

Reply to the review from Referee 1

We are thankful to this referee for the review and the associated suggestions, listed in italics below. We provide our detailed responses (regular font) and plans; our revised manuscript will be available in a fairly short time.

It would seem from the referee comments that there are no demonstrable big issues with the science (or math), besides some requested clarifications, and we are pleased that Referee 1 found our manuscript to contain “some interesting results” [and Referee 2 found “a lot of valuable and detailed information”]. We hope, furthermore, that the plans we describe herein for clearer messages and revisions will be of a satisfactory enough nature, or we will need to ask for more specific comments.

(1) This paper evaluates two versions of the WACCM model using satellite observations, mainly from Aura MLS, but also using multi-instrument compilations. The paper contains some interesting results, but it is also very long (70 pages in the submitted format and 32 figures, plus supplement) and focused on one specific model.

Reply: We are planning to cut down on the length of this manuscript, mainly by relegating some of the less critical Figures to the Supplement. Although this does not necessarily translate into a very large cut in terms of text length, we consider this work to be a fairly comprehensive analysis, which therefore leads to a longer paper; there have definitely been some longer (atmospheric) papers in the literature, and specifically in ACP. Turning this into two separate papers mainly for the sake of overall length seems too artificial, and this would be quite an elaborate proposition, with the need for some duplication regarding both the data sets and the models; as an aside, this would actually lead to more reviewing work for the community. We hope to have shown that detailed analyses are necessary to enable identification of both good agreement (a result in itself) or significant differences between model runs and the data sets, but also for some of the more subtle differences, and furthermore, that an understanding and discussion of error bars and potential data issues is important. We will also strive to reduce the amount of text in the revised manuscript, especially where some less critical aspects can be discussed more succinctly, or taken out altogether. In particular, we plan to shorten Section 5.1.1 (pages 11-13) to a text length that roughly matches (rather than exceeds) the text length of Section 5.1.2 (on variability issues); the cuts to Sect. 5.1.1 will be of order 30% (or more).

In terms of reducing the amount of Figures and related changes, our specific plans are to remove Figs. 13, 14, 15, and 17 from the main text (and relegate these to the Supplement, with a slightly shortened discussion), since these mainly reinforce the expectation (already noted for O₃ and H₂O) of better model/data fits from SD-WACCM, as one might expect from a model with better dynamical constraints than the FR-WACCM version. Such an expectation does not hold for the variability diagnostics, so these are really best left in the main text, although we will plan to displace Figure 22 (on the N₂O and HNO₃ variability comparisons), and move it to the Supplement. Moreover, we feel that Figure 31 on lat/p contours of short-term trend for various species can be moved to the Supplement, as it is less critical, and given past (and ongoing) work on this topic. While Figure 32 is interesting to us, it is more of a side note on lower stratospheric tropical cohesiveness for various species exhibiting similar dynamical variability, so we decided that the text and Figure in this case can be eliminated altogether without much of an impact on this paper.

In summary, the total number of Figures in the main text will be trimmed down by almost a quarter, with a more manageable total of 25 Figures; writing up a multi-year effort of (part-time) work on detailed model/data comparisons is bound to lead to a longer manuscript than several shorter analyses; to our knowledge, fits, correlations, variability, and trend comparisons are rarely investigated to this extent in model/data comparisons, even for a single model (or two flavors of one model). This, with some reductions (and clarifications) in the text (including the Abstract and Conclusions section), will at least show our good faith effort towards the referee comments. Recommending a goal of exactly 20 Figs. (as done by Referee 2) is rather arbitrary, but our point here is that we have considered these requests with some care, and that we are being responsive.

(2) The paper contains an evaluation of the model (SD and FR) for 5 species compared to satellite observations. The paper points out general agreement and areas of disagreement, but the reasons for any disagreement are not really looked into (except for HNO₃ and the lack of ion chemistry).

Reply: There are several aspects to these model/data comparisons. Looking carefully into reasons for disagreement can be the subject of separate papers altogether, possibly involving new model runs (which would take quite a bit of time), and this would also increase the length of this (already long) manuscript. We will point to where some likely causes can be mentioned, although in all fairness, we believe that this has already been done in several places (see more in the numbered

list below), and beyond the HNO_3 issue mentioned by this referee. However, we are also adding more information and discussion in various places (see further below).

