
Chen (Referee) 

Interactive comment on “Impacts of short-term mitigation measures on PM2.5 and 
radiative effects: a case study from a regional background site near Beijing, China” by 
Qiyuan Wang et al. 

This study was conducted in a regional background site near Beijing during the 19th 
National Congress of the Communist Party of China. The authors investigated the 
effectiveness of short-term mitigation measures on PM2.5 and aerosol direct radiative 
forcing. They found that PM2.5 mass and its sources are reduced significantly during 
the control period compared with the non-control period. Those decreases in aerosol 
concentration in turn, as shown by the climate radiative effect estimates, alleviated 
aerosol cooling effects. Moreover, the authors further analyzed two pollution episodes 
after control period based on the WRF-Chem model. This is an interesting study. I 
believe that this paper makes a useful contribution to the literature and could be 
published in ACP after a minor revision in response to the following suggestions (see 
specific comments below). 

Response: The authors appreciate the reviewer for his or her valuable time to review 
our manuscript. 

Specific Comments:  

1. In section 2.2.1: the authors should give the storage condition of the samples. 

Response: We have added information concerning storage conditions for the samples 
in the revised manuscript. It now reads: “To minimize the evaporation of volatile 
materials, the samples were stored in a refrigerator at -4 °C before the chemical 
analyses.” 

2. Page 8, Line 11-13: It should be noted that the equation (12) is based on the 
assumption of no contribution from brown carbon, a light-absorbing organic matter. It 
should be pointed out this in the article. 

Response: Following the reviewer’s suggestion, we revised the text to read: “A second 
assumption for this part of the study was that there was negligible absorption by brown 
carbon in the visible region (Yang et al., 2009), and on this basis, the babs can be 
determined from the EC mass concentration using linear regression (Eq. 12).” 

3. Section 3.1: This study analyzed data from a single site near Beijing, even though it 
included detail chemical and optical measurements. The emission control for NCCPC 
control period included a wide range of measures and could impact the air quality for 
a lager domain. Therefore, it would be more convincing if the authors could also 
include measurements for surrounding areas from other platforms, such as the 
AERONET AODs and satellite aerosol retrievals. 

Response: Although the AERONET AODs are helpful for providing a spatial 
distribution of aerosols in Beijing-Tianjin-Hebei (BTH) region, the observation periods 
were limited, typically at ~10:30 and 13:30 local time. Another complicating factor is 



that relative humidity can have an important influence on AODs. After careful 
consideration, we concluded that it is more useful to focus on PM2.5 concentrations at 
different locations in BTH region to illustrate the effectiveness of the control measures. 
As shown in Figure S3 (revised supporting information, also see Figure R1 below), the 
PM2.5 concentrations over much of the BTH region showed a decreasing trend during 
the NCCPC-control period compared with the non-control period. In the revised 
manuscript, we added the following text: “Meanwhile, the PM2.5 mass concentrations 
obtained from the China Environmental Monitoring Center also showed a decreasing 
trend over most of the BTH region during the NCCPC-control period (see Figure S3).” 

 

 
Figure R1. Spatial distribution of PM2.5 mass concentration in Beijing-Tianjin-Hebei 
region during the (a) 19th National Congress of the Communist Party of China (NCCPC) 
control period and (b) non-control period. 

 

4. About the light scattering construction of the particles (Sec 3.4, "Impacts of PM2.5 
emission reduction on aerosol radiative effects"), the reconstructed bscat shows some 
deviation from the estimated bscat values. What is the reason for the difference?  

Response: Although the IMPROVE-based method provides reasonable estimates of 
the chemical bscat in this study, the lack of locally-derived mass scattering efficiency 
information is a probable reason for the ~10% underestimates of measured values. In 
the revised manuscript, we revised the text, which now reads: “This result indicates that 
the IMPROVE-based method provided a good estimation of the chemical bscat; 
nonetheless, it is likely that more locally-measured mass scattering efficiencies for each 
chemical species could reduce the underestimates of measured values.” 

5. The paper must be polished and edited for English grammar and word usage before 
it can be published in ACP. 

Response: Our revised manuscript has been polished by a native English speaker. 



Please see our new manuscript. 



Anonymous Referee #2 
Interactive comment on “Impacts of short-term mitigation measures on PM2.5 and 
radiative effects: a case study from a regional background site near Beijing, China” by 
Qiyuan Wang et al. 
General comments 
This manuscript attempts to examine the impacts of emission reduction on PM2.5 and 
radiative effects (surface DRF as the authors defined) using field measurements and 
WRF-Chem simulations at a regional background station in the Beijing-Tianjin- Hebei 
region in China. The impacts are examined by comparing the changes in observation-
derived speciated PM2.5 concentrations and DRF during and after an emission-
controlled period. The paper is reasonably written and results are reasonably presented, 
and it can be accept for publishing with revisions that address the following issues. 

Response: The authors appreciate the reviewer’s thoughtful and valuable suggestions, 
and we believe that the revised manuscript has been significantly improved after 
considering his or her comments. Below are point-to-point responses. 

A major weakness in the study is that, as the main objective is to investigate the impacts 
of emission reduction measure on PM2.5 and DRF (emphasized in the title and abstract), 
this paper has a major flaw in separating the effects of emission reduction and 
meteorological conditions. Although the authors make an effort to make comparisons 
between the during- and-post-control periods under stable meteorological conditions, 
the determination of the “stable” conditions is quite rough, and it is not clear how 
similar the meteorological conditions are for the days selected for the comparison (even 
under stable conditions, the degree of the stability would significantly affect air quality). 
To separate these two factors, I would suggest the authors to do a more thorough 
analysis of the meteorological conditions, or ideally, based on the information they 
have and/or can obtain, construct an emission reduction scenario for the NCCPC 
control period and conduct additional WRF-Chem simulations and analysis. 

Response: The reviewer correctly points out that variations in the mass concentrations 
of PM2.5 and its chemical composition can be caused by a variety of factors, including 
meteorological conditions as well as emission sources. We agree with the reviewer that 
it would be desirable to construct an emission reduction scenario for the NCCPC-
control period and then perform additional WRF-Chem simulations and analyses. 
Unfortunately, it was not possible for us to obtain detailed information concerning the 
reduction measures taken by the government, and therefore we could not develop an 
accurate emission inventory for the NCCPC-control period.  

As an alternative, we compared days during the control and non-control periods with 
stable atmospheric conditions because that was a way to evaluate particle accumulation 
when the effects of transport would be minimal. Furthermore, because the duration of 
the control period was not long, it was not possible to precisely match meteorological 
conditions to investigate reduction in PM2.5 during NCCPC-control and non-control 
period. Although “stable conditions” were empirically defined for our study, the general 
idea of minimizing meteorological influences was helpful for evaluating the 



effectiveness of the emission control measures. We focused on wind speed and mixed 
layer height because they are important factors in determining the horizontal and 
vertical dispersion of particles.  

As shown in Figure 3 (also see Figure R1 below) in the revised manuscript, the 
relationships between PM2.5 concentrations and wind speed and mixed layer height can 
be fitted with power functions. Our strategy was to use the inflection points of the power 
functions as a way to identify stable atmospheric conditions. The average wind speeds 
and mixed layer heights were lower under stable atmospheric conditions during the 
NCCPC-control period than the non-control period, indicating that particles may have 
been more prone to accumulate during the NCCPC-control period. This means that if 
there had been no effective control measures during the NCCPC-period, the mass 
concentrations of PM2.5 likely would have been higher compared with the days under 
stable atmospheric condition during the non-control period, but this was not the case. 
Thus, we think that the “stable atmospheric condition” approach is still useful for 
evaluating the effectiveness of the control measures.  

Moreover, we now include surface weather charts in revised Figure S5 (also see Figure 
R2 below) to compare and contrast the weather conditions during the days with stable 
atmospheric conditions during the control and non-control periods. Finally, following 
the reviewer’s suggestion, we include a more in-depth analysis of the meteorological 
conditions in the revised manuscript. The text now reads: “There were two days for the 
NCCPC-control period and three days for the non-control period that satisfied the 
stability criteria. The surface charts (Figure S5) show that the weather conditions for 
those selected stable atmosphere days during the NCCPC-control and non-control 
periods were mainly controlled by uniform pressure fields and weak low-pressure 
systems, respectively, and those conditions led to weak or calm surface winds. Due to 
the lower WS (0.2 versus 0.3 m s-1) and MLH (213 versus 244 m) during the NCCPC-
control period relative to the non-control period, the horizontal and vertical dispersion 
for the stable atmospheric days were slightly weaker during the NCCPC-control period. 
As shown in Table 1, the percent differences for PM2.5 (43.4%), NO3- (25.9%), OM 
(68.1%), EC (40.0%), and fine soil (58.7%) were larger for the days with stable 
atmospheric conditions compared with those for all days. These results are a further 
indication that the control measures were effective in reducing pollution, but 
meteorology also influenced the aerosol pollution.” 



 

Figure R1. Scatter plots showing the relationships between PM2.5 mass concentrations 
and (a) wind speed and (b) mixed layer height. 

 

Figure R2. Surface weather charts for 08:00 (local time) over East Asia during the five 



days with stable atmospheric conditions. The black triangles represent Xianghe. 

 

Another issue is about the source apportionment in Section 3.2 using PMF. The authors 
assign the third source factor to secondary inorganic aerosols (SIA). This is not 
appropriate, since SIA is not an emission source, and it may have contributions from 
other sources they identify, such as coal combustion, mobile, industry, and biomass 
burning, i.e., SIA is not independent to other four identified anthropogenic emissions 
sources. 

Response: In the broadest terms, PM2.5 originates from primary sources (e.g., coal 
combustion, traffic emissions, industry, and biomass burning) and secondary processes, 
that is, the formation of particles through homogeneous reactions in the atmosphere. As 
the reviewer correctly noted, secondary inorganic aerosol forms from precursors 
emitted by primary sources. Receptor models (e.g., PMF) generally cannot resolve the 
sources for secondary particles, and therefore, we now classify this factor as “secondary 
particle formation” in the revised manuscript. 

Specific comments 
1. Page 8, line 13. It is better to show the regression results, and specify the values of a 
and b used. 

Response: Following the reviewer’s suggestion, we added the following in the revised 
manuscript: “As shown in Figure S2, the derived slope (a) and intercept (b) for the 
regression model were 10.8 m2 g-1 and -4.7, respectively.” 

2. Page 9, lines 52-54. Small changes in sulfates may also be attributed to small 
changes in SO2 emissions during the campaign. 

Response: Yes, in addition to the low SO2 concentrations throughout the campaign, the 
change in SO2 concentration during the NCCPC-control (8.5 µg m-3) versus non-control 
period (12.4 µg m-3) was small. Following the reviewer’s suggestion, we revised the 
original explanation to “However, SO42- exhibited similar loadings during the NCCPC-
control (5.8 µg m-3) and non-control (5.3 µg m-3) periods. This is consistent with the 
small differences in SO2 concentrations for the NCCPC-control (8.5 µg m-3, Figure S4) 
versus the non-control (12.4 µg m-3, Figure S4) periods. Indeed, the low SO2 
concentrations may not have provided sufficient gaseous precursors to form substantial 
amounts of sulfate.” 

