Response to Reviewer Comments on Nickless et al.,

Reviewer 1:

Main comments:

The authors present an atmospheric inversion result over Cape Town focusing on sensitivity analyses
related to the technical aspects of the inversion method. | can easily see the authors did a lot of
work. However, the presentation needs substantial improvement as well as revisions in technical
details.

First, the authors definitely need to rewrite the abstract. Simply it is too long and not organized well
(please see my specific comments below).
Response: Following a rewrite of the manuscript, the abstract has been substantially modified.

The introduction section also needs lots of changes or rewriting. Please see my comments below.
Basically, it is too technical from the beginning of the section, not providing a gentle overview of the
study presented. | recommend that the section be shortened.

Response: The Introduction has been substantially rewritten to give a fuller introduction to city-scale
inversions, and details of the sensitivity tests have been kept brief. The purpose of the paper is made
clearer.

The writing is below average compared to many papers | have reviewed. | understand that the
authors did a lot of work but in many places, but the result/discussion presented is not so clear. The
paper is too long for the reader to read in current form while there is no exciting scientific findings -
this does not mean that the material is not important (it is a different paper). | wonder if the authors
can reduce the number of sensitivities cases by (re)moving some of the insignificant results to the
supplement.

Response: The manuscript has been rewritten to improve clarity, and more emphasis is given to
those aspects to which the inversion was most sensitive, and sections on tests which had little
impact on the result of the inversion have been shortened. We feel that it is important to highlight
these aspects of low sensitivity, as this is important information for those who may be concerned
about these attributes in similar inversion studies.

Please see the detailed comments below and address them before | consider any suggestion for
publication.

Detailed comments:

Abstract.

Simply put, the abstract is too long while not conveying useful information in a succinct way.

Needs significant improvement in writing (and selecting the most useful pieces of information to be
presented here).

Response: The abstract has been rewritten. It is shorter with better explanation of the purpose and
greater emphasis on the main result of the paper.

Please try to rephrase “A carbon assessment product of natural carbon fluxes, used in place of
CABLE, and the Open-source Data Inventory for Anthropogenic CO2 product, in place of the fossil
fuel inventory, resulted in prior estimates that were more positive on average than the reference
configuration.” - a little awkward.

Response: This is no longer in the abstract. It now reads: “Alternative prior products were
considered in the form of a carbon assessment analysis to provide biogenic fluxes and the ODIAC



(Open-source Data Inventory for Anthropogenic CO; product) fossil fuel product. These were used in
place of the reference inversion's biogenic fluxes from CABLE (Community Atmosphere Biosphere
Land Exchange model) and fossil fuel emissions from a bespoke inventory analysis carried out
specifically for the Cape Town inversion.”

Also, the authors need to divide the following sentences into two (unless made clearer):

“For the Cape Town inversion we showed that, where our reference inversion had aggregated prior
flux estimates that were made more positive by the inversion, suggesting that the CABLE was
overestimating the amount of CO2 uptake by the biota, when the alternative prior information was
used, fluxes were made more negative by the inversion.”

Response: This has been amended to “Where the reference inversion had aggregated prior flux
estimates that were made more positive by the inversion — suggesting that CABLE was
overestimating the amount of CO; biogenic uptake — the carbon assessment prior fluxes were made
more negative by the inversion.”

Please remove the following (you can state in the results or discussion section): “As the posterior
estimates were tending towards the same point, we could deduce that the best estimate was
located somewhere between these two posterior fluxes. We could therefore restrict the best
posterior flux estimate to be bounded between the solutions of these separate inversions. “
Response: This has been amended to: “As the posterior estimates were tending towards the same
point, we could infer that the best estimate was located somewhere between these two posterior
fluxes”. We have not removed the sentence entirely because this is one of the important points we
are trying to make from our conclusions.

What is the main conclusion we can gain from the abstract? The authors need to emphasize it.
Currently, | only see many small points and cannot determine which one to take home.

Response: The main conclusion from this paper are that spatial and temporal correlations in the flux
uncertainties can dictate the solution of an inversion, particular in the typical city-scale inversion
framework where high-resolution fluxes are solved for in the inversion. We need to take advantage
of these uncertainty correlations in order to propagate the information from the observations
further into the domain. To the abstract we have added:

“In summary, estimates of Cape Town fluxes can be improved by using better and multiple prior
information sources, particularly on biogenic fluxes. Fossil fuel and biogenic fluxes should be broken
down into components, building in knowledge on spatial and temporal consistency in these
components into the control vector and uncertainties specified for the sources for the inversion. This
would allow the limited observations to provide maximum constraint on the flux estimates.”

P 2, L12: Please remove “where estimates of CO2 fluxes can be derived from measurements of CO2
concentrations at a point location”, which does not represent the general atmospheric inversion.
Response: The introduction has been rewritten. This section has now been changed to “Bayesian
inverse modelling provides a top-down technique for verifying emissions and uptake of carbon
dioxide (CO,) from both natural and anthropogenic sources. It relies on accurate measurements of
CO; concentrations at suitably located sites which can collect information about these sources at
different spatial and temporal scales. The concentration measurements on their own are not
sufficient to solve for the emission sources as there are many more sources of CO; than there are
measurements of the concentrations. Therefore well-informed initial estimates of the biogenic and
anthropogenic emissions are required, together with uncertainty estimates, which are used to
regularise the problem.”



P2, L17: Not all of inversions do that; depends on the study. It could be fossil fuel only.

Response: This has been reworded as above. An inversion does not necessarily need to solve for
both, but both anthropogenic and biogenic fluxes need to be taken into account (either through
design, such as limiting he period over which the inversion is performed to be during the dormant
season, or by setting one of these components as fixed, or solving for both components of the total
flux).

Introduction: The authors are more focused on the technical aspects of the inversion method
considered here by starting describing what atmospheric inversion means in terms of technique,
even in the first paragraph of the introduction! Please reframe the introduction so that the authors
approach the problem from the urban greenhouse gas (GHG) perspective. People may be interested
in Cape Town GHG emissions (more generally), which | haven’t heard much before.

Response: The introduction has been rewritten to give a fuller introduction to the use of inverse
modelling for the purpose of solving for greenhouse gas fluxes at the city-scale. The details on the
sensitivity analysis in the introduction have been kept light. A summary of the Cape Town reference
inversion results have been included at the beginning of the Results section.

Also, please reduce the introduction section because it includes too many technical details/terms. It
should be a gentle “introduction” to the paper.
Response: The technical details in the introduction have been reduced.

P2, L25: covariance matrices => uncertainty (or error) covariance matrices
Response: Corrected

P6, L10: “s” should be the surface fluxes, not including the background (i.e., CO2 concentration at
the boundary). This is because “Hs” is from the model, not the measurements.

Response: In our inversion framework, the sources include the concentrations at the boundary,
which is possible as shown in Ziehn et al 2014 and Nickless et al 2018. This avoids the need to set as
fixed what the boundary concentrations are (which are usually modelled with significant errors),
which is usually subtracted from the observed concentrations, and these differences used as the
observations in the inversion. Because we worked with a rectangular domain, it made sense to use
the boundaries at the four cardinal directions. We do not have modelled concentrations at the
boundaries. Instead, we were fortunate to have a GAW measurement site in the domain which
observed background conditions for the majority of the time, and due to the homogeneity of the
region around Cape Town, these measurements could be taken as representative of boundary
conditions on all sides. By solving for the concentrations, but imposing small uncertainties on these
concentrations, the inversion can make small corrections to the boundary concentrations, but these
corrections would not dominate the inversion solution.

Also, c_mod should be Hs_0 (s_0 is prior fluxes in Eq. 1), right?

Response: In this case c_mod should be equal to Hs. Even if we know exactly what s are, Hs only
gives us modelled concentrations, and difference between these modelled concentrations and the
true concentrations are then the observation errors.

P6, L13: Change s to s_0. Is s_0 hourly or weekly? Even if you solve for the weekly mean surface
fluxes, for CO2, | would expect that hourly prior fluxes were used. Please clarify.

Response: s has been changed to s_0. We have provided more details on the Bayesian inversion
framework. The fluxes are weekly fluxes. It is possible to calculate a sensitivity matrix to solve for a
flux in any time step. We chose to solve for weekly fluxes (i.e. we assumed that the day and night
fluxes remained constant over a period of a week) since daily fluxes would lead to much larger



matrices than would be manageable in the current framework, and there are not enough
observations available to resolve fluxes at an hourly time step.

P6, L17: “The boundary concentrations in s”? Why “s” when you talk about concentration. “s” can
only be linked to concentrations via H. When you refer to concentrations, it should be “c”, not “s”;
“s” is fluxes. Right?

Response: The boundary concentrations are included in s_0 since we solve for these concentrations
in the inversion. Ziehn et al (2014) shows the derivation of the sensitivity matrix for boundary
concentrations solved for in a limited domain regional inversion.

P6, L20: Change “can be added to the measurement errors contained in C_c” to “can be added to
the error covariance matrix C_c that includes measurement errors”. Mathematically, C_c includes all
different error sources, but, to be specific/accurate, we want to separate transport errors from
those of measurements.

Response: This has been reworded and the section expanded.

P6, L23: Are 4 and 16 ppm~2 the total variance (i.e., including transport error, background error,
etc.) in the diagonal elements of C_c that the authors actually used in the inversion? Then, do the
authors have any scientific/statistical evidence that these numbers really represent the total
irreducible variance in the error covariance matrix?

In other words, how did the authors come up with these number?

Response: These are only the minimum observation errors. Further terms are added for the
observation errors based on the observed variability in the measurements at the site within each
hour and the average wind speed at the site during each hour. More information has been added to
the methods section on the derivation of the observation errors.

P7, L3: Why is 1-hour assumed for L? It seems too short. After an hour, are the errors uncorrelated?
Usually, following synoptic scales of meteorology, it could go hours and days.

Response: A 1 hour correlation length leads to non-zero correlations between observations at least
seven hours apart. Most city-scale and mesoscale inversions do not include observation error
correlations, and work with diagonal matrices, although it is known that observation errors are
correlated. We have included an additional case using a 7 hour correlation length, which leads to
non-zero correlations between observations further than 24 hours apart.

P7, L7: Please add a subsection for the transport model because in current form the authors try to
combine the Bayesian inversion method with everything (transport, prior flux, etc.) that is part of the
inversion system; not convenient for the reader to follow.

Response: The description of the inversion framework has been expanded and divided into
subsections.

P7, L19: Please add information of temporal and spatial resolutions of the prior flux, as a minimum
detail.
Response: These additional details have been added.

P7, L32 - 34: Related to this, please add a few sentences about C_s_0 (prior error covariance)
including the structure (e.g., dimension, etc.). In this way, the reader should be able to better
understand how the authors treated the prior error covariance.

Response: These additional details have been added.

P8, L2-4: Any concern of aggregation of hourly to weekly? If the authors aggregated into monthly, |
would be definitely concerned, but weekly aggregation is in the gray area, it seems to me. The way |



would do it is that you still use prior predictions in hourly (i.e., Hs_0 in hourly in eq. 1) while solving
for weekly mean “s”. CABLE is originally 1 x 1 km? If not, please say so.

Response: Hs_0, which are the modelled concentrations, is hourly. The sensitivity matrix H relates
weekly fluxes to hourly concentrations (i.e. assume that the day and night fluxes remain constant
during the week). CABLE was dynamically coupled to the regional climate model, and therefore was
driven by inputs on a 1 x 1 km spatial grid. Additional details on the inversion framework have been
added.

P8, L29: “in place of” => “in addition to”. Both bio prior emissions are used?

Response: The sentence referred to here is “We used these estimates of NEE and NPP in place of
those from CABLE (inversion Carbon Assess).” The reference inversion used the net ecosystem
exchange from CABLE as the biogenic flux prior and the net primary productivity as the estimate of
the uncertainty in the biogenic flux. As a sensitivity test, the estimates from CABLE were replaced
with those from a carbon assessment product (NEE for the biogenic flux prior and NEP as the
uncertainty in this flux).

This sentence has been changed to “As a sensitivity test, the NEE and NPP from CABLE estimates
used for the biogenic flux priors and their uncertainties were replaced with NEE and NPP from the
carbon assessment product and the inversion rerun with these priors”.

P9, L6: Where is this standard deviation coming from?

Response: This estimate was calculated as the standard deviation between the fynbos biome pixels
from the carbon assessment product. This information has been added. This sentence has been
changed to: “The carbon assessment estimated the GPP flux for the year in the fynbos biome to be
521 g CO, m2year? with a standard deviation of 492 g CO, m2year* across pixels with 1 km?
resolution.”

P9, L9: Please add a few sentences about Figure 1. How are the two bio prior fluxes are different
(e.g., in total)? How has the uncertainty in the two priors been estimated?

Response: These details have been added in the section on the priors. The uncertainties are taken as
the NPP estimate from the products, as has been done in previous mesoscale inversions. We favour
this approach over assigning a percentage uncertainty, as biogenic fluxes in many of South Africa’s
biomes are often close to carbon neutral, resulting from large productivity and respiration fluxes
during the growing seasons. Therefore if a percentage uncertainty was assigned to the NEE flux,
these uncertainties would be close to zero, which would be unrealistic.

After Figure 1 we have added: “The biogenic CO; fluxes are more homogeneous across the domain in
the carbon assessment product. This can be explained by the products used as inputs for the
estimation of the carbon stock components, such as FAPAR, which would not be expected to differ
considerably from pixel to pixel in this domain. CABLE predicts greater CO, uptake. The average CO,
flux over the course of the study period and across the domain, was -41 g CO, m?week* according
to the carbon assessment and -172 g CO, m2week™ according to CABLE. The true flux is likely to be
highly variable but close to carbon neutral over a long period of time (several years).”

P10, L4-16: This paragraph can be shortened because it does not include any specifics on the
author’s work. Does Hetia have anything to do with this work? Except for the product description, |
don’t see any point here.

Response: This has been shortened. The discussion on the Hestia product was to show how ODIAC
compared to alternative inventory data available in other settings.



P10, L21: Please spare your space more on Figure 2 where you compare the two products for prior
fossil fluxes. Are they different? If so, how much, in the bottom-up inventory perspective?
Response: This figure has been modified and additional statistics comparing the products have been
provided. A paragraph below the figure has been added:

“The ODIAC product gave similar fossil fuel fluxes over pixels in the CBD area compared with the
inventory estimates. The inventory estimates were concentrated over the road network, point
sources, and areas of high population density, whereas the ODIAC product dispersed emissions over
the domain, with an area of high concentration over the CT metropolitan area and decreasing
emissions away from this region. The average fossil fuel flux for the domain over the study period
was 134 g CO, m?week? according to the inventory and 274 g CO, m?week™ according to the ODIAC
product.”

P13, L10: The naming is quite confusing. When | started reading the result section, it was confusing
and | had to come back here to check the definition. “an inversion which assumed no temporal error
correlation in the specification of Cc” := NEE Corr. But no hint of “NEE” in this definition. In Table 1, it
says NEE Corr is defined as “no observation error correlation”. | understand this is the case without
off-diagonal elements. Right?

Response: We have decided to use sensitivity case numbers instead, to avoid any confusion. A table
is provided that gives the details of each case. Yes, No Corr means that the uncertainty covariance
matrix of the fluxes is diagonal.

There is a disconnection between L9 and L10 of P13.

Response: This has been reworded. The sentences have been rewritten as:

“To assess the sensitivity of the posterior flux estimates, their uncertainties, and their distribution in
space to the specification of the uncertainty correlations, we ran inversions where the non-zero off-
diagonal elements of C_s0 and C_c in the reference inversion were systematically set to zero. We
considered an inversion which assumed no temporal observation uncertainty correlation in the
specification of C_c (inversion S3), an inversion where no spatial uncertainty correlations were
assumed for C_s0 (inversion S4) and an inversion which assumed no uncertainty correlations in the
specification of C_s0 and C_c (inversion S5).”