In particular, we provide further explanatory material in some of the following areas, ignoring from this list the HNO_3 issues (and lack of full model chemical pathways) already sufficiently described in the manuscript. Without the exact revised text for now, please see the following list of specifics, although some of the items in this list are there to provide some rebuttal to implications that we provide few explanations besides showing the comparisons themselves (or the advantages of one model version versus the other). We strongly believe that these comparisons (in themselves) are worth displaying in a publication, even if this only applies to the WACCM model, which is considered state-of-the art. Moreover, and almost as importantly, we have shown that areas of disagreement very often fall within the estimated error bars, so there are not that many really significant discrepancies; we hope to take some credit, in fact, for trying to be careful about including realistic error bars in many of these comparisons. However, an investigation into other models for similar areas of agreement or disagreement is beyond the scope of this work, which we consider a first step that can help other modeling groups focus on certain regions of potential disagreement. Later on, another paper could hopefully identify where, and maybe why, certain models do better than others in certain places or time periods; in fact, some of this may already be “in the works” or near completion (based on a list of planned studies for CCMI at www.met.reading.ac.uk/%7Eqr903932/CCMIwebsite/Wordpress_PDFs/CCMI1_PlannedAnalysis_20170715.pdf).

1. *Page 6, 1st paragraph:* We now make the point regarding the Fig. 2 (and Fig. 1) model/data lower stratospheric O_3 differences near 50°N - 60°N (even if it may be obvious) that transport-related model issues (not chemistry issues) are the most likely reason for the models to significantly overestimate mean ozone and its seasonal cycle at mid- to high latitudes. In addition, we are adding related information in the text for H_2O comparisons, given that we also see a significant (factor of two) WACCM model overestimate of the MLS H_2O fields (mean value and seasonal amplitude) in the same region (detailed plots not shown); this discrepancy goes beyond a (previously documented) 30-40% dry bias of MLS H_2O versus sonde data a few km below the tropopause. However, digging into model details (or even the meteorological fields),

in addition to possible other data sources (or data issues) for O₃ (and H₂O) comparisons would need to be the subject of a new investigation, interesting as it might be.

2. *Page 8, lines 6-14, and Fig. 7:* Regarding the seasonal changes over Antarctica, our analyses include species other than HCl and provide more of a climatological description regarding this discrepancy in HCl behavior than what was shown in the paper by Groos et al, (ACP, 2018). The latter work attempted to ascribe such a discrepancy to various factors, without a fully satisfactory answer, and we do not currently have further thoughts on this topic, as more detailed investigations (not speculation) would be required to make further progress. On the same topic, we do provide a likely explanation for the better matches from SD-WACCM (vs FR-WACCM), namely the connection to more realistic temperatures.
3. *Page 11, lines 36-38 and Section 5.1.1:* The better SD-WACCM results (here and in this section more generally) regarding model/data fit diagnostics and model/data correlation coefficients are related to the better dynamical description for the “specified-dynamics” version of WACCM, as we point out in this section in more than one place (see also the 2nd part of the top paragraph on page 12, regarding H₂O comparisons). This is the main result from the discussions on pages 11-13, and a result that is worth including in this paper (in our opinion), even if there are other (probably more illuminating) results.
4. *Section 5.1.2 on model/data variability comparisons:* The interannual variability in monthly means represents a useful diagnostic of model/data comparisons, and it also relates to trends and detectability of trends, as we point out in this section. The main variability disagreement between models and data involves water vapor, a species that is also more difficult to model, given its different phases and its more complex pathways for entry into the stratosphere, the influence of ENSO and cold point temperatures, as well as the QBO and circulation changes, along with changes in methane and (mainly in the mesosphere) the solar cycle impact. Some of these processes (or their variability at least) are possibly not sufficiently well represented in either SD-WACCM or FR-WACCM, but there are better fits to the data from SD-WACCM. Also, on the variability issue, we do make the point that the H₂O interannual variability is underestimated by the models, and since the uncertainty in trend detection

depends on the variability, a larger than modeled atmospheric variability implies that it will take longer than expected to detect long-term trends in water vapor.

5. *Section 5.2 (trend comparisons):* Here are the main points for each species:

- **O₃:** MLS data alone have not been used yet to document trends (for the MLS years of operation that overlap the model runs), so this is a novel result, even if the time period is short enough that the (2 σ) trend error bars are often fairly large. If one averages the results over the upper stratosphere, there are robust indications of an increase, based on the MLS data alone, and this avoids some issues associated with merged data sets (e.g., changes in spatio-temporal coverage between different instruments). It is also interesting to see indications of increases in the tropical lower stratosphere (albeit with less robustness than in the upper stratosphere), in apparent agreement with the SD-WACCM results. Most notably, the lat/height patterns of trends, ignoring the absolute error bars, are remarkably similar for MLS data and SD-WACCM (see Fig. 25); we feel that this is a very informative plot. Furthermore, version 2.20 of GOZCARDS O₃ is evaluated for trends in this work, and we highlight some differences versus the original GOZCARDS data set.
- **H₂O:** The main points for this species are now made more relevant, we hope, in the context of what one might expect from longer-term trends versus what happened during the shorter-term (2005-2014) versus MLS trends, which are significantly larger than what one would expect from the water vapor changes caused by increases in methane alone. We also note that FR-WACCM trend results are significantly smaller than SD-WACCM (and observations), but this does not imply a longer-term systematic underestimate from FR-WACCM, based also on our looks at longer-term time series (although these are not displayed specifically in this manuscript). The Abstract has now been changed to reflect these points as well.
- **HCl:** We are not planning much change regarding these results, and we think that the main points are clear enough: there is some underestimation of MLS HCl trends from the models, and some LS tropical positive trends in these observations which deserve further investigation. However, we will add a pointer to recent work (if it gets in press soon) that shows the impact on HCl trends of a better treatment of VSLS and their trends, as this seems to be a way to close at least part of the gap