3. Figures 4 and 5. Copy the source legend from Fig 5 to Fig 4. 

Response: Change made. Please see our revised Figure 4 in the revised manuscript. 

4. Page 10, lines 64 -72. First, as pointed earlier, the approach to determine the “stable 
conditions” is rough. Second, the samples (3 days and 2 days) for the stable conditions 
are too small, which would make the comparison statistically no meaningful. A better 
analysis is needed to separate the impacts of emission reduction and meteorological 
conditions. 



Response: As noted above, it has not been possible for us to obtain the emission 
inventory for the NCCPC control period. Therefore, our analysis of relatively stable 
atmospheric conditions was the best approach we had for evaluating the effectiveness 
of control measures. As the control measures were only in place for a short amount of 
time, this comparison is limited but it does support the argument that control measures 
were effective. We note in the revised manuscript that results of other studies also have 
shown short-term emission controls reduced pollutant levels, so our results were not 
unexpected. Following the reviewer’s suggestion, we added more analysis of the 
meteorological conditions in the revised manuscript. Please see our response above. 

5. Page 15, lines 42-43. It is surprising that with an averaged surface concentration of 
6.0ug/m3, EC imposes the largest cooling effects in surface DRF during the non- 
control period and several factors higher than that of OM, while the light extinction by 
OM is much higher than by EC. An explanation would be helpful. 

Response: The concentration of EC was 6.0 µg/m3, and the light absorption caused by 
EC accounted for 14.3% of light extinction coefficient. The large contribution of EC 
absorption may be attributed enhancements caused by internal mixing with other 
materials because that process has been shown to amplify the light absorption of EC. 
In the revised manuscript, we added the following explanation: “The high EC DRF may 
have been due in part to EC particles internally mixed with other materials because 
mixing can amplify light absorption and thereby increase DRF.” 

6. Fig 8 seems too small and a little bit complicated, which make it difficult to the reader 
to understand the effects of meteorological conditions on air quality in the BTH area. 
In addition, the location of the Xianghe site should be specified in the figure. Similar 
figure for October 12-23 might also be needed when you do analysis in decomposing 
the influences of the emission reduction and meteorology (especially for the five “stable” 
days). 

Response: Following the reviewer’s suggestion, we modified the Figure 8 (also see 
Figure R3 below) in the revised manuscript. Moreover, the surface weather charts for 
the five “stable” days were added in the revised supporting information. Please see the 
response above. 



 

Figure R3. Surface weather patterns at 08:00 (local time) over East Asia from 22 
October to 2 November 2017. The black triangle represents Xianghe. 

Technical 
The language need to be polished. The authors need go through the manuscript care- 
fully and make edits. Following are just a few pickups. 

Response: The revised manuscript was polished by a native English speaker. Please 
see our new manuscript. 

Page 2 line 35, page 15 line 46, page 17 line 82: change “would” to “should”? Page 
2 line 44, change “experienced” to “experiencing”? 

Response: Change made. 



Page 3 line 78, change “low-voltage” to “low-pressure”. 

Response: Change made. 

Page 14 line 88, “genesis”? 

Response: In the revised manuscript, we revised our original expression to “The 
calculated mean bias and RMSE for PM2.5 were -6.8 and 32.8 µg m-3, and the index of 
agreement was 0.75, indicating that the formation of PM2.5 during the two pollution 
episodes was reasonably well captured by the WRF-Chem model even though the 
predicted average PM2.5 mass concentration of was lower than the observed value.” 
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Abstract. Measurements at a background site near Beijing showed that pollution controls implemented 19 

during the 19th National Congress of the Communist Party of China (NCCPC) were effective in reducing 20 

PM2.5. Mass concentrations of PM2.5 and its major chemical components were 20.6–43.1% lower during 21 

the NCCPC-control period compared with a non-control period, and differences were greater on days 22 

with stable meteorological conditions. A receptor model showed that PM2.5 from traffic-related emissions, 23 

biomass burning, industry processes, and mineral dust was 38.5–77.8% lower during the NCCPC-control 24 

versus non-control period, but differences in PM2.5 from coal burning were small, and secondary particle 25 

formation was higher during the control period. During one pollution episode in the non-control period, 26 

secondary inorganic aerosol dominated, and the WRF-Chem model showed that the Beijing-Tianjin-27 

Hebei (BTH) region contributed 73.6% of PM2.5 mass. A second pollution episode was linked to biomass 28 

burning, and BTH contributed 46.9% of PM2.5 mass. Calculations based on IMPROVE algorithms 29 

showed that organic matter was the largest contributor to light extinction during the non-control period 30 

whereas NH4NO3 was the main contributor during the NCCPC. The Tropospheric Ultraviolet and Visible 31 

radiation model showed that the average direct radiative forcing (DRF) values at the Earth’s surface were 32 

-14.0 and -19.3 W m-2 during the NCCPC-control and non-control periods, respectively, and the DRF for 33 

the individual PM2.5 components were 22.7–46.7% lower during the NCCPC. The information and dataset 34 
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from this study will be useful for developing air pollution control strategies in the BTH region and for 146 

understanding associated aerosol radiative effects. 147 

1 Introduction 148 

High loadings of fine particulate matter (PM2.5, particulate matter with an aerodynamic diameter ≤ 2.5 149 

µm) cause air quality to deteriorate (Pui et al., 2014; Tao et al., 2017), reduce atmospheric visibility 150 

(Watson, et al., 2002; Cao et al., 2012), and adversely affect human health (Feng et al., 2016; Xie et al., 151 

2016). Moreover, PM2.5 can directly and indirectly affect climate and ecosystems (Lecoeur et al., 2014; 152 

Tie et al., 2016). With the rapid increases in economic growth, industrialization, and urbanization in the 153 

past two decades, Beijing has experienced serious PM2.5 pollution, especially in winter (e.g., Zhang et al., 154 

2013; Elser et al., 2016; Wang et al., 2016a; Zhong et al., 2018). Since the Chinese government 155 

promulgated the National Ambient Air Quality Standards for PM2.5 in 2012 (NAAQS, GB3095–2012), a 156 

series of emission control strategies have been implemented in Beijing and surrounding areas to alleviate 157 

the serious air pollution problems. These measures include installing desulphurization systems in coal-158 

fired power plants, banning high-emission motor vehicles, and promoting natural gas as an alternative to 159 

coal in rural areas. According to the China Environmental State Bulletin 160 

(www.zhb.gov.cn/hjzl/zghjzkgb/lnzghjzkgb, in Chinese), the annual levels of PM2.5 during 2013–2016 in 161 

Beijing showed a decreasing trend (r = 0.98 and slope = -5.3 µg m-3 year-1), but there were still 45.9% of 162 

days in 2016 that suffered from varying degrees of pollution. 163 

Identifying the causes of air pollution in Beijing is challenging because the chemical composition of PM2.5 164 

is variable and complex, and the particles originate from a variety of sources and processes. For example, 165 

Elser et al. (2016) reported that organic aerosol (OA) was the largest contributor to PM2.5 mass during 166 

extreme haze periods in Beijing, and the primary aerosol from coal combustion (46.8%) was the dominant 167 

contributor to OA, followed by the oxygenated OA (25.0%) and biomass burning OA (13.8%). In addition, 168 

Zheng et al. (2016) found that organic matter (OM) was the most abundant component (18–60%) in PM2.5, 169 

and its relative contribution usually decreased as pollution levels rose while those of secondary inorganic 170 

species (e.g, sulfate and nitrate) increased. 171 

In recent years, the Chinese government has taken temporary control measures to ensure good air quality 172 

during some important conferences and festivals held in Beijing, including the 2008 Summer Olympic 173 

Games, the 2014 Asia-Pacific Economic Cooperation (APEC) summit, and the 2015 Victory Day parade 174 

(VDP). These actions provide valuable opportunities for evaluating the effectiveness of emission controls 175 
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on air pollution, and the information gathered during the control periods should useful for making policy 309 

decisions. Numerous studies have demonstrated that temporary aggressive control measures were 310 

effective in reducing primary pollutants and secondary aerosol formation in Beijing (e.g., Wang et al., 311 

2010; Guo et al., 2013; Li et al., 2015; Tao et al., 2016; Xu et al., 2017).  312 

Air pollution in Beijing is not only influenced by local emissions and the regional transport of pollutants 313 

but also by meteorological conditions (e.g., Li and Han, 2016; Bei et al., 2017). In this regard, Zhong et 314 

al. (2018) concluded that heavy pollution episodes in Beijing can be generally divided into two phases (1) 315 

a transport stage, which is characterized by increases in pollutants mainly transported from the south of 316 

Beijing and (2) an accumulation stage, during which there is dramatic growth in PM2.5 loadings due to 317 

stagnant meteorological conditions. Moreover, several studies have shown that the emission controls put 318 

in place during important events were effective in decreasing aerosol concentrations, but meteorological 319 

conditions also played an important role in determining aerosol loadings (Gao et al., 2011; Liang et al., 320 

2017). For example, Liang et al. (2017) have found that meteorological conditions and emission control 321 

measures had comparable impacts on PM2.5 loadings in Beijing during the 2014 APEC (30% versus 28%, 322 

respectively) and the 2015 VDP (38% versus 25%). 323 

The existing studies on the effects of temporary air pollution controls in Beijing have not covered mid-324 

autumn when meteorological conditions are typically complex and variable. Indeed, Zhang et al. (2018) 325 

reported that two weather patterns common in October caused heavy pollution episodes in Beijing. One 326 

episode was linked a Siberian high-pressure system and a uniform high-pressure field while the second 327 

was associated with a cold front and a low-pressure system. For this study, measurements were made at 328 

a regional background site in the Beijing-Tianjin-Hebei (BTH) region to investigate the changes of PM2.5 329 

during the 19th National Congress of the Communist Party of China (NCCPC), which was held in Beijing 330 

from 18–24 October. Temporary control measures were implemented in Beijing and neighboring areas; 331 

these included restrictions on the number of vehicles, prohibition of construction activities, and 332 

restrictions on factories and industrial production. The primary objectives of this study were to (1) 333 

investigate the effectiveness of emission control measures on PM2.5 and the associated changes in its 334 

chemical composition; (2) determine the contributions of emission sources to PM2.5 mass during the 335 

NCCPC-control and non-control periods; and (3) evaluate the impacts of reductions of PM2.5 on aerosol 336 

direct radiative forcing (DRF) at the Earth’s surface. The study produced a valuable dataset and the results 337 

provide insights into how controls on air pollution can affect Beijing. 338 
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2 Materials and methods 478 

2.1 Sampling site 479 

Intensive measurements were made from 12 October to 4 November 2017 at the Xianghe Atmospheric 480 

Observatory (39.75° N, 116.96° E; 36 m above sea level) to investigate how the characteristics of PM2.5 481 

and the associated radiative effects were affected by the controls put in place during the NCCPC. Xianghe 482 

is a small county with 0.33 million residents, and it is located in a major plain-like area ~50 km southeast 483 

from Beijing and ~70 km north from Tianjin (Figure 1). The sampling site is surrounded by residential 484 

areas and farmland, and it is ~5 km west of Xianghe city center. This regional aerosol background site is 485 

influenced by mixed emission sources in the BTH region. A more detailed description of the site may be 486 

found in Ran et al. (2016). 487 

2.2 Measurements 488 

2.2.1 Offline measurements 489 

PM2.5 samples were collected on 47 mm quartz-fiber filter (QM/A; GE Healthcare, Chicago, IL, USA) 490 

and Teflon® filters (Whatman Limited, Maidstone, UK) using two parallel mini-volume samplers 491 

