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Abstract 

The response of marine low cloud systems to changes in aerosol concentration represents one of the largest uncertainties in 15 

climate simulations. Major contributions to this uncertainty derive from poor understanding of aerosol under natural conditions 

and the perturbation by anthropogenic emissions. The Eastern North Atlantic (ENA) is a region of persistent but diverse marine 

boundary layer (MBL) clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In 

this study, we examine MBL aerosol properties, trace gas mixing ratios, and meteorological parameters measured at the 

Atmospheric Radiation Measurement Climate Research Facility’s ENA site on Graciosa Island, Azores, Portugal, during a three-20 

year period from 2015 to 2017. Measurements impacted by local pollutions on Graciosa Island and during occasional intense 

biomass burning and dust events are excluded from this study. Submicron aerosol size distribution typically consists of three 

modes: Aitken (At, diameter Dp < ~100 nm), Accumulation (Ac, Dp within ~100 to ~300 nm), and Larger Accumulation (LA, 

Dp > ~300 nm) modes, with average number concentrations (denoted as NAt, NAc and NLA below) of 330, 114, and 14 cm-3, 

respectively. NAt, NAc and NLA show contrasting seasonal variations, suggesting different sources and removal processes. NLA is 25 

dominated by sea spray aerosol (SSA), and is higher in winter and lower in summer. This is due to the seasonal variations of 

SSA production, in-cloud coalescence scavenging, and dilution by entrained free troposphere (FT) air. In comparison, SSA 

typically contributes a relatively minor fraction to NAt (10 %) and NAc (21 %) on an annual basis. In addition to SSA, sources of 

Ac mode particles include entrained of FT aerosols and condensation growth of Aitken mode particles inside MBL, while in-

cloud coalescence scavenging is the major sink of NAc. The observed seasonal variation of NAc, being higher in summer and 30 

lower in winter, generally agrees with the steady-state concentration estimated from major sources and sinks. NAt is mainly 

controlled by entrainment of FT aerosol, coagulation loss, and growth of Aitken mode particles into the Ac mode size range. Our 

calculation suggests that besides the direct contribution from entrained FT Ac mode particles, growth of entrained FT Aitken 

mode particles in the MBL also represent a substantial source of cloud condensation nuclei (CCN), with the highest contribution 

potentially reaching 60 % during summer. The growth of Aitken mode particles to CCN size is an expected result of the 35 

condensation of sulfuric acid, a product from dimethyl sulfide oxidation, suggesting that ocean ecosystems may have a 

substantial influence on MBL CCN populations in ENA.  
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1 Introduction  

Low clouds, especially stratocumulus, are the dominant cloud type in terms of spatial coverage of the Earth’s surface, and are of 

vital importance to the Earth’s climate (Wood, 2012). Major climate effects of low clouds derive from their reflection of solar 

radiation (Seinfeld and Pandis, 2016). The key parameters for quantifying climate effects of low clouds are the albedo (i.e., cloud 

reflectivity) and the cloud coverage, both of which are particularly sensitive to perturbations of aerosols. The concentration of 5 

cloud condensation nuclei (CCN) strongly influences the number concentration and sizes of cloud droplets and therefore the 

effective albedo of low clouds (i.e., first indirect effect of aerosol) (Twomey, 1974; Seinfeld and Pandis, 2016; Dong et al., 2015), 

especially in clean environments such as the remote marine boundary layer (MBL) (Reutter et al., 2009). In addition, CCN 

concentration and aerosol size distribution also influence cloud amount by impacting drizzle formation and precipitation (i.e., 

second indirect effect of aerosol) (Albrecht, 1989; Liu and Daum, 2004; Liu et al., 2006; Wood, 2005; Rémillard et al., 2012; 10 

Dong et al., 2014).  

 

Currently, the aerosol indirect effects of marine low cloud systems remain one of the major uncertainties in climate change 

simulations (Lohmann and Feichter, 2005; Bony and Dufresne, 2005; Bony et al., 2006; Wood, 2012). This large uncertainty is 

to a large degree a result of the incomplete understanding and therefore representations of aerosol properties, and the response of 15 

marine low clouds to aerosol changes. Therefore, it is imperative to understand MBL aerosol properties under natural conditions, 

the perturbation due to anthropogenic emissions, and the underlying controlling processes. The properties of aerosols in the 

remote MBL can be influenced by a variety of processes, including entrainment from the free troposphere (FT), production of 

sea spray aerosol (SSA), processing of aerosol particles both inside clouds and in clear air, depositions, and horizontal advection 

(Quinn and Bates, 2011; Wood et al., 2012). Previous studies (O'Dowd et al., 2004; Clarke et al., 2013; Quinn et al., 2017; Wood 20 

et al., 2017; Pierce et al., 2015; Prather et al., 2013; Russell et al., 2010; Sanchez et al., 2018; Phinney et al., 2006; Langley et al., 

2010) have greatly advanced our understanding of MBL aerosols, especially in the relative contributions of SSA versus long-

range transported pollution in terms of the CCN budget (Blot et al., 2013; Clarke and Kapustin, 2010; Clarke et al., 2013; Quinn 

et al., 2017), and the removal of CCN by in-cloud coalescence scavenging (Wood et al., 2012). However, we are still lacking a 

quantitative understanding of the controlling processes sufficient to serve as a reliable foundation for developing global climate 25 

model parameterizations and representations that will adequately simulate aerosol in past, current, and future climates. The 

relative importance, the influence on different particle size ranges, and spatiotemporal variations of these processes are still not 

well quantified.  

 

The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical MBL clouds (Wood et al., 2015). Aerosols 30 

arriving in the ENA are of diverse origins, varying from marine clean air masses to air masses that are strongly influenced by 

continental emissions from North America or northern Europe (O'Dowd and Smith, 1993; Wood et al., 2015). As a result, ENA 

is among the regions with strong but uncertain aerosol indirect forcing (Carslaw et al., 2013). Several field campaigns, including 

the North Atlantic Regional Experiment (NARE) campaign during 1991 to 2001 (Parrish et al., 1998), the Atlantic 

Stratocumulus Transition Experiment (ASTEX) during June 1992, the 2nd Aerosol Characterization Experiment (ACE-2) during 35 

summer 1997, and the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) campaign (Wood et al., 

2015) from May 2009 to December 2010 took place in ENA. However, they are either more focused on other subjects (e.g., 

ozone chemistry for NARE (Parrish et al., 1998) and cloud properties for CAP-MBL (Wood et al., 2015), or are short-term 

studies (e.g., ACE-2 (Raes et al., 2000), ASTEX (Albrecht et al., 1995)). To our knowledge, the variation of aerosol properties 

and their controlling processes have not been systematically studied using long term observation in the ENA.  40 
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Recently, a permanent ENA site was established by the Department of Energy Atmospheric Radiation Measurement (ARM) 

(Mather and Voyles, 2013) Climate Research Facility on Graciosa Island in the Azores, Portugal, providing an invaluable 

opportunity to study MBL aerosol properties and their interactions with low clouds. In this study, we examine the long-term 

variation of aerosol properties, trace gas mixing ratios, and meteorological parameters measured at the ARM ENA site from 5 

2015 to 2017 (section 2). The characteristics of the aerosol properties and their seasonal variations are summarized (section 3). 

The governing equations of number concentration are established for different modes of MBL aerosol at the ENA site (section 4). 

Subsequently, the seasonal variations of aerosol properties for different particle size modes are explained using key processes 

identified (section 5 and 6). Finally, we present an overall picture of the processes that drive MBL aerosol properties in ENA, 

and the implications are discussed (section 7). 10 

 

2 Measurement 

2.1 Measurement overview 

Measurements of trace gases, meteorological parameters, aerosol and cloud properties are conducted at the ENA site, located on 

Graciosa Island in the Azores, Portugal (39° 5' 30" N, 28° 1' 32" W, 30.48 m above mean sea level). The ENA site was initially 15 

set up in late 2013, with additional measurements added subsequently. The primary measurements used in this study and the 

available time periods are listed in Table 1. The measurements of trace gases (e.g., CO) and aerosol properties were first 

screened for impact from local pollution sources (see Supporting Information (SI) section S1). All measurements are then 

averaged into 1-hour intervals. Here we use three-years of data from Jan. 2015 to Dec. 2017 to show the long-term variations and 

correlations among different parameters. For evaluation of the contributions of different controlling processes (section 4), one-20 

year of data from Sept. 2016 to Aug. 2017 are used, during which period most of the measurements are available.  