(model versus data trends). The other issue could be related to an MLS overestimate of the HCl LS trends (as this is what happens in the upper stratosphere, a known issue for MLS HCl there).

- **N₂O and HNO₃:** There is good agreement for these two species overall, in terms of the model versus data trends. Some of these trend variations versus height (particularly for N₂O) must be related to stratospheric age of air and circulation, but we also clearly see (in time series not shown here) that the QBO, in particular, has a large impact on the variability, as one moves away from the tropopause region; this is a well-known feature. This large percent variability (as one reaches the mid-stratosphere) swamps the underlying long-term trends in N₂O. The WACCM time series capture the observed (MLS) variability remarkably well, and the trends for 2005-2014 reflect this sort of agreement (Fig. 30). There are some slightly larger differences in terms of the somewhat poorer phasing of variability (and fits to the data) for FR-WACCM, but the main features versus latitude and height are well reproduced. This also holds for HNO₃. We will thus add a few words very similar to these in this part of Section 5.2, in terms of our understanding (and at least partial explanation) of these trends and their variations.

Our draft revised Abstract (see below) also hopefully clarifies the main points in a somewhat better way (without making it much longer), as a response to the Referee comments. The revised text will add related information for clarifications and context; it will also be trimmed elsewhere to try to address the issue of paper length inasmuch as possible (without losing too much content).

(3) The comparison of the performance of the SD and FR models is a main focus of the paper. There are differences but overall conclusions on the accuracy of SD models, for example, seem to be missing.

Reply: We do not fully understand this comment, but we will attempt a reply that covers the options. It is really beyond the scope of this work to try to dive into why SD models differ from one another, if that is the reviewer's point, although we think that this would be an interesting study for the future. We have examined only the SD-WACCM/MERRA model in detail in this study using multiple diagnostics. There will be future papers that compare processes and biases

between the participating CCM1 SD models (as mentioned earlier). The point of our work is to perform a detailed model/observational analysis of two configurations (FR and SD) using the same modeling system (i.e., CESM framework). Here, the tracer advection routine (Lin, flux form finite volume) and WACCM chemistry module (for gas-phase, heterogeneous, and photolysis reactions) are identical between the two configurations. The differences between the two configurations are mainly due to how the circulation is derived. The FR configuration allows the ozone to be interactive with the heating rates and therefore circulation. The SD configuration uses a specified meteorology that drives the circulation. Therefore, when we compare the FR and SD model versions observation-based diagnostic, the "goodness" of the results between FR and SD removes uncertainty of both the advection and chemistry assumptions (since they are the same). However, there is still uncertainty in the derivation of the circulation in FR and the nudging approach used with the observed meteorology. The approach described in this paper is essentially a first step in understanding how well models represent biases and variability in comparison to observations. The next step could be, of course, to examine diagnostics across multiple model systems, but not here (see also our response to item (1)). We plan to change part of the Introduction (and maybe the model section also) in the revised version to better motivate the purpose of our analyses of FR-WACCM versus SD-WACCM, as mentioned above.

If, on the other hand, the reviewer is asking about the accuracy of the specific SD-WACCM model run used here, most of the comparisons here show that there are few large areas of disagreement, beyond the error bars in the MLS data, so this is a clear statement (we believe) regarding the model accuracy (absolute), in comparison to state-of-the art observations; we also identified a few areas of disagreement. We could add (in the revised version) percentage difference numbers regarding the "accuracy level" (model/data agreement level) for each species, if this is what the reviewer is asking. We have preferred to let the first few Figures (Figs. 1,3,4,5,6 regarding climatological levels of agreement) speak for themselves. One often obtains levels of model/data agreement within about ± 5 to 10%. However, quoting a more detailed range of "accuracies" versus species, pressure, and latitude, can add up to a fair amount of text. We have already highlighted regions where we believe that model issues might need more investigation, and some regions where data issues could also contribute to the differences (e.g., where more difficult retrievals and/or fewer data validation possibilities exist). The right panels in these climatological comparison Figures help to take into account the systematic errors in the MLS data. If the Referee

really wants us to add more numbers in the text (or in the already long Abstract), we can try to do this in the revised manuscript, but we would otherwise stick to the fact that one can extract numbers out of the Figures already present in the manuscript. If another model wishes to “measure up” to the same data sets, new Figures of this kind would need to be produced, for comparison purposes.

