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Thank you for going through the manuscript once more and catching a few last ambigui-4

ties.5

1 Specific Replies6

Line 10 p1: Underestimates the cloud phase partitioning? I guess the authors mean7

”underestimates the ratio of ice to liquid and ice cloud? (referred to as phase ratio in8

your manuscript). Please re-word so that the reader can understand without having to9

read the whole manuscript.10

This is a good idea, we made it more clear.11

Line 28 p12: There is no mixed-phase cloud category in the observations (only a likely12

mixed-phase cloud category) so it is not exactly true to say this. Maybe the authors should13

add something like ”as well as the satellite product assuming that the undefined-phase14

clouds are considered as mixed-phase clouds (Cesana et al., 2016)”.15

This has been implemented.16

Line 8 p13: ”the one obtained by the simulator” → ”than the observations”.17

Also maybe the authors should say explicitly that it means less ice clouds than in the obs.18

You are right, this sentence did not make sense..19

Line 17 p13: ”COSP simulator” → ”COSP simulator compared to the observations”.20

This has been implemented.21

Last paragraph p13: It could also be that the model does not produce the ice formation22

below supercooled liquid clouds in the polar regions, which represent most of undef-phase23

clouds (likely mixed-phase clouds) in the observations.24

A more detailed study on specific regions and causes for the lack of heterogeneous ice25

formation in these cold liquid clouds is needed. From Fig. 12 in the manuscript one can26

see, that Northern Hemisphere mid-latitudes and the Southern Ocean are a good place27

to start.28

Or maybe it is classified as snow and snow is not considered as ice clouds in the 2M model29

compared to the default version if I understand correctly?30

You understood correctly. However, snow primarily forms within deep clouds which usu-31

ally cover the entire mixed-phase temperature regime, i.e. there is no effect from neglect-32

ing snowy levels. Levels that contain out-of-cloud snow that formed within mixed-phase33

clouds are rare.34
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Abstract. Cloud microphysics schemes in global climate models have long suffered from a lack of reliable satellite observa-

tions of cloud ice. At the same time there is a broad consensus that the correct simulation of cloud phase is imperative for a

reliable assessment of Earth’s climate sensitivity. At the core of this problem is understanding the causes for the inter-model

spread of the predicted cloud phase partitioning. This work introduces a new method to build a sound cause-and-effect relation

between the microphysical parameterizations employed in our model and the resulting cloud field by analyzing ice formation5

pathways. We find that freezing processes in supercooled liquid clouds only dominate ice formation in roughly 6 % of the sim-

ulated clouds, a small fraction compared to roughly 63 % of the clouds governed by freezing in the cirrus temperature regime

below −35 ◦C. This pathway analysis further reveals that even in the mixed-phase temperature regime between −35 ◦C and

0 ◦C, the dominant source of ice is the sedimentation of ice crystals that originated in the cirrus regime. The simulated cloud

phase partitioning fraction of ice cloud to total cloud amount in our model underestimates is lower than that reported by the10

CALIPSO-GOCCP satellite product. This is most likely caused by structural differences of the cloud and aerosol fields in our

model rather than the microphysical parametrizations employed.

1 Introduction

Clouds are an important modulator for Earth’s climate. They exert a net radiative effect of approximately−20 Wm−2 and thus

significantly cool the planet (Boucher et al., 2013). Compared to this, the forcing induced by well-mixed greenhouse gases15

since pre-industrial times is almost one order of magnitude smaller, approximately 3 Wm−2 (Myhre et al., 2013), and has the

opposite sign associated with a warming. Small changes in the cloud radiative effect can therefore easily offset or strengthen a

greenhouse gas induced warming. In fact, there is a broad consensus that clouds contribute the largest uncertainty for climate

projections in state-of-the-art atmospheric general circulation and Earth system models (Flato et al., 2013).

The models that contributed to the Coupled Model Intercomparison Project Phase 5 (CMIP5) generally agree that cloud20

adjustments to a warming climate will likely further reinforce the initial warming, a positive feedback loop. Clouds are expected

to become fewer, higher and optically thicker in the global mean (Zelinka et al., 2013).

The warming response of cloud ice has been hypothesized to counteract and therefore reduce the global mean, net positive

cloud feedback through a transition from optically thin ice clouds in the present day climate to optically thick liquid clouds in

a warmer climate (Mitchell et al., 1989; Storelvmo et al., 2015; Ceppi et al., 2016; Frey and Kay, 2018). The magnitude of this25
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so-called cloud phase feedback strongly depends on the simulation of the present-day cloud phase partitioning in models. It is

well established that models tend to underestimate the ratio of supercooled liquid water to ice in present-day conditions (Cesana

et al., 2015). This leads to an overestimation of the magnitude of the cloud phase feedback (Li and Le Treut, 1992; Terai et al.,

2016; Tan et al., 2016) in a greenhouse gas induced, warmer climate in some models. Recent modeling efforts challenge the

universality of this finding (Lohmann and Neubauer, 2018; Bodas-Salcedo, 2018), calling for a more comprehensive description5

of ice formation pathways in GCMs.

Especially sensitive to global warming is ice in mixed-phase clouds, predominantly originating from heterogeneous im-

mersion or contact freezing of mineral dust (Atkinson et al., 2013; DeMott et al., 2015; Kanji et al., 2017). Those clouds are

usually found in the temperature range between −38 ◦C and 0 ◦C which we therefore refer to as the mixed-phase temperature

regime. Beyond the theoretical and experimental uncertainties of the freezing mechanisms (Welti et al., 2014; Ickes et al., 2015;10

Marcolli, 2017), a realistic representation of cloud glaciation is further complicated by uncertainties in the parameterization of

subsequent ice growth and sedimentation. Due to the lower saturation water vapor pressure over an ice crystal compared to a

liquid droplet surface, cloud ice can grow below water saturation, eventually leading to evaporation of the cloud droplets. This

process is called the Wegener-Bergeron-Findeisen (WBF) process and can glaciate a cloud within minutes to hours (Korolev

and Isaac, 2003), depending on the number of ice crystals, temperature and vertical velocity of the air parcel.15

Due to the complex processes governing mixed-phase clouds, models inhibit a very large spread in the simulation of the

phase partitioning (Fan et al., 2011; McCoy et al., 2016). A model intercomparison study of Komurcu et al. (2014) found for

the 6 models (ECHAM6, CAM-IMPACT, CAM-Oslo, CAM5.1 MAM3, CAM5.1 MAM7, SPRINTARS) in their study that

even for the same ice nucleation parameterizations, the spread in the simulated phase partitioning among the models was not

reduced.20

A significant portion of cloud ice is found at temperatures below−38 ◦C. There, ice crystals can freeze homogeneously from

pre-activated cloud droplets (Lohmann et al., 2016) and deliquesced aerosols (Koop et al., 2000) or nucleate directly on an ice

nucleating particle (INP). The latter two processes do not require water saturation, leading to fundamentally different types

of cirrus clouds (Krämer et al., 2016; Wernli et al., 2016; Gasparini et al., 2018) with significant differences in the respective

microphysical and thus optical properties, highlighting the need for a correct representation of ice formation pathways of all25

clouds containing ice, not just those in the mixed-phase regime.

These complex, sub-grid scale processes can only be studies through idealized laboratory measurements and inferred from

comprehensive field studies which are usually conducted over small areas. Being weakly constrained, ice process parameteri-

zations differ greatly among models and with that different ice formation pathways can be favored leading to the wide spread

in phase partitioning among models (Cesana et al., 2015; McCoy et al., 2016). To find the parameterizations that control the30

cloud phase partitioning, we need to quantify the impact each process has on the simulated cloud fields.

The amount of ice that forms following a nucleation event in either a mixed-phase or cirrus cloud strongly depends on

the available humidity and, in the case of mixed-phase clouds, liquid water. A strong nucleation event does not necessarily

induce a long-lived or massive ice cloud and vice versa. Furthermore, sedimentation of cloud ice disconnects ice initiation and

growth regions which further complicates diagnosing the causal link between the parameterized microphysical processes and35

2



the observed cloud state. Traditional, spatio-temporally averaged model output usually reports the mean state of the cloud fields

and sometimes microphysical tendencies, but does not allow to trace back the dominant microphysical formation mechanisms

due to the reasons above. Unlike the real atmosphere, which does not directly reveal its governing processes, the models do

so by definition. Here we harvest this additional information that is present in the models by introducing additional tracers to

quantify the microphysical ice formation pathways along with the model integration to assess the importance of different ice5

initiation and growth mechanisms.