 

2.2 Data corrections and derivations 

2.2.1 Optical properties 

Aerosol absorbing (Babs) and scattering (Bsca) coefficients are measured by a three-wavelength PSAP and a Nephelometer, 25 

respectively (Table 1). These two instruments share a common inlet, and the 50 % cut size of the inlet switches between 1 and 10 

μm every hour (Springston, 2016). The corresponding Bsca and Babs are denoted by “PM1” and “PM10”, respectively. In addition, 

properties of coarse mode (1 < Dp < 10 μm) aerosols, PMc, were derived by the difference between PM10 and PM1. For example, 

“PMc Bsca” refers to the difference between PM10 Bsca and PM1 Bsca hereafter, and PMc Babs is defined similarly. 

 30 

The mass flow calibration and filter loading correction are already applied to the PASP data in the ARM data archive (Springston, 

2016). In this study, additional corrections of contribution due to scattering for Babs (Bond et al., 1999; Virkkula et al., 2005; 

Virkkula, 2010; Costabile et al., 2013), and truncation and angular illumination for Bsca (Anderson and Ogren, 1998; Müller et al., 

2011) are applied, and the procedure is detailed in SI section S2. The corrected PM1 Bsca shows strong correlation (correlation 

coefficient being 0.84) with the volume of PM1 derived from UHSAS size distribution (Fig. S2). Potential particle losses for 35 

large particles (i.e., in the diameter range of 5 ~10 μm) are not corrected. However, we do not expect the losses affect the relative 

trends of PMc Bsca presented here (section 5), or the correlation among PMc Bsca and VLA (Fig. 6c). 
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2.2.2 Cloud and MBL properties 

Properties of cloud and MBL, including MBL height, cloud thickness and cloud fraction are needed to estimate some of the key 

controlling processes that drive aerosol properties (see section 4 for more details). The MBL height, HMBL, is derived from the 

backscatter signal from the Ceilometer CL31 (Morris, 2012). Briefly, it is determined from the gradient of an idealized 5 

backscatter profile, the parameters of which are derived from fitting of the observed profile (Eresmaa et al., 2006). As the first 

boundary layer height given in the ceilometer data product is usually the surface layer (Lewis and Schwartz, 2004) below 100 m 

(Münkel et al., 2007; Emeis et al., 2007; Emeis et al., 2008; Haeffelin et al., 2012; Morris, 2012), HMBL is chosen as the highest 

boundary layer height below 3 km (Zhou et al., 2015; Rémillard and Tselioudis, 2015; Rémillard et al., 2012). 

 10 

Cloud thickness h is derived by combining HMBL and the cloud base height derived from ceilometer data. In ENA, HMBL usually 

represents the top height of boundary layer clouds (Rémillard et al., 2012). When multiple layers of clouds are detected, the 

layers with cloud-base heights higher than HMBL are first excluded, after which the highest layer is chosen to exclude potential 

influence of near-ground thin clouds. The cloud thickness h is then defined as the difference between HMBL (cloud top) and the 

base height of the chosen cloud. The value of h derived using the above approach is in general agreement with previous 15 

observations (Rémillard et al., 2012). 

 

The cloud fraction, pcloud, is determined by the detection status information from the ceilometer (Morris, 2012). It is equal to the 

fraction of time with a detected boundary layer cloud base, or a determined full obscuration. Precipitation rate at cloud base is 

retrieved from the vertically pointing K-band cloud radar (Atmospheric Radiation Measurement Climate Research Facility, 1990) 20 

and the ceilometer (Morris, 2012) following the method of O’Connor et al. (2005). 

3. Seasonal variation in synoptic conditions, trace gas mixing ratios, and aerosol properties in ENA 

3.1 Air mass origin 

One major source of MBL aerosol in ENA is the entrainment of FT air, which contains both particles from long-range transport 

of continental pollutions and those formed through new particle formation (NPF) in the FT (Quinn and Bates, 2011; Sanchez et 25 

al., 2018). To examine the contribution from continental emissions and its seasonal variation, we analyze the back trajectories of 

air masses arriving at the ENA site. The cluster analysis results of 4 representative months from Sept. 2016 to Aug. 2017 (i.e., the 

main study period, see section 2.1) are shown in Fig. 1. Results from other periods from 2015 to 2017 are similar (not shown). 

 

Most of the air masses arriving at the ENA site can be classified as one of the four clusters originating from North America, 30 

northern Europe, the Arctic, and the recirculating flow around the Azores high, respectively (O'Dowd and Smith, 1993; Wood et 

al., 2015). Among these clusters, the Azores high air masses usually linger within the MBL, as indicated by their stable and low-

level trajectories (e.g., blue and red trajectory clusters in Fig. 1b). In comparison, other air masses usually undergo long-range 

transport within the FT before descending into MBL. In addition, some air masses originating in the continental boundary layer 

were lofted up, and then subsided into the MBL within 10 days (e.g., blue trajectory cluster in Fig. 1c).  35 
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The percentage of occurrence for each cluster shows strong seasonal variations (Fig. 1, Fig. S3). During fall (Fig. 1c, Fig. S3c) 

and winter (Fig. 1d, Fig. S3d), air masses influenced by anthropogenic emissions from North American (red lines) dominate, 

with the influence of clean maritime flow and northern European flow. In spring (Fig. 1a, Fig. S3a), contributions from 

Arctic/northern Europe air masses are more pronounced than during other seasons. For the summer months (Fig. 1b, Fig. S3b), 

the ENA site is dominated by the clean maritime flow associated with the recirculating Azores high. As the recirculating Azores 5 

high clusters are usually not associated with long-range transport, a reduced contribution to MBL aerosol from continental 

pollutions through FT entrainment is expected during the summertime in ENA.  

 

3.2 Mixing ratios of CO, O3 and water vapor 

The mixing ratios of CO, O3 and water vapor within the MBL are expected to be strongly influenced by entrainment of FT air in 10 

ENA. CO is a long-lived species with a lifetime of approximately 1 month (Seinfeld and Pandis, 2016), and therefore is a good 

indicator of long-range transported continental emissions for remote sites. At the ENA site, the influence of local emissions on 

trace gases and aerosol measurements is expected to be minimal after filtering of the data (section S1). The lifetime of O3 varies 

from hours in polluted urban regions (due to the high rate of photochemical reactions) to several weeks in the FT (Monks et al., 

2015). Given its long lifetime in the FT, O3 may also serve as a tracer for long-range transported pollutants. The local 15 

photochemical activities can be inferred from the correlation between O3 and CO. In regions with strong local sources and sinks, 

O3 and CO show a strong positive correlation during summer daytime due to photochemical reactions, but a negative correlation 

during winter nights due to the stronger dry deposition of O3 than CO (Poulida et al., 1991; Chin et al., 1994). In contrast, at the 

ENA site, CO and O3 are positively correlated all year around, even in winter nighttime with low wind speed (WS) < 2 m/s (Mao 

and Talbot, 2004) (Fig. S4a). This suggests that the variation of O3 concentration observed at the ENA site is mainly influenced 20 

by the entrainment of FT air, in agreement with findings from previous modeling studies (Cooper et al., 2002; Voulgarakis et al., 

2011). In addition, the strong anti-correlation (correlation coefficient being -0.75) of CO and O3 with water vapor (Fig. S4b) also 

confirms this picture, as water mixing ratio usually negatively correlates with the extent of FT entrainment at remote marine sites 

(Helmig et al., 2002). Furthermore, the seasonal variations of O3 and CO in ENA (Fig. 2a, b) differ much from those observed at 

anthropogenic-influenced urban or rural sites, where ozone usually exhibits a summer peak due to strong photochemical 25 

production, while CO usually shows no clear seasonal variation (Poulida et al., 1991). In contrast, both CO and O3 in ENA show 

a summer minimum and spring-winter maximum, which is consistent with the FT entrainment as the dominant source and the 

seasonal variation of tropopause height. This suggests minor contributions from local emissions and in-situ photochemistry 

(Parrish et al., 1998; Fischer et al., 2003; Mao and Talbot, 2004). The seasonal variations of CO and O3 concentrations are also 

consistent with the cluster analysis of back-trajectories, which indicates more influence from long-range transported pollution in 30 

winter-spring than in summer. 

