt, 1994). Absorption of starlight has not yet been applied to CIONO,.
The information is contained in the absorption of background radiance by atmospheric constituents. While the signal to noise
ratio is superior to that of emission measurements and the temperature dependence of the signal is less of a problem, the major
drawback of absorption spectrometry is that the feasibility of measurements depends on the astronomical conditions, since the
line of sight of the measurement must hit the background source. Thus, solar absorption measurements are possible neither

during night nor during polar winter.
Ground-based solar absorption spectrometry:

Earliest ground-based solar absorption measurements of CIONOs were made with high resolution Michelson Fourier trans-
form spectrometers at the International Scientific Station of the Jungfraujoch, Switzerland in June 1986 (Zander and Demoulin,
1988). Measurements at this high altitude offer the advantage that the ray-path usually does not cross the moist boundary layer,
that the tropospheric column of interfering species is smaller and that pressure broadening of interfering spectral lines is less
relevant. Since the rotational structure and, a fortiori, pressure broadening, are not resolved in the case of CIONO,, ground
based measurements provide no vertical profile information but only vertical column densities. The detection of the Antarc-
tic ozone hole provided motivation to monitor relevant species, including CIONOs, also from ground. Farmer et al. (1987)
measured Austral spring column amounts above McMurdo station with the MKIV interferometer!. Similarly, motivated by the
desire to understand Arctic ozone chemistry and chlorine activation/deactivation and to identify its similarities with and dif-
ferences to the Antarctic, ground-based measurements were performed at polar research stations in Ny-Alesund, Spitsbergen
(Notholt et al., 1994, 1995), Esrange, Kiruna, Sweden (Adrian et al., 1994; Blumenstock et al., 1997, 1998; Wegner et al.,
1998; Blumenstock et al., 2006), Are, Sweden (Bell et al., 1994), Harestua, Norway (Galle et al., 1999), St. Petersburg, Russia
(Virolainen et al., 2015), and Eureka, Canada (Batchelor et al., 2010). Multiple-site observations ( Ny-Alesund, Kiruna, Hare-
suta) were reported by, e.g., Mellgvist et al. (2002). Given the strong excursions of the polar vortex, even measurements from
Aberdeen, Scotland (Bell et al., 1998a, b) contributed to polar ozone research. The scientific goal of these CIONO» measure-
ments was to study chlorine activation and deactivation during polar winter. Early non-polar column measurements of CIONO2
were made with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument from the Table Mountain Observatory,
California (Gunson and Irion, 1991).

Later the research interest moved towards identification of multi-year regularities and time series (Rinsland et al., 1996b;
Blumenstock et al., 2000; Reisinger et al., 1995; Notholt et al., 1997; Rinsland et al., 2003, 2010; Kohlhepp et al., 2011, 2012,
just to name a few). Meanwhile world-wide monitoring of stratospheric CIONO,, is performed by the Network for Detection

of Atmospheric Composition Change (NDACC De Maziére et al. 2018), using high-resolution Fourier transform infrared

! Although Farmer et al. (1987) was published before (Zander and Demoulin, 1988), the measurements reported in the latter paper preceded those of the

former paper.
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solar absorption spectroscopy. NDACC infrared stations are situated at Ny-Alesund, Spitsbergen, Zugspitze, Germany, Kiruna,
Sweden, Izafia, Tenerife, Thule, Greenland, Lauder, New Zealand, Arrival Heights, Antarctica, Jungfraujoch, Switzerland,
Rikubetsu, Japan and Eureka, Canada?. Further associated stations which made CIONO, measurements available are on Kitt
Peak (Arizona) and Wollongong (Australia). Details on instrumentation and retrieval as well as references to the original papers

are summarized in, e.g., Kohlhepp et al. (2012).
Ground-based lunar absorption spectrometry:

Since solar absorption spectrometry is not possible during polar night, the moon was identified as an alternative source of
background radiation. Lunar absorption spectrometry enabled CIONO, measurements during the entire winter and was applied

in Ny—Alesund, Spitsbergen (Notholt et al., 1993; Notholt, 1994; Notholt et al., 1995).
Air-borne solar absorption spectrometry:

First airborne solar absorption measurements of CIONO, by high-resolution Fourier transform spectrometry were performed
within the framework of the Airborne Antarctic Ozone Experiment (AAOE) (Coffey et al., 1989; Mankin and Coffey, 1989).
The Atmospheric Effects of Stratospheric Aircraft (ASHOE/MAESA) ER-2 aircraft mission coincided in time with the ATLAS-
3 space mission (Michelsen et al., 1999) (see Section 8.1.1).