(Airmetrics, Oregon, USA) that operated at a flow rate of 5 L min-1. The duration of sampling was 24 h, 492 

and the sampling interval was from 09:00 local time to 09:00 the next day. To minimize the evaporation 493 

of volatile materials, the samples were stored in a refrigerator at -4 °C before the chemical analyses. The 494 

quartz-fiber filters were used for determinations of water-soluble inorganic ions and carbonaceous species 495 

while the Teflon® filters were used for inorganic elemental analyses. The PM2.5 mass on each sample 496 

filter was determined gravimetrically using a Sartorius MC5 electronic microbalance with ± 1 µg 497 

sensitivity (Sartorius, Göttingen, Germany). For the mass determinations, the filters were equilibrated 498 

under controlled temperature (20–23 ºC) and relative humidity (35–45%) before the measurements were 499 

made. Field blanks (a blank quartz-fiber filter and a blank Teflon® filter) were collected and analysed to 500 

account for possible background effects. 501 

Water-soluble inorganic ions, including F-, Cl-, NO3-, SO42-, Na+, K+, Mg2+, Ca2+, and NH4+ were 502 

measured with the use of a Dionex 600 ion chromatograph (IC, Dionex Corp., Sunnyvale, CA, USA). 503 

The four anions of interest were separated using an ASII-HC column (Dionex Corp.) and 20 mM 504 

potassium hydroxide as the eluent. The five cations were separated with a CS12A column (Dionex) and 505 

an eluent of 20 mM methane sulfonic acid. More detailed description of the IC analyses may be found in 506 

Zhang et al. (2011). Carbonaceous species, including organic carbon (OC) and elemental carbon (EC) 507 
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were determined using a Desert Research Institute (DRI) Model 2001 thermal/optical carbon analyzer 532 

(Atmoslytic Inc., Calabasa, CA, USA) following the Interagency Monitoring of Protected Visual 533 

Environments (IMPROVE_A) protocol (Chow et al., 2007). A standard sucrose solution was used to 534 

establish a standard carbon curve before the analytical runs. Replicate analyses were performed at a rate 535 

of one sample for every ten samples, and the repeatability was found to be < 15% for OC and < 10% for 536 

EC. More information of the OC and EC measurement procedures may be found in Cao et al. (2003). 537 

Thirteen elements were determined by energy-dispersive X-ray fluorescence (ED-XRF) spectrometry 538 

(Epsilon 5 ED-XRF, PANalytical B.V., Netherlands), and these elements include Al, Si, K, Ca, Ti, Cr, 539 

Mn, Fe, Cu, Zn, As, Br, and Pb. The analytical accuracy for ED-XRF measurements was determined with 540 

a NIST Standard Reference Material 2783 (National Institute of Standards and Technology, Gaithersburg, 541 

MD, USA). A more detailed description of the ED-XRF methods may be found in Xu et al. (2012). 542 

2.2.2 Online measurements 543 

The aerosol optical properties were determined using a Photoacoustic Extinctiometer (PAX, Droplet 544 

Measurement Technologies, Boulder, CO, USA) at a wavelength of 532 nm. The PAX measured light 545 

scattering (bscat) and absorption (babs) coefficients (in Mm-1) simultaneously using a built-in wide-angle 546 

integrating reciprocal nephelometer and an photoaucoustic technique, respectively. Before and during the 547 

sampling, the PAX bscat and babs were calibrated using ammonium sulfate and fullerene soot particles, 548 

respectively, which were generated with an atomizer (Model 9302, TSI Inc., Shoreview, MN, USA). 549 

Detailed calibration procedures have been described in Wang et al. (2018a; 2018b). For this study, the 550 

PAX was fitted with a PM2.5 cutoff inlet, and the sampled particles were dried by a Nafion® dryer (MD-551 

700-24S-1; Perma Pure, LLC., Lakewood, NJ, USA). The time resolution of the data logger was set to 1 552 

minute. 553 

One-minute average mixing ratios of NOx (NO + NO2), O3, and SO2 were measured using a Model 42i 554 

gas-phase chemiluminescence NOx analyzer (Thermo Fisher Scientific, Inc., Waltham, MA, USA), a 555 

Model 49i photometric ozone analyzer (Thermo Fisher Scientific, Inc.), and a Model 43i pulsed UV 556 

fluorescence analyzer (Thermo Fisher Scientific, Inc.), respectively. Standard reference NO, O3, and SO2 557 

gases were used to calibrate the NOx, O3, and SO2 analyzers, respectively, before and during the campaign. 558 

All the online data were averaged to 24 h and matched to the duration of the filter sampling. 559 
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2.2.3 Complementary data 581 

Wind speed (WS) and relative humidity (RH) were measured with the use of an automatic weather station 582 

installed at the Xianghe Atmospheric Observatory. Surface weather charts for East Asia were obtained 583 

from the Korea Meteorological Administration. The three-day backward in time trajectories and mixed 584 

layer heights (MLHs) were calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory 585 

(HYSPLIT) model (Draxler and Rolph, 2003), which was developed by the National Oceanic and 586 

Atmospheric Administration (NOAA). The aerosol optical depth (AOD) was measured using a 587 

sunphotometer (Cimel Electronique, Paris, France), and those data were obtained from the Aerosol 588 

Robotic Network data archive (http://aeronet.gsfc.nasa.gov). Fire counts were obtained from the 589 

Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Aqua and Terra satellites 590 

(https://firms.modaps.eosdis.nasa.gov/map). 591 

2.3 Data analysis methods 592 

2.3.1 Chemical mass closure 593 

The chemically reconstructed PM2.5 mass was calculated as the sum of OM, EC, SO42-, NO3-, NH4+, Cl-, 594 

fine soil, and trace elements. A factor of 1.6 was used to convert OC to OM (OM = 1.6 × OC) to account 595 

for those unmeasured atoms in organic materials based on the results of Xu et al. (2015). The mass 596 

concentration of fine soil was calculated by summing the masses of Al, Si, K, Ca, Ti, Mn, and Fe oxides 597 

using the following equation (Cheung et al., 2011): 598 

[Fine	soil] = [Al-O/] + [SiO-] + [K-O] + [CaO] + [TiO-] + [MnO-] + [Fe-O/] = 1.89 × [Al] +599 

2.14 × [Si] + 1.21 × [K] + 1.4 × [Ca] + 1.67 × [Ti] + 1.58 × [Mn] + 1.43 × [Fe]              (1) 600 

The mass concentration of trace elements was calculated as the sum of measured elements that were not 601 

used in the calculation of fine soil: 602 

[Trace	elements] = [Cr] + [Cu] + [Zn] + [As] + [Br] + [Pb]                               (2) 603 

As shown in Figure S1, the reconstructed PM2.5 mass was strongly correlated (r = 0.98) with the 604 

gravimetrically determined values, and this attests to the validity of the chemical reconstruction method. 605 

The slope of 0.86 indicates that our measured chemical species accounted for most of the PM2.5 mass. 606 

The difference between the reconstructed and measured PM2.5 mass was defined as “others”. 607 
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2.3.2 Receptor model source apportionment 635 

Positive matrix factorization (PMF) has been widely used in source apportionment studies in the past two 636 

decades (e.g., Cao et al., 2012; Xiao et al., 2014; Tao et al., 2014; Huang et al., 2017). The principles of 637 

PMF are described in detail elsewhere (Paatero and Tapper, 2006). Briefly, PMF is a bilinear factor model 638 

that decomposes an initial chemically-speciated dataset into a factor contribution matrix Gik (i × k 639 

dimensions) and a factor profiles matrix Fkj (k × j dimensions), and then iteratively minimizes the object 640 

function Q: 641 

KLM = ∑ OLPQPM + RLM
S
PTU                                                               (3) 642 

Q = ∑ ∑ (XYZ
[YZ
)-]

MTU
^
LTU                                                                  (4) 643 

where Xij is the concentration of the jth species measured in the ith sample; Eij is the model residual; and 644 

σij represents the uncertainty. 645 

In this study, the PMF Model version 5.0 (PMF 5.0) from US Environmental Protection Agency (EPA) 646 

(Norris et al., 2014) was employed to identify the PM2.5 sources. Four to nine factors were extracted to 647 

determine the optimal number of factors with random starting points. When the values of scaled residuals 648 

for all chemical species varied between -3 and +3 and a small Qtrue/Qexpect was obtained, the base run was 649 

considered to be stable. Further, bootstrap analysis (BS), displacement analysis (DISP), and bootstrap-650 

displacement analysis (BS-DISP) were applied to assess the variability and stability of the results. A more 651 

detailed description of the methods for the determination of uncertainties in PMF solutions can be found 652 

in Norris et al. (2014). 653 

2.3.3 Regional chemical dynamical model 654 

The Weather Research and Forecasting model coupled to chemistry model (WRF-Chem) is a 3-D online-655 

coupled meteorology and chemistry model, and it was used to simulate the formation processes that led 656 

to high PM2.5 loadings after the NCCPC. The WRF-Chem uses meteorological information, including 657 

clouds, boundary layer, temperature, and winds; pollutant emissions; chemical transformation; transport 658 

(e.g., advection, convective, and diffusive); photolysis and radiation; dry and wet deposition; and aerosol 659 

interactions. A detailed description of the WRF-Chem model may be found in Li et al. (2011a; 2011b; 660 

2012). A grid of 280 × 160 cells covering China with a horizontal resolution of 0.25° was used for the 661 

simulation, which also included twenty-eight vertical layers from the Earth’s surface up to 50 hPa. Seven 662 

layers below 1 km were used to ensure a high vertical resolution near ground-level. The meteorological 663 
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initial and boundary conditions were retrieved from the National Centers for Environmental Prediction 740 

(NCEP) reanalysis dataset, and the chemical initial and boundary conditions were obtained from the 6 h 741 

output of the Model for Ozone and Related chemical Tracers (MOZART, Emmons et al., 2010). 742 

In this study, the mean bias (MB), root mean square error (RMSE), and index of agreement (IOA) were 743 

used to evaluate the performance of WRF-Chem simulation. The IOA is representative of the relative 744 

difference between the predicted and measured values, and it varies from 0 to 1, with 1 indicating perfect 745 

performance of the model prediction. These parameters were calculated using the following equations (Li 746 

et al., 2011a): 747 

MB = U
_ ∑ ( L̀ − bL)_

LTU                                                                (5) 748 

RMSE = [U
_∑ ( L̀ − bL)-_

LTU ]
e
f                                                          (6) 749 

IOA = 1 − ∑ (hYijY)fk
Yle

∑ (|hYihnop|q|jYijnop|)fk
Yle

                                                     (7) 750 

where Pi and Pave represent each predicted PM2.5 mass concentration and the average value, respectively; 751 