Furthermore, we use the pathway analysis to classify clouds and accumulate statistics on their properties. The benefit of

cloud classification is well established and has a long history. A common method is the identification of dynamical cloud

regimes to compute conditional statistics (Jakob and Tselioudis, 2003; Williams and Tselioudis, 2007; Williams and Webb,

2009; Tsushima et al., 2016). These methods use high-frequency output and short-term temporal aggregation of cloud top10

temperature vs. cloud optical thickness histograms together with clustering algorithms, classifying the mean dynamic states

over the aggregation period. Our method focuses on the microphysics of cloud formation linking parameterizations and the

resulting cloud fields. This link is essential to identify the parametrizations responsible for potential model to model or model

to observation mismatches.

This study is based on an adapted version of the Predicted Bulk Particle Properties (P3) scheme of Morrison and Milbrandt15

(2015) for the use in a GCM. Single category ice phase microphysics schemes have recently also been implemented in the

Community Atmosphere Model Version 5 (CAM5) GCM (Eidhammer et al., 2017; Xi et al., 2017). Dietlicher et al. (2018)

(hereafter D18) provides a detailed description of the technical aspects of the implementation of P3 in ECHAM6-HAM2, the

GCM we use in this study. This scheme has the decisive advantage of representing cloud ice in a consistent manner, predicting

the particle size distribution as well as the mass-to-size relationship. It employs one single, prognostic ice phase category,20

rendering heuristic conversion rates between in-cloud and precipitation type ice hydrometeors unnecessary. Process rates are

computed offline and read back from look-up tables. This allows to integrate each process rate over the entire particle spectrum.

For example, our scheme consistently represents the size dependence of the depositional growth rate using a size-dependent

ice crystal capacitance. Simplified, size-independent ice crystal growth rates are hypothesized to significantly contribute to the

large spread among models in the simulated phase partitioning (Fan et al., 2011).25

This study can be divided into two parts. First, we show how the new model performs on the global scale and then introduce

the method to elucidate the ice formation pathways in the second part of this study. In Sect. 2 we highlight the main differences

in our model compared to the reference model version ECHAM6.3-HAM2.3 and discuss the new cloud fraction parameter-

ization that has been added since the previous description of the version in D18. We evaluate the simulation of clouds, with

a special focus on cloud ice, against a series of satellite observations in Sect. 3. In the second part, we introduce additional30

prognostic equations that are solved to quantify ice formation pathways in Sect. 4. In Sect. 5 we compile a climatology of cloud

types based on these ice formation pathways and demonstrate how they can help understand cloud phase partitioning.
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2 Model description

The improvements to the previous model version ECHAM6.3-HAM2.3 (Neubauer et al., 2014)) (hereafter called the reference

model) are twofold. In the new model, cloud ice is a fully prognostic quantity, i.e. the advection equation for vertical transport

(sedimentation) is solved online. Describing all ice particles with only a single category based on Morrison and Milbrandt

(2015) no longer requires the heuristic partitioning between in-cloud ice and precipitating snow. The technical details of the5

model regarding prognostic treatment of sedimentation and the associated numerical stability restrictions on the time-step as

well as an inter-comparison of the different ice representation schemes can be found in D18. Here we will focus on the global

evaluation of the new model both in terms of feasibility of the results as well as computational performance.

The predicted bulk particle properties scheme (P3) presented in Morrison and Milbrandt (2015) predicts 4 properties of the

ice particle distribution: the total ice mass mixing ratio qi, the total ice number mixing ratio Ni, the rimed ice mass mixing10

ratio qrim and the rimed ice density brim. Originally developed for the Weather Research and Forecasting model (WRF), the

scheme was not intended for the coarse resolution of GCMs and climate projections. As we have shown in D18 by idealized

single column model (SCM) simulations, GCMs are likely unable to properly represent small-scale weather features like squall

lines to produce significant rimed ice formation. We test this hypothesis in the global setup of ECHAM-HAM in this paper.

The single conceptual deviation from the microphysics scheme described in D18 concerns the sub-grid cloud cover pa-15

rameterization. While this work focuses on the importance of the representation of cloud ice, the sub-grid cloudiness is a

fundamental property of clouds in GCMs, governing both cloud-radiation and cloud-precipitation interactions.

The approach taken in D18 tried to minimize the difference between the new and the reference model by extending the

approach of Sundqvist et al. (1989) (hereafter S89) to ice clouds with a smooth transition from liquid water to ice clouds. As

we will discuss in Sect. 3, this scheme leads to a strong positive bias of cloud cover for cirrus clouds. Therefore, we used a20

slightly different cloud cover scheme here.

The cloud cover scheme has also implications for the growth by condensation and deposition. Diagnosing sub-grid cloud

cover from the large-scale relative humidity creates a tight link between the cloud fraction and growth by condensation or

deposition. The fundamental concept of the S89 scheme is that convergence of humidity within a grid-box contributes to an

increase in total cloud water by condensation and deposition as well as an increase of the cloud fraction through moistening25

of the grid-box. Here we extend this idea to cold clouds and implement a cloud cover scheme which treats the microphysical

structure of ice clouds consistently, requiring mixed-phase clouds to form via the liquid phase and allowing supersaturation in

the cirrus regime.

2.1 Sub-grid cloud fraction

The original sub-grid cloud cover scheme of S89 does not consider cloud ice and assumes that a grid-box will be fully covered30

by the cloud if the water vapor mixing ratio qv surpasses the liquid water saturation mixing ratio qsw, i.e. the relative humidity
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with respect to liquid water sw satisfies sw = qv/qsw = 1. Cloud cover b increases with increasing sw as:

b= 1−
(
smax− sw
smax− smin

) 1
2

. (1)

The parameter smin is the threshold relative humidity for sub-grid cloudiness below grid-box mean water saturation and

smax = 1. The assumptions underlying Eq. (1) are reasonable for synoptic-scale warm clouds. However, this scheme cannot

be easily extended to cold clouds where a grid-box may or may not contain cloud ice in the mixed-phase regime, rendering the5

global use of sw for all temperatures inadequate. At the same time, relative humidity with respect to ice (si) can reach values

higher than 140 % before ice nucleates from deliquesced aerosols (Koop et al., 2000), which is inconsistent with the use of

smax = 1 for ice clouds at cold temperatures. A few approaches exist to overcome either of these aspects. In the following we

present the reasoning that led to the development of the new method used here. For an overview, see Fig. 1.

As illustrated in the top panel of Fig. 1, Lohmann and Roeckner (1996) (the method used in the reference model) replaced10

sw in Eq. (1) by si if a threshold amount of ice is exceeded within the grid-box. This approach has the draw-back that clouds

artificially expand upon glaciation because of the lower saturation water vapor pressure over ice than over liquid water. A

similar approach is taken in Morrison and Gettelman (2008) (and D18; illustrated by the middle panel in Fig. 1) where instead

of the discontinuous transition from liquid water to ice saturation, the saturation liquid and ice water vapor mixing ratios are

interpolated between qsw and qsi as a function of temperature in the mixed-phase regime. The draw-back here is, that this15

interpolated value is not directly relatable to a physical quantity as it does not arise from a valid solution of the Clausius-

Clapeyron equation. Both of these schemes are not designed to allow for sub-grid clouds in the cirrus regime where si needs

to be well above 1 for ice nucleation to occur, i.e. all cirrus clouds formed by homogeneous freezing will occupy the entire

grid-box. Supersaturation with respect to cloud ice has been accounted for in the cloud cover scheme by Gettelman et al.

(2010) where individual cloud fractions for liquid water and ice clouds are computed with a functional dependency of the20

cloud fraction b(s) similar to Eq. (1) but relaxing the relative humidity for complete cloud coverage to smax = 1.1 for ice

clouds and treating the value of smax as a model parameter.