P13, L33: What is the difference between “Simp Obs No Corr” and “No Corr”. As written, it is not
clear.

Response: Simp Obs is the scenario where the observation error is set as either 4ppm? or 16ppm?
(excluding the additional components for within-hour measurement variability and within-hour wind
speed that were specified in the reference inversion). Both of these cases used diagonal observation
error covariance matrices.

To improve clarity, this paragraph has been modified to:

“We considered an inversion where the uncertainties in C_c were set at 2 ppm for the day and 4
ppm at night (inversion S13), excluding the additional components for the error due to wind speed
and observation variability that were used in the reference inversion. In this case all the errors in the
modelled concentrations are contained within these values, and we disregard the climatic conditions
under which the measurements were taken. We tested the impact of increasing the night-time
uncertainty in the observation errors to 10 ppm (inversion S14). We further simplified C_c by using
the simplified uncertainties of 2 ppm for the day and 4 ppm at night and also set the temporal
observation uncertainty correlation to zero (inversion S15).”



P14, L1: Please use “state vectors” instead of “control vectors” because “s” (flux) really means the
state, which is commonly used in the timeseries model. In GHG inversion work, | have never heard of
control vectors.

Response: The use of control vector is quite commonly used in mesoscale and city-scale inversion
studies (e.g. Lauvaux et al 2012 and Oda et al 2017). We would prefer to continue to use control
vector to be consistent with the companion paper already published.

We have included a sentence earlier in the manuscript “Additionally we were interested in the
composition of the control vector, also referred to as the state vector, which specifies the surface
fluxes and domain boundary concentrations to be solved for by the inversion.”

P14, L11-12: I don’t think | have seen a clear description of the background concentration (or
boundary concentration). Why only four corners? Since a Lagrangian approach is used, why not
sampling boundary conditions for each of the particles? Reading “The inversion solved for4_2 4 =
32 boundary concentrations” | understand that the authors seem to solve (as in “s”) for the a single
boundary condition for day or night for each week. 4 corners x 2 (day and night) x 4 weeks? Ideally,
each (hourly or sub hourly) CO2 observation has to be associated with the boundary condition. It
looks like weekly mean boundary conditions were used, which is not quite okay. Only four corners
were used? If so, this is too much simplification. Please clarify how the authors treated the upstream
boundary conditions.

Response: We did not have modelled concentrations of CO; at the boundaries of the domain. We
used the cardinal directions because our limited domain was gridded. We would not expect great
variations in the CO, concentrations at the boundaries of this domain as there are no close sources
either near the ocean borders or the terrestrial borders. The differences between the concentrations
at the boundary and the concentration measured at the background site (Cape Point) located within
the domain are expected to be very small, certainly smaller than errors in modelling CO,
concentrations if a chemical transport model had been used.

We have added a full description of the treatment of the boundary concentrations in a new section
on the reference inversion. With regards to the sensitivity tests, which is the focus of this paper, all
of the inversions used the same prior boundary concentrations and solved for the same 32 boundary
concentrations. As these sensitivity tests were focused on the uncertainty covariance matrices, we
did not consider any sensitivity tests listed here which changed the way we treated the boundary
concentrations, but kept this as a constant between all inversions tested.

Even if the authors used a simple one-valued boundary condition for day and night,

| am doubtful about the robustness of the estimation of those 32 values of boundary conditions
when solved together with “s”. In a sense, Bayesian inversions use regularization methods via prior
assumptions, which means a state vector of 244,824 (huge) can still be solved with a small number
of observations. But here because the authors are solving for hundreds thousands of parameters,
the posterior is highly dependent on the prior. Related to boundary conditions, what this means is
that the posterior boundary conditions (if the authors really estimated the posterior boundary
conditions while doing inversions, not pre-subtracting; please clarify) is significantly affected by the
prior. If so, what prior did the authors use for the boundary condition?

Response: The prior for the boundary condition was the average concentration taken from the
background signal at Cape Point during the course of a week. Variations in this concentration are
expected to be small during the course of a week, and there are no large nearby sources outside the
domain. The concentration at the boundary is solved for in the inversion, but only a small
uncertainty is placed on these concentrations, informed by the observed hourly concentrations,
which means that the inversion has to correct the modelled concentration predominantly through
making changes to the fluxes within the domain. This was shown to be the case in the reference



inversion (Nickless et al. 2018), and a full discussion on the use of this approach is provided in the
companion paper. Where the inversion did make corrections to the boundary concentrations, these
corrections were usually made to the terrestrial boundary, which is what we expected.

For the purposes of this paper, which focuses on sensitivity analyses, the boundary condition was set
to be the same for all cases, therefore for each sensitivity test any sensitivity shown in the inversion
solution in comparison with the reference inversion should be due to the adjustment made to the
inversion for this test, and not due to the approach used for accounting for the boundary
concentrations.

P15, L27: It is okay to use X"2 for assessing the goodness-of-fit, but please state the assumption
related to this test and whether the data used in the inversion meet the test assumptions. Also, state
that what X"2 results mean. X"2 itself does not guarantee the accuracy of the results.

Response: This has been changed to: “In order to assess the suitability of the prior uncertainty
estimates contained in C_s0 and C_c , the y? statistic as described in Tarantola (2005), was
calculated”. More explanation on the statistical assumptions and caveats of this statistic for making
this assessment are provided in a new section relating to the use of the y? statistic for the reference
inversion.

P18, 3. Results: Please add a subsection here; it looks like an introduction to the

Results section but it is a mix of many things. | strongly recommend that the authors remove some
to other sections or rewrite it. Basically, what is the main topic for this whole page?

Response: The results section has been rewritten to more succinct and to focus on the main finding
of the sensitivity analysis. The description of non-significant tests has been made much shorter. The
first section of the results gives a summary of the reference inversion for Cape Town.

P21, L2: Please define bias (obs - model?) if it has not been done somewhere else.
Response: The definition for bias has been added in Section 2.2.5.

P21, L11: Then what does it suggest? The model (Gaussian here) and data using

ODIAC are more consistent : : :?

Response: This suggests that the uncertainty estimates for the prior fluxes taken from the ODIAC
product, which were set at 100% of the ODIAC estimate, are consistent with the statistical
assumptions of the inversion. The uncertainties used for the ODIAC product are much larger than
those used for the estimates derived from the inventory in the reference inversion. As y? is not less
than one, it indicates that these larger uncertainties are needed in order to adjust the prior flux
estimates so that the modelled concentrations better match the observed concentrations.

P21, L14: That’s because the prior uncertainty was extremely small. Is it a correct prior assumption?
It is over-confident!

Response: The same approach for assigning uncertainties to the prior biogenic fluxes in the
reference inversion (using the NPP fluxes as the uncertainty) was applied to the carbon assessment
inversion. In this case, the uncertainty estimates are too narrow (if we assume the observation
errors are large enough). We wanted to show what the inversion would look like if we swapped out
the reference biogenic component for an alternative without making any further changes.

P22, L2: Which uncertainty? Please be specific.
Response: This was referring to the total flux uncertainty. This has been made more specific.

P22, L7: Typically, biospheric fluxes are much more uncertain. This near-zero uncertainty on the
prior suggests to me that the prior assumption is wrong.



Response: The uncertainty is not near-zero, but closer to zero than those for the reference inversion.
This has been made clearer. It is the difference in the uncertainty from the prior to posterior
uncertainty that is small. As you have stated, the prior uncertainties are too small, and therefore the
Bayesian inversion has not been able to provide sufficient correction to the prior fluxes, and as a
consequence, the difference between the prior and posterior fluxes and the difference between the
observed and modelled concentrations are too large and are not centred around zero. Therefore,
the y? statistic is greater than one. The uncertainty in the fluxes after the inversion is almost as great
as the uncertainty before the inversion.

P22, L9: Before moving to spatial distribution, do we have any conclusion from this time series
comparison? What does all this comparison mean?

Response: The figure for the time series has been changed to one which shows the time series of the
posterior flux estimates on one step of axes for all three inversions. This shows better how much
each set of posterior fluxes has been adjusted from the prior estimates, and in which direction the
inversion has shifted the fluxes. The time series shows that under the carbon assessment inversion,
the uncertainty limits are too narrow, and so very little adjustment by the inversion was possible.
The width of the uncertainty bounds of the ODIAC inversion was similar to those for the reference
inversion. The inversion has shifted the more positive prior fluxes under the ODIAC inversion to be
closer to zero, and in the reference inversion, the more negative fluxes have been shifted towards
zero as well. The figure of the time series plots suggests that the inversion process is consistently
shifting the time series of the prior fluxes towards the same ideal time series.

P27, L12: How small is the X"2 value? Ideally X"1 should be close to 1. Is it good or bad? This sounds
like ignoring temporal correlation is okay?

Response: The temporal observation error correlations did not change the y* very much, with
statistics remaining close to one. Therefore, if it is assumed that the other components of the
covariance matrices are correct, then removing these temporal correlations is consistent with the
statistical assumptions of the inversion.

P27, L13-15: This needs some clarification. What is the difference between Ref with positive
covariance (L13) and just Ref (L15). Which one is compared with which one here. This result suggests
“no correlation” has a minimal impact on the posterior?

Response: There is no difference, as Ref contains these positive covariances. It is the test cases Obs
Corr and No Corr where these positive covariances were made zero. The sentence referred to here
has been corrected. What we meant to say here was:

In the reference inversion the positive covariances specified between neighbouring NEE flux
uncertainties led to large prior and posterior uncertainty around the aggregated weekly fluxes. If
these positive covariances are removed from C_s0 then the uncertainty around the aggregated total
flux was much smaller. On the other hand, the test case which retained the positive covariances in
C_s0 (S3) had uncertainty bounds around the prior and posterior aggregated fluxes that were
indistinguishable from those in the reference inversion.

This section has now been shortened to: “In comparison, the removal of the temporal correlation in
the observation errors in S3 had only a small penalty in the y? statistic. The spatial distribution of the
fluxes and uncertainty reductions achieved remained similar to the reference inversion SO as well.
Increasing the temporal correlation length in the observation errors from one hour to seven hours
for the S6 inversion had little impact on the posterior flux estimates or the uncertainty reduction
achieved,...”



P27, L17 - L22: The author should be able to explain why there is a such a big difference between
weekly and monthly. | don’t quite understand why.

Response: There is no difference between weekly and monthly uncertainty reduction. In this
paragraph we have focused on the uncertainty reduction, and this is summarised for each month in
the supplementary material (Table S2), and summarised over the whole study period in Table S1.
The flux estimates are aggregated over a month (aggregated over space and time). If we look at the
relative difference between inversions in the spatially aggregated estimates over a week, this
relationship is similar to what we get if we aggregated over the month.

P27, L23 - 27: The paragraph starts with Ref and NEE Corr and then mixed up with Obs

Corr and No Corr. It is really hard to follow; this happens in many places throughout the paper. Not a
smooth reading at all.

Response: The labelling of the inversions has been changed. These cases are all being referred to
here, in this final paragraph of the section, because we intended to compare the inversions which
had modified uncertainty correlations, which in the previous version were inversions NEE Corr, Obs
Corr and No Corr (now inversions S3, S4 and S5).

P27, L 27: This result seems to be important in terms of error reduction. Please add a couple of
sentences for this. From Figure 7, | see the central estimates between No Corr and Ref are similar
while the error reductions are different.

Response: We have changed the text here to: “The inversion solution was sensitive to the
uncertainty spatial correlations assigned to the prior biogenic fluxes. This impacted on the spatial
distribution of the fluxes, the magnitude of the total aggregated flux, and the uncertainty reduction
achieved by the inversion. By not accounting for the spatial correlations in the biogenic flux
uncertainties, this led to uncertainties that were too small, illustrated by average y? statistics above
2 for inversions S4 and S5, which set the spatial correlation of the uncertainties in the biogenic fluxes
to zero (see supplementary material Table S1). These inversions also showed little innovation or
uncertainty reduction in comparison to the reference, leaving the posterior fluxes to be similar to
the priors (Figure 7).”

Section 3.3 & 3.4: 1 don’t have much comment except for the fact that it is somewhat boring to read
- please try to convey in a clearer and succinct way!

Response: The results section has been rewritten.

P38, L9: Please clarify what “and could not react to local climate conditions” means.

Response: This sentence has been reworded. “The direction of the correction to the prior fluxes
made by the inversion using NEE fluxes from the carbon assessment product suggested that the
amount of carbon uptake was insufficient. The NEP fluxes were also smaller compared to those from
CABLE, leading to uncertainties that were too small, and therefore an ill-specified inversion. The
inversion could not correct the fluxes sufficiently so that modelled concentrations could match
better with observed concentrations, and therefore certain localised events (i.e. spikes in the CO,
signal) were not well represented in posterior fluxes from the carbon assessment inversion.”

P38, L13 - 15: Not clear what the authors mean by “The ODIAC product extended the fossil fuel
fluxes much further a field from the CBD region than the reference inventory. This led to aggregated
estimates that were much larger under the ODIAC inversion than the reference inversion.” How is
the first sentence is related to the second sentence?

What do the authors mean by the statement in the first sentence?

Response: The ODIAC product has fossil fuel emissions that non-zero for pixels further away from
the Cape Town central business district compared with the Cape Town inventory, where the
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emissions were localised and concentrated around road networks and point sources, and within
regions where the census information located the majority of the population. There are many
terrestrial pixels on the outskirts of the domain, near the terrestrial boundaries of the domain where
the population size is small, there are no point sources nor a substantial road network, and so the
fossil fuel emissions are close to zero. The ODIAC product smoothed the emissions further from the
central area, with most pixels having non-zero fossil fuel emissions. If the emissions are aggregated
over the domain, the ODIAC product had a larger aggregated flux compared with the Cape Town
inventory, and this persisted in the posterior fluxes as well. This is expected as the Cape Town
inventory only account for the major point sources in the domain. The aggregation of the smaller
point sources that are unknown is almost certainly significant.

We have changed this to: “The comparison of inversion results using different prior products
provides useful information regarding which direction the true flux estimates are likely to be. A pixel
within the CBD limits had similar fossil fuel flux estimates from the ODIAC product compared with
the reference inventory product, but the ODIAC product had emissions that were more widespread
across the domain away from the CBD. This led to aggregated estimates that were larger under the
ODIAC inversion than the reference inversion. Compared to the reference, the ODIAC inversion
attempted to reduce the aggregated flux for most months — and to a greater degree — to better
match the observations, indicating that compared with the reference inventory, the ODIAC prior was
most likely overestimating the amount of fossil fuel emissions from Cape Town to a greater extent
for most parts of the study period.”

P38, L15: “The inversion attempted to reduce the aggregated flux” means when the model tries to
match the observations?

Response: In order to better match the observations, the inversion needed to reduce the fossil fuel
fluxes implied by the ODIAC product, leading to a reduced aggregated flux over the domain. See
above response.

P38, L18-20: Please provide estimates (in numbers) for both in the text so that the reader can clearly
see the likely true emission estimates. Each inversion should have a uncertainty bound and then |
don’t understand what it means by “a much narrower uncertainty region than for either inversions.”
Response: This statement has been modified as follows, and the figure of the time series for this set
of sensitivity tests has been updated to illustrate this idea and what the likely flux is: “When the two
prior information products provide divergent prior flux estimates, such that the inversion reduced
the flux for one product but increased the flux for the other, it suggests that the true flux lies
somewhere between the posterior flux estimates from these two inversions. When the posterior
aggregated flux was made smaller than the ODIAC prior but larger than the reference prior
aggregated flux, such as during February and March 2013, the true aggregated flux should lie
between these two posterior estimates. When the posterior flux was made smaller than the prior for
both inversions, we could deduce that the true aggregated flux must be below the minimum of
these two posterior estimates, and if we have accurate uncertainty estimates, the true flux should
be no smaller than the lower uncertainty limit. Making use of the posterior uncertainties and the
direction away from the prior in which the inversions made corrections, a region is suggested where
the true flux is most likely to lie (Figure 9). For the CT domain, the inversion results suggest that over
the spatial domain investigated, the flux is close to carbon neutral for the majority of the year.”