 

3.3 Absorbing aerosols 

In the ENA boundary layer, absorbing aerosols, including black carbon, brown carbon, and dust, are likely entrained from the FT 

following transport from continental sources. Occasionally, air masses with very strong influences from biomass burning or dust 35 

are observed at the ENA site. These episodes are excluded from the analyses presented here to focus on the long-term 

background variations. These episodes are identified using the aerosol optical properties (Logan et al., 2013; Logan et al., 2014; 

Cazorla et al., 2013), particle chemical compositions (Clarke et al., 2007), and trace gas mixing ratios (Honrath et al., 2004). 
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Identification of these dust and BB episodes and characterization of aerosol properties during them will be discussed elsewhere 

(Zheng et al., in prep). With these episodes excluded, the equivalent black carbon (EBC, following the naming convection 

suggested by Petzold et al. (2013)) mass concentrations were estimated from PM1 Babs with an assumed mass absorbing cross 

section of 7.5 m2 g-1 at 529 nm (Bond et al., 2013). 

 5 

While absorbing particles are entrained from the FT, the seasonal variation of EBC mass concentration is different from those of 

CO and O3 (Fig. 2). As evidenced from a decreasing EBC/CO ratio with increasing precipitation rate at cloud base, PCB (Fig. S5), 

such differences are due to in-cloud coalescence scavenging (section 4.2) both during the long-range transport and/or after 

entrainment into the MBL, which removes EBC but not CO or O3. Therefore, EBC mass concentration can be indicative of the 

overall effect of FT contribution from continental emissions and in-cloud coalescence scavenging. As shown in Fig. 2c, EBC 10 

mass concentrations are similar in all seasons, but show larger annual variations than CO or O3, which are attributed to the larger 

annual variations of precipitation.  

 

3.4 Aerosol size distributions 

3.4.1 Modes of aerosol size distributions 15 

The aerosol size distribution from 70 nm to 1 μm at the ENA site typically consists of three modes (Fig. 3): an Aitken (At) mode 

below ~ 100 nm, an accumulation mode (Ac) which resides mostly from 100 to 300 nm, and a larger accumulation mode (LA) 

above ~ 300 nm. Note that due to the lower size limit of UHSAS, the Aitken mode is often not fully characterized. Therefore, its 

number concentration is derived by deducting fitted number concentrations of the other two modes from the total number 

concentration CN measured by the CPC, namely NAt = CN - NAc - NLA. With this definition, the derived Aitken mode 20 

concentration also includes nucleation mode particles (i.e., Dp < 20 nm). However, previous studies have shown that NPF events 

within remote MBLs like the ENA are infrequent (Raes, 1995; Bates et al., 2000), therefore nucleation mode particles likely 

represent a small fraction of the derived Aitken mode number concentration for long term measurements (Wood et al., 2012). 

The Ac mode is absent in 15 % of cases (Table 2), likely due to in-cloud coalescence scavenging or lack of cloud-processing 

(section 4). Among these three modes, aerosol number concentration is dominated by At (72.0 %) and Ac (24.9 %) modes (Fig. 25 

3b1), while the volume concentration is controlled by the LA (74.3 %) and Ac (25.1 %) modes (Fig. 3b2). Based on the average 

volume size distributions (Fig. 3b2) and results shown in Section 5, the LA mode is essentially the sea spray aerosol coarse mode 

under vast majorities of the conditions.  

 

3.4.2 Seasonal variations of each mode 30 

Different seasonal variations are observed for the three particle modes. While there is substantial variation within each season, on 

average, the Ac mode exhibits higher number concentration, larger mode Dp, and higher occurrence in summer than in winter 

(Table 2). In contrast, the LA mode shows opposite seasonal trends, with the number and volume concentrations in winter 1.5 

times greater than those in summer (Table 2). These seasonal trends are also evident in the seasonally-averaged size distributions 

(Fig. 4a). The monthly average concentrations and the seasonal trends of the Ac and LA modes are very consistent from 2015 to 35 

2017, showing little annual variation (Fig. 4b). Despite the higher NAc in summer, CN usually peaks in spring as a result of 

elevated NAt (Fig. 4b). In comparison, the monthly average NAt and CN exhibit some minor difference among the three years, 

while their seasonal trends remain the same (Fig. 4b). 
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4. Governing equation of MBL aerosol number budgets and estimation of the key process terms 

4.1 Governing equations of At, Ac, and LA mode concentrations  

The mode-dependent seasonal trends indicate that the variations of NAt, NAc and NLA are driven by different processes. Processes 

that may influence aerosol number concentrations in remote MBL are entrainment of the particles from the FT, SSA production, 5 

NPF inside the MBL, condensational growth (COND), coagulation (COAG), in-cloud scavenging of interstitial particles by 

droplets (INT), aqueous-phase chemistry (AQ_CHEM), wet deposition, dry deposition and advection. Among these processes, 

NPF within the MBL was shown to be infrequent in previous studies (Raes, 1995; Bates et al., 2000), and is neglected in the 

calculations of the long-term budget terms (Wood et al., 2012). Also, at remote marine sites like ENA, the influence of advection 

is “averaged” out for long term trends of particle concentrations. In addition, dry deposition is usually much slower compared to 10 

wet deposition for submicron particles, even after taking into account the time and spatial discontinuity of the wet deposition 

processes (see the discussion of in-cloud scavenging in section 4.2) (Lewis and Schwartz, 2004; Henzing et al., 2006; Wood et 

al., 2012; Mohrmann et al., 2018). Thus, it is neglected in further analysis. Wet deposition includes both in-cloud coalescence 

scavenging of activated droplets therefore effectively CCN inside clouds (COALES) and the collection of aerosol particles by 

falling hydrometeors below cloud (i.e., washout). For aerosols between 10 nm and 1 μm, below-cloud washout is usually much 15 

less efficient than in-cloud coalescence scavenging (Garrett et al., 2006; Seinfeld and Pandis, 2016; Wood et al., 2012), and is 

neglected here. Earlier study suggests that the Ac mode in MBL is formed through aqueous-phase chemistry inside cloud 

droplets (Hoppel et al., 1990). Therefore, we treat both Ac and LA mode particles as CCN, and At mode particles as non-CCN 

(i.e., remain as interstitial particles inside clouds). This treatment is also supported by the strong correlation between NAc + NLA 

and CCN concentration at 0.2 % ss, representative for marine low clouds (Leaitch et al., 2010; Wood et al., 2012; Clarke and 20 

Kapustin, 2010) during all seasons (Fig. S6). As NAc is usually one order of magnitude higher than NLA (Fig. 4), the CCN 

concentration at the ENA site is well represented by NAc alone (Fig. S6). Therefore, the overall governing equation for each 

mode of MBL aerosol can be written as: 

tFT SSA COND COAG INTt At t At t At t At t A t AtN N N N N N         (1a) 

_t Ac t Ac t Ac t Ac M StFT SSA COND COAG AQ CH OAc t Ac t AE c C ALE
N N N N N N N             (1b) 25 

_t LA t LA t LA t LA M StFT SSA COND COAG AQ CH OLA t LA t LE A C ALE
N N N N N N N             (1c) 

as depicted in Fig. 5 and discussed in detail below. 

 

4.2 Key aerosol sources and sinks 

SSA 30 

The change rate of MBL aerosol concentration due to SSA production flux, ∂tN|SSA, can be expressed as (de Leeuw et al., 2011; 

Wood et al., 2012): 

 
6 3.41 6 3.413.84 10 WS 3.8 S  

 
10 W

 
4

p
pSS

M
A D

SSA
t SSA p

MBL BL

F
N f lnD dlnD

H H

  
       (2) 

where 3.84×10-6 WS3.41 is the white cap fraction on the sea surface (Monahan et al., 1986) with WS in units of m s-1, FSSA is the 

total SSA number production flux per white cap area in units of m-2 s-1, HMBL is the MBL height in m, and fSSA(lnDp) is the 35 
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lognormal number size distribution of SSA production flux curve. Thus, WS is the most important parameter in estimating total 

SSA contributions, while the detailed size distribution could differ with the fSSA(lnDp) used (Gong, 2003; Lewis and Schwartz, 

2004; Clarke et al., 2006; Grythe et al., 2014).  