The cloud fraction parameterization used in our microphysics scheme is very similar to this last approach, but we do not

separate cloud cover for liquid and ice clouds. After all, in the mixed-phase regime we expect ice clouds to originate from liquid

clouds (Ansmann et al., 2009; Hoose et al., 2010; Hande and Hoose, 2017). Furthermore, the magnitude of supersaturation for25

complete cloud cover in Gettelman et al. (2010) is arbitrary. The scheme presented here uses a limit which is consistent with

the parameterization of ice nucleation based on the theory of Koop et al. (2000). This scheme is illustrated in the bottom panel

of Fig. 1.

One can associate smin and smax in Eq. (1) with the minimal relative humidity below which clouds start to evaporate and

the maximal relative humidity which can be reached before the cloud covers the entire grid box. These two constraints provide30

some guidelines on how to extend the S89 scheme to cold clouds.

For clouds that form via liquid water, we assume that smax is reached at liquid water saturation, e.g. when liquid water

is assumed to condense immediately, which is a reasonable assumption for stratiform clouds. At temperatures warmer than

−35 ◦C, any ice must form via liquid water, consistent with the above mentioned lidar observations and modeling studies. For

5



colder temperatures, it has been shown (Koop et al., 2000) that ice can nucleate from deliquesced aerosols already below liquid

water saturation.

The minimal relative humidity smin must be chosen such that ice does not sublimate above ice saturation. Cloud ice can

sediment into and form within the mixed-phase regime. For this reason, and in order to retain sub-grid cloudiness for warm

clouds, smin ≤ 1 must hold for all temperatures.5

2.2 Growth by condensation and deposition

The water vapor available for condensation is linked to the cloud cover b by:

Q=−b(∆qv −∆qsw) (2)

where ∆qv is the moisture convergence in the grid-box by the resolved transport and ∆qsw is the change in liquid water

saturation water vapor mixing ratio according to the Clausius-Clapeyron equation. Growth by deposition A is computed as a10

function of the relative humidity with respect to ice si (see e.g. D18):

A= ∆tNiαmfv
4πC(si− 1)

F i
k +F i

d

(3)

where αm = 0.5 is the probability of a water vapor molecule to successfully be incorporated into an ice crystal, ∆t is the model

time step and C is the mean ice particle capacitance integrated over the particle size distribution. The parameters F i
k and F i

d

are thermodynamic parameters depending only on temperature.15

The maximal amount of water that can deposit in a single time step is given by:

Qi =Q+ ql + (qv − qsi) (4)

where ql is the liquid water mixing ratio and qsi is the saturation water vapor mixing ratio with respect to ice. Equation (4)

implicitly represents the WBF process in mixed-phase clouds through the inclusion of ql. The last term in Eq. (4) allows any

water vapor which is supersaturated with respect to cloud ice to deposit onto ice crystals and thus requires to add qi to the water20

vapor mixing ratio for the computation of the relative humidity in Eq. (1) to prevent clouds from shrinking due to deposition.

To account for ice clouds, we replace the relative humidity with respect to liquid water sw in Eq. (1) by the more general

relative humidity term s defined below.

Combining the considerations for growth by condensation/deposition and the computation of cloud fraction, we obtain the

key parameters for the computation of sub-grid cloudiness in Table 1. Two new parameters are introduced: the critical relative25

humidity with respect to liquid water for warm clouds K, which is equivalent to the parameterization for warm clouds used

in the reference model and based on Xu and Krueger (1991), and the relative humidity required for nucleation of ice from

deliquesced aerosols skoop according to the activation theory of Koop et al. (2000) in the cirrus regime.

Two versions of the s and Qi terms are given in Table 1 and represent two different methods to treat depositional growth in

the mixed-phase regime. They bracket the main problem associated with cloud ice when diagnosing cloud cover from relative30

humidity. Cloud ice should be able to grow as long as water vapor is supersaturated with respect to ice. Since we are using
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the relative humidity with respect to liquid water (which is lower than the relative humidity with respect to ice) as maximal

relative humidity smax in the mixed-phase regime, ice growth below water saturation leads to a decrease in relative humidity

and therefore lowers the cloud fraction b. Therefore we implement two versions of the new scheme. The first, default, method

(subscripts 1) links cloud cover to the ice mass mixing ratio. It allows cloud ice to grow below liquid water saturation and

adds cloud ice to water vapor for the computation of s in Eq. (1) to avoid cloud shrinking by vapor deposition. However, this5

coupling makes the sedimentation sink of cloud ice also a sink for cloud fraction. We test the sensitivity of this coupling with

a second method (subscripts 2) where ice growth is inhibited below water saturation in the mixed-phase regime.

3 Model evaluation

We evaluate the new model against a series of satellite observations as well as the reference model and test sensitivities

to parametrization choices. Namely, we extend the investigation of ice properties presented in D18 to the global setup of10

ECHAM-HAM and assess the behaviour of the new cloud cover parametrization. Furthermore, we use an updated version of

the cirrus parametrization, including heterogeneous ice nucleation of mineral dust at temperatures below −35 ◦C at low ice

supersaturation based on Kärcher et al. (2006) (implementation courtesy of Steffen Münch, personal communication).

Results from 5 different model configurations for 10 years from 2003 to 2012 are shown, one with the reference model

(ECHAM6.3-HAM2.3; REF) and 4 with the new scheme. We assess the influence of rime properties in the full P3 scheme15

(4M) by comparison with a model configuration where the rime properties are set to zero (qrim = brim = 0) (2M). For the

reasons presented below, we use the latter as the default configuration of the new model. With 2M as the starting configuration,

we then investigate the effect of the artificial sedimentation-cloud cover feedback introduced by the new cloud cover scheme

by limiting ice growth to liquid water saturation (LIM_ICE) and use an updated version of the cirrus cloud parametrization

which includes heterogeneous ice nucleation on mineral dust below −35 ◦C (HET_CIR). The simulations and the employed20

tuning parameters are summarized in Table 2. The tuning parameters have been adjusted such that the model is in radiative

balance at TOA for the simulations 2M, HET_CIR and REF.

3.1 Computational performance

The new model employs an adaptive time-stepping scheme to achieve numerical stability for the solution of the vertical ad-

vection equation for prognostic sedimentation of cloud ice. Sub-stepping the microphysics scheme comes at a cost, quantified25

by the CPU time column in Table 2. The numbers shown are computed from one year of simulation. Numbers vary by a few

percent between runs, illustrated by the differences between the 2M, LIM_ICE and HET_CIR simulations which are compa-

rable in terms of model complexity. Compared to the reference model, the new model runs approximately 25 % slower in the

2M/LIM_ICE/HET_CIR setups and 40 % slower in the 4M setup. This difference is mainly due to the high fall-speeds of rimed

particles in the 4M simulation, which require more sub-steps. Compared to this, the cost of advecting two additional tracers is30

small.
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3.2 Comparison to the reference model

Two main differences between the new model and the reference model are immediately evident from Table 2. The single cate-

gory no longer requires heuristic parametrizations for falling ice crystals and snow formation. At the same time, the new cloud

cover parametrization allows to reduce the scaling factors, effectively bringing the parametrizations closer to their conceptual

origin.5

To illustrate the most prominent differences in the simulated cloud field, we compare cloud water contents (ice and liquid) as

well as cloud cover in Fig. 2 of the new model in the 2M configuration to the reference model. It is evident that the new model

produces a lot more ice than the reference model. A large part of the difference can be explained by the fact that the single

category scheme includes cloud ice and snow while snow is a diagnostic quantity which is not included in the ice water content

in the two-category scheme employed in the reference model. Of course there are other contributing factors like parameter10

tuning, a switch from the parametrization of homogeneous freezing of cloud droplets from Kärcher and Lohmann (2002) to

Jeffery and Austin (1997) for technical reasons and the cloud cover parametrization which are hard to disentangle.

In the simulated cloud liquid water there is no structural difference; the 2M simulation has substantially higher values

everywhere. As the warm phase is not directly affected by the changes in cloud ice and the cloud cover parametrization, the

differences are due to different autoconversion tuning parameters (γr in Table 2) and interactions with the new cloud cover and15

ice phase parametrizations.