P38, L26-28: 1 hour is too short. It should be useful to see the results based on 6 hours or 24 hours. |
expect the length scale would be hours or even a couple of days.

Response: An additional case is added with correlation length of 7 hours. With a correlation length
of 1 hour, the non-zero error correlations persist for observations at least 7 hours apart. We felt that
there certainly should be error correlations, and therefore did not want to ignore these temporal

11



correlations, as is done for most of the urban inversions to date, but we also did not want make
these correlations too long so that correlations would persist beyond a day, at least for the
reference inversion.

P39, L17: This is not correct. Prior is just prior. Your sampling from a prior distribution with a fixed
mean and a fixed covariance is still a priori info. It does not require the prior sample to be accurate.
Response: The sentence in reference here is: “The posterior uncertainties reflect the reduction in
uncertainty achieved by the inversion given that the prior uncertainties are accurate.” What we
meant here is that the inversion requires appropriate uncertainty limits in order to have the freedom
to correct the prior fluxes such that the uncertainty limits around the posterior flux include the true
flux. If the uncertainty limits are incorrectly specified such that they are too narrow, the inversion
will still correct the flux in the right direction, but the uncertainty limits may not include the true
flux. The way this paragraph is written in the original manuscript may be creating some confusion.
Two issues are important here: 1.) The prior mean estimate. The inversion should always nudge the
posterior mean closer to the true value. 2.) The uncertainty bounds placed around the prior mean
estimate. The inversion will always result in a posterior uncertainty that is smaller than or equal to
the prior uncertainty, even if the prior uncertainty is ridiculously small. In terms of the inversion’s
ability to push the posterior solution closer to the truth, this is determined by the prior uncertainty.
Ideally, one would like to be able to set the prior uncertainty just large enough to allow the inversion
to still be able to achieve a posterior solution close to the truth. The trick, of course, is getting the
right uncertainty estimate.

P39, L19 - 20: This is because your data points are too small compared to the number of parameters
to be solved. In other words, your inversion system is more dependent on the prior rather than
observations. In this case, the posterior estimate for the individual pixels won’t have much
constraint; only the regional total emission may be estimated more or less independently, in the
best case. From the Bayesian perspective, the only thing you can do is to report what your
assumption was, what model was used and what the result is.

Response: The sentence referred to is: “It can be shown that in the absence of observation error,
doubling or halving the prior uncertainty in the fluxes results in a respective doubling or halving of
the posterior uncertainty.” We agree that the observations only weakly constrain the fluxes. This is
going the be the case for most urban inversions. There are few cities which have the luxury of being
well constrained by observations. And that it is why it so important to get the uncertainty covariance
parameters correct, particularly uncertainty correlation lengths, as these expand the influence of the
observations onto surface pixels that may not be viewed directly by the observation network.

P39, L23 - 27: Not a Bayesian way of thinking, subject to criticism from frequentists.

Response: The paragraph in question here is “This set of sensitivity tests demonstrated that if we
wish to ensure that the uncertainty bounds around the posterior fluxes are within a prespecified
margin, say 10% of the aggregated flux estimate, then we have to ensure that prior uncertainty that
we begin with is sufficiently small. Assuming no large shifts in the mean estimate, it can be shown
that if we wish to obtain an uncertainty estimate that is within 10% of the aggregated flux estimate,
and we are able to reduce the uncertainty by 25% through the inversion, then the prior uncertainty
estimate would need to be within 13.3% of the prior aggregated flux estimate.”

We disagree that this is not a Bayesian way of thinking. In a Bayesian setting, we take advantage of
the information we have to reduce the problem space to a narrower region. Normally when we
assess a Bayesian inversion framework, we consider how much uncertainty reduction can the
observations provide. The other side of the Bayesian solution is the prior information. We are
considering by how much can we reduce the uncertainty of the posterior solution by ensuring that
the prior information we start with in the inversion has sufficiently reduced the problem space.
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For this methodology to be useful in the policy setting, the posterior estimates obtained from the
inversion should ideally 1.) contain the true flux estimates, and 2.) the uncertainty limits should be
narrow enough to determine if mitigation efforts are reducing emissions to a desired level with
sufficient confidence. Since a great deal of resources already goes into the information used to
provide prior flux estimates, the typical “expert-estimate” based approach of deciding on the
uncertainty limits may never be good enough. Therefore alternative methods of determining the
uncertainty parameters, such as the ML method mentioned in the next comment, or the Hierarchical
Bayesian approach proposed, may be the best route forward.

P42, L14 - 15: Since the authors are using an analytical solutions for a Gaussian Likelihood function,
they could use a simple maximum likelihood estimator for the length scale.

Response: Michalak et al. (2005) and Wu et al. (2013) provides an ML approach for estimating the
correlation length and other covariance parameters in an inversion. For a single inversion this
requires an iterative method, such as the Gauss-Newton method, to derive these covariance
parameters, even when uncertainty covariance matrix is assumed to be diagonal. That would not be
feasible for this inversion frame-work, as the number of unknows is much larger, and we have not
assumed a constant uncertainty for all sources, or assumed a single uncertainty scaling factor.

P42, L25 - 29: Please correct the sentences. Also, | don’t know what the authors are

trying to say here, except for the fact that a hierarchical approach may be better.

Response: The point we are trying to make here is that the approach used for historical global and
mesoscale inversions, whereby uncertainty covariance terms and uncertainty correlation lengths are
driven by expert opinion, may not be feasible for a high resolution city-scale inversion due to
sensitivity of the solution on these estimates. Instead, robust, data-driven estimates of these terms
should be considered, such as the ML method described by Michalak et al (2005) or a Hierarchal
Bayesian approach described by Ganesan et al (2009). This has not so far been done for city-scale
high resolution inversions due to computational constraints. We showed that running weekly
inversions solving for an average weekly flux gave a very similar solution to running a monthly
inversion solving for average weekly fluxes. Computational costs could therefore be reduced by
running shorter inversions, which is more feasibly for the ML or Hierarchical Bayesian approach
requiring iterations of the inversion.

Reviewer 2

Nickless et al review

This manuscript describes a sensitivity study of an inversion of CO2 fluxes in and around Cape Town
based on measurements at 3 sites. Cape Town is a city with a strong influence from biogenic fluxes
and so provides a good case study for separating the anthropogenic influence from the biogenic
influence. The main results from the inversion were published in a previous paper (Nickless et al.,
2018). This manuscript concentrates on sensitivity studies on various aspects of the inversion,
including the priors used for the biogenic and anthropogenic fluxes and the period over which
inversions are averaged. This type of sensitivity analysis is undoubtedly important since cities emit
such a large fraction of the global CO2, and there is a need to have robust and well understood
inversion methodologies.

The paper is however hard to read. This is partly because it is pretty technical material and partly
because so much information is included. This makes it difficult for an interested reader, let alone a
casual one, to extract the main points, even after a careful reading. | do not get a feel for the main
results from reading the abstract and do not think that the introduction sets the scene for the rest of
the paper. | should note that the current discussion and conclusions do a better job of this.
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Response: We have rewritten the Introduction and Methods sections in response to comments from
the Editor and Reviewer. The introduction now contains a light introduction to Bayesian inversion
studies in the context of city-scale inversions, and gives more discussion on the original Cape Town
inversion study. We give a clearer explanation of why these sensitivity analyses were performed. The
methodology section contains more of the details from the original paper, although we have kept
this as lean as we can to avoid repeating too much of what is already described in Nickless et al
2018.

Overall, | think the manuscript could be publishable but only after major revision. | am not making
many detailed suggestions as | think a considerable amount of work is needed and the first reviewer
has made extensive and well thought out comments. My main comments are as follows:

1. The authors should clarify what the main findings are and then decide what material is needed to
back that up in the introduction and in the main body of the manuscript. This should provide a firm
basis on which to give a good understanding of the uncertainties and the implications described in
the conclusions. That should result in a much tighter and probably shorter manuscript whose
contents can be reflected in a clear abstract.

Response: Agreed. The introduction has been rewritten with this in mind.

2. In deciding what the main points are, the authors should consider whether ACP or GMD is the
more appropriate home for the work. The ACP description includes the statement “The journal
scope is focused on studies with general implications for atmospheric science rather than
investigations that are primarily of local or technical interest.” GMD “is an international scientific
journal dedicated to the publication and public discussion of the description, development, and
evaluation of numerical models of the Earth system and its components.” Models include
“geoscientific model descriptions, from statistical models to box models to GCMs.”

Response: Having read through the remit of GMD, | don’t believe the type of sensitivity tests we
have performed falls into the subject matter that is normally covered by this journal. If | was making
changes to the atmospheric transport model it may be appropriate, but | think these types of
statistical aspects of the inversion fit better into ACP. Previous studies on sensitivity analyses for city-
scale inversions (focusing in this case on the observations used and the atmospheric transport
model) have been published in ACP by Staufer et al. 2016 and on different priors used for a
mesoscale inversion by Lauvaux et al. 2012. We have also made sure that the results and discussion
now also emphasize what information the sensitivity tests provide about the flux of CO; from this
region.

3. I think that moving to GMD would allow the manuscript to be completely focussed on the
technical aspects and might well make it easier to prepare.

Response: We have reduced the amount of technical detail in the manuscript and focussed more on
the science and how these sensitivity tests inform future inversions.

4. The supplementary material largely consists of a series of plots which | am not sure are helpful,
though | could be persuaded. | would think that some of the current paper could be putinto a
revised and reduced supplementary material.

Response: The purpose of the plots and tables in the supplementary material was to provide a type
of look-up table so that if anyone were interested in a particular sensitivity test case, they could
inspect exactly what the solution of the inversion looked like under these conditions, particularly for
those cases which are only discussed briefly in the main text because the inversion solution was not
sensitive to that particular change. This also avoids any issues related to selective reporting.
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5. The present tense should be used for all the new results presented here, and the past tense
should be used for previous work and much of the description of the measurements.

I am not sure if | am typical, but the mixed use of tense misled me on a few occasions.
Response: We have corrected the tense in the manuscript. Thank you for this guidance.

6. Some comment should be made about the important differences are present in the emissions
products in sections 2.2 and 2.3. As it stands, it is hard to know what to keep in mind for later in the
manuscript.

Response: More details have been added on the difference between the reference emission product
and the alternative products, as described in the response to the first reviewer.

7. It would help to have a short summary of the results from Nickless et al (2018) at the start of
Section 3.

Response: We have included in the new results section of the manuscript a brief summary of the
results from the original Cape Town inversion.

8. Can percentages be included in the discussion of the changes vs the reference case?

Response: We have included percentages when discussing the difference between the reference and
alternative cases, at least when related to the change in the uncertainty. Reporting percentage
changes with the total flux is difficult because the solution swings between being positive and
negative for different inversions.

9. The aspect ratio in Figs 3, 4, and 9 should be increased. They are hard to read at the moment.

Response: The figures have been replotted to be clearer and to focus only on the important aspects.
The number of figures in the main manuscript has been reduced.

15



10

15

20

An atmospheric inversion over the city of Cape Town: sensitivity
analyses

Alecia Nickless'?, Peter J. Rayner®, Robert J. Scholes*, Francois Engelbrecht*, and Birgit Erni*>

! Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

2Department of Statistical Sciences, University of Cape Town, Cape Town, 7701, South Africa

3School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia

4Global Change Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa

>The Centre for Statistics in Ecology, the Environment and Conservation, University of Cape Town, Cape Town, 7701, South
Africa

Correspondence: Alecia Nickless alecia.nickless @bristol.ac.uk

Biesphere-Land-Exchange-medeb—Changing-to June 2013, making use of in situ measurements of CO, concentrations at
temporary measurement sites located to the North East and South West of Cape Town. This paper presents results of sensitivit
analyses which tested assumptions regarding the prior information preduct-and-the-assumptions-behind-the-uneertaintiesin-the

and-the-and the uncertainty covariance matrices associated with the prior and with the observations. Alternative prior products
were considered in the form of a carbon assessment analysis to provide biogenic fluxes and the ODIAC (Open-source Data In-
ventory for Anthropogenic CO4 product;-) fossil fuel product. These were used in place of the fossil-fuelinventery, resulted-in

inversi ; reference inversion’s biogenic fluxes from CABLE (Community Atmosphere
Biosphere Land Exchange model) and fossil fuel emissions from a bespoke inventory analysis carried out specifically for the
Cape Town inversion. Our results confirmed that the inversion solution was strongly dependent on the prior information, but
by using independent alternative prior products to run multiple inversions, we were able to infer limits for the true domain flux.
Where the reference inversion had aggregated prior flux estimates that were made more positive by the inversion -suggesting
that-the— suggesting that CABLE was overestimating the amount of CO4 uptake-by-the-biota—when-the-alternative-prior
information-was-tised;-biogenic uptake — the carbon assessment prior fluxes were made more negative by the inversion. As the
posterior estimates were tending towards the same point, we could deduee-infer that the best estimate was located somewhere

between these two posterior fluxes. W
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The-assumed-The inversion was shown to be sensitive to the spatial error correlation length for NEEfluxesplayed-a-major
rele-in-in the biogenic fluxes — even a short correlation length — influencing the spatial distribution of the posterior fluxesand-in

. the size of the aggregated flux estimates;-where-ignoring these-correlations-led-to-posterior-estimates-more-simitar-to-the-priors

inversiensacross the domain, and the uncertainty reduction achieved by the inversion. Taking advantage of expected spatial
correlations in the fluxes is key to maximising the use of a limited observation network. Changes to the temporal correlations
in the observation errors had very minor affects on the inversion.

The control vector in the original version
consisted of separate day and night-time weekly fluxes for fossil fuel and biogenic fluxes over a four-week inversion period.

fluxes-fluxes over each four week period — i.e. assuming the flux remained constant over the month — larger changes to the

rior fossil fuel and biogenic fluxes were possible, as well as further changes to the spatial distribution of the fluxes compared
with the referenceinversion,but-these-difference-were-mainly-duringperioeds-with-data—gaps. The uncertainty reduction from

-achieved in the estimation of the overall flux

1% for the

increased from 25.6

reference inversion to

~47.2% for the mean weekly flux inversion. This demonstrates that if flux components that change slowly can be solved for
separately in the inversion, where these fluxes are assumed to be constant over long periods of time, the posterior estimates of
these fluxes substantially benefit from the additional observational constraint.

In_summary, estimates of Cape Town fluxes can be improved by using better and multiple prior information sources,
particularly on biogenic fluxes. Fossil fuel and biogenic fluxes should be broken down into components, building in knowledge
on spatial and temporal consistency in these components into the control vector and uncertainties specified for the sources for
the inversion. This would allow the limited observations to provide maximum constraint on the flux estimates.