Oi and Oave are the observed PM2.5 mass concentrations and the average value, respectively; and r is 752 

representative of the total number of predictions used for comparison. 753 

2.3.4 Calculations of chemical bscat and babs 754 

To determine the contributions of individual PM2.5 chemical species to particles’ optical properties, bscat 755 

and babs were reconstructed based on the major chemical composition of the PM2.5 using the revised 756 

IMPROVE equations as follows (Pitchford et al., 2007): 757 

stuvw ≈ 2.2 × yz({|) × [(r|})-~b}]z^v�� + 4.8 × yÄ({|) × [(r|})-~b}]ÄvÅÇÉ + 2.4 × yz({|) ×758 

[r|}rb/]z^v�� + 5.1 × yÄ({|) × [r|}rb/]ÄvÅÇÉ + 2.8 × [bÑ]z^v�� + 6.1 × [bÑ]ÄvÅÇÉ + 1 ×759 

[QÖÜá	àâÖä]                                                                        (8) 760 

[X]ÄvÅÇÉ =
[å]f

-ç	éÇ	^èê , yâí	[X] < 20	ïñ	ói/                                              (9) 761 

[X]ÄvÅÇÉ = [X], yâí	[X] ≥ 20	ïñ	ói/                                                  (10) 762 

[X]z^v�� = [X] − [X]ÄvÅÇÉ                                                           (11) 763 

where the mass concentrations of ammonium sulfate ([(NH4)2SO4]) and ammonium nitrate ([NH4NO3]) 764 

were estimated by multiplying the concentrations of SO42- and NO3- by factors of 1.375 and 1.29, 765 
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respectively (Tao et al., 2014); f(RH) is the water growth for the small (S) and large (L) modes of 781 

(NH4)2SO4 and NH4NO3 in PM2.5; and [X] represents the PM2.5 composition as used in Eq. (8). This 782 

analysis is based on the assumption that the particles were externally mixed. More detailed information 783 

of the IMPROVE algorithms may be found in Pitchford et al. (2007).  784 

A second assumption for this part of the study was that there was negligible absorption by brown carbon 785 

in the visible region (Yang et al., 2009), and on this basis, the babs can be determined from the EC mass 786 

concentration using linear regression (Eq. 12). As shown in Figure S2, the derived slope (a) and intercept 787 

(b) for the regression model were 10.8 m2 g-1 and -4.7, respectively. 788 

sôöõ = a × [EC] + b                                                                (12) 789 

2.3.5 DRF calculation 790 

The Tropospheric Ultraviolet and Visible (TUV) radiation model developed by the National Center for 791 

Atmospheric Research was used to estimate the aerosol DRF for 180 – 730 nm at the Earth’s surface. A 792 

detailed description of the model may be found in Madronich (1993). Aerosol DRF is mainly controlled 793 

by the aerosol column burden and chemical composition, and important properties include the AOD, 794 

aerosol absorption optical depth (AAOD), and single-scattering albedo (SSA = (AOD-AAOD)/AOD). 795 

Based on an established relationship between the AODs measured with sunphotometer and the light 796 

extinction coefficients (bext = bscat + babs) observed with PAX, an effective height can be retrieved which 797 

makes it possible to convert the IMPROVE-based chemical bext values into the AODs or AAODs caused 798 

by the PM2.5. There are hygroscopic effects to consider, and therefore, the dry bext values measured here 799 

were modified to the wet bext based on the water-growth function of particles described in Malm et al. 800 

(2003). We note that the estimated chemical AODs were based on the assumption that the aerosols were 801 

distributed homogeneously throughout an effective height.  802 

Finally, the calculated chemical AOD and SSA for different PM2.5 composition scenarios were used in 803 

the TUV model to obtain shortwave radiative fluxes. Values for the surface albedo, another factor that 804 

influences DRF, were obtained from the MOD43B3 product measured with the Moderate Resolution 805 

Imaging Spectroradiometer (https://modis-atmos.gsfc.nasa.gov/ALBEDO/index.html). The solar 806 

component in the TUV model was calculated using the δ-Eddington approximation, and the vertical 807 

profile of bext used in the model was described in Palancar and Toselli (2004). The aerosol DRF is defined 808 

as the difference between the net shortwave radiative flux with and without aerosol as follows: 809 

DRFsurface = Flux (net)with aerosol, surface – Flux (net)without aerosol, surface                             (13) 810 
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3 Results and discussion 895 

3.1 Effectiveness of the control measures on reducing PM2.5 896 

We divided the study period into two phases based on the dates that the pollution control measures were 897 

put into effect (1) the NCCPC-control period from 12 to 24 October and (2) non-control period from 25 898 

October to 4 November. Temporal variations in the PM2.5 mass concentrations and those of the major 899 

aerosol components during these two phases are shown in Figure 2, and a statistical summary of those 900 

data is presented in Table 1. During the NCCPC-control period, the PM2.5 mass concentrations remained 901 

consistently low relative to the NAAQS II (75 µg m-3), generally < 75 µg m-3. In contrast, higher fine 902 

particle loadings (PM2.5 > 75 µg m-3) frequently were observed during the non-control period. On average, 903 

the mass concentration of PM2.5 during the NCCPC-control period was 57.9 ± 9.8 µg m-3, which is lower 904 

by 31.2% compared with the non-control period (84.1 ± 38.8 µg m-3). Meanwhile, the PM2.5 mass 905 

concentrations obtained from the China Environmental Monitoring Center also showed a decreasing trend 906 

over most of the BTH region during the NCCPC-control period (see Figure S3). Compared with previous 907 

events when pollution control measures were implemented in Beijing and surrounding areas, the percent 908 

decrease in PM2.5 found for the present study falls within the lower limit of the 30–50% reduction for 909 

Olympic Games (Wang et al., 2009; Li et al., 2013), but it is less than the range of 40–60% for the APEC 910 

(Tang et al., 2015; Tao et al., 2016; J. Wang et al., 2017) or the range of 60–70% for the VDP (Han et al., 911 

2016; Liang et al., 2017; Lin et al., 2017). 912 

As shown in Figure 2 (right panel), the chemical mass closure calculations for PM2.5 showed that on 913 

average OM was the largest contributor (30.4%) to PM2.5 mass during the non-control period, followed 914 

by NO3- (16.7%), fine soil (11.2%), and EC (7.6%). In contrast, OM (24.3%) and NO3- (22.9%) dominated 915 

the PM2.5 mass during the NCCPC-control period, followed by SO42- (9.8%), NH4+ (9.1%), and EC (7.9%). 916 

The OM mass concentration was decreased largely by 43.1% from 24.6 µg m-3 during the non-control 917 

period to 14.0 µg m-3 during the NCCPC-control period. For secondary water-soluble inorganic ions, the 918 

average mass concentrations of NO3- (13.4 µg m-3 versus 16.9 µg m-3) and NH4+ (5.4 versus 6.8 µg m-3) 919 

were lower by 20.7% and 20.6% during the NCCPC-control period, respectively. However, SO42- 920 

exhibited similar loadings during the NCCPC-control (5.8 µg m-3) and non-control (5.3 µg m-3) periods. 921 

This is consistent with the small differences in SO2 concentrations for the NCCPC-control (8.5 µg m-3, 922 

Figure S4) versus the non-control (12.4 µg m-3, Figure S4) periods. Indeed, the low SO2 concentrations 923 

may not have provided sufficient gaseous precursor to form substantial amounts of sulfate. The loadings 924 

of EC, Cl-, and fine soil were lower by 25.0, 44.8, and 40.8%, respectively, when the controls were in 925 

����	: Based on the dates of emission control measures, w…e 981 
divided the whole …tudy period into two phases based on the dates 982 
that the pollution control measures were put into effect (1):…the 983 
NCCPC …CCPC-control period from 12 to 24 October and (2) non-984 
control period from 25 October to 4 November. Temporal variations 985 
of …n the PM2.5 mass concentrations of PM2.5 …nd those of the 986 
its…major aerosol components during these two phases are shown in 987 
Figure 2, and a statistical summary of those data is presented in Table 988 
1. During the NCCPC-control period, tT…e PM2.5 mass 989 
concentrations of PM2.5 …emained consistently low relative to the 990 
NAAQS II (75 µg m-3), generally < 75 µg m-3 (NAAQS II) during the 991 
NCCPC control period…,…In contrast,but the…higher fine particle 992 
loadings with …PM2.5 > 75 µg m-3) are…frequently were observed 993 
during the non-control period. On average, the mass concentration of 994 
PM2.5 during the NCCPC …CCPC-control period is …as 57.9 ± 9.8 995 
µg m-3, which is lowerdecreased996 ... [19]
����: ��

����	: the …revious important …vents 997 
that …henimplemented…pollution control measures were 998 
implemented in Beijing and its …urrounding areas, the percent 999 
decrease reduction ratio of…n PM2.5 in …ound for the present study 1000 
falls within the lower limit reducing range …f the 30–50% reduction 1001 
for the…Olympic Games (Wang et al., 2009; Li et al., 2013), but it is 1002 
lower …ess than the range of 40–60% for the APEC period…(Tang 1003 
et al., 2015; Tao et al., 2016; J. Wang et al., 2017) and …r the range 1004 
of 60–70% for the VDP period1005 ... [20]

����	: of …or PM2.5 showedreveals…that on average OM 1027 
is …as the largest contributor (30.4%) to PM2.5 mass during the non-1028 
control period, followed by NO3

- (16.7%), fine soil (11.2%), and EC 1029 
(7.6%). In contrast, OM (24.3%) and NO3

- (22.9%) both …ominated 1030 
the PM2.5 mass during the NCCPC …CCPC-control period, followed 1031 
by SO4

2- (9.8%), NH4
+ (9.1%), and EC (7.9%). The OM mass 1032 

concentration of OM is…as decreased largely by 43.1% from 24.6 µg 1033 
m-3 during the non-control period to 14.0 µg m-3 during the 1034 
NCCPC …CCPC-control period. For the …econdary water-soluble 1035 
inorganic ions, the average mass concentrations of NO3

- (13.4 µg m-3 1036 
versus 16.9 µg m-3) and NH4

+ (5.4 versus 6.8 µg m-3) were 1037 
lowerdecrease…by 20.7% and 20.6% during the NCCPC …CCPC-1038 
control period compared with the non-control period… respectively. 1039 

... [21]
���� ... [22]

����	: may be attributed to…the low SO2 concentrations (10.3 1021 
± 3.5 µg m-3, Figure S2) during the entire campaign, which …ay not 1022 
have provided sufficient enough…gaseous precursor to form 1023 
substantial amounts of sulfate. Furthermore, t…he loadings of EC, 1024 
Cl-, and fine soil are …ere reduced …ower by 25.0, 44.8, and 40.8%, 1025 
respectively, when  during …he NCCPC1026 

... [23]
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place. The variations in reductions for specific aerosol components imply differences in the effectiveness 1040 

of the emission controls on the chemical species, but as discussed below, meteorological conditions 1041 

probably had an influence on the loadings, too. 1042 

As shown in Figure S4, both WSs (0.7 ± 0.3 versus 1.3 ± 0.8 m s-1) and MLHs (304.3 ± 60.6 versus 373.7 1043 

± 217.9 m) were lower for the NCCPC-control period compared with the non-control period. This 1044 

indicates that horizontal and vertical dispersion were weaker during the NCCPC-control period than in 1045 

the non-control period. More to the point, this shows that one needs to consider the effects of WS and 1046 