The cloud cover differs significantly due to the new cloud cover parametrization in the new model. Differences are most

pronounced in the cirrus regime where a cloud now only covers the entire grid-box at the high supersaturation needed for

homogeneous nucleation of solution droplets (see Sect. 2). Since this leads to a substantial difference in the cirrus cloud

cover, we compare the reference model and the 2M configuration of the new model to satellite data in the following. For20

this purpose, we make use of the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package

(COSP) (Bodas-Salcedo et al., 2011), which has already been implemented in ECHAM6-HAM2, and compare its output to the

appropriate satellite product; the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), i.e. the GCM

oriented CALIPSO cloud product (GOCCP) (Cesana and Chepfer, 2013). Using a simulator allows for a consistent comparison

of model output and satellite derived cloud fields by minimizing artificial biases introduced by different cloud diagnostics and25

accounts for instrument sensitivity, which is particularly important for CALIPSO to account for the attenuation of the lidar

signal.

The comparison to the cloud cover climatology from 2008 to 2014 of the CALIPSO-GOCCP product in Fig. 3 reveals that

the new scheme fits better to the observed cloud structure (Higher Pearson correlation coefficient ρ= 0.75 and lower root

mean squared error RMSE = 4.0% in the new model as compared to ρ= 0.72 and RMSE = 6.4% in the reference model),30

despite an overall underestimation of cloudiness. It is worth noting that this underestimation is a consequence of the new cloud

cover parametrization and not a result of model tuning. The distinct transition from the negative to positive bias between 5 km

and 10 km in cloud fraction of the reference simulation is a consequence of the discontinuous description of cloud cover from

the mixed-phase temperature regime (0 ◦C to −35 ◦C) to the cirrus regime (colder than −35 ◦C) that has been removed by the
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new scheme. Despite this improvement in terms of the vertical cloud structure, we find that the total cloud cover is worse in

the new model. The bottom left panel in Fig. 4 shows that the total cloud cover differs less between the two models than their

difference in high cloud cover. This is probably due to the vertical overlap of high-level clouds with mid- and low-level clouds

that already cover the entire grid-box. In areas where there are no mid- and low-level clouds, the large amount of high-level

clouds in the reference model can partly offset the overall underestimation of the total cloud cover. As a result, the reference5

model performs better in terms of RMSE for this variable. This is in agreement with Cesana and Waliser (2016) who find that

climate models produce too few cloudy columns but that the clouds cover more vertical levels when present.

3.3 Model tuning strategy

Model tuning has been conducted for the reference model (REF) and the two configurations of the new model 2M and

HET_CIR while the 4M and LIM_ICE configurations use the same tuning as 2M. A summary of global, annual mean quantities10

is shown in Table 3. The main target of the tuning process has been the global, annual mean shortwave (SW) and longwave

(LW) fluxes at TOA as well as the sum of the two. With the tuning parameters summarized in Table 2 we have a direct handle

on the global, annual mean cloud radiative effect (CRE) at TOA, defined as the difference of all-sky and clear-sky radiative

fluxes. To reach our SW and LW radiation as well as the radiation imbalance tuning targets at TOA, we adjust the CRE. A

consequence of this tuning strategy is that all model simulations (including the reference model with a substantially different15

microphysics scheme) have a net CRE roughly between −26 Wm−2 and −27 Wm−2 (depending on the achieved imbalance)

which is more negative than any of the observational estimates and points at a structural problem in the model which is not

specific to the microphysics scheme.

We compare the simulated zonal, annual mean precipitation to the Global Precipitation Climatology Product (GPCP) (Adler

et al., 2018) for the years 2003 to 2012. Total precipitation is largely governed by the rate of evaporation at the surface. As20

the sea surface temperature is prescribed and most evaporation occurs over the oceans, cloud microphysics and convection

parametrizations must produce similar amounts of total surface precipitation.

The lower cloud cover of the 2M and 4M simulations as compared to the LIM_ICE simulation is a direct consequence of

the coupling of cloud ice and cloud cover. There are two main contributors: 1) The LIM_ICE configuration does not link the

sedimentation sink of cloud ice to cloud cover while the other configurations (2M, 4M and HET_CIR) do and 2) the LIM_ICE25

configuration limits depositional growth of ice crystals and therefore the removal of water vapor by ice sedimentation is weaker,

leaving more humidity in the atmosphere which in turn leads to more clouds.

For the TOA energy fluxes we use the climatology from 2000 to 2017 from the Clouds and the Earth’s Radiant Energy

System (CERES) Edition-4.0 Energy Balanced And Filled (EBAF) (Loeb et al., 2018) product for the model evaluation.

Without the overestimation of cirrus cloud cover, we can reduce the convective rain formation rate γcpr to values closer30

to the pure ECHAM6 (without online aerosols from the HAM model and a single moment cloud microphysics scheme, see

Stevens et al. (2013)) model with a value of 2× 10−4 s−1 (Mauritsen et al., 2012). This allows to retain more water vapor in

the updraft cores, thus enhancing the formation of tropical cirrus clouds in the outflow regions of convective anvils, associated

with a more pronounced peak in the LW CRE in the tropics (Fig. 4). However, the correlation coefficients with the CERES
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EBAF dataset are very similar to the reference model while the RMSE’s are larger in all configurations of the new model.

This is most likely a consequence of the different tuning in the two models. In the reference model both LW and SW CRE are

stronger while the TOA fluxes are at the lower end of the tuning target in terms of magnitude, cf. Table 3.

3.4 Cloud ice

In Fig. 5 we evaluate the representation of cloud ice in the new model against the dataset compiled from CloudSat and5

CALIPSO retrievals by Li et al. (2012). This dataset is based on three different cloud water content products: 2B-CWC-RO4

(Austin et al., 2009), DARDAR (raDAR/liDAR) (Hogan, 2006; Delanoë and Hogan, 2008, 2010) and 2C-ICE (Deng et al.,

2013). This dataset has the advantage that considerable effort has been put into the distinction between in-cloud ice in strati-

form clouds (CIWC) and snow from stratiform clouds and convective cores (TIWC). The latter can usually not be diagnosed

in models which treat snow formation diagnostically. The new single category ice scheme used in this study only predicts the10

total stratiform ice water content, including snow. Therefore TIWC is most meaningful for a comparison with this model in the

extra-tropics where the contribution from convective snow is rather small. The reference model predicts stratiform cloud ice

explicitly but diagnoses the snow mass flux. Therefore we can make full use of the distinction by Li et al. (2012) and compare

the reference model to CIWC.

Comparing the different simulations of the new scheme, we see that the 2M and 4M simulations are very similar both in15

terms of ice water content profiles (top row) and ice water path (TIWP and CIWP respectively; bottom). The effect of riming

on the ice crystal properties is most evident in the mid-latitudes. There, the 4M configuration produces rimed or partially rimed

particles with higher fall speeds which results in a reduced ice water content in the lower atmosphere (below roughly 700 hPa)

as compared to the 2M configuration where riming does not affect particle properties and thus fall speeds. However, the overall

similarities suggest that the increased computational cost of the 4M configuration (see Table 2) and parametrization complexity20

(4 versus 2 prognostic ice moments) do not significantly improve the overall representation of cloud ice in the GCM.