(4) The paper also uses both the models and data to look at trends. Reading the abstract paragraph which summarises the trend work does not give me a clear view of the main scientific points that have come out of the trend work. Is there something new about the observed known recent upper stratospheric ozone increase (i.e. recovery)? Or are the main points related to whether SD or FR simulations are better for studying past trends of different types of species (and I realise there are potential issues with both approaches). The paper also discusses metrics which can be used to evaluate CCM runs using observations. There is a lot of information here but again the main messages and recommendations are not clear to me.

Reply: There are both types of aspects in our results, and while we thought that this was already fairly clear, we can try to clarify where needed, if we are given more specifics from the referee, after our revised version is finalized. Indeed, some points are made in terms of trends themselves (e.g., O₃ trends that are positive in the lower stratosphere over the MLS period, whereas longer time periods have indicated some decreases – so further confirmation with more years of data should be worthwhile in the near future), while other points clearly deal with the comparisons with model trends. In many aspects, SD-WACCM matches the latitude/height behavior of observed ozone trends quite well, and also matches the observed H₂O trends better than FR-WACCM.

For me as a reviewer the questions about this paper are

(i) what are new scientific results related to CCMs (including diagnostics) or trends in general

Reply: Please see our replies above, as this reviewer comment is mainly a summary comment.

and

(ii) why does the evaluation of the two WACCM versions belong in an ACP paper, rather than the sister journal Geophysical Model Development (GMD). At the moment, and using the abstract as a basis, I really don't get the main scientific advances which would justify ACP versus GMD.

My recommendation is that the work needs to be presented with clearer scientific messages coming through in the abstract and conclusions. Work which does not directly contribute to the ACP-level results could be put in a GMD paper, or an expanded supplement.

Reply: In response to this, we have made some changes, notably to the Abstract, main text, and conclusions, with more useful information to help strengthen the results on ozone and H₂O trends. Short of the revised version (which we are finalizing soon), please see the revised (draft) Abstract at the end of this reply, with the highlighted parts as a guide to the non-minor changes.

Stratospheric science has progressed to the point of being quite well understood from the point of view of very sophisticated tools, like SD-WACCM (with mostly correct representations, or parameterizations, of the physics and chemistry), and this limits the extent of significant new advances. However, this manuscript is (in our view) one of the more comprehensive studies that confronts such a model with multi-year and multi-species data sets, for species with different lifetimes and gradients, so that a fuller depiction of areas of agreement or disagreement can be revealed. On the trends side, there is good overall agreement within the error bars; more specifically, the degree of agreement for SD-WACCM in terms of the latitudinal and vertical patterns is actually striking (see Fig. 25 in particular), if one ignores the issue of absolute error bars. Figure 25 is also an example that could be illuminating for other model comparisons, in due time (not here). Such excellent agreement in the patterns of trends is a model success worth documenting, in our view; otherwise, it could become just “word of mouth” between modeling groups, and we feel that the actual publication is important, after careful (time-consuming) analyses. While there have been some rather broad trend comparisons in the past between averaged data sets and averaged models, there are few that go into a lot of detail for different model runs; more of this type of work may well be in preparation elsewhere.

On the issue of trimming (or splitting) the manuscript, we do feel strongly that using the Supplement is a much better way to help cut down somewhat on the main paper, rather than to somewhat artificially break up this comprehensive work, given that this would also require a significant amount of duplication and extra work. We believe that, after some trimming of Figures and less essential text, and other clarifications, as mentioned earlier in more detail, this paper will be improved. On the other hand, there is a need for some added text in order to explain some issues better, namely for water vapor trends, their magnitude (in relation to what one would expect from methane increases), and the differences between the two models. In the end, we feel that setting

an arbitrary length goal does not make much sense, when a lot of comparison work is investigated (or even summarized) for multiple species with different lifetimes, in order to confront the models with a multi-dimensional and multi-faceted atmosphere. However, we will heed the advice regarding a trimmed down revised version, and we thank both referees for these comments.