MLH to fully evaluate the effectiveness of the pollution control measures. A simple and effective way to 1047 

do this is to compare the concentrations of air pollutants for the two periods when atmospheric conditions 1048 

were stable (Wang et al., 2015; Liang et al., 2017).  1049 

We first evaluated atmospheric stability based on relationships between PM2.5 mass concentrations and 1050 

WS and MLH. As shown in Figure 3, the PM2.5 mass concentrations exhibited a power function 1051 

relationship with WS (r = -0.65) and MLH (r = 0.77). The approach used to determine stable conditions 1052 

was to find the WS and MLH values that were less than the inflection points in the PM2.5 loadings; that 1053 

is, where the slopes in the loadings changed from large to relatively small values. As there are no true 1054 

inflection points for the power functions, we used piecewise functions to represent them. As shown in 1055 

Figure 3, the intersections of two linear regressions can be used to represent the inflection points of the 1056 

influences of meteorological conditions on PM2.5 mass. Using these criteria, days with WS < 0.4 m s-1 1057 

and MLH < 274 m were subjectively considered to have stable atmospheric conditions.  1058 

There were two days for the NCCPC-control period and three days for the non-control period that satisfy 1059 

the stability criteria. The surface charts (Figure S5) show that the weather conditions for those selected 1060 

stable atmosphere days during the NCCPC-control and non-control periods were mainly controlled by 1061 

uniform pressure fields and weak low-pressure systems, respectively, and those conditions led to weak or 1062 

calm surface winds. Due to the lower WS (0.2 versus 0.3 m s-1) and MLH (213 versus 244 m) during the 1063 

NCCPC-control period relative to the non-control period, the horizontal and vertical dispersion for the 1064 

stable atmospheric days were slightly weaker during the NCCPC-control period. As shown in Table 1, 1065 

the percent differences for PM2.5 (43.4%), NO3- (25.9%), OM (68.1%), EC (40.0%), and fine soil (58.7%) 1066 

were larger for the days with stable atmospheric conditions compared with those for all days. These results 1067 

are a further indication that the control measures were effective in reducing pollution, but meteorology 1068 

also influenced the aerosol pollution. 1069 

����	:  period compared with the non-control period, 1122 
respectively… The variations indifferent…reductions for specific 1123 
aerosol components imply differences in the effectiveness ofeach 1124 
chemical species revealed their distinct responses to…the emission 1125 
controls on the chemical species, but as discussed below,and1126 ... [24]

����	: S2…4, both WSs (0.7 ± 0.3 versus 1.3 ± 0.8 m s-1) and 1127 
MLHs (304.3 ± 60.6 versus 373.7 ± 217.9 m) are…ere lower for the 1128 
NCCPC …CCPC-control period compared withthan…the non-1129 
control period. This indicates that horizontal and vertical 1130 
diffusion …ispersion were weakerconditions…during the 1131 
NCCPC …CCPC-control period should be worse …han in the non-1132 
control period. More to the point, this shows that one needs 1133 
Therefore, it is necessary …o consider the effects of WS and MLH to 1134 
fullywhen further…evaluates…the effectiveness of the pollution 1135 
control measures. A simple and effective way to do this is to compare 1136 
the concentrations of air pollutants for the two periods whenunder 1137 
stable1138 ... [25]

����	: In this study, w…e first evaluated atmospheric stability 1139 
defined the stable atmospheric conditions…based on 1140 
the…correlations …elationships between PM2.5 mass concentrations 1141 
and WS and MLH. As shown in Figure 3, the PM2.5 mass 1142 
concentrations exhibits …xhibited a power function relationship with 1143 
WS (r = -0.65) and MLH (r = 0.77). The approach used to determine 1144 
criterion for judging …table conditions is …as to findwhether…the 1145 
WS and MLH values that wereare…lower …ess than the values of 1146 
turning…nflection points in the PM2.5 loadings; that is, where, which 1147 
are…the slopes in the loadings changed from large to relatively small 1148 
values. As However, …here is …re no true inflection points for the 1149 
power functions, thus, …e used piecewise functions to determine the 1150 
turning points…epresent them. As shown in Figure 3, the 1151 
intersections of two linear regressions can be representative …sed to 1152 
represent the inflectionof turning…points of the influences of 1153 
meteorological conditions on PM2.5 mass. Using these 1154 
criteriaFinally… the…days with WS < 0.4 m s-1 and MLH < 274 m 1155 
are 1156 ... [26]

����	: are …ere two days for the NCCPC …CCPC-control 1175 
period and three days for the non-control period that satisfy the 1176 
stability criteria criterion… The surface charts (Figure S5) show that 1177 
the weather conditions for those selected stable atmosphere days 1178 
during the NCCPC-control and non-control periods were mainly 1179 
controlled by uniform pressure fields and weak low-pressure systems, 1180 
respectively, and those conditions led to weak or calm surface winds. 1181 
Due to the lower WS (0.2 versus 0.3 m s-1) and MLH (213 versus 244 1182 
m) during the NCCPC-control period relative to the non-control 1183 
period, the horizontal and vertical dispersion for the stable 1184 
atmospheric days were slightly weaker during the NCCPC-control 1185 

... [27]
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3.2 Estimates of source contributions 1186 

The mass concentrations of water-soluble inorganic ions (SO42-, NO3-, NH4+, K+, and Cl-), carbonaceous 1187 

(OC and EC), and elements (Al, Si, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Br, and Pb) were used as data inputs 1188 

for the PMF 5.0 model. Through comparisons between the PMF profiles and reference profiles from 1189 

previous studies, the presumptive sources for the aerosol were identified as (i) coal combustion, (ii) 1190 

traffic-related emissions, (iii) secondary particle formation, (iv) biomass burning, (v) industrial processes, 1191 

and (vi) mineral dust. As shown in Figure S6, the PMF modelled PM2.5 mass concentrations were strongly 1192 

correlated with the observed values (r = 0.98, slope = 0.94), and the model-calculated concentrations for 1193 

each chemical species exhibited good linearity and correlations with the measured values (r = 0.68–0.99) 1194 

(Table S1). These results show that the six identified sources were physically interpretable and accounted 1195 

for much of the variability in the data. 1196 

Figure 4 presents the source profiles and the average contribution of each source to PM2.5 mass during 1197 

the NCCPC-control and non-control periods. The first source factor was identified as coal burning 1198 

emissions because it was enriched with As (38.8%), Pb (32.9%), and Fe (30.3%) and had moderate 1199 

loadings of Mn (26.2%), Zn (23.8%), Si (23.1%), and Ca (22.8%) (Figure 4a). Of these elements, As is a 1200 

well-known tracer for coal burning (Hsu et al., 2009; Y. Chen et al., 2017); Pb, Fe, Mn, and Zn (Xu et al., 1201 

2012; Men et al., 2018) are enriched in particles generated by this source; and Ca and Si can be 1202 

components of coal fly ash (Pipal et al., 2011). There was no significant difference in PM2.5 loadings 1203 

contributed by this source between the NCCPC-control (8.5 µg m-3) and non-control (7.8 µg m-3) periods. 1204 

This may be because coal burning is mainly used for domestic purposes, especially heating, and the 1205 

control measures did not include this sector. The contribution of coal burning to PM2.5 mass in our 1206 

October/November study was lower than its contribution in the BTH region in winter (~20 – 60 µg m-3) 1207 

(Huang et al., 2017), and that can be explained by the increased domestic usage of coal for heating 1208 

activities during the colder winter season. 1209 

The second source factor was linked to traffic-related emissions, and it was characterized by strong 1210 

loadings of EC (42.1%) and Cu (40.7%) and moderate contributions of OC (29.1%), Zn (27.1%), and Br 1211 

(22.2%). Previous studies have indicated that carbonaceous aerosols are components of gasoline and 1212 

diesel engine exhaust (Cao et al., 2005), and therefore, EC and OC have been used as indicators for motor 1213 

vehicle emissions (Chalbot et al., 2013; Khan et al., 2016a), and Br, too, may be emitted from internal 1214 

combustion engines (Bukowiecki et al., 2005). Aerosol Cu and Zn are derived from other types of vehicle 1215 

emissions, including those associated with lubricant and oil, brake linings, metal brake wear, and tires 1216 

����	: ion1281 

����	:  inputs… Through comparisons After 1282 
compared…etween the PMF profiles andwith the…reference profiles 1283 
from previous literatures…tudies, the finally identified…resumptive 1284 
sources for the aerosol were identified asare…(i) coal combustion, 1285 
(ii) traffic-related emissions, (iii) secondary inorganic 1286 
aerosols…article formation, (iv) biomass burning, (v) industrial 1287 
processes, and (vi) mineral dust. As shown in Figure S3…6, the PMF 1288 
modelled PM2.5 mass concentrations are …ere strongly correlated 1289 
with the observed values (r = 0.98,) with a…slope =of…0.94), and 1290 
simultaneously, …he model-calculated concentrations of …or each 1291 
modelled …hemical species represent …xhibited goodness-of-fit 1292 
of…linearity and correlations regression…with the measured values 1293 
(r = 0.68–0.99) (Table S1). These results reveal…how that the six 1294 
identified sources could be…ere reasonably …hysically interpretable 1295 
and accounted for much of the variability in the dataprofiles in this 1296 
study1297 ... [28]

����	: NCCPC …CCPC-control and non-control periods. As 1298 
shown in Figure 4a, t…he first source factor is …as identified as coal 1299 
burning emissions because it was enriched in …ith As (38.8%), Pb 1300 
(32.9%), and Fe (30.3%) as well as…nd had moderate contributions 1301 
from…oadings of Mn (26.2%), Zn (23.8%), Si (23.1%), and Ca 1302 
(22.8%) (Figure 4a). Of these elements,The…As has …s a well-1303 
known been proposed as a useful …racer for coal burning (Hsu et al., 1304 
2009; Y. Chen et al., 2017). …; Moreover, the metals of 1305 

... [29]

��(�) [2]

����	: could be produced from the processes of coal 1306 
combustion (Xu et al., 2012; Men et al., 2018), while1307 


�� [2]:  (Xu et al., 2012; Men et al., 2018)1308 

����	: consisted in…omponents of coal fly ash (Pipal et al., 1339 
2011). Thus, this source factor is assigned to the coal burning. …here 1340 
is…as no significant difference in PM2.5 mass …oadings contributed 1341 
by this source from coal burning …etween the NCCPC …CCPC-1342 
control (8.5 µg m-3) and non-control (7.8 µg m-3) periods. This may 1343 
be due to the fact that…ecause coal burning is mainly used for 1344 
household energy for local residents…omestic purposes, especially 1345 
heating, and whereas…the control measures do …id not 1346 
involve …nclude this sector. The contribution of coal burning to 1347 
PM2.5 mass in our October/November study wasfrom this source 1348 
is…lower than the …ts contribution values (~20 – 60 µg m-3) from 1349 

... [30]

����	: is…as linked to traffic-related emissions, and it 1334 
was  …haracterized by the elevated…trong loadings of EC (42.1%) 1335 
and Cu (40.7%) as well as…nd moderate contributions of OC 1336 
(29.1%), Zn (27.1%), and Br (22.2%). Previous studies have 1337 
indicated that carbonaceous aerosols are components of strongly 1338 