Airborne CIONOy, solar absorption measurements in the northern polar region in the context of the Airborne Arctic Strato-
spheric Expedition (AASE) in 1989 were reported by Mankin et al. (1990); Toon et al. (1992). CIONO, measurements from
the folow-up campaign in 1992 (AASE-2) were published by Toon et al. (1993a).

While, as with ground-based measurements, no profile information but only vertical column densities can be measured,
airborne measurements of stratospheric gases are less interfered by tropospheric constituents. Further, airborne measurements
cover a wide range of geolocations. This characteristic was taken advantage of by Toon et al. (1994) who analyzed the latitude

distribution of column amounts of trace gases including CIONO..
Balloon-borne solar occultation spectrometry:

In contrast to measurement geometries discussed so far, balloon-borne solar occultation provides profile information of CIONOs.
The rising or setting sun is observed under varying negative elevation angles. The resulting limb sequence of spectra is inverted
to give an altitude profile of the target species.

Murcray et al. (1977) analyzed the spectral region near 780 cm ™! in spectra measured in 1975 from a balloon-borne platform
for a possible signature of CIONO; but could only infer upper limits. Spectra measured during subsequent flights were analyzed
for a possible signal near 1292 cm~! without success (Murcray et al., 1978). Analysis of solar occultation spectra measured
in 1978 allowed to infer a concentration profile of CIONO, using its signature near 1292 cm~* (Murcray et al., 1979). Further

balloon-borne solar occultation measurements were reported by Rinsland et al. (1985), where again the band near 780 cm™—!

2 Also stations in Toronto, Mauna Loa, Bremen and Harestua are equipped to measure CIONOo but by the time of this writing no related CIONO2 data

were found on the NDACC server.
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was analyzed. Solar occultation measurements of CIONO; in the Arctic were made from stratospheric balloons launched
from Kiruna, Sweden (Payan et al., 1998) and from Fairbanks Alaska (Sen et al., 1999; Toon et al., 1999, 2002). With the
advent of satellite missions, the focus of balloon-borne measurements shifted somewhat towards validation of space-borne

measurements.
Space-borne solar occultation spectrometry:

First space-borne measurements of CIONO- were made with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instru-
ment from Spacelab 3 in solar occultation (Zander et al., 1986, 1990). Due to the Challenger Space Shuttle accident in January
1986 the ATMOS instrument was not flown until the ATLAS-1 Space Shuttle mission in March 1992, and again CIONO,
was measured (Rinsland et al., 1994). Two further missions followed and provided CIONOy data: ATLAS-2 in April 1993
(Rinsland et al., 1995) and ATLAS-3 in November 1994 (Rinsland et al., 1996a). A revised analysis of these data, using an
improved retrieval algorithm, has been published by Irion et al. (2002).

In August 1996 the Japanese ADEOS satellite was launched into a polar suns-synchronous orbit. Part of the payload was the
Improved Limb Atmospheric Spectrometer (ILAS), which, similar as ATMOS, employed the solar occultation measurement
geometry. The mission stopped in June 1997. Measurements of CIONOs in winter/spring 1996/97 were published by Nakajima
et al. (2006) and Hayashida et al. (2007). The follow-up instrument ILAS-II on the ADEOS-II satellite was operational from
April to October 2003 and also provided CIONO- data (Griesfeller et al., 2008).