1 Introduction

leeations-inverse modelling provides a top-down technique for verifying emissions and uptake of carbon dioxide (CO2) from
both natural and anthropogenic sources. It relies on accurate measurements of COs concentrations at suitably located sites
which can collect information about these sources at different spatial and temporal scales. The concentration measurements
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on their own are not sufficient to solve for the emission sources as there are many more sources of CO; than there are
measurements of the concentrations. Therefore well-informed initial estimates of the biogenic and anthropogenic emissions
are required, together with uncertainty estimates, which are used to regularise the problem. This technique is a useful tool for
monitoring, reporting and verification (MRV) of CO4 emissions from cities (Bellassen and Stephan, 2015; Wu et al., 2016;
Lauvaux et al., 2016; Oda et al. , 2017a). While cities represent only 2% of the global land surface area, they are responsible
for approximately 70% of anthropogenic greenhouse gas emissions (UN-Habitat, 2011; Seto et al., 2014), with annual urban

CO5 emissions averaging more than double the size of net terrestrial or ocean carbon sinks (Le Quéré et al., 2013).
Estimates of city-level CO, emissions are usually obtained using bottom-up techniques, which usually-requires-somerequire

knowledge of what activities produce COy emissions and the fuel usage of these activities. These estimates are strongl

dependent on accurate reporting, accurate and representative emission factors, and on assumptions regarding temporal or

spatial disaggregation of these emissions (Andres et al., 2012). Ascertaining the uncertainty in these inventory-based esti-
mates is not trivial, and these uncertainties increase as the spatial-and—temperal-spatio-temporal resolution of these esti-

mates is increased (Turnbull et al., 201 1) The-inversion solves for both the-anthropogenic-and bio

—Such-an-inversion-was-earried-out-Verifying the accuracy of inventory-based estimates of emissions has become essential
NRC,
;. but currently uncertainties associated with urban emissions far exceed emission reduction goals, and therefore verification
remains challenging. The uncertainty is due to factors such as incomplete data, inconsistency in reporting between different
institutions or facilities, fugitive emissions from point sources such as those caused by gas leaks, and methodology which
is rarely checked against scientific standards and procedures (Hutyra et al., 2014). Recently several inverse modelling studies

2010). This requires transparenc

aimed at resolving CO, emissions have been conducted at the city-scale in Europe and North America (Strong et al., 2011; Duren and Mille

,.and more recently for the city of Cape Town :-(CT) in South Africa (Nickless et al., 2018). As-isreqtired-for-at-atmespherie

G O Gt a6 garamg—wnatPprio ofrmatio OGO USea

uality and comparability of information, with narrow uncertainty estimates (Wu et al., 2016
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WMW%M%%%M%WWCOQ on the continent of Africa, and
the 13th largest emitter in the world (Boden et al., 2011). South African cities are home to 63% of the present population
Statistics South Africa, 2011), and by 2030 this is predicted to be 71%. Cape Town saw its population increase from 2,563,095

Atmospheric_inversions at the city-scale are limited by available CO» concentration observations — due to insufficient
monitoring sites, but also a limited number of locations for suitable monitoring sites
is complex in the urban environment and challenging for atmospheric transport models to resolve. This may result in large
representation errors in the modelled concentrations at the measurements sites. To avoid these errors, a further reduction in the
number of observations is often made, as observations are excluded based on when the models are likely to perform poorly.
(Lauvaux et al., 2016; Staufer et al., 2016). The observed concentration data --as-measured-at-atmospherie- monitoring sites-and
which-is-the-data-tused-by-an-atmespherie-inversion;is-a-consequenee-are as a result of aggregated fluxes from all sources of

CO; along the path of the air flow. Sources refer to anything which may have a positive (i.e. emit) or negative (i.e. uptake)

contribution to the overall CO5 concentration. Even if biogenic fluxes are not necessarily of interest in the city-level inver-
sion, they need to be accounted for in the inversion-model as these fluxes will be-indueing-induce changes to the observed
coneentration—For-the-Cape-Town-inversion;net-CO2 concentration.

Atmospheric_monitoring sites targeting CT air masses were not available, therefore temporary measurement sites were

installed at Robben Island and Hangklip lighthouses, located to the North West and South East of the metropolis (Nickless et al., 2018

- A fossil fuel emission inventory analysis was performed for the city which spatially and temporally disaggregated these
fluxes to provide prior estimates of the fossil fuel fluxes, with uncertainty estimates determined by means of etror propagation
techniques (Nickless et al., 2015a). Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the
land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange)Niekless-et-al52048)—This
meodet- Uncertainty estimates were based on the estimates of net primary productivity (NPP). CABLE was dynamically cou-
pled to the reglonal climate model -CCAM (Conformal Cubic Atmospherlc Model) ffemwhielﬂrehmaﬂevaﬂab}es—fequed
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time—were solved for separately.

>
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dueto-One way that CT differs from the mega cities that previous inversions have targeted (Bréon et al., 2015; Staufer et al., 2016

is through the high integration of natural areas in-around the city borders of €apeFownCT (Nickless et al., 2018). Natural fluxes

are an important contributor to the CO2 budget of the region. For example, Table Mountain National Park is located directly

adjacent to the city bowl - -and covers an area of

221 km?. For this reason, the gradient method used by Bréon et al. (2015) and Staufer et al. (2016), which relies on the differ-

ence between pairs of measurement sites when the wind is blowing from one site, over the target region, to the second site,

would not be appropriate given locations of our two measurement sites. In-ourFor the CT case, if the air travelled between
the two sites, it would pass directly over Table Mountain National Park, and therefore the gradient method would not have the
desired effect of diminishing the impact of biogenic fluxes along the transect between the two sites. In addition, the wind fields
showed that air did not travel in a straight path between our two sites (Nickless et al., 2018).

We adopted the approach usually used from regional inversions, where the inversion modelled the concentrations at the
measurement sites (Lauvaux et al., 2012). Instead of subtracting the background COs concentration from the measurements,
which would have arrived from one of the domain boundaries, we solved for the concentrations at the boundary as an additional
unknown, and therefore included these in the control vector, similar to the approach of Lauvaux et al. (2016). We kept tight
constraints on what-these-conecentrationscould-bethese concentrations, and used the background measurements obtained from
Cape Point, a Global Atmospheric Watch (GAW) background station, as prior estimates of these concentrations. We were
able to do this as there are no large anthropogenic sources near the boundary of the domain. We showed in the reference

inversion that the variation in the total COQ was largely driven by the variation in the NEE flux —In-these-sensitivity-analyses
i i i 3 i —(Nickless et al., 2018).

-Nickless et al. (2018) was a first
attempt at estimating CO» @Wk&lwwmkm%kmwmggmmmmg%
sources. The inversion increased the domain emission of CO; from -83.5 kt per month to -19.8 kt. The inversion was able to
reduce uncertainty of the total flux within a pixel by up to 97.7%, and was able to reduce the uncertainty in the total weekly
flux over the whole domain by up to 50.5%. The largest innovation to a fossil fuel flux was applied to the pixel with the largest
point-source fossil fuel flux over an oil-refinery. We found that the optimal solution for the posterior fluxes was one which
made the overall flux in this pixel less positive by reducing the fossil fuel flux and by creating areas of more negative fluxes
around this pixel. This indicated that either the prior fossil fuel flux was over-estimated. or the atmospheric transport model
was not correctly indicating sensitivity of the measurement site to this flux. Compared with the fossil fuel emissions, relative
innovations to the NEE fluxes were much larger, due to the large uncertainty assigned to these fluxes. The largest innovations
were made to natural areas near the central business district (CBD) of CT, as well as to agricultural regions within the domain,
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Nickless et al. (2018) demonstrated the advantage of using the Bayesian inverse modelling approach to solve for disaggregated
fluxes within each pixel when the ultimate goal was to solve for the aggregated flux within each pixel or within a region of
interest, The inversion created negative covariances in the posterior uncertainty covariance matrix for those fluxes that were
viewed simultaneously at the atmospheric measurement site. When we summed these fluxes, the effect of these negative
covariances was to reduce the uncertainty of the aggregated flux — over and above the uncertainty reduction achieved by the
inversion for the individual fluxes.

The specification of the uncertainty covariance matrices substantially influences the inversion result (Lauvaux et al., 2016)
- This paper investigates a series of adjustments to the estimation-of-inversion which impact on the uncertainty covariance
matrix of the fluxes and the observation error covariance matrix. We considered sensitivity tests which halved and doubled
the uncertainties of the individual sources, and investigated the impact of the uncertainty correlations in the posteriorfuxes—
Seetion->-inversion. We also manipulated the prior products, either by smoothing the products used in the reference inversion,
or using alternative sources for the fossil fuel and biogenic prior fluxes and uncertainties.

Additionally we were interested in the composition of the control vector, also referred to as the state vector, which specifies
the surface fluxes and domain boundary concentrations to be solved for by the inversion. The composition of this vector is
determined by the size of the source pixels and the time length over which we assume the fluxes are homogeneous. This
in turn impacts on the assigned uncertainty covariance matrix. For the reference inversion we carried out thirteen four-week
inversions which solved for weekly fluxes from each of the 101 > 101 surface pixels. The weekly fluxes consisted of working.
week and weekend fossil fuel fluxes, and NEE fluxes for the full week; each separated into day and night fluxes. We tested
whether solving for an average weekly flux over the course of four weeks would achieve similar results compared with the
reference inversion, which allowed the four weekly fluxes within a monthly inversion to differ. We also compared the reference
inversion with the approach of carrying out separate inversions for each week. Each of these cases requires considerably less
computational resources to perform an individual inversion. If either of these alternative control vectors provides sufficiently
similar results to the reference case, this would provide a more efficient means of conducting the inversion.
presented in Nickless et al. (2018), with the aim of determining the best course of action to improve the ability to resolve
fluxes for CT through the inversion method. Section 2 briefly introduces the Bayesian inversion framework —Betails-of-used
in the reference inversion ean-be-found-in-Nickless-et-al(20+8)(Nickless et al., 2018). This is followed by a description of the

alternative prior information products —Fhe-and a presentation of the details of the sensitivity analysis-are-providedanalyses.
The results of the sensitivity analyses are provided in section 22-3, followed by discussion of these results in section 2?;-and

conclustonsin-section5—4, and a final concluding section.

2 Methods
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2.1 Reference Inversion and Bayesian Inverse Modelling Framework

2.1.1 Bayesian Inverse Modelling Approach

The Bayesian synthesis inversion method, as described by Tarantola (2005) and Enting (2002), was used to solve for the fluxes
in this study. The observed concentration (¢) at a measurement station results from contributions from the surface in the form

of fluxes, from the domain boundaries, and from the initial concentration at the site. Concentrations at the measurement site

can be modelled as:

ey

where €00 are the modelled concentrations and s a vector of source fluxes or concentrations. H is the Jacobian matrix
representing the first derivative of the modelled concentration at the observational site and dated with respect to the coefficients
of the source components (Enting, 2002). It provides the sensitivity of each observation to each of the sources, where the
sources can be fluxes or concentrations of CO. Estimates of the detaits-of-the reference-Cape-Town-inversion(referred-to-in

Hangklip-measurement-sites—This-approach-selves—for-the-unknown sources ;-as-defined-in-the-control-veetor,—s;—using-the
Bayestan-least-squares—solation-as-deseribed-in-Tarantela(2005);-can be obtained by minimising the following cost-function
with respect to s:

s =50+ C,HT (HCSOHT + CC)71 (¢c—Hsg)

((cmoa — )T C (emoa —€) + (s — so)Tcs_Ol(s —50)) ()
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C., — C,H” (HC,H” + C,)” HC

So

o-where s is the

control vector of unknown surface fluxes and boundary concentrations we wish to solve for, s is the vector of prior estimates

< -G+ flux and boundary concentration estimates, C,. is the uncertainty covariance matrix of —and
C;-theprior-the observations, and Cg, is the uncertainty covariance matrix of sg—H-is-the Jacobian-matrix-representing the
frst-derivative-of-the-modeHed-coneentration,—em5qat-the-observational-site-and-dated-with-respeet-to-the-elements-ofs—H

projects-the-elements-of-s-into-the-observation-space-ofethe fluxes and boundary concentrations (Tarantola, 2005).
Minimising this cost function leads to the following solution:

Crmod — Hs.

s =s0+CsHT (HC, H” +C.) ™ (c—Hs) 3)

C. = (H'C.'H+C,))" 4)
= C,, -C,H"(HC,H" +C,)  HC,,. 5)

2.1.1 Control Vector - s

The total CO5 flux from a single surface pixel can be thought of as being made up of the following individual fluxes:

Ssfii = Sff week day; i + Sff week night; i + Sff weekend day; i + Sff weekend night; i + SNEE day; i + SNEE night; i (6)
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where s,;.; is the total weekly surface flux from the i*" pixel, s .; 1s the total fossil fuel flux during the workin
week day, S week niaht: s 18 the total night-time fossil fuel flux during the working week, s e .; 1s the total weekend

.; 1s the total weekend night-time fossil fuel flux, and s .;and s ; are

daytime fossil fuel flux, s

the total day and night-time biogenic fluxes for the full week from the i*" pixel. The reference inversion solved for each of
these separate fluxes for each week. There are 101 x 101 surface-pixelsforeach-of-the four-weeks—Thesurface fluxesincluded

ixels. Over the 16 month period from March 2012 to June 2013, separate monthly inversions were carried out for all months

with sufficient valid concentration observations; a total of 13 inversions. Each monthly inversion solved for four weekly fluxes.
Therefore a monthly inversion solves for 10,201 x6x4 = 244,824 surface fluxes. The-beundaries-were-considered-as-the-edge

The mean day and night-time concentrations at each of the four domain boundaries for each week are included in the control
vector, The inversion solved for 4x2x4 = 32 boundary concentrations (4 boundaries, day/night, 4 weeks). We solved for

weekly concentrations at the

boundaries as we expected these concentrations to show small changes on synoptic time scales, particularly inflow from the
ocean boundaries. We avoided solving for too short a period so that the percentile filtering technique (see section 2.1.7) would
never discard all measurements for a period. The maximum standard deviation in the hourly background CO, concentrations

for a week was 0.8 ppm.

2.1.2 Concentration Measurements - ¢

The reference inversion made use of two CO, monitoring sites that were established at Robben Island and Hangklip —As

site was equipped with a Picarro Cavity Ring-down Spectroscopy (CRDS) (Picarro G2301) instrument. Sufficient data for 13

of the 16~
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misrepresent-the-atmespherie-transpert—months were available to perform monthly inversions. The Robben Island site viewed
redominantly air influenced by the Cape Town city bowl whereas Hangklip viewed air influenced by biogenic fluxes from

nearby fynbos vegetation and agricultural areas. Details about these measurement sites are provided in Nickless et al. (2018).

Rigorous calibration was performed on a regular basis, ensuring that these sites measured on the same scale as the Cape Point

backeround site, which is calibrated to the WMO-X2007 scale. The high frequency observations were processed into hourl

concentrations which provided the observed data for the inversion.

Culesscy) = Cc(cz')\/m(l + %)elip(—%)

2.1.3 System Meteorolo

CCAM is a variable-resolution global atmospheric model developed by the Commonwealth Scientific and Industrial Research

Organisation (CSIRO) (McGregor, 1996; McGregor and Dix, 2001; McGregor, 2005a, b; McGregor and Dix, 2008), and j-6=¢:+
b i variances-forthe-coneentrations-in-hours+ andjthecharacteristic correlationlength-was

< as been validated over South Africa (Engelbrecht et al., 2009; Roux, 2009; Engelbrecht et al., 2011, 2013, 2015
. Full details are provided in Nickless et al. (2018). CCAM was applied in stretched-grid mode to function as a regional cli-

mate model . A multiple-nudgin,
approach was followed to downscale the 250 km resolution National Centres for Environmental Prediction (NCEP) reanalysis

data ;to-produce-three-dimensional-fields-of-mean-winds-(u;—vw);potential- temperature-and-turbulent kinetic-energ 2

1%; : ; 5 Kalnay et al., 1996) to a resolution of 60 km over southern

Africa, 8 km over the south western Cape and subsequently to a 1 km resolution over the study area. The model produced
hourly estimates on a 1km x 1km spatial grid, which had-extent-of-between-extended from 34.5° and-to 33.5° south and

between-from 18.2° and-to 19.2° east. These-variables-were-tised-to-drive-

214 Jacobian Matrix - H

The Jacobian matrix, H, provides the sensitivities of the concentrations observed at the receptor sites to the surface fluxes
and boundary inflows. To generate this matrix in our application the particle counts were processed from a Lagrangian
particle dispersion model (LPDM) (Hliasz+994)—EPDBM-run in backward mode (Uliasz, 1994). The LPDM was driven b

hourly three-dimensional fields of mean winds (u, v, w), potential temperature and turbulent kinetic energy (TKE), which
were obtained from the CCAM model. LPDM simulates atmospheric transport by releasing particles from the observational

sites and tracking these particles backward in time. These particle counts ean—be-were used to derive the elements of the

11
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Jacobian matrix H as originally described by Seibert and Frank (2004) and subsequently used in several inversion studies

the-number-ofsourcessolved-forinthecontrolveetor—s(Lauvaux et al., 2012; Wu et al., 2013; Ziehn et al., 2014; Nickless et al., 2015b; Le¢

Previously we modified the approach of Seibert and Frank (2004) to use particle counts — as produced by our LPDM —

instead of mass concentrations which were output by the atmospheric transport model FLEXPART in their study (Ziehn et al., 2014

. The elements of the matrix H corresponding to the surface fluxes in s were calculated as follows:

dcsy _ ATs < Nin ) M0 )

68in - AP Ntot 12

where ¢ is a volume mixing ratio (receptor) expressed in ppm and s;, is a mass flux density (source), Ny, the number of
particles in the receptor surface grid from source pixel ¢ released at time interval 1. AT is the length of the time interval, AP is
the pressure difference in the surface layer, g is the acceleration due to gravity, and Ny, the total number of particles released
during a given time interval.