In-cloud coalescence scavenging 

The rate of in-cloud coalescence scavenging of cloud droplets is given by (Wood, 2006; Wood et al., 2012): 5 

1 |COALEt d d d CB MBSCOALES LN E N N KP hH       (3) 

where E|X represents (∂tN|X)/N , namely the percentage processing efficiency of process X. Nd is cloud droplet number 

concentration which is assumed to be the same as CCN, or NAc + NLA (section 3.4.2); K is a constant of 2.25 m2/kg; while h 

HMBL
-1

 represents the in-cloud volume fraction of MBL aerosols (MÅrtensson et al., 2010). Note that by letting the precipitation 

rate at cloud base, PCB, as 0 when there is no precipitation, the precipitation time fraction is already included in Eq. 3. 10 

 

In-cloud scavenging of interstitial particles by activated droplets 

Inside clouds, interstitial particles are scavenged when coagulating with cloud droplets. This process directly reduces At mode 

particle number concentration, while also indirectly reducing CCN (i.e., Ac and LA modes) number concentration by removing 

particles that could otherwise grow and become CCN later (Pierce et al., 2015). The rate of scavenging scales with the 15 

probability that the particles are inside clouds, fcloud. Here fcloud is defined as: 

fcloud = pcloud h HMBL
-1 

where pcloud is the probability that MBL cloud is encountered and is approximated by the in-cloud time fraction (Table 1), while h 

HMBL
-1

 is again indicative of the volume fraction of MBL aerosol particles inside the clouds (MÅrtensson et al., 2010).  

As At mode particles are treated as non-CCN and remain as interstitial particles inside the clouds, the rate of the scavenging can 20 

be estimated by (Pierce et al., 2015):   

int,  t At cloud d At dINT
N f K N N  , namely , |INT cloud int d dE f K N     (4) 

where Nd is number concentration of cloud droplets assumed to be the sum of NAc and NLA (section 3.4.2), Kint, d is the 

coagulation coefficient between Dp, int and Dp, d, where Dp, int and Dp, d represent the diameter of interstitial particles and cloud 

droplets, respectively. Dp, d is assumed to be 10 μm (Pierce et al., 2015), while Dp, int is assumed to be the corresponding wet 25 

diameter of Dpg, At under a supersaturation of 0.12 % (Korolev and Mazin, 2003), where Dpg, At is the geometric mean dry 

diameter of At mode. The maximum supersaturation near the cloud base where CCN activation occurs is typically 0.2 % for 

marine low clouds (Wood et al., 2012; Clarke and Kapustin, 2010; Leaitch et al., 2010). However, the suspersaturation is usually 

lower above the cloud base where most of the interstitial scavenging occurs. Here we assume the in-cloud ss of 0.12 % based on 

the work of Korolev and Mazin (2003). Assuming the At mode has a minimum Dp of 23 nm (Pandis et al., 1994), the Dpg, At is 30 

estimated as 48nm, and the corresponding wet particle diameter inside clouds, Dp, int, is around 190 nm. Sensitivity of the 

interstitial scavenging rate to these parameters is discussed in section 6.3. 

 

Aqueous-phase chemistry 

The aqueous-phase reaction (i.e., in-cloud production of sulfate) rate is positively related to the liquid water content (Seinfeld 35 

and Pandis, 2016; Meng and Seinfeld, 1994; Pandis et al., 1990; Cheng et al., 2016). As the liquid water content of cloud 

droplets is orders-of-magnitude higher than that of interstitial aerosols, only aqueous-phase reactions inside the cloud droplets are 
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considered here (Pandis et al., 1990). As a result, the aqueous-phase reactions only promote the growth of CCN (i.e., Ac and LA 

mode particles). The influence of aqueous-phase reactions on the Aitken mode particles is neglected until they reach CCN sizes 

through condensational growth (Hoppel et al., 1994; Pandis et al., 1990). 

Aqueous-phase reactions inside cloud droplets do not change total particle number concentration. On the other hand, it efficiently 

adds mass to CCN and grow them into larger diameters when cloud droplets evaporate following the reactions. Therefore, the 5 

only influence of AQ_CHEM on number size distribution considered here is the growth of Ac mode particles into the LA mode 

size ranges. The magnitude of the influence depends on fcloud, liquid water content, precursor concentrations, and radiation which 

influences oxidant concentrations (MÅrtensson et al., 2010). 

 

Condensation growth  10 

While condensation does not change the total particle number concentration, it grows the particles and therefore changes the 

number distribution among different modes (Seinfeld and Pandis, 2016). In this aspect it functions similarly to aqueous-phase 

reactions, with the difference being that condensation acts on particles of all sizes while aqueous-phase reactions influence only 

CCN. The rate of a smaller mode A growing into a larger mode B through condensation can be estimated as (Pandis et al., 1994):  

    1 /
COND COND At B t A cloud VN N f J A V        (5) 15 

where ΔVA (in μm3) is the volume difference between a particle with the minimum Dp of mode B, and a particle with the volume 

average of mode A, namely: 
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where the integrals are calculated from the binned aerosol size distribution using the binned-simplification described in Pandis et 

al. (1994).  20 

 

JV (A) is the volume condensation rate of mode A in μm3 m-3 s-1, which can be estimated as (Seinfeld and Pandis, 2016): 

( ) ( ) ( )V COND i i eq
p

P
J A K A m v v

RT
        

where KCOND
 (A) is the condensation rate constant of mode A in s-1, R is the gas constant of 8.314 J mol-1, T is temperature in K, 

P is the atmospheric pressure being 1.013 × 105 Pa, ρp is the aerosol density assumed to be 1 × 10-12 g μm-3, vi and veq are the 25 

volume mixing ratio of condensate in the bulk gas-phase and at the aerosol surface, and mi is the molar mass of condensate. Here 

we assume that the condensate is H2SO4 and thus mi = 98 g mol-1, and veq is 0 (Pandis et al., 1994). Annual mean vi is assumed to 

be 1.0 ppt (Pandis et al., 1994), while being 1.4, 1.3, 1.1 and 0.2 ppt in spring, summer, fall and winter, respectively. This 

seasonal variation in vi is based on the monthly dimethyl sulfide (DMS) fluxes (assumed to be 7.0, 5.4, 2.9 and 1.0 μmol m-2  

day-1 in spring, summer, fall and winter, respectively) given in previous studies in the North Atlantic Ocean (Tarrasón et al., 30 

1995), and the proposed dependence of H2SO4 on DMS flux at the observed fluxes ranges (Pandis et al., 1994; Russell et al., 

1994). Here we assume that H2SO4 is the dominant condensate. However, recent studies suggest that organics may play an 

important role in growth of particles inside the MBL, and this is discussed later in section 6.2. 

 

KCOND
 (A) can be estimated by (Seinfeld and Pandis, 2016): 35 
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4( ) 2 10  ( , ) ( )
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D

COND f p p pD
K A D g D f Kn n D dD     

where 10-4 is the unit converter of μm cm-1, D is the gas diffusivity of condensate in air equaling 0.1 cm2 s-l, gf is the aerosol 

hygroscopic growth factor at ambient RH, Dp is the dry aerosol diameter in μm, n(Dp) is the number size distribution of mode A 

in μm-1 cm-3, Dp1 and Dp2 are the diameter boundaries of mode A and defined as the corresponding mode gap Dp in Table 2 here, 

and Kn is the Knudsen number given by 2λmfp (gf Dp)-1, where λmfp is the air mean free path. At the ENA site, observed ambient 5 

RH show a modest diurnal variation of 75 % ± 10 %. Accordingly, the hygroscopic growth factor, gf, is assumed to be 1.3, based 

on the Hygroscopic Tandem Differential Mobility Analyser measurements of At and Ac mode particles at the ENA site. The 

increased particle surface area due to hygroscopic growth leads to a factor of ~1.7 increase in the estimated KCOND compared with 

that under dry conditions. The term f(Kn, α) is the correction due to non-continuum effects (scaled by Kn) and imperfect surface 

accommodation (scaled by the mass accommodation coefficient α) estimated by the Fuchs-Sutugin approach as (Seinfeld and 10 

Pandis, 2016): 

2

0.75 (1 )
( , )

(1 0.283 ) 0.75

Kn
f Kn

Kn Kn


 



  

 

where α is assumed to be 0.02 for H2SO4 (Pandis et al., 1994). 