... [31]
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(Lin et al., 2015). Furthermore, the mass concentration of PM2.5 from this source was strongly correlated 1350 

(r = 0.72) with vehicle-related NOx concentrations (Figure S7), which further suggests the validity of this 1351 

PMF-resolved source. Traffic-related emissions showed similar percent contributions to PM2.5 mass 1352 

during the NCCPC-control (14.8%) and non-control (15.4%) periods (Figure 4c), but the mass 1353 

concentration was 38% lower for the NCCPC-control period (8.9 µg m-3) than the non-control period 1354 

(14.4 µg m-3). This shows that the reduction in motor vehicle activity during the control period led to 1355 

better air quality. 1356 

The third source factor was a clear signal of secondary particle formation because it was dominated by 1357 

high loadings of SO42- (45.4%), NO3- (43.4%), and NH4+ (47.0%) (Zhang et al., 2013; Amil et al., 2016). 1358 

Moreover, moderate loadings of As (30.5%), Pb (27.4%), Cr (31.4%), Cu (30.7%), and EC (30.8%) also 1359 

were assigned to this factor, suggesting influences from coal burning and vehicle exhaust emissions. 1360 

Although the concentrations of gaseous precursors, especially SO2 and NOx, were lower during the 1361 

NCCPC-control period (Figure S4), the average mass contribution of secondary PM2.5 was larger when 1362 

the controls were in effect (22.5 versus 18.3 µg m-3); indeed, this source was the largest contributing 1363 

factor (37.3% of PM2.5 mass) during the NCCPC-control period. We note that the higher RH (84%) during 1364 

the NCCPC-control period compared with the non-control period (69%) may have promoted the 1365 

formation of the secondary inorganic aerosols through aqueous reactions (Sun et al., 2014). 1366 

The fourth source factor, identified as emissions from biomass burning, was characterized by the high 1367 

loadings of K+ (59.5%) with moderate loadings of Cl- (33.3%), OC (28.5%), NO3- (37.1%), SO42- (21.1%), 1368 

and NH4+ (39.6%). Soluble K+ is an established tracer for biomass burning (Zhang et al., 2013; Wang et 1369 

al., 2016b), and Cl- and OC also are emitted during biomass burning (Tao et al., 2014; Huang et al., 2017). 1370 

Previous studies have shown that SO2 and NO2 can be converted into sulfate and nitrate on KCl particles 1371 

during the transport of biomass-burning emissions (Du et al., 2011). Therefore, the abundant NO3-, SO42-, 1372 

and NH4+ associated with this factor may be indicative of aged biomass-burning particles. As shown in 1373 

Figure 4c, biomass burning contributed substantially to PM2.5 mass during both the NCCPC (21.6%) and 1374 

non-control periods (27.3%). This is to be expected because Hebei Province is a major corn and wheat 1375 

producing area, and the residues of these crops commonly are used for residential cooking and heating or 1376 

burned in the fields (J. Chen et al., 2017). The mass concentrations of PM2.5 from this source were lower 1377 

during the NCCPC (13.0 µg m-3) than in the non-control period (25.7 µg m-3), and this indicates the 1378 

effectiveness of the control policy that forbade the open space biomass-burning during the NCCPC. As 1379 

����	: Br may be partly emitted from fuel combustion in 1541 
internal combustion engines (Bukowiecki et al., 2005). Therefore, the 1542 
second source factor is representative of traffic-related 1543 
emissions. …urthermore, the mass concentration of PM2.5 from this 1544 
source is …as strongly correlated (r = 0.72) with the …ehicle-related 1545 
NOx concentrations (Figure S4…7), which further suggests the 1546 
validity of the …his PMF-resolved source contributions… The 1547 
t…affic-related emissions have …howed similar percentages 1548 
of…contributions to PM2.5 mass during the NCCPC …CCPC-control 1549 
(14.8%) and non-control (15.4%) periods (Figure 4c), but its …he 1550 
mass concentration is …as 38%1.6 times…lower for the 1551 
NCCPC …CCPC-control period (8.9 µg m-3) than the non-control 1552 
period (14.4 µg m-3). This is attributed to…hows that the reduction 1553 
of …n motor vehicle activity volume on road by traffic restriction 1554 ... [32]

����	: is …as a clear signal of secondary particle formation 1470 
because it was dominated by the1471 

... [33]

��(�) [3]

����	: ), …. and is obviously classified as secondary inorganic 1472 
aerosol (Zhang et al., 2013; Amil et al., 2016). 1473 

... [34]


�� [3]:  (Zhang et al., 2013; Amil et al., 2016)1474 

����	: are also…assigned to this factor, suggesting 1527 
the …nfluences of…rom coal burning and vehicle exhaust 1528 
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especially (e.g.,…SO2 and NOx,)…were lower during the 1530 
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low RH (69%) during the non-control period, …he higher RH (84%) 1538 
during the NCCPC …CCPC-control period compared with the non-1539 
control period (69%) may havecould1540 

... [35]

����	:  is…characterized by the high contributions …oadings 1515 
of K+ (59.5%) with moderate loadings of Cl- (33.3%), OC (28.5%), 1516 
NO3

- (37.1%), SO4
2- (21.1%), and NH4

+ (39.6%). Soluble K+ is an 1517 
establisheda good…tracer for biomass burning (Zhang et al., 2013; 1518 
Wang et al., 2016b), and Cl- and OC also are emitted during biomass 1519 
burning also related to this source …Tao et al., 2014; Huang et al., 1520 
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the control measures did not include prohibitions on the household use of biofuels, substantial 1555 

contributions of biomass burning were still evident during the NCCPC-control period. 1556 

The fifth source factor was identified as emissions from industrial processes because it had high loadings 1557 

of Zn (41.3%), Br (38.0%), Pb (19.9%), As (19.2%), Cu (17.5%), and Mn (19.1%) (Q. Q. Wang et al., 1558 

2017; Sammaritano et al., 2018). This source contributed 3.6 µg m-3 to PM2.5 mass during the NCCPC-1559 

control period, which is lower than the non-control period (16.2 µg m-3) by 78%, and its percent 1560 

contribution to PM2.5 mass also increased correspondingly from 6.0 to 17.2% after the controls were 1561 

removed. The results show that restrictions on industrial activities during the NCCPC-control period led 1562 

to improvements in air quality. Iron and steel production are among the most important industries in BTH 1563 

region, and the iron and steel production there accounted for 28.8% of the total for China in 2016 (NBS, 1564 

2017). The sintering process in iron and steel industries produce large amounts of heavy metal pollutants 1565 

including Zn, Pb, and Mn (Duan and Tan, 2013). Hence, the iron and steel industries in the BTH region 1566 

were probable sources for these metals during the non-control period. 1567 

The sixth source factor was obviously mineral dust because it had high loadings of Al (55.9%), Si (55.7%), 1568 

Ca (52.6%), and Ti (36.7%) (Zhang et al., 2013; Tao et al., 2014; Kuang et al., 2015). This factor 1569 

contributed 3.8 µg m-3 (6.3% of PM2.5 mass) during the NCCPC-control period and 11.5 µg m-3 (12.3%) 1570 

to PM2.5 mass in the non-control period. Possible sources for the mineral dust include (i) natural dust, 1571 

which contains crustal Al, Si, and Ti (Milando et al., 2016), (ii) construction dust, which includes Ca (Liu 1572 

et al., 2017), and (iii) road dust, which is characterized by traffic-related species, such as Cu, Zn, Br, and 1573 

EC (Khan et al., 2016b; Zong et al., 2016). Here, the mineral dust factor did not contain any notable 1574 

contributions from the traffic-related species. Thus, this factor can be explained by the natural and 1575 

construction dusts. As shown in Figure S8, WS was positively correlated (r = 0.75) with the PM2.5 mass 1576 

from mineral dust. To reduce the effects of wind speed on crustal dust resuspension, we compared the 1577 

days with low winds (< 1 m s-1) during the sampling periods, and only three sampling days were excluded 1578 

from the analysis. This comparison showed that the mass concentration of PM2.5 from mineral dust was 1579 

60% lower in the NCCPC-control period (3.8 µg m-3) compared with the non-control period (9.5 µg m-1580 

3). This is a strong indication that restrictions on construction activities during the NCCPC-period were 1581 

effective in reducing the mineral dust component of PM2.5, but as noted above, this was not a large 1582 

component of the PM2.5 mass. 1583 

����	: do …id not involve …nclude prohibitions on the 1647 
household use of biofuels, substantial and thus, the 1648 
high …ontributions of biomass burning can be…ere still 1649 
evidentmeasured…during the NCCPC 1650 ... [37]
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2016 (NBS, 2017). The sintering process in the…iron and steel 1666 
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pollutants including Zn, Pb, and Mn (Duan and Tan, 2013). Hence, 1668 
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3.3 Exploring the pollution episodes after the NCCPC control period 1724 

As shown in Figure 2 (left panel), two pollution episodes occurred after the NCCPC-control period (PE1: 1725 

25–27 October and PE2: 31 October–1 November); the average PM2.5 mass concentrations in PE1 and 1726 

PE2 were 117.5 and 124.5 µg m-3, respectively. For PE1, secondary aerosols were the dominant 1727 

contributor to the fine particle population, accounting for 54.6% of PM2.5 mass (Figure 5a), and the 1728 

secondary species that showed the largest contribution to PM2.5 mass was NO3- (26.8%) (Figure 5b). The 1729 

mass concentration of NO3- increased from < 10 µg m-3 before PE1 to > 25 µg m-3 during the episode 1730 

(Figure 2). Molar ratios of NO3- to NO2 (NOR = n-NO3-/(n-NO2 + n-NO3-)) were calculated to investigate 1731 

nitrogen partitioning between the particulate and gas phases (Zhang et al., 2011). As shown in Figure 6a, 1732 

the mass concentration of PM2.5 increased with NOR (r = 0.65) throughout the entire campaign, which 1733 

indicates that nitrate formation was involved in the high PM2.5 loadings. The NORs ranged from 0.32 to 1734 

0.71 during the PE1, and those values were significantly different (t-test, p < 0.01) from the ratios before 1735 

(0.23–0.29) or after PE1 (0.03–0.10), thus reflecting stronger nitrate formation during the pollution period. 1736 

Furthermore, NOR exhibited an exponential increase with RH (r = 0.80, Figure 6b), and the higher RHs 1737 

(91–93%) during the PE1 may have led to greater aqueous nitrate production relative to the periods before 1738 

(80–86%) or after (33–57%) the first pollution episode. 1739 

The second largest contributor to PM2.5 mass during PE1 was OM, which accounted for 22.9% of the fine 1740 

aerosol mass. A widely used EC-tracer method (Lim and Turpin, 2002) was used to estimate the primary 1741 

and secondary OA (POA and SOA). For this, the lowest 10% percentile of the measured OC/EC ratios 1742 

was used as a measure of the primary OC/EC ratio (Zheng et al., 2015). The estimated mass 1743 

concentrations of POA and SOA were 17.2 and 9.7 µg m-3 during the PE1, which accounted to 63.9 and 1744 