As explained in Sect. 2, the new cloud cover parametrization couples the cloud fraction to the ice water content. The

aggregation parametrization depends on the concentration of ice crystals Sagg ∝N2
i , which in turn is computed from the grid-

box mean value as Ni =N ib
−1, i.e. Sagg ∝ b−2. We denote the parametrized source and sink terms by S• = (∂tqi)• i.e. the

partial time derivative ∂t of cloud ice qi restricted to one process. This leads to an artificial feedback loop: Aggregation reduces25

Ni, increases ice particle size, fall speed and thus the sedimentation sink. Because cloud ice is linked to cloud cover (see the

definition of s1 in Table 1 which replaces sw in Eq. (1) in the new cloud cover parametrization) the sedimentation of cloud ice

decreases the cloud fraction b which in turn increases the in-cloud Ni and the ice crystal aggregation rate Sagg artificially. This

feedback is the main contributor to the overall slightly lower ice water contents in 2M simulation as compared to the LIM_ICE

simulation, which does not have this feedback, and outweighs the effect from the additional humidity that is available for ice30

growth in the 2M simulation. We acknowledge the existence of this artificial increase of the in-cloud Ni by sedimentation and

the resulting feedback, but do not consider it to be important enough to sacrifice the physical correctness of the method used

in the 2M configuration.
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The most prominent differences between our simulations and the observations are in the tropics. As can be seen from Table 3,

two thirds of the entire surface precipitation is produced by the convective scheme. Since convective precipitation is a diagnostic

quantity which is not included in the total ice water content here, a direct comparison of modeled, stratiform IWC/IWP with

the observations is limited. With that in mind, we find that the 2M and 4M configurations of the new model underestimate

the observed TIWP by roughly a factor of 3 in the tropics (Fig. 5). This is true for both the new model and the reference5

model (which has to be compared to CIWP/CIWC). Higher values for TIWP are produced by the LIM_ICE and HET_CIR

simulations. While the slightly higher values in the LIM_ICE simulation are due to the cloud fraction - sedimentation feedback

explained above, the IWC values in the HET_CIR simulations are almost twice as large as in the 2M/4M configurations and

are a result of the lower ice supersaturation needed for ice crystals to nucleate heterogeneously. This allows for a more frequent

formation of ice clouds at cold temperatures.10

In the extra-tropics, the stratiform IWC is more representative of the observed TIWC/TIWP and we find slightly better

agreement between the models and observations (Fig. 5). The vertical profile of TIWC in the mid- and high latitudes is not

reproduced by the new model in any configuration, a feature shared with many CMIP5 models (Li et al., 2012), while the

reference model performs rather well and only slightly underestimates the ice water path in mid-latitudes.

On the basis of the evaluation above, we choose the 2M configuration as default for the new model for its computational15

efficiency compared to the 4M configuration and physical correctness compared to the LIM_ICE configuration. Heterogeneous

nucleation of ice crystals at low ice supersaturation in the cirrus regime (parametrized in the HET_CIR configuration) can be

included optionally for future work with the new model and yields promising results but is not used for the analysis in Sects. 4

and 5 since it’s in part based on unpublished work.

3.5 Cloud liquid water20

We compare the simulations with the new and the reference model to the Multisensor Advanced Climatology of Liquid Water

Path (MAC-LWP) (O’Dell et al., 2008; Elsaesser et al., 2017), see Fig. 6. Microwave sensors cannot reliably distinguish

precipitation from cloud water. Therefore we only evaluate regions with low precipitation, i.e. where the liquid water (LWP)

and total water path (TWP) have similar magnitude. We use the threshold LWP/TWP > 0.8 suggested by Elsaesser et al.

(2017). The differences in liquid water are very small for the different configurations of the new model, so we only evaluate25

the default configuration 2M. We find an overall high bias in LWP in the extra-tropics for both models but a more pronounced

effect in the new model. As discussed above, the TOA energy balance constraints in the new model require a lower tuning

parameter for the autoconversion of cloud droplets to rain (γr) and thus thicker liquid clouds that reflect more SW radiation.

We consider this the main reason for the higher liquid water path in the 2M as compared to the REF simulation, as the warm

phase parametrizations are the same in both models.30

In the Southern Ocean, the overestimation of LWP translates into an overestimation of the SW CRE, evident from the top

right panel in Fig. 4. Note that the REF simulation with a smaller positive LWP bias overestimates SW CRE less.
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3.6 Cloud phase partitioning

Different climate models produce a wide range of ice to total cloud fractions (McCoy et al., 2016). Here we examine the

cloud phase ratio (PR; relative fraction of ice clouds to total clouds) to - temperature (T) histograms used in the model-

intercomparison by Cesana et al. (2015) (their Fig. 10) in Fig. 7 where the wide variety of different cloud distributions in

PR-T histograms among models has been highlighted. In this section we discuss the distributions produced by our models and5

compare the simulated average cloud phase ratio per temperature to the CALIPSO-GOCCP satellite product.

The different configurations of the new model have very similar PR-T histograms, which is why we only show the one for

2M. For the new model we only count cloudy regions, i.e. require b > 0, to exclude falling ice (snow) with PR= 1. Comparing

the 2M to the REF simulation in Fig. 7 shows that the 2M simulation produces slightly less supercooled liquid clouds at warm

temperatures above −15 ◦C but slightly more at temperatures below −15 ◦C. In contrast to REF, where any ice above 0 ◦C10

melts instantly, the finite melting rate employed by the 2M configuration allows for cloud ice at temperatures warmer than

0 ◦C.

Most clouds are either liquid or fully glaciated, mixed-phase states are rare in our models as well as the satellite product

(Cesana et al., 2015)assuming that the undefined-phase clouds are considered as mixed-phase clouds (Cesana et al., 2016). Due

to the finite melting rate employed in the new model not all ice crystals melt entirely within one model time step, making mixed-15

phase states at these warm temperatures around 0 ◦C slightly more frequent as compared to the reference model. Nevertheless,

the full PR-T histogram does not contain significantly more information than the average phase ratio per temperature.

In Fig. 8 we compare the simulated cloud phase partitioning to the lidar observations from the CALIPSO satellite (CALIPSO-

GOCCP product). To allow for a quantitative comparison, we used the COSP lidar simulator which minimizes the differences

between model output and the satellite product due to different sampling methods and lidar attenuation. As suggested by Cesana20

et al. (2016) we counted the clouds in the undefined cloud phase category in the satellite product as well as the COSP output

as completely glaciated. The cloud phase ratio obtained from the lidar simulator in this manner is consistently smaller than

the one obtained by the simulatorobservations. In the following sections we will provide tools to identify which parametrized

processes are most likely controlling the structure of this distribution.

4 Quantifying the ice formation pathways25

The microphysical properties of a cloud are defined by the cloud formation processes, i.e. the cloud is simply the product of its

formation history. Traditionally, model output reveals a snapshot of the simulated cloud field at any given time. Due to the finite

storage capacity, aggregates of the model states are stored and information on the integration from process rates is lost. Most

common are temporal averages (e.g. monthly or yearly mean values) or vertical aggregates (e.g. burden, total cloud cover, TOA

and surface radiative fluxes or precipitation). The aggregated cloud states are then compared to observations to infer information30

about the microphysical parameterizations leading to the cloud state. Inferring the dominant processes responsible for a model-

to-observation mismatch is difficult. Usually it is very time consuming because many sensitivity studies are necessary where

processes are turned off individually and even then the interaction and competition between processes cannot be assessed.
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Ultimately, spatio-temporally averaged model output defeats the purpose of simulating any physical system: finding cause-

and-effect between differential equations and observables.

In this section we tackle the problem the other way around. Instead of inferring the formation history based on the current

cloud state, we make use of additional prognostic equations to store and quantify ice formation pathways. This information

can then be used to compute conditional probabilities to provide a sound cause-and-effect relation between the microphysical5

parameterizations and the resulting cloud state. This analysis makes direct inference from observables on cloud microphysical

parameterizations tangible.

Our model parameterizes three fundamentally different source terms for cloud ice: Heterogeneous contact and immersion

freezing of cloud droplets in the mixed-phase regime Shet−frz , homogeneous freezing of cloud droplets Shom−frz and nu-

cleation of ice from deliquesced aerosols Snuc. The latter two processes are restricted to temperatures below −35 ◦C while10

heterogeneous freezing dominates at warmer temperatures. Note that we focus on the mixed-phase regime and thus do not

further separate heterogeneous from homogeneous ice nucleation in the cirrus regime, even though nucleation of cloud ice on

mineral dust is implemented in the HET_CIR configuration.