Regarding the Journal issue, we feel quite strongly that such a paper is (or can certainly be) in the ACP domain, given that the model description is really a small part of this manuscript (WACCM having been used and described previously, including in GMD, *Morgenstern et al.*, gmd-10-639-2017), and that there are some scientific results discussed here (to be further clarified, as mentioned in our replies and in the upcoming revision), even if some of this confirms past/recent work, but from our own model/data comparisons. There is some “grey region” between ACP and GMD papers, with the latter being more geared towards model description and development (if one looks through many of those articles), although there are some model evaluation papers there as well. To be more specific, we include Table 1 at the end of this reply, and this provides a summary of all the papers that are part of the current CCMI special issue, which is what we are submitting to here; this special issue encompasses several journals (including ACP and GMD). As one can see from Table 1, the more recent papers have nearly all been part of ACP, after some initial work with much more of a model description focus. Some of the articles in ACP could compare broadly to the work we are trying to present, with a combination of model and data (and comparisons). We also feel that there are detailed aspects of the MLS data sets described in our work (regarding absolute error bars and trend uncertainties, including some drift issues) that would be of much interest to the stratospheric component of the ACP readership. Without attempting to be more comprehensive, we can state that we did consider the Journal topic seriously, which also led to some delays. We also consulted with the ACP editors on this topic, and we are pleased that they agree with our views; this topic is also something that editors consider as part of the pre-review process. It is also true that going through another 4 months of review with a completely new set of reviewers and editors is a considerable burden not just on the authors, with further time delays, but also on the reviewer community (especially for longer papers). We are thus thankful for the support we obtained towards finalizing this process for ACP, and we feel that we can now focus our efforts to that end; we would very much welcome reviewer support on this aspect as well.

Minor comments

Page 1. Line 20. Can you be quantitative when discussing model over/underestimates?

Reply: Certainly, these Abstract sentences are now rewritten for clarification, as follows:

“There are a few significant model/data mean biases, such as for lower stratospheric O₃, for which the models at mid- to high latitudes overestimate the mean MLS values by as much as 50% and the seasonal amplitudes by ~60%. Another clear difference occurs for HNO₃ during recurring winter periods of strong HNO₃ enhancements at high latitudes; the strong model underestimate in this case (by a factor of about 2 to 6) stems from the omission of ion chemistry relating to particle precipitation effects, in the global models used here.” The relevant sections in the text will also be adjusted to match these more quantitative points.

Page 1. Lines 26-27. In what way are the detailed interactions not as well represented?

Reply: We have decided that this result, although correct, is not needed in the Abstract, given that one expects a free-running model to be less in-phase with actual dynamical situations represented better by SD-WACCM (and the observational record). This will therefore be removed from the Abstract, although the relevant (fairly brief) discussion can stay in the main text, as a demonstration of these somewhat subtle, but real differences, between model ‘flavors’ and observations.

Page 2. Line 12. ‘differences’ rather than ‘variability’?

Reply: Yes, this wording is changed to ‘differences’.

Page 2. Line 14. ‘driven’ – not the correct word for what is inside the model. Usually used for the external forcings like winds or emissions etc.

Reply: Yes, this wording is changed to “driven by time-dependent boundary conditions”, without mentioning the photochemical reactions (which can be taken as a ‘given’, given other references to the model).

Page 2. Line 17-18. I think you should say a lot more about other SD work and cite papers, as SD v FR is a main focus of this paper. This would help to think about whether the WACCM SD results may be applicable to other SD models?

Reply: We understand the importance of comparing various SD models, and we have discussed this earlier in our reply to item (3). We plan to change part of the Introduction in the revised version to better motivate the purpose of our analyses of FR-WACCM versus SD-WACCM, as mentioned above.

Page 2. Line 27. Explain 'high quality'.

Reply: That is a fair comment, especially for a reader who might not know enough about the MLS data; however, for this Introduction, it would seem best not to try to give a detailed list of references on validation, etc... so we can just remove this somewhat vague wording for simplicity (and we are keeping the manuscript length in mind as well).

Page 2. Line 36-39. Can you give examples of trend studies that have had these problems? Again, for the trend results presented here to be of scientific interest to the community, we need to know about issues of what has been done before.

Reply: Yes, we can/will refer to some published work for ozone (Ball et al., ACP, 2017, acp-17-12269-2017) that points to regions/periods of trend differences that can be traced to data set issues and/or merging issues (for example, regarding merged SBUV data or an older ozone data version from GOZCARDS). While uncertainties relating to data merging are not easy to quantify, more work should ultimately be done on such a topic (separately from our current manuscript, of course); for SBUV, some work has been done regarding the propagation of uncertainties (Frith et al., ACP, 2017, acp-17-14695-2017). Incidentally, data merging uncertainty issues point to a good reason to at least try to start using MLS data alone (as there are no data merging or sampling difference issues) for trend work, versus model results and in general.

Page 3. Line 34. After reading these sections it is not clear to me if ACE data (and which version) is included in either of the GOZCARDS versions. Please clarify.