 

Coagulation  15 

Unlike condensation, coagulation does not change the total mass concentration, but reduces aerosol number concentrations. The 

intra-modal coagulation of particles in a smaller mode A (e.g., At mode) serves as both a source of particles in a larger mode B 

(corresponding rate denoted as JAAB hereinafter) and a sink for particles of mode A. Given the typical aerosol size distribution 

observed at the ENA site, intra-modal coagulation of mode A particles is usually negligible when compared to inter-modal 

coagulation between mode A and another mode B with a different size range (corresponding rate denoted as JAB hereinafter) (Dal 20 

Maso et al., 2002). Therefore, we focus on the intra-modal coagulation as a source of a larger mode particles, and inter-modal 

coagulation as a particle sink. The corresponding rate, J AAB and JAB, are respectively estimated as: 

max, max,

min,
12 1 2 1 20.5 ( ) ( )

p A p A
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D D

AA B p p p pD D
J K n D n D dD dD         
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12 1 2 1 2( ) ( )

p B p A

p B p A

D D

AB p p p pD D
J K n D n D dD dD        

where K12 is the coagulation coefficient between two particles with diameters of gfDp1 and gfDp2, respectively, and is calculated 25 

using the Fuchs form (Seinfeld and Pandis, 2016). Similarly as in the estimation of KCOND, the growth factor under ambient RH, 

gf, is assumed to be 1.3. This increase in particle diameter results in a ~20 % decrease in estimated K12. Dp min, A and Dp max, A are 

the boundary diameter of mode A (defined as the corresponding mode gap Dp in Table 2 here), while Dp min, B and Dp max, B are 

defined similarly. Dpc is defined by 

Dpc 
3 = DpB, min

3-Dp1
3 30 

The coagulation loss rate of NA is thus: 

  1t A cloud ABCOAG
B

N f J   
   (6a) 

while the coagulation production rate of NB is: 

 1t B cloud AAG BCOA
N f J     (6b) 

 35 
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4.3 Estimated rate of the potential key processes 

The terms in the governing equations 1(a-c) due to condensation, coagulation, scavenging of interstitial aerosol, and in-cloud 

coalescence scavenging of CCN are estimated using the equations described above and the size distribution parameters listed in 

Table 2. The values are listed in Table 3. The discussions of these estimates follow in section 5 and 6. 

5 Controlling processes of larger accumulation mode 5 

Potential processes that influence the LA mode number concentration include: 

_t LA t LA t LA t LA M StFT SSA COND COAG AQ CH OLA t LA t LE A C ALE
N N N N N N N             (1c) 

Among these processes, SSA is expected to be the dominant source of NLA in the MBL, as suggested by the strong correlation 

between NLA and WS (Fig. 6b), a key parameter of SSA production flux (section 4). Aqueous-phase reactions have been reported 

to produce “droplet mode” particles in the LA mode size range (Pandis et al., 1990; Meng and Seinfeld, 1994). However, if 10 

aqueous-phase reactions present a major source, we would expect the volume size distribution to exhibit a mode Dp of 0.6~0.8 

μm, corresponding to the size ranges that have the largest access to cloud water (Pandis et al., 1990; Seinfeld and Pandis, 2016). 

In contrast, the volume size distribution indicates that the LA mode is actually the leading edge of a larger mode with peak Dp in 

the super-micron range (Fig. 3b2). This is also supported by the strong correlation between VLA and PMc Bsca (Fig. 6c). The PMc 

Bsca is a surrogate for the supermicron mode (PMc, Dp 1~10 μm) volume concentration (section 2.2), while supermicron particles 15 

are dominated by SSA in remote MBL (Campuzano-Jost et al., 2003). Therefore, the strong correlation suggests that LA 

particles are also dominated by SSA, and the LA mode is essentially the sea spray aerosol coarse mode under vast majorities of 

the conditions. The contribution of aqueous-phase reactions to the LA mode number concentration is likely minor, and is 

neglected from the governing equation Eq. (1c) in following analysis.  

 20 

Given the large sizes of LA mode particles and that dust and biomass burning episodes are already excluded, we do not expect 

any significant FT sources. The lack of correlation between NLA and EBC mass concentration also suggests a low concentration 

of LA mode particles in long-range transported continental pollution plumes. Here we assume that the concentration of LA mode 

particles in the FT is negligible when compared to that in the boundary layer. In such a case, the entrainment of FT air dilutes the 

MBL LA particles, serving as a sink rather than a source. At a typical entrainment velocity, ωe, of 3.5 mm s-1 (Mohrmann et al., 25 

2018; Wood and Bretherton, 2004), the maximum dilution rate, -ELA|FT, equaling ωe HMBL
-1 (Mohrmann et al., 2018), reaches ~ 

20 % per day. That is comparable to in-cloud coalescence scavenging, making the FT dilution an important sink of NLA. The 

sensitivity of the rate to entrainment velocity is discussed at the end of this section. 

 

The terms of intra-modal coagulation (∂tNLA|COAG) and condensation (∂tNLA|COND) from the Ac mode are estimated as 0.02 and 30 

0.6 cm-3 day-1, respectively (Table 3). Both processes are too slow to exert significant influences on NLA during the typical 

aerosol lifetime of 7~10 days. The governing equation of NLA (Eq. 1c) can therefore be simplified into: 

t LA t LA t L StFT SSA COALEA LAN N N N      (7) 

 

The seasonal variation of NLA is a result of the balance among the three processes (Fig. 6). Production flux of SSA is 35 

proportional to WS3.41 HMBL
-1 (Eq. 2), in-cloud coalescence scavenging efficiency is K PCB h HMBL

-1 (Eq. 3), and FT dilution 

efficiency is estimated as ωe HMBL
-1. Among these three terms, the FT entrainment term (Fig. 6e) shows little seasonal variation. 

In comparison, both the in-cloud coalescence scavenging (Fig. 6d) and the SSA production (Fig. 6f) terms are lower in summer 
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while higher in winter, with the SSA production exhibiting a stronger seasonal variation. The value of NLA under the quasi-

steady-state, (i.e. when ∂tNLA = 0) can be scaled using the three terms for each season. The scaled steady-state NLA (red markers 

in Fig. 6g) successfully produces the observed seasonal trend of NLA (boxplots and black lines Fig. 6g). Varying the value of the 

assumed entrainment velocity within the typical range of 2~5 mm s-1 does not affect the overall seasonal trend of the scaled NLA. 

6. Controlling processes of Aitken - Accumulation mode 5 

6.1 Contributions of SSA to Aitken and Accumulation modes 

Unlike NLA, NAc is independent of the WS, and NAt decreases with increasing WS (Fig. 7), indicating relatively minor 

contributions from SSA to At and Ac modes. The negative correlation between NAt and WS may be due to the enhanced NLA 

with increasing WS (Fig. 6), and thus enhanced coagulation loss for Aitken mode particles (see section 4.2 and section 6.3). In 

comparison, both NAt and NAc increase monotonically with EBC mass concentration (Fig. 7), suggesting the long-range 10 

transported anthropogenic aerosol is a major source of At and Ac mode particles in ENA. 

 

A semi-quantitative estimation of SSA contribution also supports the above conclusion. Assuming all LA mode particles are 

from SSA, by combining NLA and an established size distribution of SSA production flux, one can estimate the upper limit of the 

SSA contribution to At and Ac modes (Fig. 8). For simplification, here we use number concentration of particles with Dp in the 15 

range from 400 to 1000 nm, N400, to represent the observed SSA number concentration in the same Dp range. SSA larger than 

~100 nm are CCN under ss of 0.1 % (Petters and Kreidenweis, 2007), while the measured CN has a cut-off diameter of roughly 

10 nm. The contribution of SSA to CCN (0.1 %) and CNSSA can therefore be estimated by: 
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(ln ) ln
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   (8a) 
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
   (8b) 20 

where kCCN and kINT are factors that account for the size dependence of removal rate (see derivations in SI S3). The estimated 

kCCN is around 1, while kINT can vary from 1.7 to 4.4 as the removal efficiency is higher for CCN than non-CCN (Table 4, Fig. 9).  