The spatial resolution of the surface flux grid boxes was set to be the same as that of the high-resolution subregion of the
atmospheric transport model, resulting in a gridded domain consisting of 101x101 grid boxes (a resolution of 1kmx1km).
The units of the surface fluxes are given in kg CO, m_? week ! and are transformed through H into contributions to the
concentration at the measurement site in units of ppm. To solve for the concentrations at the boundary Ziehn et al. (2014)

showed that the Jacobian can be calculated as:

aey . Np ®)
9sp___Niot
where sp are the concentrations at the domain boundary, ¢; is the volume mixing ratios, /Ng is the number of particles from
the domain boundary, B, and N,,, the total number of particles viewed at the receptor site from any of the domain boundaries.
The contribution to the observed concentration at the receptor site can be written as:

o =Hpsp ©)

where H g is the Jacobian with respect to the domain boundary concentrations, sg are the domain boundary concentrations
and ¢, the contributions from the boundary to the observed concentration at the measurement site in units of ppm, The row
elements of Hp sum to one. Therefore the elements of ¢, represent a weighted average of the concentrations at the domain

12
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boundaries, and provide a basis concentration to which the contributions from the surface fluxes are added. Each inversion
solves for weekly domain boundary concentrations at the northern, eastern, southern and western borders of the inversion
domain box, separated by day and night.

T o fossil fuel f . L ] !

2.1.5 Inventory of Anthropogenic Emissions

The inventory analysis carried out for Cape-Town—Details-are-provided-inNiekless-et-al(2015a)-and Niekless-et-al-(2018)-

sionsfronrindustrial-pointsourees;road-vehiele transportemissionsCT subdivided

refinery plant Jocated-north-east-of the-central-business-distriet (CBD)-, residential lighting and heating, and industrial point
source emissions (Nickless et al., 2015a). Road transport emissions were derived from modelled values of vehicle Kilometres
for each section of the road network, based on observed vehicle count data. The vehicle kilometres were scaled for each hour of
the day, and separated into week days and weekend days, leading to distinctive vehicle emissions for the week / weekend and
day / night periods. Airport emissions were derived from landing and takeoff cycles, as reported by Airports Company South
Africa for each month. The IPCC average emission factors for domestic and international fleets (IPCC. 2000) were used to
convert the airport activity data into emissions of COs. Harbour emissions were derived from gross tonnage of vessels which
docked at CT port during each month published by the South African Ports Authority, and emissions derived as described
in DEFRA (2010). Residential emissions for lighting and heating were derived from population count data obtained for each
of the municipal wards in 2011 (Statistics South Aftrica, 2011). The South African government reports on the fuel used for
domestic heating and lighting (South African Department of Energy, 2009). This was divided between the total population,
and then allocated pro rata to each ward. It was assumed that 75% of the annual energy consumed was used for heating, 20%
for cooking and 5% for lighting, The majority ~ 75% — of the emissions for heating were allocated to the winter months. CT
provided monthly fuel use for the largest industrial emitters. These were converted directly into CO2 emissions by multiplying
the fuel amount with the DEFRA greenhouse gas emission factors (DEFRA, 2013a). The fuel types that were considered
included heavy fuel oil, coal, diesel, paraffin and fuel gas, which was divided into liquid petroleum gas and refinery fuel gas.
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12.0%, 34.6% from vehicle road transport, 51.0% from the residential sector, and 2.4% from airport and harbour transport.
Residential emissions are a large contributor to the fossil fuel emission budget as well as one of the largest contributors to the

uncertainties in the fossil fuel <

flux, This is due to the dependency that many people
living in CT have on raw fossil fuel burning for heating and lighting. Emissions from power stations are a small component of
the total fossil fuel flux from CT as the bulk of the direct emissions from power stations occur elsewhere in the country.

The total fossil fuel CO, emissions for the domain were within range of CO2 emissions reported in the EDGAR (Emission
Database for Global Atmospheric Research) (v4.2) database (Nickless et al., 20152). EDGAR is a global productona 0.1° x 0.1°
grid, which provides the total anthropogenic emissions of COs as estimated from proxy data such as population counts and
information on the road transport network (Janssens-Maenhout et al., 2012). The total emissions from the inventory for 2012
were 22% higher than the EDGAR emissions reported for 2010. The emissions in the inventory tended to be concentrated over
specific sources, such as over an oil-refinery or along the road network, whereas the EDGAR emissions were smoothed over

2.1.6  Biogenic Emissions

CCAM was dynamically coupled to the land surface model CABLE (Kowalczyk et al., 2006), which allows for feedbacks
between land surface and climate processes, such as leaf area feedback on maximal canopy conductance and latent heat fluxes
Zhang et al., 2013). This also has the consequence that the spatial resolution of the biogenic fluxes were at the same spatial

resolution of 1kmx1km as for the transport model. The model predueed-produces hourly estimates of NEEnet ecosystem
exchange (NEE), which were aggregated into weekly (day and night) flux estimates in units of kg CO2 m~? week ~!, and

used as the prior estimates-of-terrestrial-biogeniefluxes—The-spatial-resolution-of-these-prior NEEfluxes-were kept-at-a

eanopy-eonductance and-latent heat fluxes (Zhang etak;2013)-estimate of biogenic fluxes over the land surface.

The natural areas within the target domain of the inversion are dominated by the fynbos biome. This is a biodiverse biome,
with many endemic species, and covers a relatively small area in South Africa, but a large proportion of the area within the
domain of the inversion. The fynbos biome is poorly represented by dynamic vegetation models (Moncrieff et al., 2015), and
its ability to simulate biogenic fluxes in the fynbos region is largely untested. CABLE was selected as the land atmosphere
exchange model to couple with CCAM due to its development for regions in Australia which are similar to the savanna biome
in South Affica. In addition to the natural vegetation, a large agricultural sector is within the proximity of CT, particularly
vineyards and fruit orchards. The CT region experiences a Mediterranean climate with winter rainfall, with hot and dry summers
and mild and wet winters. Significant NEE fluxes take place during both winter and summer periods, as biogenic activity in this
region is limited by the amount of water availability, whereas temperatures are usually sufficiently high for plant production
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and respiration. The CO, fluxes over the ocean were obtained from a study that-which characterised the seasonal cycle of air-

sea fluxes of COs in the southern Benguela upwelling system off the South African west coast (Gregor and Monteiro, 2013).

Daily-
2.1.7 Domain Boundary Concentrations

The presence of the Cape Point GAW station provided a source of background COo fluxes—were-derived-from-measurements

concentrations for the inversion. The Cape Point station is located approximately 60 km south of CT within a nature reserve,
situated on the southern-most tip of the Cape Peninsula at a latitude of 34°21712.0” south and longitude of 18°29'25.2" east.
The inlet is located on top of the 30 m measurement tower mounted on a cliff 230 m above sea level. The station observes
background measurements of CO2 when observing maritime air advected directly from the south-western Atlantic Ocean - an
extensive region stretching from 20° (sub-equatorial) to 80° south (Antarctic region) (Brunke et al., 2004). Therefore, maritime
measurements at Cape Point from the Southern Ocean are well representative of the background CO> signal influencing the
Cape Peninsula, which are the concentrations expected at the boundary of the inversion domain. The background signal at
Cape Point, represented by a subset of the measurements obtained from a percentile filtering technique (Brunke et al,, 2004),
was used as the prior estimate of the concentrations at each of the four domain boundaries. The percentile filtering technique
removes data influenced by the continent or anthropogenic emissions. When applied to the Cape Point CO2 measurements,
approximately 75% of the data are selected. The percentile-filtering technique has been shown to compare well with the more
robust method of using contemporaneous radon (**?/2n) measurements to differentiate between marine and continental air
(Brunke et al., 2004).

The Cape Point measurements of the background CO» levels meant that we were not dependent on the atmospheric transport
Wm&. T e L A e
i i tor-esti erids-CO; concentrations at the domain boundary, which
are prone to large errors (Lauvaux et al,, 2016). The mean weekly background concentrations, separate for day and night, were
determined from the percentile filtered measurements at the site, and were used as the prior domain boundary concentrations
for each of the four cardinal directions. The prior uncertainty assigned to the boundary concentrations was set at the standard
deviation of the measured hourly concentrations for that period, which resulted in a tight constraint on the prior background
CO2 concentrations. Large adjustments by the inversion to the domain boundary concentrations were not expected, including

the terrestrial boundaries. The standard deviation in the hourly background CO, concentrations ranged between (.32 and
0.90 ppm, with a mean of 0.62 ppm._

The boundaries of the domain were deliberately set to be far from the measurement sites so that contributions to the CO,
concentration at a measurement site were dominated by the surface fluxes within the domain, rather than by the domain
boundary concentrations.
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2.1.8 Prior Uncertainty Covariance Matrix - C

Error propagation techniques, as described in Nickless et al. (2015a) and Nickless et al. (2018), were used to estimate the
relative uncertainties for each of the sector specific fossil fuel estimates. The relative uncertainties were scaled by a value
of 2 in order to ensure that the elements of the covariance matrix were statistically consistent with the assumptions of the
inversion (Tarantola, 2005). The resulting uncertainty estimates (expressed as standard deviations) ranged between 6.7% to
11.7% of the prior fossil fuel emission estimate, with a median percentage of 34.9% to 38.4% depending on the month. These
values were more conservative compared with uncertainties of Bréon et al. (2015) for the AirParif inventory, which were set at
20% throughout. Since we solved for weekly, rather than daily fluxes, we used a strong assumption that fossil fuel fluxes within
temporal uncertainty correlation was assumed between weekly fluxes. Since fossil fuel emissions were expected to be localised
in space, we also assumed no spatial uncertainty correlation between fossil fuel fluxes.

The uncertainty in the biogenic prior fluxes was set at the absolute value of the net primary productivity (NPP) as produced
by CABLE. Therefore, the uncertainties assigned to the NEE estimates were large-Previous-studies; forexample, have shown

that-but there is a great deal of uncertainty in both the productivity and respiration fluxes contributing to the NEE flux

Wang et al., 2011). The estimates of NEE are strongly dependent on the assumed model forms selected for different processes
in the CABLE model. For example, the model forms used for the soil temperature-respiration function and the soil moisture-

respiration function have large impacts on the NEE estimates, with resulting NEE estimates differing by over 100% compared
to-with eddy-covariance measurements (Exbrayat et al., 2013). We-assigned-the-value-of the NPP-associated-with-the-terrestrial
NEE-estimate-asthe uneertainty-value—The approach of assigning either the productivity or respiration component of NEE as
the uncertainty has been used by Chevallier et al. (2010). We wished to avoid assigning fixed proportional uncertainty to the
NEE estimates as. particularly for semi-arid regions, small NEE fluxes could occur as a result of both large productivity and
respiration fluxes. Proportional uncertainties would lead to unrealistically low estimates of the uncertainty in NEE fluxes. This
is different to the approach used by Bréon et al. (2015), where an uncertainty level of 70% was assigned to biogenic fluxes, but
in their case absolute NEE estimates were usually large in summer and expected to be small in winter. For the ocean fluxes,

the standard deviations in the daily CO fluxes from Gregor and Monteiro (2013) were assigned as the uncertainties. As-the

To estimate spatial uncertainty covariances in the NEE fluxes, we assumed an isotropic Balgovind correlation model as used
in Wu et al. (2013). The off-diagonal elements-were-caleutated-in-an-analogous-manner-to-those-for-Cz—covariance elements

for s and s .. were calculated as:

h h

where sypp.; and sypg.; are NEE fluxes in pixels i and j, Cs, vpp (SnEE;:) and Cs, . (SNEE;;) were-the corresponding
variances in the NEE flux uneertainty-matrixfor-uncertainties in pixels i and j, the characteristic correlation length L was
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assumed to be 1km, and h was-is the spatial distance between the centres of pixels i and j. Nen-zero-error-covariances-were

2.1.9 Uncertainty Covariance Matrix of the Observations - C.

The observation uncertainties represented in C. contain both the measurement error and the error associated with modelling the
concentrations, We assigned a minimum uncertainty variance of 4 ppm? for daytime observations and 16 ppm? for night-time
observations. These values were assigned as baseline (i.c. minimum) errors, and accounted for measurement errors, atmospheric
transport modelling errors, aggregation errors and representation errors. These minimum errors are smaller than those for
city-scale inversions conducted in the Northern Hemisphere. We justify the use of these values in our application since CT is
a smaller city compared with the cities considered in the megacity applications, such as Paris and Indianapolis. Measurements
of background CO. in the Southern Hemisphere have smaller variability compared with measurements in_the Northern
Hemisphere. For example, for the years 2012 to 2013 the standard deviation between the purpose of sensitivity-analysesmonthly
CO2 means for Mauna Loa GAW station in the Northern Hemisphere was 2.3 ppm (Tans and Keeling , 2016), whereas for the
same time period at Cape Point the standard deviation between the monthly means was 1.6 ppm.

We added additional error estimates to these minimum observation errors. We assumed errors in modelled CO- concentrations
due to the transport model would be larger when the wind speed was lower (Bréon et al., 2015), and this would be compounded
at night when the planetary boundary layer height was shallower and more stable (Feng et al., 2016). Additional error ranging.
between 0 and 1 ppm? was added to the daytime uncertainty variance of 4 ppm?, linearly scaled depending on the wind speed,
with 0 ppm? added when wind speeds were high (20ms~" or higher) and 1 ppm? when the wind speed was close to zero. At
night the additional uncertainty ranged between 0 and 16 ppm?. We also accounted for the standard deviation of the measured
CO2 concentrations during each hour. We assumed that variability within the instantaneous measurements at the site during
an hour would be associated with larger errors in the atmospheric transport model. The variance of the observed instantaneous
CO. concentrations within an hour was added to the overall uncertainty. Therefore each hour had a customised observation

error dependant on the prevailing conditions at the measurement site. Therefore the total observation uncertainty variance for

hour k is given as:

gg(ka k) = Cc;base2 + Cc;wind2 + Cc;ob52 (11)

where .45 1S the baseline observation error of 2 ppm during the day and 4 ppm during the night, C'..,,;,4 is the additional
error due to the wind speed conditions which ranged between 0 and 1, and C..,. is the standard deviation of the observed

concentrations within that hour. The final observation uncertainties reached up to 15 ppm at night, reducing the weight of these

measurements in the estimation of the prior fluxes.

The off-diagonal elements of C. were calculated, based on the Balgovind correlation model as used in Wu et al. (2013), as:
h h
Colesres) = V/Cale)y/ Celes) (14 ewn(=7) (12)
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where ¢; and ¢; are the average concentrations during hours i and j, C.(¢;) and C.(¢;) the corresponding error variances for

the concentrations in hours i and j, the characteristic correlation length I, was assumed to be 1 hour, and /1 is the length in time
between observations i and j. The impact of this, albeit short, correlation length was assessed in a sensitivity tests discussed
in the next section. No consensus has yet been reached on how these observation uncertainty correlations should be treated in
city-scale inversions (Lauvaux et al., 2016).