The Atmospheric Chemistry Experiment — Fourier Transform Spectrometer (ACE-FTYS) is a solar occultation instrument on
the Canadian SciSat Earth observation satellite, launched in August 2003. CIONO, measurements were published by Wolff
et al. (2008), Mahieu et al. (2005), Nassar et al. (2006), Dufour et al. (2006), Santee et al. (2008),Jones et al. (2011), Waymark
et al. (2013) and Sheese et al. (2016). ACE-FTS is still operational at the time of this writing.

8.1.2 Emission Spectrometry
Balloon-borne limb emission spectrometry:

First quantification of CIONO- in atmospheric limb emission spectra was reported by Brasunas et al. (1988), who used a
balloon-borne cryogenic Fourier transform spectrometer SIRIS. Arctic winter and spring profiles were retrieved from spectra
measured with the balloon-borne version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) by
von Clarmann et al. (1993) with an instrument type suggested by Fischer et al. (1983). A preliminary CIONO,, retrieval from
the same measurements is found in Oelhaf et al. (1994). Miiller et al. (1994) reproduced these measurements with a box model.
After the loss of the MIPAS-B instrument in March 1992 a new cryogenic limb emission spectrometer was built (MIPAS-B2)
and employed in a series of measurement campaigns (Friedl-Vallon et al., 2004). CIONO- results from these campaign were
reported by von Clarmann et al. (1997) and Wetzel et al. (2006, 2008, 2010, 2013). Many of these flights were dedicated to the

validation of satellite missions.
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Air-borne emission spectrometry:

Two versions of air-borne MIPAS-type instruments were built, one to be operated in an upward looking mode from a Transall
aircraft (MIPAS-FT) and another for limb emission sounding from the high-flying aircraft M55-Geophysica (MIPAS-STR).
CIONOs results were reported by Blom et al. (1995); Glatthor et al. (1998); Pfeilsticker et al. (1997) for MIPAS-FT and by
Woiwode et al. (2012) for MIPAS-STR. Also the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere, New
Frontiers (CRISTA-NF) instrument, which is a grating spectrometer patterned after its space-borne namesake, was used for
air-borne limb emission measurements of CIONO, (Ungermann et al., 2012). Measurements with largely improved spatial
resolution became possible by limb emission imaging with the Gimballed Limb Observer for Radiance Imaging of the Atmo-
sphere (GLORIA)(Riese et al., 2005; Friedl-Vallon et al., 2006, 2014). For CIONO», the spectra were analyzed by Johansson
etal. (2018).

Space-borne emission spectrometry:

First space-borne limb emission measurements of CIONO5 were made with the Cryogenic Limb Array Etalon Spectrometer
(CLAES) on the Upper Atmosphere Research Satellite (UARS, Roche et al. 1993, 1994). Riese et al. (1997, 1999) and Spang
et al. (2001) reported CIONO, measurements with the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere
(CRISTA) instrument, which was operated from the Shuttle Pallet Satellite (SPAS) during Space Shuttle missions in 1994
and 1997. The most extended global CIONO- data set, which also covers polar night distributions, was inferred from MIPAS-
Envisat measurements (Hopfner et al., 2004, 2007). After an instrument failure in 2004 MIPAS resumed operation at reduced
spectral resolution which still allowed to retrieve CIONOg (von Clarmann et al., 2009). MIPAS data cover the time period from
August 2002 to April 2012, with a major data gap in 2004 and periods of particularly sparse measurements in 2005 and 2006.
An improved data version based on revised calibration was presented by von Clarmann et al. (2013). While initially not part of
the original MIPAS ESA data product, CIONO3 was included later (Raspollini et al., 2013). Further MIPAS CIONOx, retrievals
were provided, e.g., by Arnone et al. (2012)