 

Here we used four published fSSA(lnDp) schemes (Gong, 2003; Lewis and Schwartz, 2004; Clarke et al., 2006; Grythe et al., 2014) 

to calculate the contribution of SSA to observed CCN(0.1 %) and CN (Fig. 8a). The initial calculation neglects the size 25 

dependence of the particle removal rate, therefore the results represent lower limits on the contributions (Fig. 8b). This approach 

essentially assumes that the shape of the SSA size distribution in the MBL is the same as that of the SSA flux. Even for these 

lower limit estimates, CCN (0.1 %)SSA and CNSSA calculated using fSSA(lnDp) from Gong et al. (2003) and Clark et al. (2006) 

exceed the observed total CCN (0.1 %) and CN for a substantial fraction of the data, suggesting that these two fSSA(lnDp) 

functions result in overestimation of SSA contributions over the 10-400 nm size range at the ENA site. This may be partially due 30 

to the parameter dependencies of sea surface temperatures, etc. (Gantt and Meskhidze, 2013; Gantt et al., 2015; Quinn et al., 

2015), which are not considered here. The value of CCN (0.1 %)SSA and CNSSA are therefore estimated as the averages of 

predictions based on flux size distributions reported by Grythe et al (2014) and Lewis and Schwartz (2004), with kCCN and kINT 

taken into consideration. The corresponding mean fractions of CCN (0.1 %)SSA and CNSSA in observed CCN (0.1 %) and CN are 

24 % and 11 %, respectively. The estimated CCN(0.1 %)SSA fraction is consistent with a recent study that shows that the SSA 35 
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contribution to CCN is smaller than 30 % globally (Quinn et al., 2017). In that study, the size distribution of SSA was derived by 

fitting the aerosol size distribution. If we follow the same approach (Quinn et al., 2017), the estimated SSA number concentration 

is actually NLA shown in this study, which represents 19 % of CCN (0.1 %).  

 

Based on the estimated SSA contribution to CN and CCN (Eq. 8a and 8b), we can further estimate the SSA contribution to NAc 5 

and NAt, fAc, SSA and fAt, SSA, as: 

,

,

( (0.1%) ) /

( (0.1%) ) /
Ac SSA SSA LA Ac

At SSA SSA SSA At

f CCN N N

f CN CCN N

 

 
 

and the corresponding annual mean fAc, SSA and fAt, SSA are 21 % and 10 %, respectively (Table 4). 

 

6.2 Controlling processes of Accumulation mode 10 

As shown in section 6.1, the contribution of SSA to the Ac mode is likely substantial (annual average ~21 %, Table 4). For the 

Ac mode, both intra-modal and inter-modal coagulations are much slower than in-cloud coalescence scavenging (Table 3), and 

can therefore be neglected from the governing equation of NAc. On the other hand, condensational growth of Aitken mode 

particles may represent a substantial source of the Ac mode. AQ_CHEM reduces NAc by growing particles into LA size range. 

As discussed in section 5, this process only makes a minor contribution to NLA. Given NAc is about one order of magnitude higher 15 

than NLA, the impact of AQ_CHEM on NAc is therefore expected to be negligible. The governing equation of NAc (Eq. 1b) can be 

simplified into: 

t Ac t Ac t Ac t Ac t AFT SSA COND COALEScN N N N N         (9) 

The estimated values of ∂tNAc|COND and ∂tNAc|COALES are listed in Table 3. In-cloud coalescence scavenging is the only sink of Ac 

mode particles among the four main processes, while the other three are sources. Under steady-state conditions, (∂tNAc =0), we 20 

have: 

, 
SSA SSA

FT COND SSA COALES

t Ac t Ac

SSA Ac
t Ac t Ac t Ac t Ac

N N
f

N N N N


 






 

 

Namely 

 , SSA COALESt Ac SSA Ac t AcN f N   

The contribution due to the entrainment of FT air, ∂tNAc|FT, can be estimated as a residual using the fSSA, Ac value derived in the 25 

previous section (Table 4): 

, 1 )(
FT COALES CONDt Ac SSA Ac t Ac AcN f N E       (10)  

 

The normalized rates of different processes are compared in Fig. 9a. The derived ∂tNAc|FT is stronger in winter-spring while lower 

in summer-fall, in general agreement with the seasonal trends of observed CO and EBC (Fig. 9b), consistent with the picture that 30 

anthropogenic emissions represent the main source of entrained FT Ac mode particles. This agreement also suggests that the 

above analysis captures the major seasonal variation of the contribution of FT entrainment to Ac mode particles.  

 

Based on the first-order estimates shown in Fig. 9, we can see that on an annual basis, entrainment from the FT represents the 

major source of NAc, followed by condensational growth of Aitken mode particles and SSA production. However, the relative 35 

importance of these three sources shows substantial seasonal variations. Contributions from SSA production is the lowest in 
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summer (12 %), and the highest during winter (31 %; Table 4), a result of strong seasonal variation of surface wind speed. In 

contrast, condensation is negligible in winter due to the substantially lower DMS emissions and thus H2SO4 concentrations 

(section 4.2). In summer and fall, however, the contribution from condensational growth (60 % in summer and 42 % in fall) 

exceeded that from FT entrainment, and became the dominate source of the Ac mode. This suggests that ocean ecosystems may 

have a substantial influence on Ac mode particles, and therefore MBL CCN populations in ENA. The variation in relative 5 

importance despite similar EAc|COND in spring to fall (Fig. 9a) is mainly due to the large seasonal variation in FT entrainment 

efficiencies. The estimated contribution from condensation is consistent with observations of individual aerosol particles in the 

western Atlantic (Sanchez et al., 2018), but is substantially higher than that simulated over the remote Southern Hemisphere 

oceans during summertime (Hannele et al., 2008). This difference is likely due to the much higher DMS sea surface 

concentration in ENA (~7.5 nM) than that in the southern oceans (~2.5 nM) (Kettle et al., 1999), or due to the difference between 10 

observed and model-simulated aerosol size distributions, etc.. 

 

Major uncertainty in the above estimates comes from the concentration of condensates. First, there can be condensates other than 

H2SO4, such as organics. Common biogenic volatile organic compounds (BVOCs) such as isoprene and monoterpenes typically 

have very low mixing ratio, and SOA formation from these BVOCs is generally minor in the remote marine environment 15 

(Kavouras and Stephanou, 2002; Arnold et al., 2009; Gantt et al., 2009; Myriokefalitakis et al., 2010). However, recent studies 

suggest that photochemistry or heterogeneous oxidation at the sea surface microlayer may represent a substantial source of 

oxygenated gas-phase organic compounds (OVOCs), which potentially plays an important role in SOA formation and particle 

growth in the Arctic MBL (Burkart et al., 2017; Willis et al., 2017; Mungall et al., 2017). It is possible that the SOA formation 

from these OVOCs can contribute to the growth of Aitken mode particles in ENA as well. If so, the contribution to CCN by the 20 

growth of Aitken mode particles would be even higher than the estimate here, which is based on condensation of H2SO4 only. 

Second, several studies (Langley et al., 2010; Corbett and Fischbeck, 1997; Capaldo et al., 1999; Corbett et al., 2007; Wang et al., 

2008; Johansson et al., 2017) have shown ship emissions represent a significant source of SO2 in the MBL. In this study, the 

concentrations of SO2 and H2SO4 are estimated using DMS-SO2-H2SO4 yields based on an observation-based parameterization 

(Russell et al., 1994; Pandis et al., 1994). Therefore, H2SO4 formed from ship emitted SO2, and its contribution to condensational 25 

particle growth is implicitly included.  

 

6.3 Controlling processes of Aitken mode 

The governing equation of NAt is given by: 

tFT SSA COND COAG INTt At t At t At t At t A t AtN N N N N N         (1a) 30 

Following the same approach in Section 6.2, we have: 

, (1 ))(t At SSA At t AFT COAG COND Nt t I TAt t AtN f N N N          (11) 

The contribution of SSA to the Aitken mode is even smaller than it is to the Ac mode, which is estimated to be no larger than 10 % 

(Table 4). As a result, the entrainment of FT At mode particles represents the dominant source (Fig. 9a). ∂tNAt|FT is higher in 

spring-summer while lower in fall-winter, and such seasonal variation is somewhat different from those of CO mixing ratio and 35 

EBC mass concentrations (Fig. 9b). These differences may be partially due to stronger new particle formation from biogenic 

precursors in the FT during spring and summer seasons (Sanchez et al., 2018). The strength of new particle formation is not 

correlated with CO or EBC concentrations, which are tracers for anthropogenic emissions. The contribution of NPF versus 
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anthropogenic emissions to FT Aitken mode particles cannot be quantitatively determined using data presented here alone, and 

will be a subject of future study. 