2.1.10  Model Assessment

In order to assess the appropriateness of the uncertainty covariance matrices C. and C,_, the Y2 statistic, as described in
Tarantola (2005), was calculated as:

= (s o) (HO, B + Co)! (s ¢ a3)

with degrees of freedom equal to v, the dimension of the data space — in this case the length of observations in the inversion.
The squared residuals from the inversion (squared differences between observed and modelled concentrations) should follow.
the x? distribution with degrees of freedom equal to the number of observations (Michalak et al., 2005; Tarantola, 2005). The
expected value of x?/v is one. Values lower than one indicate that the uncertainty is too large, and values greater than one
indicate that the uncertainty prescribed is lower than it should be. The error in the assignment of the uncertainty could be in
either G or O, (or both). In order to ensure the suitability of G, the prior uncertainty variances were multiplied by a factor
of two. This ensured that the y* /v statistic was close to a value of one for almost all months of the inversion. These details are

rovided in Nickless et al. (2018). Due to the length of time it takes to run a single inversion, we did not calculate an individual

scaling parameter for each month.

2.2 Alternative biogenie flux-produetSensitivity Tests

2.2.1 Alternative biogenic flux product

As part of a project which-aimed-to-assess-assessing the carbon sinks of South Africa (DEA, 2015), a-repert-together—with
monthly 1 km x 1 km estimates of terrestrial carbon stocks and fluxes were produced (Scholes et al., 2013). To estimate these
fluxes, a distinction was made between carbon stocks in natural to semi-natural areas and those on transformed land, such

as annually-cropped cultivated land, plantation forests, and urban areas (which was based on the IPCC 2006 value for closed

urban forests). We-used-these-estimates-of-As a sensitivity test, the NEE and NPP in-place-of-these-from-CABLEE(inversion
Carboen-Assessfrom CABLE estimates used for the biogenic flux priors and their uncertainties were replaced with NEE and

NPP from the carbon assessment product and the inversion rerun with these priors (inversion S1).
To estimate gross primary productivity (GPP), ten years (2001 to 2010) of monthly climatologies (temperature, rainfall, rel-

ative humidity) and satellite products for photosynthetically active radiation (PAR) and fraction of absorbed photosynthetically

active radiation (FAPAR) were assimilated. Autotrophic respiration (Ra) was calculated based on the inputs for temperature,
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above-ground biomass, below-ground biomass and FAPAR. NPP could then be calculated as NPP = GPP - Ra. The hetrotrophic
component (Rh) of Ecosystem respiration (Re) was based on estimates of soil organic carbon stocks and above-ground litter.
The basic calculation to obtain NEE was NEE = GPP - Re, and additional losses of CO4 through biomass burning, and export
and import fluxes from harvest and trade-related activities were accounted for.

To disaggregate the monthly products into day and night fluxes, it was assumed that all GPP took place during the day,
and that half of Re occurred during the day and half at night. Therefore the weekly NEE and NPP estimates used for the
prior information in the inversion were based on the GPP and respiration products from the assessment. The carbon assessment
estimated the GPP flux for the year in the fynbos biome was-estimated-to be 521 g CO2 m—L"?year—! with a standard deviation
of 492 ¢ CO2 m=L"2year—! across pixels with 1 km? resolution. Therefore, as for the CABLE estimates used in the reference
inversion, we assign uncertainties to the prior NEE estimates equal to the NPP estimate. A map of the prior daytime NEE fluxes

in May 2012 from the CABLE and carbon assessment products is provided in Figure 1.

The biogenic CO; fluxes are more homogeneous across the domain in the carbon assessment product. This can be explained
by the products used as inputs for the estimation of the carbon stock components, such as FAPAR, which would not be expected
to differ considerably from pixel to pixel in this domain. CABLE predicts greater CO; uptake. The average CO; flux over the
course of the study period and across the domain, was -41 g CO» m~*week " according to the carbon assessment and -172 g
COz m_*week " according to CABLE. The true flux is likely to be highly variable but close to carbon neutral over a long
period of time (several years).
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Figure 1. Spatial distribution of the prior daytime NEE fluxes produced by CABLE (top left) and the carbon assessment product (top right)

in May 2012, as well as the uncertainty estimates assigned to these fluxes (bottom row).
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2.3 Alternativefossil-fuel-emissionsproduet

2.2.1 Alternative fossil fuel emissions product

As an alternative to the inventory analysis of the fossil fuel fluxes, we used current estimates of anthropogenic fossil fuel emis-
sions from the 1 km x 1km ODIAC product for the years 2012 and 2013 (ODIAC2017) (Oda and Maksyutov, 2011; Lauvaux
et al., 2016; Oda et al. , 2017a, b) (inversion ODPIACS2). The product provides monthly emissions of COs in kt of carbon.
The original ODIAC product (Oda and Maksyutov, 2011) made use of global energy consumption statistics and distributed
the emissions from these activities based on known point source emitters, such as power plants, and on a global nightlight
distribution satellite product. Emissions from point sources, such as those from power plants, were estimated separately from
the diffuse emissions, for example those due to transport. These emissions were disaggregated onto to a 1 km x 1km grid.
The updated product has further disaggregated the diffuse emissions to a 30m x 30m grid by making use of global road

network data, a satellite product on surface imperviousness, and population census data (Oda et al. , 2017a, b). This 30m x

30 m diffuse emission product together with the point source emission product were aggregated back up to the 1 km x 1km

iSODIAC has been shown to give comparable
flux estimates when used in an inversion as a prior product in place of the ultra high resolution inventory product Hestia
Gurney et al., 2012), carried out for Indianapolis, IN (Oda et al. , 2017a).

The ODIAC monthly estimates were re-scaled according to the day of the week and to the hour of day using scaling factors
for South Africa as estimated by Nassar et al. (2013). These estimates were re-aggregated into day and night working week
and weekend fossil fuel fluxes in units of kg CO4 m~2 week~!. These estimates for the fossil fuel fluxes were used as prior
estimates for the inversion in place of the inventory-based estimates used for the reference inversion. The daytime fossil fuel

fluxes produced by the inventory analysis and the ODIAC product are provided in Figure 2.

The ODIAC product gave similar fossil fuel fluxes over pixels in the CBD area compared with the inventory estimates. The
inventory estimates were concentrated over the road network, point sources, and areas of high population density, whereas the
ODIAC product dispersed emissions over the domain, with an area of high concentration over the CT metropolitan area and
decreasing emissions away from this region. The average fossil fuel flux for the domain over the study period was 134 g CO;
m_*week ! according to the inventory and 274 g CO» m~2week ! according to the ODIAC product.
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Figure 2. Spatial distribution of the prior fossil fuel fluxes produced from the Cape Town inventory analysis (tep-left) and the ODIAC fossil
fuel product (tep-right) in May 2042;-as-well-as-the-uncertainty-estimates-assigned-to-these-fluxes(bottomrow):2012.
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2.3 Alternative covariance structures
2.2.1 Alternative covariance structures

The specification of the prior uncertainty covariance structures have-has been shown to have a significant-substantial impact
on the pixel-level flux estimates, the total flux estimate for the domain, and on the spatial distribution of the fluxes (Wu et al.,
2013; Lauvaux et al., 2016). For example, in the Indianapolis inversion, assuming correlation lengths of 4 or 12 km in the prior
uncertainty covariance matrix of the fluxes resulted in total flux estimates for the city that were 17 and 25% larger than the total
flux estimate assuming no correlation (Lauvaux et al., 2016). The effect of changing the correlation length had a larger impact
on the total flux estimate than changing the prior emission product from Hestia to ODIAC.

To assess the sensitivity of the posterior flux estimates, their uncertainties, and their distribution in space to the specification
of the eovariance-matrix;-we-considered-uncertainty correlations, we ran inversions where the non-zero off-diagonal elements
of C5;and-Cwere-Cg, and C,, in the reference inversion were systematically set to zero. We considered an inversion which
assumed no temporal error-observation uncertainty correlation in the specification of C-(inversion-NEE-CorrC, (inversion
S3), an inversion where no spatial ati as-ass 2 5o 5 -uncertainty correlations were
assumed for C,, (inversion S4), and an inversion which assumed no error-uncertainty correlations in the specification of G55

We tested what would happen if observation error correlations were set at seven hours (inversion S6) instead of one hour, as
was set for the reference inversion. A one hour observation error correlation lengths results in nonzero off-diagonal covariance
terms for up to approximately seven hours from the observation. Assigning a seven hour correlation length resulted in non-zero
covariances extending through to at least a day away from the observation.

We also considered inversions where the prior fossil fuel flux uncertainty was doubled (inversion Deuble FFS7) and where
it was halved (inversion Half FES8), and similarly for the NEE flux uncertainties (inversions Deuble NEE and-Half NEES9
and S10). By doubling or halving the uncertainty of the fossil fuel or NEE component of the total flux, we changed the relative
uncertainty contribution ef-each of these had-made to the total uncertainty when compared with the reference inversion.

Due to the large impact that the estimation of the domestic fossil fuel emissions had on the temporal profile of the total
fossil fuel fluxes, we considered a modification of the estimated domestic emissions in the inventory product. In the reference
inversion 75% of the domestic emissions from heating were assumed to take place during the six winter months. We tested
the impact of this assumption by altering the domestic emissions so that they were distributed uniformly through time, but still
spatially distributed according to the population size. This ehanges-changed the prior estimates of the fossil fuel fluxes and their
distribution through time, as well as their uncertainties, which were set at 60% of the domestic emission estimate (inversion
Deomestie HomogenisedS11).

Due to the large uncertainty in the modelling of NEE (Zhang et al., 2013; Moncrieff et al., 2015), particularly over the fynbos
biome, we considered that perhaps the average of the NEE estimates from CABLE over the domain may be a more reliable

representation of the true flux compared with the pixel-level estimates. Therefore we averaged the NEE and NPP estimates
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from CABLE over the inversion domain and assigned this average NEE ;— and NPP for its uncertainty ;— as the prior biogenic

flux estimates (inversion NEE-HomeogenisedS12).

We considered an inversion where the uncertainties in €+-C, were set at 2 ppm for the day and 4 ppm at night (inversion
Simp-Obs Error)S13), excluding the additional components for the error due to wind speed and observation variability that
were used in the reference inversion. In this case all the errors in the modelled concentrations are contained within these values,
and we disregard the climatic conditions under which the measurements were taken. We tested the impact of increasing the
night-time uncertainty in the observation errors to 10 ppm (inversion Simp-Obs-with-lbarge NightS14). We further simplified

32-boundary-concentrations ppm at night and also set the temporal observation uncertainty correlation to zero (inversion S15).

2.2.1 Alternative control vectors

As a sensitivity analysis we examined two alternative approaches to the control vector. If we assumed that neither the NEE
or-nor fossil fuel flux witl-would change very much from week to week, an option would be to solve for the mean of the six
individual fluxes over the four weeks in a given month. We therefore considered a sensitivity test where the inversion solved
for one average day and one average night NEE flux within each pixel, and four fossil fuel mean weekly fluxes (day and night
working week, day and night weekend) (inversion Mean-MonthS16). We also considered performing a separate inversion for
each week; i.e. four separate weekly inversions in place of each of the monthly inversions (inversion WeekS17). In this case
only the concentration measurements for one week were used and the individual weekly fluxes (two NEE and four fossil fuel)
were solved for, and this was repeated for each of the four weeks in the month. The benefit of these two alternative control

vectors is that for each individual inversion the resulting €5;-Cg, matrix is much smaller compared to-with the reference case.
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When solving for only one week, or a mean weekly flux for a particular month, the number of surface sources reduced to
10,201 x6 = 61,206. Solving for individual weeks required 4 x2 additional boundary concentrations to be added to the control
vector, and when solving for the mean weekly flux for the month, we allowed the boundary concentrations to differ for each
week, and therefore we still solved for the 32 boundary concentrations as in the reference case. Therefore the €5;-C,, for
these two alternative control vectors is 16 times smaller than that of the reference inversion.

The benefit of these two alternative approaches is a substantial reduction (at least 75% reduction) in the time taken to
perform the inversion. If the results are similar to that of the reference inversion, this type of saving in the computational time

and resources would allow more components of the inversion to be tested in a shorter period of time.

23 Sensitivi Ivsi I

2.2.1 Sensitivity analysis approach

tests are presented in Table 1.

The modelled concentrations from each inversion were compared with the observations by assessing the bias and standard
deviation of the prior and posterior modelled concentration residuals. Residuals in the prior modelled concentrations were

calculated as:

CCresprior = CC — CCmod prior- (14)

Residuals in the posterior modelled concentrations were calculated as:

CCrespost = CC — CCmod post- (15)
where €msaprior Coyod prior.are the CO9 concentrations modelled from sg-and-emsapesrSg and Cppod post are the CO4 concen-

trations modelled from the posterior estimate of - S, and Cres prior aNd Cpes posy are the respective

“res prior “res post
residuals in the modelled concentrations. The bias, calculated as the mean of these residuals, and standard deviation of these
residuals were provided for each inversion. We plotted the time series of the observed and modelled concentrations to assess the
skill of the inversion to reproduce the observed concentrations, particularly "local events", which were periods of larger than
normal spikes in the observed concentration signal. These are presented in the supplementary material for all the sensitivity
tests.

The posterior fluxes from each inversion were compared with those of the reference inversion in a number of ways. The

posterior flux estimates and their spatial distribution were assessed for each inversion by mapping the mean total weekly flux
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within each pixel for two months (May and September 2012). We calculated the total flux over the domain, and plotted these
weekly total fluxes over time together with the uncertainty bounds. We also considered the total flux over the domain for each
month. These total flux estimates are the rettnet flux resulting from the fossil fuel and NEE flux estimates solved for by the
inversion. The inversion induces negative correlations between the fossil fuel and NEE flux components from the same week
and pixel. When the total flux is considered in a particular pixel, the uncertainty for the total flux will be lower than the sum
of the uncertainties for the individual components due to the negative covariance terms. The size of these negative covariances
will depend on the prior information specified in the inversion framework. The total estimate gives an indication of the central
tendency, which we can compare between inversions, and allows us to assess, for example, if the inversion is predicting the
region to be a nett-net source or a nett-net sink. The uncertainties of these posterior total estimates allow us to assess the
confidence we can place around these totals, and how this compares to the estimate itself.