To distinguish ice that formed by either of the process rates above, we introduce two additional prognostic tracers to keep

track of the formation history of the cloud mass at any given time in the simulation.15

4.1 Mixed-phase heterogeneous freezing origin mass fraction

To separate cloud ice that formed in the mixed-phase temperature regime we introduce the heterogeneously nucleated ice mass

mixing ratio qi,het governed by the following equation:

∂tqi,het = Shet−frz − vm∂zqi,het +Fhet (Scol +Sdep−Ssub) . (5)

The growth of this tracer depends on the ice mass source and sink terms for collisions with cloud droplets Scol, vapor deposition20

Sdep, sublimation Ssub and the fraction of cloud ice has already formed previously by heterogeneous freezing, defined as

Fhet = qi,het/qi. We abbreviate the partial derivative with respect to the vertical dimension z (in m) by ∂z . The tracer sediments

along with the total ice mass with the mass-weighted terminal velocity vm in ms−1. Convectively detrained ice is missing here

due to a lack of an explicit, aerosol dependant freezing parameterization in the convection scheme. Water is only detrained as

ice below temperatures of −35 ◦C where we assume that liquid water freezes homogeneously.25

4.2 Liquid origin mass fraction

We further distinguish between cloud ice that forms via homogeneous freezing of cloud droplets and ice that nucleates in situ

from deliquesced aerosol. This allows to disentangle in situ cirrus from liquid origin cirrus. To quantify the ice mass fraction

initiated through freezing of liquid water, we implement a tracer qi,liq−o governed by the following equation:

∂tqi,liq−o = Shet−frz +Sice−cv +Shom−frz − vm∂zqi,liq−o +Fliq−o (Scol +Sdep−Ssub) . (6)30
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We sum up all liquid to ice mass source terms, namely homogeneous freezing of cloud droplets Shom−frz and convective

detrainment of cloud ice Sice−cv together with the processes defined above. The liquid origin mass fraction is given by Fliq−o =

qi,liq−o/qi.

4.3 Cloud types based on the cloud formation history

The additional information on the cloud formation history from Eqs. (5) and (6) can be combined with the liquid fraction5

Fliq = ql/(qi +ql), cloud vertical thickness ∆p= pbase−ptop, i.e. the pressure difference between cloud base pbase and cloud

top ptop, and cloud top temperature Ttop to build an inclusive set of cloud types. As is evident from Fig. 7, mixed-phase clouds

are unstable due to the WBF process, leading to a strongly bimodal distribution of the frequency of phase ratio occurrence. This

bimodality exists but is less pronounced for the ice mass source fractions Fhet and Fliq−o shown in Fig. 9 together with the

liquid fraction Fliq . Ice source mass fractions between zero and one arise from competing formation mechanisms and mixing10

of clouds of distinct sources.

We make use of the separation of cloud occurrence frequency in the 5-dimensional parameter space (Fliq, ∆p, Fhet, Fliq−o,

Ttop) to classify clouds into the types defined in Table 4. The labels are based on the analysis of the temperature regime each

cloud primarily occurs in and are discussed in more detail below.

The classification is computed online and thus allows to accumulate statistics per cloud type. Examples of such statistics15

are the cloud top temperature, liquid fraction and liquid origin fraction distributions per cloud type shown in Fig. 10. These

distributions allow to identify physical properties of each cloud type and its associated formation pathway. Below we use them

to justify the cloud type labels in Table 4.

Homogeneously nucleated clouds are separated into three classes. They are labeled cirrus if they are thinner than 500 hPa,

otherwise we refer to them as deep. This name arises from the fact that the vast majority of such clouds have cloud tops that20

are colder than −35 ◦C as can be seen from the top panel in Fig. 10. We further differentiate between in situ cirrus, clouds that

nucleated from deliquesced aerosols or formed heterogeneously below −35 ◦C in the case of the HET_CIR simulation (not

shown), and liquid origin cirrus, clouds that formed from homogeneous freezing of cloud droplets. While there is a clear peak

for clouds that formed without any liquid water precursors (Fliq−o = 0), the peak for complete liquid origin clouds Fliq−o = 1

is less pronounced due to competing primary ice source terms (Fig. 10, bottom panel).25

Heterogeneously nucleated clouds are separated into two classes. We find two distinctly different cloud types where ice

formed predominantly from heterogeneous freezing of cloud droplets. As shown in Figs. 7 and 9, a truly mixed state with liquid

water and ice is unstable and thus rare. Therefore we divide heterogeneously nucleated clouds into those that are dominated by

liquid water and ice respectively, see middle panel in Fig. 10. We label them both as mixed-phase (liquid and ice dominated

respectively) since the cloud tops of such clouds are predominantly found in the mixed-phase temperature regime between 0 ◦C30

and −35 ◦C. Liquid clouds are further separated into those with cold cloud tops (T < 0◦C) and warm cloud tops (T > 0◦C).

In the following sections we will use the cloud types and associated formation pathways described here to gain insights

into the simulated cloud fields. It is crucial to keep in mind that the labels provided for the cloud types here are based on

formation pathways. This is in strong contrast to the traditional definitions based exclusively on the cloud state and can thus
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lead to results that seem counterintuitive at first. For example, cirrus clouds are commonly defined as clouds with temperatures

colder than −35 ◦C (or more generally the temperature below which homogeneous freezing becomes efficient, depending on

the model). Here we only require cirrus clouds to form by the processes that are typically found at temperatures below −35 ◦C

and subsequently track their evolution without imposing strict temperature constraints. This means however, that a cirrus cloud

is still called cirrus, even if its constituent ice crystals fall far into the mixed-phase regime.5

5 The ice formation pathways in ECHAM-HAM

We implemented the additional prognostic tracers needed to quantify ice formation pathways introduced in the last Section in

the new model. Along with the new microphysics scheme we introduced a new code structure which removed the sequential

computation of microphysical tendencies in the reference model and clearly segregates the computation of microphysical

tendencies and local model state updates (Dietlicher et al., 2018). This allows to easily implement additional tracers. Although10

we did not implement the same tracers in the reference model as well, we expect that the insights gained from this Section

can be transferred to the reference model since many aspects of the model are the same or very similar, e.g. the diffusion,

convection and cloud cover parametrizations (except in the cirrus regime).

With the additional prognostic equations to identify ice formation pathways and the cloud types derived thereof, we are

able find the microphysical causes for the macrophysical cloud states simulated by the new model. A clear causal relationship15

between the simulated cloud fields and the underlying parametrizations is critical for model development. Improving the

representation of sub-grid processes is usually a two-step process: First, observational data is used to evaluate the simulated

cloud fields and then model sensitivities are assessed to find the parametrizations responsible for potential model-to-observation

mismatches. In the following we demonstrate how the ice formation pathways introduced in the last Section can be used for

the second step using the example of the phase ratio discussed in Sect. 3 and Fig. 7.20

5.1 Relative cloud type frequencies

We classify the clouds online according to Table 4 to generate a global climatology of the relative contributions of each

formation pathway to the 3D cloud volume (defined as the air mass covered by the cloud) in Fig. 11. From this pie chart it

is evident that the majority of the cloud population consists of homogeneously nucleated ice clouds (in situ cirrus and deep

clouds) and liquid clouds. The next smaller class are the liquid origin cirrus clouds, making up almost 10.5 % of the cloud25

population or almost one third of all cirrus clouds. Mixed-phase clouds only contribute roughly 6 %, with the fraction of such

clouds that are dominated by ice being smaller than those being dominated by liquid water.

We also show zonal means of the cloud type occurrence frequencies in Fig. 12. This view sheds more light on where each

formation pathway dominates. Liquid clouds with warm cloud tops dominate in the tropics while their cold top counterparts are

primarily found in mid-latitudes. Due to abundant deep convection in the tropics, large amounts of liquid water are transported30

to high altitudes where homogeneous freezing of cloud droplets sets in, leading to a frequent occurrence of liquid origin cirrus

clouds. Heterogeneous freezing only affects clouds at low altitudes where there is no competition with homogeneous nucle-
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ation. Seemingly inexistent are mixed-phase clouds where heterogeneous freezing of cloud droplets alone causes glaciation of

the host liquid cloud.