 

On an annual basis, inter-modal coagulation is the major (55 %) sink of NAt (Fig. 9), followed by condensation growth (28 %) 

and interstitial scavenging (16 %). While it is less important when compared to inter-modal coagulation, interstitial scavenging is 5 

substantial and cannot be neglected. This is consistent with the finding of Pierce et al. (2015). The overall removal efficiency of 

NAt (~10 % day-1) is substantially lower than those of NAc and NLA, which corresponds to a longer lifetime (~ 10 days) for At 

mode particles in MBL. The NAt removal efficiency is higher in summer and lower in winter, which is opposite to that of Ac and 

LA modes. This is partially due to the less efficient removal of At mode particles by coagulation and interstitial scavenging in 

winter, as a result of lower NAc and therefore droplet number concentrations. In addition, the low DMS fluxes during winter 10 

(section 4.2) lead to substantially weakened condensation growth of At mode particles into Ac mode size ranges, which also 

contribute to the lower overall removal efficiency in winter. Relative importance of these three removal processes is quite 

consistent in spring to fall, with contributions from coagulation, condensation and interstitial scavenging being around 51 %, 

33 % and 16 %, respectively. In winter, condensation becomes a negligible (7 %) removal processes, while the contribution of 

coagulation dominates (71 %), with the remaining 22 % due to interstitial scavenging.  15 

 

We note that there may be some uncertainties in the above estimates, especially the rate of interstitial scavenging, which depends 

on Aitken mode size distribution, the super-saturation inside clouds, as well as the effective cloud droplet diameters. Based on 

the assumed baseline conditions (effective cloud droplet diameters of 10 um, average dry interstitial aerosols of 48 nm, and 

average ss of 0.12 %; see section 4.1), relative sensitivities of the Kint, d are 10 % / μm, -5 % / nm, and -8 % / % with respect to 20 

changes in droplet diameter, dry interstitial aerosol diameter, and average ss, respectively. For average cloud droplet diameter at 

15 μm, geometrical mean Aitken mode diameter of 45 nm and average ss of 0.1 %, a condition that is more favorable for 

intestinal scavenging, corresponding interstitial scavenging rate would increase by a factor of 1.8. 

 

Given the low contribution of SSA to the At mode particles, the governing equation for Aitken mode, Eq. (1a) can be simplified 25 

into: 

FT COAG COND INTt At t At t At t At t AtN N N N N      (12) 

 

7. Conclusion 

We examine the seasonal variations of aerosol properties, trace gas mixing ratios, and meteorological parameters measured at the 30 

ARM ENA site on Graciosa Island over a three-year period from 2015 to 2017. Aerosol size distributions from 70 nm to 1 μm 

typically consist of three modes: At (< 100 nm), Ac (100 to ~300 nm) and LA (> 300 nm) modes. Observed CCN number 

concentrations are in general agreement with the sum of NAc and NLA. The particle number concentration and mode diameter of 

the three modes exhibits different seasonal variations, suggesting that they are controlled by different processes.  

 35 

Sources of LA mode particles are dominated by SSA. The major sinks of NLA are in-cloud coalescence scavenging and dilution 

by entrained FT air. NLA is higher in winter and lower in summer. The higher NLA during winter is attributed to strong SSA 

production flux due to high wind speed, which prevails over an increase in in-cloud coalescence scavenging. The seasonal 
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variation of steady-state NLA is derived from scaling the rates of the major processes, and the result agrees well with the 

observation.  

 

In comparison, SSA represents a relatively minor fraction of NAc and NAt, with estimated annual mean contributions being 21 % 

and no larger than 10 %, respectively. For NAc, the other sources are entrained FT Ac mode particles and condensational growth 5 

of Aitken mode particle inside the MBL, while the major sink is in-cloud coalescence scavenging. The derived FT contribution 

to NAc generally follows the seasonal trends of CO and EBC, namely higher in spring-winter and lower in summer, consistent 

with the picture that anthropogenic emissions represent the main source of entrained FT Ac mode particles. While entrainment 

from the FT is the major source on the annual basis, the relative importance of the different sources varies strongly with the 

season. In summer and fall, condensation growth of the At mode may become the dominant source, contributing 60 % and 42 % 10 

of the Ac mode particles in the MBL. In winter, SSA contributes to ~ 31 % of the Ac mode, surpassing the contribution due to 

condensational growth. This is due to a combination of strong surface wind speed and lower DMS emissions during winter 

season.  

 

For NAt, entrainment from the FT is expected to be the dominant source, and coagulation represents the major sink. The derived 15 

FT contribution to NAt is higher in spring-summer and lower in fall-winter, possibly due to stronger NPF from biogenic 

precursors in the FT during spring and summer seasons (Tarrasón et al., 1995). The relative importance of NPF and long-range 

transported continental emissions to FT Aitken and nucleation mode particles, and the subsequent contribution to the MBL CCN 

population will be examined in future studies. On an annual basis, 52 %, 32 % and 16 % of NAt are removed by inter-modal 

coagulation, condensational growth and interstitial scavenging, respectively. Relative importance of these three removal 20 

processes is quite similar from spring to fall. In winter, condensation becomes a negligible (7 %) removal process due to the low 

DMS fluxes, while contribution of coagulation increases to 71 %. 

 

Based on the above results, the processes that control the concentrations of the different particle modes are summarized in Fig. 

10. These results suggest particles entrained from the free troposphere represent the major source of CCN in the marine boundary 25 

layer. Some of the entrained particles directly contribute to the Ac mode population in the MBL, and are sufficiently large to 

serve as CCN. In addition, Aitken mode particles in the free troposphere, which are attributed to NPF and long-range transported 

continental emissions, can grow and form CCN after their entrainment into the MBL. Our calculation suggests that this 

represents a significant source of MBL CCN all year, with the highest contribution of nearly 60 % during summer seasons. As 

the growth of Aitken mode particles to CCN size is to a large degree the result of the condensation of sulfuric acid, a product of 30 

DMS oxidation, this suggests that ocean ecosystems may have a substantial influence on MBL CCN population in ENA through 

emission of DMS.  
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Figures and Tables 

 

Figure 1. Cluster analysis of 10-day back-trajectories arriving at 100 m above the ENA site in different seasons. The analysis was 
conducted using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 4 model (Stein et al., 2015). The 10-day back 
trajectories were simulated with a time step of 6 hours using National Centers for Environmental Prediction (NCEP) Global Data Assimilation 5 
System (GDAS) meteorological data as input. A cluster analysis of these trajectories was then performed, and for each season, the solution that 
captures most of the variance (e.g., Abdalmogith and Harrison (2005)) and with less than 5 identified clusters is chosen. The average 
trajectories of the clusters are represented by different colors, and the associated numbers denoted the arbitrarily given cluster ID and the 
occurrence percentages of this cluster. For example, number of 1 (90 %) beside the red trajectories indicated that the No. 1 cluster has an 
average trajectory shown by the red lines, and at 90 % times the air masses arriving at the ENA site belong to this cluster. 10 
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Figure 2. Seasonal variations of (a) CO mixing ratio, (b) O3 mixing ratio, and (c) EBC concentration at the ENA site. The blue, green, and red 
lines represent the monthly average for the year 2015, 2016, and 2017, respectively. The whiskers and boxes show the 90th, 75th, median, 25th 
and 10th percentiles, and the black circle and line represent the mean value of each month for the entire three years. 

 5 
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Figure 3. Representative aerosol size distribution measured at the ENA site. Time series of the (a1) number and (a2) volume size 
distributions during the study period from Sept. 2016 to Aug. 2017, and the fitted lognormal modes of (b1) number and (b2) volume 
distributions averaged over the one year period. The fluctuations at ~600 nm (also seen in Fig. 4) are considered as instrumental artefacts.  
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Figure 4: Annual and seasonal variations of aerosol size distributions at the ENA site from 2015 to 2017. (a) Seasonal-averaged number 
and volume distribution; (b) similar to Fig 2a, but for total aerosol number CN, and the number concentrations of At, Ac, and LA modes (NAt, 
NAc and NLA). 
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Figure 5. Potential key controlling processes of MBL aerosol number concentrations considered in this study.  
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Figure 6. Evidences of key controlling processes of LA mode as SSA and in-cloud coalescence scavenging. (a,b) Dependencies of NLA 
with EBC and WS for data in 2015 to 2017; (c) correlation between VLA and PMc Bsca for data in 2015 to 2017. The value of r given referred to 
the Pearson correlation coefficient, while the regression line based on York et al. (2004) is also shown for reference. (d,e) Estimated NLA 
sinking efficiency due to (d) in-cloud coalescence scavenging and (e) dilution of FT entrainment. (f) Indicators of the major NLA source of SSA, 5 
and (g) the corresponding scaled ratios in comparison with observed NLA seasonal patterns. Data shown in (d-g) are from Sept. 2016 to Aug. 
2017. The whispers and boxes indicated the 90th, 75th, median, 25th and 10th percentile, respectively. The black circle and lines indicated 
overall means. 
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Figure 7. Dependence of NAt and NAc on WS and EBC in 2015 to 2017. The whispers and boxes indicated the 90th, 75th, median, 25th and 
10th percentile, respectively. 
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Figure 8. Estimation of SSA contributions to CN and CCN (0.1%), namely CCN concentration at 0.1% supersaturation level. (a) Previously 
published SSA production flux functions used here, and (b) SSA contribution to observed CN and CCN(0.1 %) estimated with each of the four 
SSA production flux functions. 
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Figure 9. Major controlling processes for each mode. (a) Estimated processing efficiency of each mode in different seasons. (b) Comparison 
of required seasonal-average FT entrainment rate to NAt and NAc, with CO and EBC. The whispers and boxes indicated the 90th, 75th, median, 
25th and 10th percentile, respectively. The black circle and lines indicated overall means. 
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Figure 10. Concept model of key controlling processes of MBL aerosol number concentrations for each mode at ENA. Dash lines 
indicate the non-dominating but contributing processes. Negligible processes are not shown here. 
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Table 1. Measurements of aerosol and cloud properties at the ENA site used in this study 