36.1% of the OM mass, respectively.  1745 

Photochemical oxidation and aqueous reactions are two of the major mechanisms that lead to the 1746 

formation SOA (Hallquist et al., 2009), and we evaluated the roles of these chemical reactions by 1747 

investigating trends in the EC-scaled concentrations of SOA (SOA/EC). We note that normalizing the 1748 

data in this way eliminates the impacts of different dilution/mixing conditions on the SOA loadings 1749 

(Zheng et al., 2015). As shown in Figure 6c, the SOA/EC ratios increased (r = 0.65) with Ox (NO2 + O3), 1750 

which is a proxy for atmospheric aging caused by photochemical reactions (Canonaco et al., 2015), and 1751 

the EC-scaled concentrations showed a weak correlation with RH (r = -0.32) (Figure 6d). These results 1752 

indicate that photochemical reactions rather than aqueous phase oxidation were the major pathways for 1753 
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SOA formation. Thus, the small contribution of SOA to PM2.5 during the PE1 may have been due to low 1896 

photochemical activity during that episode. 1897 

In contrast to the first pollution episode, OM (31.8%) was the most abundant PM2.5 species during PE2, 1898 

and that was followed by NO3- (19.2%) (Figure 5b). The mass concentration of K+ increased substantially, 1899 

from 0.1 µg m-3 before PE2 to 1.7 µg m-3 during the event, indicating a strengthening influence of 1900 

biomass-burning emissions. Indeed, the results of PMF show that biomass burning was the largest 1901 

contributor to PM2.5 mass during the PE2, accounting for 36.0% of the total (Figure 5a). Furthermore, the 1902 

72-h back trajectories showed that air masses sampled during the PE2 either originated from or passed 1903 

over areas with fires in Inner Mongolia and Shanxi Province (see Figure 7), and this can explain the 1904 

apparent impacts from biomass burning emission. Moreover, SOA contributed an estimated 47.7% of the 1905 

OM mass, and that is a strong indication that secondary organics were a major component of the pollution. 1906 

The mass concentration of SOA was 19.0 µg m-3 during the PE2, and that was higher than in 9.7 µg m-3 1907 

during the PE1. As the oxidizing conditions—as indicated by Ox—were similar for both pollution 1908 

episodes (78.0 µg m-3 in PE1 versus 86.7 µg m-3 in PE2) (Figure S4), the larger SOA during the PE2 can 1909 

best be explained by SOA that formed from gaseous biomass-burning emissions during transport. 1910 

3.4 Meteorological considerations 1911 

Previous studies have shown that meteorological conditions play an important role in the accumulation 1912 

of pollution in the BTH region (Bei et al., 2017). Surface weather charts (Figure 8) were used to analyze 1913 

the synoptic conditions during the two pollution episodes, and the WRF-Chem model was applied to 1914 

simulate the formation of PM2.5 (Figure 9). As shown in Figure S9, the predicted PM2.5 and its major 1915 

chemical components exhibited trends roughly similar to the observed values. The calculated MB and 1916 

RMSE for PM2.5 were -6.8 and 32.8 µg m-3, and the IOA was 0.75, indicating that the formation of PM2.5 1917 

during the two pollution episodes was reasonably well captured by the WRF-Chem model even though 1918 

the predicted average PM2.5 mass concentration was lower than the observed value. The most probable 1919 

reason for this is that uncertainties associated with the complex meteorological fields can affect the 1920 

transport, diffusion, and removal of air pollutants in the atmosphere (Bei et al., 2012). Additionally, 1921 

discrepancies in the emission inventories for PM2.5 for different years may have contributed to the 1922 

differences in modelled versus measured values. 1923 

On 22 October, that is, before PE1, a weak cold high-pressure system in Siberia moved southward (Figure 1924 

8), and the BTH region was under the influence of a cold high-pressure system; conditions such as those 1925 

tend to keep pollutants at low levels. After the passage of the low-pressure system, the BTH region was 1926 
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under the control of a weak high-pressure system from 24 to 25 October, and that led to a convergence of 2106 

southernly airflow in the BTH region. Those meteorological conditions were favourable for the gradual 2107 

accumulation of pollutants (Figure 9). For example, as shown in Figure S4, the NOx concentrations 2108 

increased from 71.6 µg m-3 on 22 October to 147.6 µg m-3 on 25 October, and that increase provided a 2109 

supply of gaseous precursors that can explain the observed large loadings of aerosol nitrate.  2110 

On 28 October, the first day of PE1, cold air piled up in the BTH region, and the high-pressure system 2111 

gradually strengthened. The weather in the BTH region at that time was characterized by cloudiness, high 2112 

RH, and low surface WSs. Those conditions promoted the accumulation of pollutants (Figure 9), and the 2113 

WRF-Chem simulation indicated that the BTH region contributed 73.6% of PM2.5 mass during PE1. On 2114 

29 October, the cold high-pressure system moved towards the south, and northerly winds increased. Those 2115 

meteorological conditions presumably led to a dilution of the air pollutants, and as a result, lower PM2.5 2116 

loadings were observed in the BTH region (Figure 9).  2117 

From 31 October–1 November (PE2), the BTH region was again dominated by a weak high-pressure 2118 

system, and a convergence of northerly airflow was caused by the high-pressure system and a trailing 2119 

low-pressure front. Local pollutants from the BTH region would have accumulated under those conditions, 2120 

but as discussed above, the loadings of PM2.5 also can be affected by the long-range transport processes. 2121 

Indeed, the WRF-Chem simulation indicated that the BTH region contributed 46.9% to PM2.5 mass, 2122 

similar to the import of fine particles from other regions (53.1%). After 2 November, the cold high-2123 

pressure system began to move southward, the winds strengthened, and the air quality gradually improved. 2124 

3.5 Impacts of PM2.5 emission reduction on aerosol radiative effects 2125 

The aerosol DRF refers to the change in the energy balance caused by the scattering and absorption of 2126 

radiant energy by aerosols. As shown in Figure S10, the reconstructed chemical bscat correlated strongly 2127 

(r = 0.91) with the observed bscat values; the slope of the linear regression was 0.90. This result indicates 2128 

that the IMPROVE-based method provided a good estimation of the chemical bscat; nonetheless, it is likely 2129 

that more locally-measured mass scattering efficiencies for each chemical species could reduce the 2130 

underestimates of measured values. Moreover, a significant (p < 0.01) relationship between the measured 2131 

babs and EC mass (Figure S2) validates the use of EC mass loadings in Eq. 12 to estimate the chemical 2132 

babs. The contributions of each measured PM2.5 component to the chemical bext were calculated based on 2133 

Eq. 8, and on average, OM was the largest contributor (43.5%) to the chemical bext during the non-control 2134 

period (Figure 10a), followed by NH4NO3 (32.4%), EC (14.3%), (NH4)2SO4 (7.6%), and fine soil (2.2%). 2135 

In contrast, during the NCCPC-control period, NH4NO3 was the largest contributor to the chemical bext, 2136 
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amounting to 36.7% of bext, and it was followed by OM (33.3%), EC (16.2%), (NH4)2SO4 (11.9%), and 2315 

fine soil (1.9%). The contributions of the various PM2.5 components to bext were different compared with 2316 

previous studies of the pollution controls for the Olympics and APEC. For example, Li et al. (2013) 2317 

reported that (NH4)2SO4 (41%) had the largest contribution to bext during the Olympics, followed by 2318 

NH4NO3 (23%), OM (17%), and EC (9%); Zhou et al. (2017) found that OM (49%) was the largest 2319 

contributor to bext during the APEC summit, followed by NH4NO3 (19%), (NH4)2SO4 (13%), and EC 2320 

(12%). These differences may be attributed to variable efficiencies of the controls for the specific fine 2321 

particle species and to variations in RH among studies, the latter of which can influence sulfate and nitrate 2322 

formation. 2323 

As shown in Figure S11, the AODs measured with a sunphotometer were well correlated with the bext 2324 

under ambient conditions; the slope (effective height) of the regression was 708 m and r = 0.78. Based on 2325 

the average effective height, the estimated chemical AOD (AOD = 708 × bext × 10-6) and SSA contributed 2326 

by each major component in PM2.5 were entered into the TUV model to calculate the DRF at the Earth’s 2327 

surface. The estimated average DRF ranged from -33.2 to -3.4 W m-2, with an arithmetic mean ± standard 2328 

deviation of -16.5 ± 6.7 W m-2 for the campaign. The average DRF for our study is similar to the -13.7 2329 

W m-2 calculated for photosynthetically active radiation at Xianghe, China in autumn using the Santa 2330 

Barbara DISORT Atmospheric Radiative Transfer model (SBDART) (Xia et al., 2007a). Further 2331 

comparisons with previous estimates of DRFs in China at ultraviolet and visible wavelengths show that 2332 

the average value from our study is similar to that at the rural site of Taihu (-17.8 W m-2, Xia et al., 2007b) 2333 

but it was less negative than at the suburban or urban sites of Linan (-73.5 W m-2, Xu et al., 2003), Nanjing 2334 

(-39.4 W m-2, Zhuang et al., 2014), or Xi’an (-100.5 W m-2, Wang et al., 2016b). The more negative DRF 2335 

values correspond with high aerosol loadings during those studies. 2336 

The estimated average DRF during the NCCPC-control period was -14.0 ± 3.0 W m-2, which was less 2337 

negative than the value during the non-control period (-19.3 ± 8.6 W m-2) (Figure 10b), and this is 2338 

consistent with lower PM2.5 mass loadings during the NCCPC-control period. Even though the DRF 2339 

values were as high as -24.7 and -28.2 W m-2 during PE1 and PE2, respectively, the percent reduction in 2340 

DRF during the NCCPC-control period versus the non-control period (26.3%) was smaller than the value 2341 

during the APEC-control study (61.3%, Zhou et al., 2017). Figure 10b also indicates that EC was 2342 

responsible for the largest (most negative) DRF effects at the surface during the non-control period: the 2343 

EC DRF value of -13.4 W m-2 was followed by OM (-3.0 W m-2), NH4NO3 (-2.2 W m-2), (NH4)2SO4 (-2344 

0.5 W m-2), and fine soil (-0.15 W m-2). The high EC DRF may have been due in part to EC particles 2345 
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internally mixed with other materials because mixing can amplify light absorption and thereby increase 2494 

DRF. The lower aerosol loadings during the NCCPC-control period can explain why the DRF values for 2495 

EC, NH4NO3, OM, and fine soil in the uncontrolled period were smaller in magnitude -10.1, -1.7, -1.6, 2496 

and -0.09 W m-2, respectively, than in the non-control period; these were equivalent to decreases of 24.6, 2497 

22.7, 46.7, and 40.0%. These results suggest that the short-term mitigation measures implemented during 2498 

the NCCPC reduced the cooling effects of PM2.5 at the surface in Beijing. 2499 

4 Conclusions 2500 

We investigated the effects of pollution controls put in place during the 19th NCCPC on the chemical 2501 

composition of PM2.5 and aerosol radiative effects at the Earth’s surface. The average mass concentration 2502 

of PM2.5 during the NCCPC-control period was 57.9 ± 9.8 µg m-3, which was 31.2% lower relative to the 2503 

non-control period (84.1 ± 38.8 µg m-3). The major chemical species, that is, OM, NO3-, NH4+, EC, and 2504 

fine soil were lower by 43.1, 20.7, 20.6, 25.0, and 40.8% during the NCCPC-control period, respectively 2505 

compared with samples taken after the controls were removed. Comparisons for only those days with 2506 

stable meteorological conditions showed that the control versus non-control differences in PM2.5 (43.4%), 2507 