Reply: Certainly, this text will be clarified, by changing it to: “ACE-FTS data were not included in these more recent years.” The version matters less, since there is only one choice for recent years. We also plan to add the following sentence (just before paragraph 3), to clarify what was done for the special v2.20 GOZCARDS ozone product. “We note that no ACE-FTS data were included in this newer version of GOZCARDS O₃.”

Page 4. Line 39. Clarify that 'organic halogens' are the source gases.

Reply: Yes, this will be changed to 'organic halogens' to specify the source.

Page 5. Line 2. So the FR WACCM is relaxed to the observed tropical winds (QBO). What is the implication of that for the comparison? Does that constrain some of the comparisons? What would happen without this relaxation? (Why is it done?).

Reply: If one wants to represent the observed stratospheric variability, one has to include QBO forcing in the tropical region; without this, the variability would be much less realistic, and less accurate. This was also the specification for the CCMI scenario (REF-C1), to include either a nudged QBO or an interactively-derived QBO (if possible). The latest version of FR-WACCM, recently released to the community, now has an interactive QBO. This was not available for this CCMI assessment.

Page 5. Line 11. New paragraph before 'Both'.

Reply: Yes, this is changed to a new paragraph.

Page 6. Line 28. The model comparisons don't use the satellite averaging kernels (or temporal sampling I suppose?). Can you add more details on why you see no reason to apply the AKs?

Reply: Some discussion of this aspect of the comparisons was already provided regarding Fig. 2 model/data differences on page 6 (lines 26-29), and this is a generic type of response for these comparisons (as has also been verified in the context of other comparisons of MLS data versus models, notably for water vapor). The MLS instrument system has sharply peaked vertical Averaging Kernels as a result of its limb viewing geometry and field of view characteristics, with stratospheric vertical resolutions of order 2.5 to 4 km in most cases (species) of relevance here. The largest impacts (from neglecting profile smoothing) can be expected in the upper troposphere, at least when comparing to fine resolution sonde profiles. Examples of smoothed and unsmoothed ozone comparisons are provided in the original MLS ozone validation paper (Fig. 6) by *Froidevaux et al.* (JGR, 2008, 10.1029/2007JD008771), in the context of comparisons versus SAGE II, which has a vertical resolution finer than 1-2 km; this shows that the effects are typically quite small (less than a few percent) even for SAGE-type profiles. The WACCM model profiles are provided on a

grid that is not substantially finer than the MLS retrieval grid, and such profiles will thus be affected even less. Also, both model runs in this case are on the same vertical grid (and the model profiles do not generally differ by very large amounts); they will be affected in the same (small) way by a small amount of smoothing to match the MLS retrieval grid. While we could add more words to this effect, we will probably not plan to lengthen the manuscript much regarding this point, given that we have at least touched on this topic already.

Page 7. Line 13. Any idea why there are larger differences for SD WACCM? What are the implications for SD studies?

Reply: Transport-related model issues, as mentioned regarding some regions of disagreement between ozone observations and data, could also impact the lower stratospheric HCl abundances. However, the HCl amounts in this region are quite small, so we do not wish to over-emphasize this sort of discrepancy for this species. Finally, it is also a region where the MLS retrievals are less well constrained, in terms of percentage accuracy at least, although this does not help to alleviate model-to-model differences. We should probably not overemphasize such large percentage differences, given the low abundances in this case.

Page 7. Line 16. Explain ‘good dynamical tracer’ for non-experts.

Reply: Yes, we will add some words here “N₂O, a long-lived species in the lower stratosphere, which means that good (or poor) model/data agreements in this region can confirm (or deny) accurate model representations of the dynamics.”

Page 12. Line 36. ‘do not have the right chemistry’. I would suggest rephrasing this.

Reply: Yes, we can rephrase this to ‘do not include the necessary photochemical pathways, including the effects of energetic particle precipitation on ion chemistry in the upper atmosphere’.

Revised Abstract:

We evaluate the recently delivered Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) using satellite-derived global composition datasets, focusing on the stratosphere. The simulations include free-running (FR-WACCM) and specified-dynamics (SD-WACCM) versions of the model. Model evaluations are made using global monthly zonal mean time series obtained by the Aura Microwave Limb Sounder (MLS), as well as longer-term global data records compiled by the Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere (GOZCARDS) project. A recent update (version 2.20) to the original GOZCARDS merged ozone (O_3) data set is used.