5.2 Decomposing the cloud phase partitioning

By sampling the cloud types according to temperature we find the dominant parametrizations controlling the phase ratio in our

model. Fig. 13 decomposes the average liquid fraction per temperature bin (c.f. Fig. 8) into the different cloud types. Keep in5

mind, that the cloud types are seperated into mostly glaciated clouds (cirrus, mixed-phase (ice) and deep) and liquid clouds

(warm and cold liquid as well as mixed-phase (liquid)) as shown in the bottom panel in Fig. 10. The most frequent cloud

types simulated in the mixed-phase regime are deep clouds making up roughly 40 % of clouds throughout this temperature

range. The second most frequent clouds are in situ cirrus, followed by liquid origin cirrus. The two heterogeneously nucleated

mixed-phase cloud types make up the smallest fraction of clouds. The fact that we find homogeneously nucleated clouds with a10

vertical extent of less than 500 hPa (i.e. cirrus clouds) down to temperatures of 0 ◦C is in part due to the choice of the threshold

value to separate cirrus clouds from deep clouds but does not affect the main conclusion: The dominant source term for cloud

ice in the mixed-phase temperature regime is homogeneous freezing of deliquesced aerosols taking place at temperatures below

−35 ◦C.

Analogous to the prognostic tracers introduced in Sect. 4 and formally defined in Eq. (A1), we trace the state of water from15

which ice forms. The frozen liquid ice mass mixing ratio tracer accumulates the mass of liquid water that has been converted

to ice by freezing, riming or the WBF process and allows to compute the frozen liquid fraction as Fliq−f = qi,liq−f/qi. For the

majority of homogeneously nucleated clouds, the frozen liquid fraction is very small (< 10%) from which we conclude that

ice predominantly forms directly from deposition of water vapor (excluding the WBF process) and thus without a liquid water

precursor, see the bottom panel in Fig. 13. This implies that ice nucleated in the cirrus regime not only dominates glaciation20

in mixed-phase clouds but even inhibits the formation of supercooled liquid water clouds. As a result, contact and immersion

freezing is limited to clouds with cloud tops warmer than −35 ◦C where there is no competition with sedimenting ice that

formed in the cirrus regime.

Revisiting Fig. 8 we can come up with potential shortcomings of our model that could explain the underestimation of the ice

fraction from the COSP simulator compared to observations. A straight forward explanation could be that our models simply25

underestimation underestimate the frequency of ice clouds. From what we learned from Fig. 13, the best candidate to increase

the ice fraction at temperatures warmer than −25 ◦C are the cold liquid clouds. These clouds have cloud tops warmer than the

temperature of homogeneous freezing which makes immersion and contact freezing the only possible pathways to glaciation.

This suggests that our model lacks INPs capable of nucleating ice in this temperature range. Another explanation could be that

the cloud structure is unrealistic such that there is a substantial amount of cloud ice within the deep clouds which are optically30

thick due to their large vertical extent. In such clouds we expect the lidar signal to be completely attenuated which makes them

partly invisible to the COSP simulator.
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6 Conclusions

We presented the global performance of the new cloud microphysics scheme in the ECHAM6-HAM2 GCM introduced in

D18. The main difference as compared to its predecessor is the consistent description of cloud ice using a single, prognostic

category. Thus, it does not rely on poorly constrained conversion parametrizations between in-cloud ice and precipitating snow

categories. Different from D18, we introduced a new approach to extend the sub-grid cloud cover scheme of Sundqvist et al.5

(1989) to ice clouds. This scheme no longer has the positive cloud cover bias at temperatures below −35 ◦C present in the

reference model.

We assessed ice formation pathways quantitatively by introducing additional prognostic equations for the heterogeneously

formed and liquid origin ice mass mixing ratios. We found that in our model the majority of cloud ice forms below −35 ◦C by

either homogeneous freezing of cloud droplets or homogeneous nucleation of deliquesced aerosols. Only about 6 % of clouds10

form by contact and immersion freezing in mixed-phase temperatures, making homogeneous freezing the main source for

cloud ice even at temperatures warmer than −35 ◦C. The Lagrangian perspective on the modeled cloud fields provided by the

formation pathway analysis allowed to distinguish in situ and liquid origin cirrus clouds. We found that roughly one third of

all cirrus clouds form by homogeneous freezing of cloud droplets.

Furthermore, ice formation pathways provide the causal link between the microphysical parametrizations and the resulting15

cloud fields. We showed how they can be used to break the simulated phase ratio down into the contributions of different

microphysical parametrizations. We find that mixed-phase processes like the WBF-process and heterogeneous freezing of

supercooled cloud droplets play a minor role in our model because most ice originates in the cirrus regime. As a result,

mixed-phase freezing parametrizations cannot control the average phase ratio per temperature. Their effect is superseded by

the structure of ice clouds (with deep clouds making up most of the cloud ice in the mixed-phase regime) and the absence of20

INPs that could glaciate cold liquid clouds with cloud tops warmer than −35 ◦C.
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Appendix A: Frozen liquid mass fraction

We do not only diagnose the phase which initiated ice formation to separate liquid origin from vapor origin ice but also keep

track of the total amount of liquid water that has been converted to ice with a separate tracer qi,liq−f , the mass mixing ratio for

frozen liquid water defined as:10

∂tqi,liq−f = Shet−frz +Sice−cv +Shom−frz +Scol− vm∂zqi,liq−o−Fliq−fSsub. (A1)

Analogous to the tracers defined in Sect. 4, we define the frozen liquid fraction as Fliq−f = qi,liq−f/qi. In contrast to the these

tracers defined previously, the frozen liquid water mass mixing ratio contains information on ice growth history rather than

source processes.
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Table 1. The parameters involved in the cloud cover scheme, Eqs. (1) and (4). The rows show different parameters as a function of the

temperature regime T . We discuss two different choices for s and Qi in the text, s1/Qi,1 and s2/Qi,2. We use a linear weighting function

w(T ) = (T − 273.15)/(238.15− 273.15) for T in K.

T <−35◦C −35◦C< T < 0◦C 0◦C< T

s1 (qv + qi)/qsi (qv + qi)/qsi qv/qsw

Qi,1 qv − qsi Q+ ql + (qv − qsi) Q+ ql + (qv − qsi)

s2 (qv + qi)/qsi qv/qsi qv/qsw

Qi,2 qv − qsi Q+ ql Q+ ql

smax skoop qsi/qsw 1

smin 1 w(T ) + (1−w(T ))K K

Table 2. Description of the model configurations shown in this paper. Tuning parameters are as follows: γr is the scaling factor for warm rain

formation, ffall is a scaling factor for ice sedimentation speed, γs is a scaling parameter for snow formation, eii is the collision efficiency of

ice crystals and γcpr is the conversion rate from cloud water and ice to precipitation in the convection scheme. Dashes ’−’ denote that those

parameters are no longer needed in the new scheme. The last column shows the CPU time for 1 year of simulation relative to the reference

model.

Simulation Description γr ffall γs eii γcpr (s−1) CPU time

REF
Reference version:

ECHAM6.3-HAM2.3
10.6 3 900 0.09eTc 9× 10−4 −

2M
Single category, 2 prognostic

ice moments
2.7 − − 0.9 2.5× 10−4 +29 %

4M
Single category, 4 prognostic

ice moments
2.7 − − 0.9 2.5× 10−4 +41 %

LIM_ICE

As 2M but deposition below

qv = qs,w is shut down for

T >−35◦C.

2.7 − − 0.9 2.5× 10−4 +24 %

HET_CIR
As 2M but with het. nucleation

in cirrus regime
4.4 − − 0.3 1.5× 10−4 +24 %

23



Figure 1. Regions where clouds can form (grey shaded areas) as a function of temperature and supersaturation with respect to ice. The

colored lines show liquid water and ice saturation ratios sw/i (solid lines) and the critical saturation ratios required for first cloud formation

(dashed; sw/iK). We choose a constant K = 0.8 for this illustration. The top panel shows the sub-grid cloud scheme of the reference model

ECHAM6.3-HAM2.3 which switches between liquid and ice saturation in the mixed-phase regime, the middle panel shows the mixed-

saturation approach of Dietlicher et al. (2018) (D18) and the bottom panel shows the new model.
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Figure 2. 10-year, zonal mean cloud ice water content (top row), cloud liquid water content (middle row) and cloud cover (bottom row) for

the new model (2M configuration; left), the reference model (REF; middle) and differences between the two schemes (right).
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Figure 3. Comparison of the simulated cloud fraction for simulations with the 2M configuration of the new model and the reference model