In order to assess the goodness-of-fit-suitability of the prior uncertainty eovarianee-matrices-Cqand-C5zestimates contained

in C,. and Cg,, the x? statistic -as described in Tarantola (2005), was calculated +

1
ﬁ = ;(Hso —o)T"(HC, ,HT + C.) " (Hsp — ¢)

Thesquared-conecentrationresidualsfrom-(see equation 13). We compared these statistics between the different inversions to
assess the suitability of the uncertainties prescribed to the prior fluxes. Due to the adjustments made, particularly in cases where

—Dividing-this-statistic by statistics that deviated from one. We chose not to make additional changes to the sensitivity test
inversions to improve these statistics, as it would then not be possible to attribute the sensitivity of the inversion solution
between the adjustment tested and the additional adjustment made to the covariance parameters to improve the statistical
consistency of the inversion. The number of degrees of freedom of the x? statistic can be divided into the degrees of free-
dom . . ersions o assess the suitabil

the-uncertainties preseribed-to-the prior fluxesfor signal (DFS) and degrees of freedom for noise (Rodgers, 2000). The DES
describes the number of independent pieces of information provided by the measurements. The DES were calculated for the
first week of March 2012 for the reference and sensitivity test inversions. These statistics are provided in the supplementary

ald 2 4 bution—We-compared—these hetween—the-differentinversions—to e he H O
G—a— X7 ok outiot- omparca S a DECtW C v O O0—d tHtao y—©O
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3 Results

3.1 Reference inversion

The results of the reference inversion (RefS0) are explained in detail in Nickless et al. (2018) —The-followingsections-compare
fhe%eﬂs&w&y—tests—tekef Rrespe o-the-modeHed-conecentrations;pixel-Hevel-weeldy flux-estimates-and-ageregated-fluxe

of the four-weekly-and are briefly summarised here.The inversion was able to substantially improve the agreement between
the modelled and observed concentrations. The inversion made larger changes to the biogenic fluxes than to the fossil fuel
fluxestweek#weekend;-day/night)-and-, Over the Cape peninsula region, where observations made at Robben Island viewed
CT central business district (CBD) and harbour emissions as well as biogenic fluxes from the Table Mountain and Cape Point
National Park regions, fossil fuel fluxes were adjusted by less than 10%, for example an adjustment from (1.00 to 0.91 kg
CO,m™2 week ™). An exception is the tw i avand niehowithin that pisel The uncertain his-total-flux

change to a pixel over a petrol refinery where the inversions made a relatively large change, reducing the total emission in the
pixel from 9.43 t0 6.62 kg CO>m ™2 week ™! for May 2012 and from 9.38 to 7.24 for September 2012. Biogenic fluxes were.
made more negative over the CBD region. with a maximum adjustment from -0.04 to -0.37 kg CO2 m™? week ™ in May 2012
and from -0.08 to -0.29 in September 2012, and made more positive over the natural areas, but with much smaller adjustments,
a maximum adjustment from -0.04 to 0.04 kg CO2 m ™2 week ™" in May and from -0.11 to 0.08 in September 2012.

as-the-aggregated-weeklyflux-adjustments to the prior biogenic fluxes indicated that the CABLE model was overestimatin,

the amount of biogenic carbon uptake over natural areas. Dynamic vegetation models have not been able to simulate fluxes

over the fynbos biome well (Moncrieff et al., 2015), and so this result was not surprising. Adjustments to the biogenic fluxes

3

were usually small - ranging between -0.001 and 0.003 kg CO2 m™2 week ™. The inversion was able to make larger changes
to the biogenic fluxes than to the fossil fuel fluxes because the prior biogenic flux uncertainties were made large and because
uncertainty correlations were specified between the biogenic fluxes, whereas fossil fuel flux uncertainties were assumed to be
independent.
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Seet—-2)-and-a-table-of the-aggregated-monthly Large uncertainty reductions were made over the natural areas bordering on
the CBD, particularly over the Table Mountain National Park, and to natural areas near to the Hangklip measurement site,
where the uncertainty was lowered by over 50%. Large uncertainty reductions also occurred over agricultural areas to the
north of the CBD region. Uncertainty reductions of up to 60% occurred over a few central CBD pixels, but were generally.
smaller compared with the uncertainty reductions over natural areas, which reached as high as 92%. When aggregating the
fluxes over the M%WMM%WWMW
ml 3

together-with-the-and 1.5 kt COzxweek 1. whereas the posterior uncertainties ranged between 0.9 and 1.5kt COs week ™1,

Uncertainties in the prior aggregated biogenic fluxes ranged between 23.6 and 57.3 kt Cngweek’1 ggnggrvereducxzwwwgvm
and 47.1 kt CO4 week ! after the inversion. The median percentage uncertainty reduction in the aggregated flux-estimate-and

By assigning spatial correlation between
biogenic flux uncertainties of neighbouring pixels and assuming independent fossil fuel flux uncertainties, we attempted to
provide the inversion with additional information to allow it to better distinguish between these fluxes. The inversion induced
negative correlation between fossil fuel and biogenic flux uncertainties in the same pixel. We demonstrated that the posterior

uncertainty of any linear combination of terms from the
not-as—underestimated-as-thosefromRef Hﬂﬁﬁgﬂfpﬁm—ﬁm—x—smfﬁﬁe&ﬂadﬁafed—ﬂ%ggrm
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including the difference between fluxes from the same pixel and the mvefﬁeﬂifameweﬂespeerﬁedrfeﬁfh&QarbeﬂAssess

M&MWM%&MWM%WW
linear combination of elements (Jackson, 1979; Jackson and Matsu’ura, 1985). This means that although negative correlation
between the flux components may be introduced through the inversion, the uncertainty in both the difference between fluxes
from the same pixel and the total flux within a pixel will be reduced. When we sum all fluxes within the same pixel, the
negative correlations created by the inversion resulted in the posterior uncertainty of the total flux being less than the sum of
the posterior uncertainty of the individual fluxes. Therefore there is an advantage to solving for these fluxes separately.

Clearly the inversion result was strongly
dependent on the assumptions regarding the prior fluxes and 1386-for-afourweek period-{Supplement Seet-+:3)-The inversion
redueed-these-fluxes-their uncertainties. The results of the sensitivity tests in subsequent sections explore to what degree these
assumptions affected the inversion solution. i i ' i
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of Ref fess negative and-eloser tozero- When-these two-we have calculated the aggregated posterior flux across the study period
and over the full spatial domain, together with the posterior uncertainty and uncertainty reduction for each of the sensitivity.
tests, which are presented in Figure 3. The bar charts, also referred to tornado plots, revealed that changing the prior had the
largest impact on the resulting posterior fluxes and their uncertainties. Changing to either the ODIAC fossil fuel product or the
carbon assessment biogenic fluxes resulted in prior and posterior flux estimates that were much more positive than those for
the reference inversion. The inversion appeared to pull the aggregated fluxes towards an ideal position. The reference posterior
fluxes were made more positive compared to the priors, whereas for the alternative prior productswere-used, the inversion
tor-drove the posterior fluxes to be less positive;

sandwiched between these alternative posterior flux solutions.

The aggregated fluxes were strongly sensitive to the uncertainty spatial correlations specified between the biogenic fluxes.
Uncertainty correlations in the biogenic fluxes had a large impact on the spatial distribution of these-negative-fluxes-semewhat;
but-stil-maintained-these-negative-fluxes-in-the-posterior-estimates—Fhe-posteriorfluxese arbon-Assess were-largelyJeft

—tesulting fluxes, and on the degree to which the
inversion was able to make changes across the full domain (Figure 3). Eliminating these uncertainty correlations substantially
reduced the inversion’s ability to make deviations from the prior fluxes. Therefore, under these sensitivity tests, posterior fluxes
were very similar to the prior fluxes, and uncertainty reductions were small.

31



10

15

the-pixels-in-the domain-showed-no-A short temporal correlation length in the observation uncertainties did not have a large
impact on the inversion. Increasing these to seven hours led to greater DES (see supplementary material Figure S1), but without
having an impact on the flux solution or uncertainty reduction. The statistical consistency also fluctuated much more strongly.
from month to month when the temporal observation error correlation was larger compared to a one hour correlation length or
assuming independent observation uncertainties. With a correlation length of one hour non-zero off-diagonal elements persisted
for approximately seven hours, whereas these off-diagonal elements persisted for much longer when the correlation was set at
seven hours. Long correlation lengths are likely not realistic as wind fields observed at the measurement station during the day
may be very different to those observed in the evening, reducing the chance of consistent errors in concentration.

The sensitivity test with the smoothed prior biogenic flux over the full domain produced the only posterior flux solution
that was corrected to be further from the reference inversion posterior. This inversion did not assume any knowledge about the
spatial variability in the surface fluxes, but it appears that providing at least some prior knowledge of where biogenic fluxes
are likely to occur — at least separating the ocean and terrestrial fluxes — was important for a sensible posterior flux solution.
The domain is not fully or representatively sampled by the observations. By providing a blanket biogenic flux prior across the
domain, areas with large expected biogenic fluxes, which were well sampled by the observation network, had priors that were
too carbon neutral, and so biogenic fluxes were made more negative, which was propagated through to neighbouring biogenic
fluxes, resulting in a posterior aggregated flux solution that was more negative than the prior. A blanket uncertainty estimate
was also used, which meant that the uncertainty associated with the ocean fluxes was much larger compared with the reference
inversion, allowing the inversion to make relatively large changes to oceanic pixel fluxes close to the measurement sites.
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Figure 3. Left: Difference between the reference and sensitivity aggregated posterior fluxes over the domain (100 km x 100 km) for
the full study period (16 months), ordered from most positive to most negative difference in posterior estimates. The reference inversion
posterior aggregated flux was -317 kt CO». Right: Prior and posterior uncertainties in the aggregated fluxes from reference and sensitivity
test inversions. The percentage uncertainty reduction is overlaid over each bar. SO = Reference Inversion; S1 = Carbon Assessment Inversion;
S2 = ODIAC fossil fuel inversion; S3 = Correlation for NEE fluxes only; S4 = Correlation for observation errors only; S5 = No correlation
specified in prior covariance matrices; S6 = Long observation error correlation length; S7 = Double fossil fuel uncertainties; S8 = Half fossil
fuel uncertainties; S9 = Double NEE uncertainties; S10 = Half NEE uncertainties; S11 = Domestic emission homogenised over the year;
S12 = NEE fluxes averaged over the domain; S13 = Simple specification of observation error covariance matrix; S14 = Simple observation
error covariance matrix with larger night-time error; S15 = Simple observation error covariance matrix with no correlation; S16 = Inversion

solving for mean weekly fluxes over the month; S17 = Separate inversions for each week.
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3.3 Relative-uneertainty-in-Cs;Alternative prior information products

ef While all the sensitivity test inversions produced
rior modelled concentrations that did not track the observations well (see supplementary material Section 3 Figures S10 to

S27), the carbon assessment and ODIAC prior product inversions (S1 and S2) produced prior modelled concentrations that were
on average too large compared with the observed concentrations at both sites, and-the-standard-deviationin-the restduals-of the

modelled coneentrations-were similar (Table-22)—Fhe-whereas the reference inversion (S0) underestimated the concentrations
at Hangklip and overestimated the concentrations at Robben Island (Figures 4 and 5) (also supplementary material Section 5
Figures $37 and $38). The average bias of the prior modelled concentrations from the reference inversion was smaller than the
bias for these sensitivity test cases at both sites (see supplementary material Section 3 Figures S11 and S12).

The carbon assessment total prior fluxes were notably different to those from ODIAC or the reference inversion. There was
little seasonal variation, with fluxes remaining net positive throughout the study period. The uncertainty bands were very narrow.
ngm(mwww&%m% x? s&a&sﬁe&wefe%fgefwvhe&fh&wweﬁaﬂmewefﬂﬁ}ved—paf&eulaf}yfhe

statistic for the S1 inversion of 4.1 (see
supplementary material Section 2.1 Table S1) indicated that the uncertainties assigned to the fluxes were too small when
compared to the uncertainties assigned to the CABLE NEE fluxes in the reference inversion (x” statisties-eloser-to-one(Fable
22

The-pattern-in-statistic of 1.5 on average), which were closer to being statistically consistent with the assumptions of the
inversion. The time series of the prior and posterior aggfega{ed—ﬂﬂxe&wﬁs—ml—&ﬁbefweeﬂef and-these-test-cases—The

were more similar to each other over time than to S1, but with the S2 inversion generally having more positive fluxes compared

with the reference inversion (Figure 6). These time series indicate that the prior biogenic fluxes drove the temporal variation in

the fluxes, whereas the prior fossil fuel fluxes was-either-double-or-halved-(inversions-Double FF and-Half FF)—dictated the

vertical shift in the flux time series.
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inversion generally made fluxes more positive, except for a few winter months when the innovations made fluxes more negative.
The 52 inversion had innovations that made the fluxes more negative compared to the priors, except for September 2012. SI's
innovation was to make the fluxes more negative for each month. The magnitude of the innovations were smaller compared
to those made to SO and S2 prior fluxes, limited by the uncertainty placed on the prior biogenic fluxes. For the S1 inversion,

both the biogenic flux uncertainties and the correlation lengths were smaller compared to_those for SO, and therefore the
osterior fluxes were not allowed to differ much from the prior, leaving the modelled concentration residuals before and after
the inversion to be very similar, and posterior uﬂeeffamﬁeﬁfha%wve%ﬁﬂam—magm&tde%eﬁeﬁmﬁtmeeﬁamﬁes—%

The spatial pattern in the fluxes (supplementary material Figures S56 and S57), as reflected in the time series pattern in the
weekly fluxes (Figure 6), indicates that prior and posterior fluxes were more positive for the S1 inversion than those of SO
see also supplementary material Section 2.2 Table S2). The spatial heterogeneity in the S1 fluxes was driven by the fossil fuel

fluxeshad-n

fluxes almost as uncertain as the prior fluxes.
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than-the referenee-ease-tTable2?-more negative fluxes was created to the east of the petrol refinery pixel. For the textbfNEE
Homogenisedpriors; the statistie was-elose to-one for most months-S2 inversion, the ODIAC fossil fuel emissions were highest
over the CBD and diminished at distances further from this centre. The spatial distribution of the SO inversion fossil fuel fluxes
were strongly dependent on the transport network and several point sources. The posterior fluxes around the CBD of the S2
inversion were less radial than those in the prior, taking on a spatial pattern more similar to the reference inversion.

site;but-worse-agreement-with-respectto-Ref at-the RobbenIsland-site-(Figure-2?With regards to the uncertainty reduction, the
S0 inversion was able to obtain higher reductions than either S1 or S2 (Figures 6 and 3. 25.6% reduction compared to 11.0%
and 23.6% respectively). The spatial pattern of uncertainty reduction was similar between SO and S2. whereas S1 showed no
uncertainty reduction across much of the domain (see supplementary material Figures S54 to $39).

There-was-no-notable-difference-in-Altering the domestic fossil fuel emissions to be the same over time in S11 had little
impact on the inversion results when compared with the wholesale change in the prior product. On the other hand, smoothing
the biogenic emissions over space in the extreme manner where it was assumed NEE fluxes were the same throughout the
domain (S12) had a large impact on the inversion. This resulted in the only inversion where the aggregated fluxes became
more negative. The uncertainty reduction was also small (Figure 3). This represents a fairly extreme change to the assumption
regarding the spatial distribution of the pri i i i

by-Demestie Homogenised-tn-prior information on where fluxes are taking place. In the supplementary material we include
timeseries plots of the concentration contributions attributed to the fossil fuel and biogenic fluxes for all the sensitivity test
inversions during the month of May 2012 s—whi ie-emissi i i
(supplementary material Section 4). Robben Island sees far less of the biogenic influence than Hangklip, so in order to make the
modelled concentrations more consistent with the observations, the fossil fuel fluxes were adjusted by the inversion, leading to
similar contributions to the concentration from biogenic fluxes before and after the inversion. This was the differencesbetween
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widespread-—case for the reference inversion SO and all other inversions except S12, where the inversion made adjustments to

the biogenic fluxes instead of the fossil fuel fluxes in order to reduce the modelled concentrations for Robben.

Due to the adjustments made-to-small number of observations

relative to the number of sources solved for in the inversion, it is unsurprising that the posterior solution is strongly dependent

on the prior information. The results do show that the inversion brings these different prior estimates closer to each other, and

therefore the inversion does assist in taking any selected prior closer to the true state, but this is limited by the priorflaxes-were

uncertainty limits placed on the priors, as demonstrated in the S1 inversion.
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Figure 4. Prior and posterior modelled concentrations when-the-homogenised-NEE-prior-was-used-for the Hangklip site for the month of
May 2012 for the reference inversion (top), carbon assessment inversion (middle), and ODIAC fossil fuel flux product inversion (bottom).
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3.4 Uncertainty covariance matrices

The inversion solution was sensitive to the uncertainty spatial correlations assigned to the prior biogenic fluxes. This impacted
on the spatial distribution of the pixel-level-uneertainty-reductions-achieved-by-fluxes, the referenece-inversion-magnitude of the
total aggregated flux, and the uncertainty reduction achieved by the inversion. By not accounting for the spatial correlations
in the biogenic flux uncertainties, this led to uncertainties that were too small, illustrated by average x? statistics above 2 for
inversions 54 and homogenised NEE priortest-ease-83, which set the spatial correlation of the uncertainties in the biogenic
fluxes to zero (see supplementary material Table S1). These inversions also showed little innovation or uncertainty reduction

in comparison to the reference, leaving the posterior fluxes to be similar to the priors (Figure 7). This is also reflected in the

aggregated fluxes over the study period for S4 and S5, as posterior fluxes were similar to the prior aggregated fluxes and
uncertainty reductions in these aggregated fluxes were small. Aggregating over the study period led to posterior flux estimates
of -317 and -310 kt CO; for September2042:50 and S3, whereas S4 and S5 had estimates of -1281 and -1287 respectively,
close to the prior estimate of -1336 kt CO2. Uncertainty reductions were reduced from 26.6% to 7.6% when biogenic flux
uncertainty correlations were removed.