We discuss upper atmospheric climatology and zonal mean variability using O_3 , hydrogen chloride (HCl), nitrous oxide (N_2O), nitric acid (HNO_3), and water vapor (H_2O) data. There are a few significant model/data mean biases, such as for lower stratospheric O_3 , for which the models at mid- to high latitudes overestimate the mean MLS values by as much as 50% and the seasonal amplitudes by ~60%; such differences require further investigations, but would appear to implicate a transport-related issue in the models. Another clear difference occurs for HNO_3 during recurring winter periods of strong HNO_3 enhancements at high latitudes; the strong model underestimate in this case (by a factor of about 2 to 6) stems from the (known) omission of ion chemistry relating to particle precipitation effects, in the global models used here. In the lower stratosphere at high southern latitudes, the variations in polar winter/spring composition observed by MLS are generally well matched by SD-WACCM, the main exception being for the early winter rate of decrease in HCl, which is too slow in the model. In general, we find that the latitude/pressure distributions of annual and semi-annual oscillation amplitudes derived from the MLS data are properly captured by the corresponding model values. Nevertheless, detailed aspects of the interactions between the quasi-biennial, annual, and semi-annual ozone variations in the upper stratosphere are not as well represented by FR-WACCM as by SD-WACCM.

One of the model evaluation diagnostics we use represents the closeness of fit between the model/data anomaly time series, and we also consider the correlation coefficients. Not surprisingly, SD-WACCM, which is driven by realistic dynamics, generally matches observed deseasonalized anomalies better than FR-WACCM does. We use the root mean square variability as a more valuable way to estimate differences between the two models and the observations. We find, most notably, that FR-WACCM underestimates the observed interannual variability for H_2O by ~30%, typically, and by as much as a factor of two in some regions; this has some implications for estimates of the time needed to detect small trends, based on model predictions.

We have derived trends using a multivariate linear regression (MLR) model, and there is a robust signal in both MLS observations and WACCM of an upper stratospheric O_3 increase from 2005 to 2014 by ~0.2-0.4%/yr ($\pm 0.2\%/\text{yr}$, 2σ), depending on which broad latitude bin (tropics or mid-latitudes) is considered. In the lower stratosphere, some decreases are indicated for 1998-2014 (based on merged GOZCARDS O_3), but we find near-zero or positive trends when using MLS O_3 data alone for 2005-2014. The SD-WACCM results track these observed tendencies, although there is little statistical significance in either result; however, the patterns of O_3 trends versus latitude and pressure are remarkably similar between SD-WACCM and MLS results. For H_2O , the most statistically significant trend result for 2005-2014 is an upper stratospheric increase, peaking at slightly more than 0.5%/yr in the lower mesosphere, in fairly close agreement with SD-WACCM trends, but with smaller values in FR-WACCM. As shown before by others, there are multiple factors that can influence low-frequency variability in H_2O ; indeed, these recent short-term trends go beyond what one would expect from changes associated with a slow, secular increase in

methane. For HCl, while the lower stratospheric vertical gradients of MLS trends are duplicated to some extent by SD-WACCM, the model trends (decreases) are always on the low side of the data trends. There is also little model-based indication (in SD-WACCM) of a significantly positive HCl trend derived from the MLS tropical series at 68 hPa. These differences deserve further study. For N₂O, the MLS-derived trends (for 2005-2012) point to negative trends (of up to about -1%/yr) in the NH mid-latitudes and positive trends (of up to about +3%/yr) in the SH mid-latitudes, in good agreement with the asymmetry that exists in SD-WACCM trend results. The small observed positive N₂O trends of ~0.2%/yr in the 100 to 30 hPa tropical region are also consistent with model results (SD-WACCM in particular), which in turn are very close to the known rate of increase in tropospheric N₂O. In the case of HNO₃, MLS-derived lower stratospheric trend differences (for 2005-2014) between hemispheres are opposite in sign to those from N₂O and in reasonable agreement with both WACCM results.

The data sets and tools discussed here for the evaluation of the models could be expanded to additional comparisons of species not included here, as well as to model intercomparisons using a variety of CCMs, in order to search for systematic differences versus observations or between models, keeping in mind the range of model parameterizations and approaches.

Table 1. Pubs. in CCM1 special issue (mostly ACP papers recently, with a variety of topics/thrusts).