(REF) for 10 years (2003-2012) and the CALIPSO-GOCCP satellite product (day and night, 7 years, 2008-2014). Model output is computed

using the COSP-simulator. The Pearson correlation coefficient (ρ) and root mean square error (RMSE) of the full, three dimensional cloud

cover climatology are computed for both models and shown in the difference plots. The dashed line indicates the area where there is a large

(more than 5 %) difference between the 2M and REF simulations as shown in the bottom right panel in Fig. 2.
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Figure 4. 10-year, zonal mean values for longwave (LW CRE) and shortwave cloud radiative effects (SW CRE) (top row) and total cloud

cover and precipitation (bottom row). The colored lines show simulations of different configurations of the new model in Table 2. Black

lines show satellite products. For CRE we show data from CERES EBAF (2000 to 2017). Total cloud cover is shown for CALIPSO-GOCCP

(2006 to 2012) and the model data is produced using the COSP-simulator. Precipitation data is from the GPCP (2003 to 2012). The Pearson

correlation coefficient and root mean square error are reported by text in matching colors for the different simulations and computed using

the full two dimensional fields.
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Figure 5. Ice water content and ice water path compiled from observations by Li et al. (2012) and different versions of ECHAM6-HAM2 (10

year, zonal averages) with the new microphysics scheme and the reference model. The top row shows vertical profiles for ice water content,

the panel on the bottom shows ice water path. The observations in black include total ice water content/path (TIWC/P; solid lines) and cloud

ice water content/path (CIWC/P; dotted lines). Colors show total (stratiform) ice water content from the new model and cloud ice water

content from the reference model. The grey shaded areas represent the average standard deviation as reported by Li et al. (2012). The profiles

are averaged over different latitude bands: SH High-Lat (80°S to 60°), SH Mid-Lat (60°S to 30°S), Tropics (30°S to 30°N), NH Mid-Lat

(30°N to 60°N) and NH High-Lat (60°N to 80°N).
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Figure 6. LWP as observed by the Multisensor Advanced Climatology of LWP (MAC-LWP), climatology from 2003 to 2012. The top panel

shows the observations, the middle shows the difference between the new model (2M) and the observations and the bottom panel shows the

difference between the reference model and the observations. The models are both run for 10 years from 2003 to 2012. The grey shaded

areas show regions where the liquid water path is dominated by precipitation (LWP/TWP < 0.8), i.e. where there is no reliable estimate

for in-cloud liquid water path.
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Figure 7. Frequency of cloud occurrence per temperature and phase ratio for histogram bin widths of 3 ◦C and 0.1, respectively. The average

ice fraction per temperature bin is shown by the red line for the new model (2M; left) and the reference model (REF; right). The data has

been accumulated over 10 years of simulation from 2003 to 2012.

Figure 8. Cloud phase ratio per temperature for histogram bin widths of 3 ◦C. The average ice fraction per temperature bin is shown for the

model data (red, solid line), the CALIPSO-GOCCP product (black, solid line) and the output from the COSP simulator applied to the model

(red, dashed line). For both the model and satellite data we assumed that clouds with undefined phase as classified by the lidar simulator or

retrieval algorithm are dominated by ice and thus contribute to the ice phase (Cesana et al., 2016)
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Figure 9. Frequency of cloud occurrence per ice source fraction for the liquid origin fraction Fliq and the different ice source fractions Fhet

and Fliq−o. The histogram bin width is 0.1. The lines are aligned with bin centers. Only gridboxes are sampled where all the fractions are

well-defined, i.e. only cloudy gridboxes for Fliq and only gridboxes containing ice for Fhet and Fliq−o. Data is sampled every time step for

10 years of simulation with the new model (2M).

Table 3. 10-year, global average values for a selection of key microphysical parameters for the model configurations presented in Table 2.

Observational data is used from the compilation of Lohmann and Neubauer (2018) with the exception of ice water contents where we use

the dataset of Li et al. (2012) and report their average standard deviation.

Simulation OBS 2M 4M LIM_ICE HET_CIR REF

LWP, g m−2 81 (30 to 90) 97.4 103.6 96.5 87.1 65.4

TIWP, g m−2 100±46 45.4 40.0 49.3 59.5 -

CIWP, g m−2 24±10 - - - - 14.9

Nc, 1010 m−2 - 4.58 4.69 4.48 4.31 3.16

Ni, 1010 m−2 - 0.12 0.11 0.13 0.05 0.08

CC, % 68±5 66.0 66.0 68.3 62.3 68.4

Q, kg m−2 25.7 27.83 27.82 28.31 28.05 26.90

Ptot, mm d−1 2.7±0.2 2.9 2.9 2.9 2.9 3.0

Pstrat, mm d−1 - 1.0 1.0 1.0 1.1 1.0

Pcnv, mm d−1 - 1.9 2.0 1.9 1.8 2.0

SW CRE, W m−2 -47.3 (-44 to -53.3) -48.1 -48.3 -50.0 -48.7 -50.1

LW CRE, W m−2 26.2 (22 to 33.5) 20.8 20.6 24.1 22.5 24.2

Net CRE, W m−2 -21.1 (-17.1 to -22.8) -27.3 -27.6 -25.9 -26.2 -25.9

TOA LW, W m−2 -237 to -241 -238.7 -238.8 -235.6 -237.9 -237.7

TOA SW, W m−2 238 to 244 239.4 239.2 237.5 238.4 238.2

∆ TOA, W m−2 0.7 0.4 1.9 0.5 0.4
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Figure 10. Relative frequency of cloud occurrence (normalized by the cloud type occurrence frequency). This corresponds to conditional

probability histograms, P (X• ∈Bin|X ∈ Typei) for the model state X with components X•: cloud top temperature (top panel), liquid

fraction (middle panel) and liquid origin fraction (bottom panel) for each cloud type i. Bin widths are 3 ◦C for temperature and 0.1 for the

dimensionless fractions respectively, lines are aligned with bin centers. Data is sampled every time step for 10 years of simulation with the

new model (2M).
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Figure 11. Global relative contribution to the 3D cloud volume (as measured by the air mass occupied) for the cloud types defined in Table

4 based on their formation pathways. Data is sampled every time step for 10 years of simulation with the new model (2M).
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Figure 12. Same as in Fig. 5 but for the absolute frequency of occurrence profile (top panel) and relative contribution to the total cloud cover

(bottom panel). The relative contribution is computed as the fraction of cloud volume occupied per column and cloud type. Data is sampled

every time step for 10 years of simulation with the new model (2M).
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Figure 13. Cloud type fraction as a function of grid-box temperature (top) and frequency of occurrence of frozen liquid fraction (bottom).

We only sample cloudy grid-boxes, i.e. those with a cloud fraction component Xb > 0. For the frozen liquid fraction component XFliq−f

we show the relative frequency of occurrence P (XFliq−f ∈Bin|X ∈ Typei). The latter is the accumulated ice mass fraction that formed

through any liquid water to ice conversion process (including the WBF process). Note that this is not equal to the liquid origin mass that

quantifies the origin of cloud ice. Bin widths are 3 ◦C and 0.1 respectively, lines are aligned with bin centers. Data is sampled every time

step for 10 years of simulation with the new model (2M).
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Table 4. Definition of cloud types. We categorize and separate clouds by exceeding thresholds of the 5 predictors: The heterogeneous freezing

origin fraction Fhet, cloud top to bottom pressure difference ∆p, cloud liquid fraction Fliq , liquid-origin fraction Fliq−o and the cloud top

temperature Ttop. If a predictor is not used for a certain class, it is symbolized by a ’−’ sign.

Label Fhet ∆p Fliq Fliq−o Ttop

Deep clouds,

homogeneous

origin

< 0.5 > 500hPa − − −

warm liquid

clouds
< 0.5 < 500hPa > 0.5 − > 0◦C

cold liquid

clouds
< 0.5 < 500hPa > 0.5 − < 0◦C

Cirrus clouds,

in situ
< 0.5 < 500hPa < 0.5 < 0.5 −

Cirrus clouds,

liquid origin
< 0.5 < 500hPa < 0.5 > 0.5 −

Mixed-phase,

liquid domi-

nated

> 0.5 − > 0.5 − −

Mixed-phase,

ice dominated
> 0.5 − < 0.5 − −
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