NO3- (25.9%), OM (68.1%), EC (40.0%), and fine soil (58.7%) were larger compared with those for all 2508 

days. Overall, these results indicate that control measures were effective in reducing fine particle pollution. 2509 

Results of a PMF receptor model showed that biomass burning (27.3%) was the largest contributor to 2510 

PM2.5 mass during the non-control period, followed by secondary particle formation (19.5%), industry 2511 

processes (17.2%), traffic-related emissions (15.4%), mineral dust (12.3%), and coal burning (8.3%). In 2512 

contrast, secondary processes (37.3%) were the largest contributor to PM2.5 mass during the NCCPC-2513 

control period, followed by biomass burning (21.6%), traffic-related emissions (14.8%), coal burning 2514 

(14.1%), mineral dust (6.3%), and industry processes (6.0%). The mass concentrations of PM2.5 2515 

contributed by traffic-related emissions, biomass burning, industry processes, and mineral dust all wer 2516 

lower during the NCCPC-control period compared with the non-control period. However, there was no 2517 

significant difference in PM2.5 mass from coal burning between these two periods, and a larger PM2.5 2518 

mass concentration of secondary particles was found for the NCCPC-control period. 2519 

There were two pollution episodes (PE1: 25–27 October and PE2: 31 October–1 November) that occurred 2520 

after the NCCPC, and the average PM2.5 mass concentrations during those events (117.5 µg m-3 for PE1 2521 

and 124.5 µg m-3 for PE2) were more than double those when the controls were in place. For PE1, 2522 

secondary particle formation was the most important source for fine particles, accounting for 54.6% of 2523 

����	: Due to the reduction of …erosol loadings during the 2582 
NCCPC …CCPC-control period can explain why,…the DRF values 2583 
for caused by …C, NH4NO3, OM, and fine soil in the uncontrolled 2584 
period were smaller in magnitude are decreased to …10.1, -1.7, -1.6, 2585 
and -0.09 W m-2, respectively, than in the non-control period; these 2586 
were equivalent to decreases with corresponding reduced 2587 
proportions …f 24.6, 22.7, 46.7, and 40.0%. These results suggest 2588 
that the short-term mitigation measures implemented during the 2589 
NCCPC control period would useful for alleviating2590 

... [54]

����	: In this study, w…e investigated the effectspresent an 2637 
investigation of the impacts…of pollutionshort-term 2638 
emission…controls put in place during the 19th NCCPC on the 2639 
changes of PM2.5 …hemical composition of PM2.5 and aerosol 2640 
radiative effects at the Earth’s surface during the 19th NCCPC 2641 
period… The average mass concentration of PM2.5 during the 2642 
NCCPC …CCPC-control period is …as 57.9 ± 9.8 µg m-3, which 2643 
is …as decreased by …1.2% lower relative tocompared with…the 2644 
non-control period (84.1 ± 38.8 µg m-3). The major chemical species, 2645 
that is, of…OM, NO3

-, NH4
+, EC, and fine soil are …ere 2646 

lowerdecreased…by 43.1, 20.7, 20.6, 25.0, and 40.8% during the 2647 
NCCPC …CCPC-control period compared with the non-control 2648 
period… respectively compared with samples taken after the controls 2649 
were removed. Comparisons for only those When considering 2650 
the …ays with stable meteorological conditions, …showed that the 2651 
control versus non-control differences in  reduction ratios of …M2.5 2652 
(43.4%), NO3

- (25.9%), OM (68.1%), EC (40.0%), and fine soil 2653 
(58.7%) are …ere larger compared with those for all days. Overall, 2654 
The…hese results indicate that control measures have great…ere 2655 
effectiveness…in preventing …educing fine particle pollution. 2656 
Results of Further, the… PMF receptor model shows …howed that 2657 
the …iomass burning (27.3%) is …as the largest contributor to PM2.5 2658 
mass during the non-control period, followed by secondary inorganic 2659 
aerosol…article formation (19.5%), industry processes (17.2%), 2660 
traffic-related emissions (15.4%), mineral dust (12.3%), and coal 2661 
burning (8.3%). In contrast, secondary inorganic aerosol…rocesses 2662 
(37.3%) is …ere the largest contributor to PM2.5 mass during the 2663 
NCCPC-control period, followed by biomass burning (21.6%), 2664 
traffic-related emissions (14.8%), coal burning (14.1%), mineral dust 2665 ... [55]

����	: are …ere two pollution episodes (PE1: 25–27 October 2629 
and PE2: 31 October–1 November 1… that occurred 2630 
subsequently …fter the NCCPC, and control period with …he 2631 
average PM2.5 mass concentrations during those events (of …17.5 µg 2632 
m-3 for PE1 and 124.5 µg m-3 on PE1 and…or PE2) were more than 2633 
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the …E1, the…secondary inorganic aerosol…article formation 2635 
is …as the most important source for fine particles, dominant source, 2636 
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PM2.5 mass. Aerosol NO3- showed the largest contribution to PM2.5 mass (26.8%), and the high RH during 2666 

PE1 likely promoted aqueous reactions involving nitrate. In contrast, OM (31.8%) was the most abundant 2667 

species in PM2.5 during the PE2, and the PMF indicated that biomass burning was the largest source, 2668 

accounting for 36.0% of the PM2.5 mass. The WRF-Chem simulation showed that the BTH region 2669 

contributed 73.6% and 46.9% of PM2.5 mass during the PE1 and PE2, respectively. 2670 

Calculations based on methods developed for the IMPROVE program indicated that OM was the largest 2671 

contributor (43.5%) to the chemical bext during the non-control period, followed by NH4NO3 (32.4%), EC 2672 

(14.3%), (NH4)2SO4 (7.6%), and fine soil (2.2%). During the NCCPC-control period, NH4NO3 accounted 2673 

for 36.7% of bext, and that was followed by OM (33.3%), EC (16.2%), (NH4)2SO4 (11.9%), and fine soil 2674 

(1.9%). The TUV model showed that the estimated average DRF (-14.0 ± 3.0 W m-2) at the surface during 2675 

the NCCPC-control period is 27.5% less negative than in the non-control period (-19.3 ± 8.6 W m-2), and 2676 

this is consistent with the lower PM2.5 loadings during the NCCPC-control period. Furthermore, EC had 2677 

the largest (most negative) influence on DRF at the surface during the non-control period; the EC DRF 2678 

value of -13.4 W m-2 was followed by OM (-3.0 W m-2), NH4NO3 (-2.2 W m-2), (NH4)2SO4 (-0.5 W m-2), 2679 

and fine soil (-0.15 W m-2). The DRF values caused by EC, NH4NO3, OM, and fine soil when the controls 2680 

were in place were lower by -10.1, -1.7, -1.6, and -0.09 W m-2, respectively, compared with the non-2681 

control period, and the corresponding percent reductions were 24.6, 22.7, 46.7, and 40.0%. The results 2682 

suggest that the short-term mitigation measures during the NCCPC-control period were effective in 2683 

reducing fine particle pollution and those actions also had radiative effects sufficient to affect surface 2684 

temperature. 2685 
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Table 1 Summary of PM2.5 and its major chemical components at Xianghe during the 19th 3087 

National Congress of the Communist Party of China (NCCPC)-control and non-control periods. 3088 

Components 
Grand average Control period Non-control period Change ratioa 

(µg m-3) (µg m-3) (µg m-3) (%) 
PM2.5 70.0 57.9 (63.7)b 84.1 (112.6) 31.2 (43.4) 
NO3- 15.0 13.4 (18.0) 16.9 (24.3) 20.7 (25.9) 
SO42- 5.6 5.8 (7.6) 5.3 (6.6) -9.4 (-15.2) 
NH4+ 6.0 5.4 (8.6) 6.8 (9.7) 20.6 (11.3) 
Cl- 2.2 1.6 (1.5) 2.9 (3.4) 44.8 (55.9) 
Organic matter 18.9 14.0 (9.5) 24.6 (29.8) 43.1 (68.1) 
Elemental carbon 5.2 4.5 (4.5) 6.0 (7.5) 25.0 (40.0) 
Trace elements 1.8 1.4 (1.2) 2.3 (3.0) 39.1 (60.0) 
Fine soil 5.5 4.2 (2.6) 7.1 (6.3) 40.8 (58.7) 

a([Non-control period]-[NCCPC-control period])/[Non-control period]. 3089 
bValues in parentheses show the results for days with stable meteorological conditions (wind 3090 
speed < 0.4 m s-1 and mixed layer height < 274 m). 3091 
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Figure Captions 3093 

Figure 1. Location of the Xianghe sampling site. The map was drawn using the ArcGIS. 3094 

Figure 2. (left) Daily variations in the contributions of chemical species to PM2.5 mass during the 3095 
campaign and (right) average contributions of chemical species during the 19th National Congress 3096 
of the Communist Party of China (NCCPC)-control and non-control periods. PE1 and PE2 represent 3097 
two pollution episodes. 3098 

Figure 3. Scatter plots showing the relationships between PM2.5 mass concentrations and (a) wind speed 3099 
and (b) mixed layer height. 3100 

Figure 4. (a) Source profiles for the six sources identified using the positive matrix factorization model 3101 
version 5.0, (b) the mass concentrations of PM2.5 contributed by each source, and (c) the average 3102 
source contribution of each source to the PM2.5 mass. 3103 

Figure 5. Average source contributions of (a) each positive matrix factorization source factor and (b) 3104 
chemical species to the PM2.5 mass during two pollution episodes (PE1 and PE2). 3105 

Figure 6. Correlations for (a) PM2.5 mass concentrations versus molar ratios of NO3- and NO2 (NOR), (b) 3106 
NOR versus relative humidity (RH), (c) the ratio of secondary organic aerosol to elemental carbon 3107 
(SOA/EC) ratios versus Ox (O3 + NO2), and (d) SOA/EC versus RH for all samples from the 3108 
campaign. 3109 

Figure 7. Three-day backward in time air mass trajectories (BT) arriving at 150 m above ground every 3110 
hour from 31 October to 1 November 2017. The orange points represent fire counts that were derived 3111 
from Moderate Resolution Imaging Spectroradiometer observations. 3112 

Figure 8. Surface weather charts for 08:00 (local time) over East Asia from 22 October to 2 November 3113 
2017. The black triangles represent Xianghe. 3114 

Figure 9. Daily average PM2.5 concentrations (µg m-3) simulated for the Beijing-Tianjin-Hebei region 3115 
and surrounding areas from 25 October to 2 November 2017. The Weather Research and Forecasting 3116 
model coupled to chemistry (WRF-Chem) model was used for the simulation. 3117 

Figure 10. Average values of (a) light extinction coefficients (including light scattering and absorption) 3118 
and (b) direct radiative forcing (DRF) at the surface contributed by each PM2.5 chemical composition 3119 
during the 19th National Congress of the Communist Party of China (NCCPC)-control and non-3120 
control periods. 3121 
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