Measurements Symbol Unit Instruments Time resolution 
Measurement 

period 

Total aerosol number 
concentration 

CN cm-3 
Condensation Particle Counter, Model 

3772, TSI Incorporated, Shoreview, 
MN 

1 s 
Oct. 2013 to 

Aug. 2014, June 
2015 to present 

Aerosol number size 
distribution from 70 

nm to 1 μm a 
dN/dlnDp cm-3 

Ultra High Sensitivity Aerosol 
Spectrometer (UHSAS), DMT, 

Boulder, CO 
10 s 

Feb. 2014 to 
present 

CCN number 
concentration at five 

super-saturations (ss)b 
CCN (ss) cm-3 

Cloud Condensation Nuclei counter, 
Model CCN-100, DMT, Boulder, CO 

1 s, ss level 
changes every 

~12 min 

Oct. 2013 to 
Apr. 2015, July 
2016 to present 

Aerosol absorbing 
coefficient 

Babs Mm-1 
3-wavelength Particle Soot Absorption 

Photometer (3λ-PSAP), Radiance 
Research, Seattle, WA, USA 

1 s for PSAP and 
5 s for 

Nephelometer, 
inlet upper cut 
size changes 

between 1 μm 
and 10 μm every 

hour 

Oct. 2013 to 
present 

Aerosol scattering 
coefficient 

Bsca Mm-1 
Nephelometer, Model 3563, TSI 

Incorporated, Shoreview, MN 
Jan. 2014 to 

present 

Trace gases of CO, 
NO2 and H2O 

/ ppb 
Gas Analyzer, Model 48C, Thermo 
Electron Corporation, Franklin, MA 

1 s 
April 2015 to 

present 

Trace gas of O3 / ppb 
Ozone monitor, Model 49i, Thermo 
Fisher Scientific Inc., Franklin, MA 

1 s 
Oct. 2013 to 

present 

Meteorological 
parameters c 

/ / 
ENA Aerosol Observing System 

(AOSMET, DOI: 10.5439/1025153) 
1 s 

Jan. 2014 to 
present 

MBL height d HMBL m 
Vertically pointing K-band cloud radar 

(KAZR); Ceilometer, Model CL31, 
Vaisala, Inc. (North America Support 
Office), Woburn, MA and Ceilometer 

CL31 

16 s 
Dec. 2014 to 

present 
Cloud thickness d h M 

Cloudy time fraction d pcloud / 

Precipitation rate at 
cloud base d 

PCB mm h-1 30 min 
Oct. 2015 to 

present 

 

a In fact the lower size limit of UHSAS is 60 nm. Here we used only data larger than 70 nm to avoid noises sometimes observed in 
the first several channels of the UHSAS. 
b Measured at ss levels of 0.1 %, 0.2 %, 0.5 % 0.8 % and 1 %. 5 
c Including wind speed (WS) and wind direction (WD), temperature (T), pressure, relative humidity (RH), and rain rate at ground. 
d See details in section 2.2.2.  
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Table 2. Statistics of the fitted lognormal mode parameters of the number size distribution measured at the ENA site. The numbers 
are shown as “mean (standard derivation)” for Sept. 2016 to Aug. 2017 and each of the four seasons during the one year period. Mode Dp 
and mode σ are the mean and standard deviation of the fitted lognormal distribution of that mode, respectively.  

 Annual 
Spring 
(MAM) 

Summer 
(JJA) 

Fall 
(SON) 

Winter 
(DJF) 

Mode N 
(cm-3) 

At 330 (239) 386 (250) 360 (226) 301 (265) 273 (190) 

Ac 114 (91) 127 (109) 143 (81) 88 (69) 92 (89) 

LA 14 (10) 13 (9) 10 (7) 14 (10) 18 (11) 

Mode Dp 
(nm) 

Ac 157 (27) 154 (27) 161 (25) 158 (27) 155 (31) 

LA 549 (110) 532 (106) 615 (102) 538 (102) 510 (99) 

Mode σ  
Ac 1.3 (0.3) 1.3 (0.4) 1.3 (0.2) 1.3 (0.3) 1.4 (0.4) 

LA 1.8 (0.7) 1.8 (0.6) 1.8 (0.7) 1.8 (0.7) 1.8 (0.6) 

Mode 
volume 

 (μm3 m-3) 

Ac 0.3 (0.4) 0.4 (0.3) 0.5 (0.4) 0.3 (0.3) 0.3 (0.4) 

LA 1.1 (0.6) 1.1 (0.4) 0.9 (0.3) 1.1 (0.5) 1.4 (0.7) 

Occurrence 
(%) 

Ac 85 86 93 86 73 

LA 83 79 84 84 86 

Mode gap Dp 
(nm) 

At ~ Ac 101 (35) 100 (34) 93 (27) 104 (32) 109 (44) 

Ac ~ LA 490 (104) 480 (91) 545 (111) 470 (96) 452 (90) 
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Table 3. Estimated terms of the governing equations for three modes using size distribution parameters in Table 2a. 

Progress description 
Process Rate 

Quantified 

Process Rate (cm-3 day-1) 

Annual 
Spring 
(MAM) 

Summer 
(JJA) 

Fall 
(SON) 

Winter 
(DJF) 

Intra-modal 

Coagulation 

At+AtAc ∂tNAc|COAG 0.3 0.4 0.4 0.2 0.2 

Ac+AcLA ∂tNLA|COAG 0.02 0.02 0.02 0.01 0.01 

Inter-modal 

Coagulation 

At+AcAc -∂tNAt|COAG 14.1 18.3 20.4 9.8 9.0 

At+LALA -∂tNAt|COAG 4.5 5.2 3.7 4.1 4.6 

Ac+LALA -∂tNAc|COAG 0.2 0.2 0.2 0.1 0.2 

Gas-phase 

Condensation from 

H2SO4
a 

AtAc -∂tNAt|COND = 
∂tNAc|COND 9.5 16.1 15.2 9.1 1.4 

AcLA -∂tNAc|COND = 
∂tNLA|COND 0.6 0.7 0.6 0.5 0.6 

In-cloud Coagulation 

of Interstitial Aerosolb 

AtCloud 

Droplet (Ac and 

LA) 

-∂tNAt|INT 5.6 6.8 8.6 3.7 3.9 

In-cloud Coalescence 

Scavenging 

Cloud Droplet 

(Ac and 

LA)Drizzling 

-∂tNAc|COALES 33.1 50.9 24.6 20.8 29.6 

-∂tNLA|COALES 4.0 5.4 1.6 3.3 5.8 

a Gas-phase H2SO4 is assumed to be 1.35 ppt (Pandis et al., 1994); see sensitivity analysis in section 6.2. 
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Table 4. Parameters and results in estimation of SSA contribution to NAt and NAc. 

 Annual Spring Summer Fall Winter 

kINT,max
a 3.4 4.4 1.7 3.5 4.3 

fSSA, Ac (%) 21 ± 18 19 ± 15 12 ± 13 24 ± 18 31 ± 22 

fSSA, At
a (%) 10 ± 10 9 ± 8 8 ± 6 7 ± 9 16 ± 12 

a Here only an upper limit of kINT without considering the condensation growth is estimated. Correspondingly, the fSSA, At is also 
expected to be an upper limit.  
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