8.2 In Situ Measurements
8.2.1 Fluorescence Measurements

First airborne in-situ measurements of CIONO, have been made with a thermal dissociation/ resonance fluorescence mea-
surement technique on the NASA ER-2 aircraft during the POLARIS (Polar Ozone Loss in the Arctic Region In Summer)
mission from April to September 1997 (Stimpfle et al., 1999; Bonne et al., 2000). This measurement technique uses the fact
that CIONO,, dissociates into C1O and NO- by heating the gas. The products of this dissociation are then detected separately.
The CIO molecule reacts with added NO to atomic Cl, which then are detected by resonance fluorescence in the ultraviolet.
CIO that is present in the atmosphere is measured separately in order to subtract the influence of ambient ClO to the measure-

ment of Cl1O dissociated from CIONO,. The NO2 molecule from dissociation of CIONOs could be measured by laser induced
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resonance fluorescence but in practice this measurement was not possible due to the added NO for dissociation of ClO. The
thermal dissociation/ resonance fluorescence technique provides measurements of CIONO, with an accuracy of +20%, a de-
tection limit of 10 pptv and a temporal resolution of 35 s. A similar technique has been applied by Von Hobe et al. (2003) and
Stroh et al. (2011) with the HALOX instrument.

8.2.2 Mass Spectroscopy

A more recent technology for in-situ detection of CIONOs is chemical ionization mass spectrometry (CIMS). This is a measure-
ment technique that has been utilized by airborne instruments for in-situ measurements of CIONO,. Mass spectrometry sorts
chemical ions according to their mass to charge ratio utilizing magnetic fields for separating these ions. For ionizing CIONO,,
areaction with SF;~ gives F~ CIONO, which is then detected. For accurate measurements calibrations with reference gases are
necessary.

The first CIMS instrument has been used on the NASA WB-57F aircraft during the CRYSTAL-FACE mission from Key
West, FL in 2002 (Marcy et al., 2005). CIMS CIONO- measurements were calibrated using laboratory measurements after the
campaign with reference gases. A correlation of CIONO, with simultaneously measured HNO3 was applied to use in-flight
calibrations of HNOg also for CIONO4y measurements. Uncertainties of the ground-based calibration lead to a relative error of
+50% of measured CIONO,.

The AIMS (Alrborne Mass Spectrometer) instrument has been deployed on the German High Altitude and Long Range
Research Aircraft (HALO) the TACTS/ESM Val campaign in 2012 (Jurkat et al., 2016, 2017). Again, calibration measurements
are performed on ground using reference gases and a correlation of CIONOs with HCl is applied to use in-flight calibrations
for HCI. AIMS measures CIONO; at a temporal resolution of 1.7 s with a detection limit of 20 pptv, £15% precision and
+20% accuracy.

9 The climatology of CIONO-
9.1 Zonal Mean Distributions and Annual Cycle

Largest mixing ratios of CIONOj, are found at altitudes of around 30 to 10 hPa (roughly 20-30 km) (Fig. 7). Minimal concen-
trations are found in the tropics. In late local winter maximal mixing ratios are found in polar regions, associated with chlorine
deactivation (Fig. 7 panels a and c and Fig. 3). Under these conditions, mixing ratios can exceed 2 ppbv. As first found by Toon
et al. (1989), largest concentrations are not found directly above the pole but in a collar at the edge of the polar vortex. An
example of such a CIONO;, collar as measured by MIPAS is shown in Fig. 4. In spring, summer and autumn the largest mixing
ratios are found in mid-latitudes.

Climatologies of CIONO5 generated from measurements by multiple space-borne limb sounders have been compiled by

Hegglin and Tegtmeier (2017) and are accessible via http://www.sparc-climate.org/data-centre/data-access/sparc-data-initiative/
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Figure 7. CIONO., latitude altitude cross-sections for February, May, August and November 2003 as measured with MIPAS.