Reference	Title	Type of study (model vs data, etc...)	Some novel aspects of atm. science?	Mostly model description or model analyses? > not much data
Jockel, P. et al. (2016), 10.5194/ GMD	Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System v-2.5	<i>One model</i> with different scenarios	Not really	Yes, model sensitivity (scenario) runs
Tilmes, S. et al. (2016), 10.5194/ GMD	Representation of the CESM1 CAM4-chem within the CCM1	<i>One model</i> (different scenarios) & some data	Not really	Model evaluation studies
Strode, S. A. et al. (2016), 10.5194/ acp -16-7285-2016	Interpreting space-based trends in CO with multiple models.	Model and data	Yes, in terms of model/data differences.	A combination of models and data
Morgenstern, O. et al. (2017), 10.5194/ GMD	Review of the global models used within phase 1 of CCM1.	Descriptions of various CCM1 models	Not directly	Model descriptions only
Fernandez, R. P. et al. (2017), 10.5194/ acp -17-1673-2017	Impact of biogenic VSL bromine on the Antarctic O ₃ hole during the 21 st century.	<i>One model</i> and data - with model predictions	Not directly, but based on model predictions	Yes, mostly model predictions
Smalley, K. M. et al. (2017), 10.5194/ acp -17-8031-2017	Contribution of different processes to changes in tropical LS H ₂ O in CCMs.	Models and some data	Yes, based on model behaviors & inferences	Yes, mostly model analyses
Hardiman, S. C. et al. (2017), 10.5194/ GMD	The Met Office HadGEM3-ES CCM: evaluation of strat. dynamics, impact on O ₃	<i>One model</i> : different simulations (FR vs SD)	Not directly	Yes, mostly model analyses and evaluations
Lin, M. et al. (2017), 10.5194/ acp -17-2943-2017	US surface O ₃ trends & extremes (1980- 2014): quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate.	<i>One model</i> with data comparisons	Yes, based on one model's behavior & inferences	Mostly model inferences (with some data comparisons)
Maycock, A. C. et al. (2018), 10.5194/ acp -18-11323-2018	The representation of solar cycle signals in strat O ₃ - Part-2: Analysis of global models.	Mostly multi-model results	Not directly, mostly model dependence on inputs	Yes, mostly a model sensitivity study

Reference	Title	Type of study (model vs data, etc...)	Some novel aspects of atm. science?	Mostly model description or model analyses? >not much data
Morgenstern, O. et al. (2018), 10.5194/acp-18-1091-2018	O ₃ sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations.	Multi-model description & consistency of responses to forcings	Not directly	Yes, a model sensitivity study
Revell, L. E. et al. (2018), 10.5194/acp-17-13139-2017	Impacts of Mt. Pinatubo volcanic aerosol on the tropical stratosphere in CCM simulations using CCMI & CMIP6 stratos. Aerosol data	<i>One model.</i> Sensitivity of T and O ₃ response to volcanic aerosol data	Not directly	Yes, mostly a model sensitivity study
Hou, P. et al. (2018) acp-18-8173-2018	Sensitivity of atmos. aerosol scavenging to precip. intensity and frequency in context of climate change	Some data but mostly a prediction sensitivity study	Yes, but based on prediction sensitivities	Yes, mostly a model sensitivity study (with different met. fields)
Phalitnonkiat, P. et al. (2018), 10.5194/acp-18-11927-2018	Extremal dependence between T and O ₃ over the continental US.	Some data but mostly multi-model prediction	Yes, but based on model predictions	Yes, mostly a model sensitivity study
Orbe, C. et al. (2018), 10.5194/acp-18-7217-2018	Large-scale tropospheric transport in the CCMI simulations.	Multi-model diffs.: AOA, transport.	Not directly	Yes, mostly a model sensitivity study
Wu, X. et al. (2018), 10.5194/acp-18-7439-2018	Spatial and temporal variability of interhemispheric transport times.	<i>One model:</i> Variability of idealized tracers	To some extent, based on model sensitivity	Yes, mostly a model sensitivity study (of variability)
Dietmuller, S. et al. (2018), 10.5194/acp-18-6699-2018	Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models.	Multi-model look: factors influencing AOA	Not directly	Yes, mostly a model sensitivity study
Dhomse, S. S. et al. (2018), 10.5194/acp-18-8409-2018	Estimates of ozone return dates from CCMI simulations.	Multi-model estimates: O ₃ return dates	Yes, but based on predictions	Yes, mostly a model sensitivity study
Ayarzagüena, B. et al. (2018), 10.5194/acp-18-11277-2018	No robust evidence of future changes in major stratospheric sudden warmings: a multi-model CCMI assessment	Multi-model study of major strat. sudden warmings	Yes, based on model predictions	Yes, mostly a model sensitivity study

Reference	Title	Type of study (model vs data, etc...)	Some novel aspects of atm. science?	Mostly model description or model analyses? >not much data
Lamy, K. et al. (2018), ACPD, 10.5194/acp-2018-525	UV radiation modelling using output from the CCMI	Multi-model UVI versus climo UVI data	Yes, based on model results	A combination of models and data
Revell, L. E. et al. (2018) acp-2018-615	Tropospheric ozone in CCMI models and Gaussian emulation to understand biases in the SOCOLv3 CCM.	Multi-model comparison of tropos. ozone vs data	Mostly geared towards model refinements	A combination of models and data