9.2 Diurnal Cycle

The diurnal variation of CIONOs in the Arctic winter stratosphere is driven by the availability of sunlight. Wetzel et al. (2012)
measured the CIONO; volume mixing ratio with MIPAS balloon within the polar vortex above northern Scandinavia during
sunrise on 24 January 2010 (see Fig. 8). The maximum volume mixing ratio for CIONO4 was 1.5 ppbv, observed at an altitude
of 27 km one hour before sunrise. During the time period of one to two hours after sunrise, CIONO2 levels decreased to 1.3
ppbv. They explained this decrease after sunrise with the start of photolysis of the CIONO, molecule (see Sec. 5.1) and the
photolysis of the NOy molecule, which is needed for the source reaction of CIONOs, (see Sec. 4). The diurnal cycle of CIONO,
is often discussed within the context of the diurnal cycle of ClO in which CIONO; acts as reservoir species. First theoretical
calculations for the diurnal cycle of CIONO; have been done by Ko and Sze (1984) in the context of measurements of the

diurnal cycle of CIO by Solomon et al. (1984).

10 Trends of CIONO-

As with HCI, one of the main scientific questions is how the time series reflect the decrease of CFCs after the Montreal protocol.
Rinsland et al. (2010) found that CIONOs stopped increasing. Negative trends have actually been determined (Fig. 9), and the
decrease of CIONOs was observed to be stronger than that of HCI. This difference was observed to be latitude-dependent
(Kohlhepp et al., 2012).
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Figure 8. CIONO> volume mixing ratios measured with MIPAS-B during sunrise on 24 January 2010 above northern Scandinavia within

the polar vortex. Figure taken from Wetzel et al. (2012, their Fig. 8) under CC Attribution 3.0 License.
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Figure 9. Multidecadal time series of column amounts above Jungfraujoch of CIONO> and HCI, as well as the sum of both which is a proxy
of total inorganic chlorine. Symbols represent monthly means. To avoid masking of trends by polar winter dynamics, only the months June
to November were considered. The continuous lines are non-parametric least squares fits. A decrease since 1996/97 as well as correlations
between the column amounts of CIONO; and those of HCI are visible. Figure by Emmanuel Mahiue et al., Univ. Li¢ge, published in De

Maziére et al. (2018), used under CC Attribution 3.0 license.
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Instrument Institution Web Address

ground-based FTIR  NDACC http://www.ndsc.ncep.noaa.gov/cgi-bin/pi/query_data/query_data.pl

ACE-FTS Univ. Waterloo  http://www.ace.uwaterloo.ca/data.php

ATMOS NASA JPL https://remus.jpl.nasa.gov/atmos/atftp.html

CLAES NASA https://disc.gsfc.nasa.gov/datasets/UARCL3AT_V009/summary ?keywords=CLAES &page=1
CRISTA-NF FZ]/BUW https://www.fp7-reconcile.eu/reconciledata

GLORIA! KIT/FZJ) https://halo-db.pa.op.dlr.de/data_source/25/

ILAS NIES http://warp.da.ndl.go.jp/info:ndljp/pid/11066775/db.cger.nies.go.jp/ilas/data2/DataDistribution.html
ILAS-II NIES http://warp.da.ndl.go.jp/info:ndljp/pid/11066775/db.cger.nies.go.jp/ilas2/en/dist/genelal/DataDistribution.html
MIPAS KIT/IMK http://www.imk-asf kit.edu/english/308.php

MIPAS ESA https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/mipas
MIPAS Univ. Oxford http://eodg.atm.ox.ac.uk/MIPAS/L20XF/

MIPAS-STR KIT/IMK https://www.fp7-reconcile.eu/reconciledata

MK-IV NASA JPL https://mark4sun.jpl.nasa.gov/ground.html

Table 5. Sources of CIONO., data.

! By the time of this writing the public access to these data has not yet been established but is expected in the near future.

11 CIONO- Data Sets

Numerous CIONO3 observational data sets are available via the internet. Some relevant addresses are compiled in Table 5.

CIONO,, data of missions not listed may be available via the respective principal investigators.

12 Conclusion and Outlook

Research during the last decades has helped very much to mature our knowledge about CIONO., in particular in the context

of polar stratospheric ozone depletion. Most relevant future science questions presumably are (a) the future development of

CIONOy, concentrations in a changing climate, and (b) its role in chlorine activation on surfaces other than polar stratospheric

clouds, particularly in the upper troposphere and lowermost stratosphere.
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