ﬂﬂeef%am%yfedueﬂeﬁ%%fh&sameﬂuxes and uncertainty reductions achieved remained similar to the reference inversion SO

as well. Increasing the nig

uneertainty-in-the-temporal correlation length in the observation errors from one hour to seven hours for the S6 inversion had
little impact on the posterior flux estimates or the uncertainty reduction achieved, with a posterior aggregated flux G"F&b}e—‘L‘L}

eorrelationbetween-observation-errors-had-over the study period of -497 kt CO5 compared with -317 for SO. The y? statistic
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was substantially increased to 7.3 on average, and varied more between months compared to all other inversions. Simplifyin
the observation errors so that they no longer included terms that depended on the meteorological conditions at the site or on
how variable the high frequency measurements were during a given hour (S13 to S15) had very little impact on the inversion

results.

3.5 Alternative-control-veetors

uncertainties had already been scaled for the reference inversion to improve the statistical consistency of the uncertainty
covariance matrices, it was expected that the x* statistic would be too large for inversions where the uncertainties were halved.
This was particularly the case for the biogenic flux uncertainties (S10), as these fluxes were throughout the domain whereas
the fossil fuel fluxes were assigned to a smaller part of the domain. Halving or doubling the prior biogenic flux uncertainty (S9
and S10 respectively) led to i
be-completed-for-the futl-inversionperiod-faster-than-Ref—posterior uncertainties that were roughly half or double the total
posterior uncertainty of the SO inversion, whereas halving or doubling the fossil fuel flux uncertainties (S7 and S8 respectively)
larger impact on the aggregated posterior flux (-423 kt CO2 when halved and -151 when doubled), compared with changing
the biogenic flux uncertainties (S9 and S10), where posterior fluxes remained similar to those obtained by SO. Doubling the

fossil fuel flux uncertainty led to generally more positive fluxes across all months.
roup of sensitivity tests (S7 to S10) were similar to that of the

The spatial distributions of the posterior fluxes in this

reference inversion SO. A notable feature in the September 2012 posterior fluxes is that when NEE uncertainties were doubled
the inversion was able to reduce the aggregated flux with respect to the priors by creating a region of negative flux in an area
close to the oil refinery point source to the north of the CBD region (see supplementary material Figure S73).
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Figure 7. Spatial distribution in the pixel-level uncertainty reduction achieved by the inversion to the prior fluxes in May 2012 for the

reference inversion (S0) (left), and to the no correlation inversion (S5) (right).
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Ref and-Week
3.5 Alternative control vectors

S0 and S17, where separate weekly inversions were performed, had similar aggregated weekly—fluxes{Supplement-Sect:

+2fluxes (Figure 3). For Mean-Menth;-S16, which forced the fossil fuel and biogenic fluxes to be constant over the month

the wee e-general pattern over time was similar to

RefS0. For most months the posterior weekly flux was above or below the prior weekly flux to the same degree as RefS0, but
the estimates, as expected, were smoother over time -

(see supplementary material Figure 9). The monthly aggregated fluxes were generally very close to those from Ref SO
except for August, September and November 2012 (Supplement-Seet—3see_supplementary material Section 2.2 Table S2).

These are the-summer months, and there was a great deal of variation in the aggregated fluxes from week to week from-the
results-of Ref in-in the SO inversion during these months. Mean-Menth S16 generally had aggregated fluxes that were closer
to zero than Ref or-WeekS0 or S17. This had a large impact on the aggregated flux over the full measurement period, due
to these less negative posterior aggregated fluxes during the summer months. The aggregated flux for Mean-Menth S16 was
662 kt CO2 compared to-with the -317 kt CO, of-Ref (Fable-22)—~Week for SO. S17 had an aggregated flux of -687 kt COx.
This discrepancy is partly due to some weeks with missing observations. In Ref SO these fluxes would have been adjusted by

the available observations for neighbouring weeks, but were completely unconstrained by the observations in Week-—Fer-these

ef and-Week-S17. The uncertainty
reduction in the aggregated estimates was almost double for Mean-Meonth compared-to-Ref and-WeekS 16 compared with SO
and S17.

The spatial distribution of the posterior fluxes was very similar for Ref and-WeekS0 and S17 (see supplementary material
Figure S89), but was distinctly different for Mean-MenthS16. Notably, the area around the oil refinery pixel was adjusted

to negative fluxes for the month of September (Figure 8). Other areas were made closer to zero compared with Ref—For-the

—S0. The uncertainty reductions at the pixel-

level were large for the Mean-Menth compared-with-Ref-with-S16 compared with SO, with more areas of large uncertainty
reductionmuch-more-widespread. In particular, the areas of uncertainty reduction above 90% that were restricted to the area

over Table Mountain National Park in Ref SO were now extended over the CBD area.

Consequently the aggregated fluxes had-uneertaintyreduetionfor S16 had uncertainty reductions that were twice as large as
those for RefS0, and uncertainties in the aggregated fluxes that-were much smaller. For the aggregated flux over the full period,

the posterior uncertainty was 66 kt CO, for tMean-MenthS16, compared with the uncertainty of 189 and 186 kt CO4 from
Ref and-Week respeetively(Table-22S0 and S17 respectively (Figure 3).
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Figure 8. Spatial distribution of the pixel-tevel-posterior fluxes and uncertainty reductions achieved by the reference inversion SO and
hoemegenised NEEpriortest-ease-mean monthly flux inversion S16 for September 2012.

45



10

15

20

25

30

4 Discussion
4.1 Alternative prior information products

As Robben Island is dominated by fossil fuel influence from the Cape Town metropolitan area, and Hangklip by biogenic
sources from natural and agricultural areas in its vicinity, the discrepancy in the modelled concentrations relative to the ob-
servations suggests-suggested that the fossil fuel fluxes provided by the prior products are too large in magnitude, and the
NEE-estimates{rom-CABLE-estimate-CABLE estimated too much carbon uptake by the biota around the Hangklip site. In
the case of the carbon assessment inversion, the bias in the prior modelled concentrations was positive compared to-with the
negative bias of the reference inversion, indicating that the carbon assessment product was underestimating the uptake by the
biota. As-the-The direction of the correction to the prior fluxes made by the inversion using NEE fluxes from the carbon as-
sessment product was-much-mere-homogeneous-over-space-than-CABLE-and-could-netreact-tolocal-climate-conditions
—suggested that the amount of carbon uptake was
insufficient. The NEP fluxes were also smaller compared to those from CABLE, leading to uncertainties that were too small,
and therefore an ill-specified inversion. The inversion could not correct the fluxes sufficiently so that modelled concentrations
could match better with observed concentrations, and therefore certain localised events (i.e. spikes in the CO; signal) were not
well represented in posterior fluxes from the carbon assessment inversion.

The comparison of inversion results using different prior products provides useful information regarding which direction
the true flux estimates are likely to be. A pixel within the CBD limits had similar fossil fuel flux estimates from the ODIAC
product compared te-with the reference inventory product—The-ODIACproductextended-thefossik-fuel-fluxes-muchfturther

afield-, but the ODIAC product had emissions that were more widespread across the domain away from the CBDregion-than
thereferenee-inventory. This led to aggregated estimates that were mueh-larger under the ODIAC inversion than the reference

inversion. The-Compared to the reference, the ODIAC inversion attempted to reduce the aggregated flux for most months —

and to a greater degree — to better match the observations, indicating that compared to-with the reference inventory, the ODIAC
prior was most likely overestimating the amount of fossil fuel emissions from Cape Town —lt-can-therefore-be-deduced-that

the-truefossil-fuel-o a greater extent for most parts of the study period. When the two prior information products provide
divergent prior flux estimates, such that the inversion reduced the flux for one product but increased the flux for the other, it
suggests that the true flux lies somewhere between the reference-inventory-and-OPIACfossi-fuetHflux-estimates—posterior flux
estimates from these two inversions. When the posterior aggregated flux was made smaller than the ODIAC prior but larger
than the reference prior aggregated flux, such as during February and March 2013, the true aggregated flux should lie between
these two posterior estimates. When the posterior flux was made smaller than the prior for both inversions, we could deduce
that the true aggregated flux must be below the minimum of these two posterior estimates, and if we have accurate uncertainty
estimates, the true flux should be no smaller than the lower uncertainty limit. Making use of the posterior uncertainties and the
direction away from the prior in which the inversions made corrections, a region is suggested where the true flux is most likely.
to lie (Figure 9). For the CT domain, the inversion results suggest that over the spatial domain investigated, the flux is close to
carbon neutral for the majority of the year.
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Figure 9. Using the posterior estimates of the reference and ODIAC inversions (SO and S2) and the direction of change from the prior
estimate, a region is inferred where in the true aggregated flux is expected to lie, indicated by the pink shaded area.
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4.2 Uncertainty covariance matrix structure: C;;-C,, and G:C.

From the analysis of the reference inversion (Nickless et al., 2018), the 2 statistics indicated that the reference inversion
could be improved by small increases to the uncertainty specified in €5;Cg,, either through accounting for a larger correlation
length or increasing the pixel-level uncertainties. Removal of the observation error correlations had a very small impact on the
goodness-of-fit statistics, or on the posterior flux estimates and uncertainty reduction achieved by the inversion. To ensure that
our reference inversion did not deviate too far from conventions for city-scale inversions where observation error correlations
are ignored, we assigned a very short error correlation length to the observations of one hour. H-we-had-assigned-atonger
length; such-as 6-hours; this-may-have had-more of an-effect Although, even with only an hour correlation length, off-diagonal
error correlations would have been non-zero for observations at least half a day apart. We considered a longer correlation
observation errors or flux uncertainties needed to be increased as well to improve statistical consistency. Lauvaux et al. (2009)
have shown that observation errors up to 24 hours apart may be strongly correlated. To adequately account for these correlation
lengths, a more sophisticated correlation structure may be required where non-zero error correlations are only specified between
hours in similar periods of the day, such as afternoon periods for consecutive days, which would be expected to have similar
meteorology. The specification of the most suitable observation error length is still under investigation, but the results of these
sensitivity tests suggest that this parameter is of less importance than the flux uncertainty correlation lengths.

The impact of the inversion on the posterior fluxes and their uncertainties strongly depended on the specification of the
correlation between the uncertainties in the NEE fluxes. In particular, the aggregated fluxes were distinctly different between
the reference and test cases ignoring covariances between NEE flux uncertainties, which tended to have aggregated fluxes
closer to the priors and uncertainty reductions achieved by the inversion that were much lower (7.6% compared te-with 26.6%
on average by the reference inversion). This indicates that advantage should be taken of knowledge related to the correlation
induced by homogeneity of biogenic productivity in subregions of the domain. If this correlation is correctly specified in
C5;Cy,, then the inversion is able to make larger adjustments to the prior fluxes and achieve a larger uncertainty reduction in

these fluxes.

4.3 Relative-uneertainty in-G;

Specification of the uncertainties in the prior flux estimates is one of the most challenging tasks in an atmospheric inversion
exercise. There is little consensus on the correct approach to follow, and it is difficult to ensure that the most important sources

of uncertainty are accounted for.

TFhe-The Y2 statistics indicated that for this Cape Town application, further increasing either the uncertainty in the fossil

fuel fluxes or in the NEE fluxes led to statistics closer to one. Increasing the fossil fuel flux or NEE uncertainty led to a lower
number of DFS. The degree to which the inversion is constrained by the prior fluxes is inversely related to the specified prior

uncertainty. If either the uncertainty in the fossil fuel fluxes or in the NEE fluxes was increased, this led to aggregated flux

estimates that were more positive as the inversion was apparently attempting to compensate for the overestimation of the NEE
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uptake by the CABLE model. When the uncertainties were made smaller, the degree to which the inversion could increase the

fluxes was restricted, and the resulting aggregated fluxes were more negative compared with the reference inversion.

An inversion will nudge the flux solution closer to the truth and will always result in reduced uncertainty compared to that

which was placed on the prior. If the prior estimates for the fluxes are far from the truth, and the uncertainties are made small,
the modelled concentration residuals will be similar before and after the inversion, and uncertainty reduction will be small.
Therefore the uncertainties need to be correctly specified to allow the inversion to correct the fluxes as close as possible to the
true fluxes. Ideally, large enough to give the inversion the freedom to correct the fluxes towards the truth, but small enough
so that the posterior uncertainty is within the required limits. The-pesterior uneertainties reflect-the reduetion-in-uncertainty

achieved-by-the-inversion-given-that-the-prioruneertainties-are-aceurate—This motivates for the hierarchical Bayesian approach
where a distribution is assigned to the uncertainty estimates. It can be shown that in the absence of observation error, dou-
bling or halving the prior uncertainty in the fluxes results in a respective doubling or halving of the posterior uncertainty
(see Supplement-Seet—-5supplementary material Section 7). Therefore it us unsurprising that if a prior uncertainty is made
larger with respect to a reference inversion specification, that the posterior uncertainty of this inversion will be larger than the

posterior uncertainty of the reference.

Normally when an inversion framework is assessed, we are interested in how much uncertainty reduction can be achieved

by the available observation network. The uncertainty reduction is dependent on the influence of the observations and on how
well the prior information is specified. This set of sensitivity tests demonstrated that if we wish to ensure that the uncertainty

bounds around the posterior fluxes are within a prespecified margin, say 10% of the aggregated flux estimate, then we have to
ensure that prior-uneertainty-that-we know enough about the sources such that the prior uncertainty we begin with is sufficiently
small. Assuming no large shifts in the mean estimate, it can be shown that if we wish to obtain an uncertainty estimate that is
within 10% of the aggregated flux estimate, and we are able to reduce the uncertainty by 25% through the inversion as we have

achieved in the Cape Town inversion, then the prior uncertainty estimate would need to be within 13.3% of the prior aggregated

flux estimate.
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4.3 Simplified-C¢

Simplifying-the-G-Simplifying the C. had very little impact on the inversion results. Increasing the night-time observation
errors caused the aggregated flux to be more negative. Assigning an uncertainty in the night-time modelled concentrations
of 10 ppm effectively led to the inversion ignoring most of the information available at night, leaving the posterior night-
time fluxes (which are mostly affected by the night-time observations) to be similar to their prior estimates. If the inversion
is tending to make large corrections to the daytime fluxes, and is now unable to make large corrections to the night-time
fluxes, it implies that the aggregated fluxes will be more in error than if the inversion could be constrained by the observations
- provided the constraint is good. The analysis of the misfits in the modelled concentrations from the reference inversion
tNiekless-etal52648))-(Nickless et al., 2018) demonstrated that the errors in the day and night-time atmospheric transport
modelling were not very different, and therefore it is unlikely that assigning errors as large as 10 ppm to all the night-time

observations is necessary.

4.3 Alternative control vectors

The separate weekly inversions obtained similar results to those of the reference inversion. Therefore, if necessary, for example
due to computational costs, the separate weekly inversions could have been performed in place of the monthly inversions used
in the reference case. In addition to the reduction in computation resources required, this allows additional features of the
inversion to be tested more easily.

The large uncertainty reduction achieved by the solving for a mean weekly flux inversionis-expeetedis expected, as a mean
weekly flux estimate over four weeks has four times as many observations to constrain this estimate than-if-separately-weekly
flaxes—are-solvedforas separate weekly estimates. The estimates from the inversion solving for a mean weekly flux were
consistent with those from the reference inversion, except in the summer months. During these periods-months observations

were often missingduri

continuity-. We would expect smaller discrepancies between mean weekly and separate weekly fluxes if data were complete
during these periodswas-similarte-therest-of the-inversionstudy-period.

An alternative control vector, which could improve on all three of the alternative control vectors used in this study, would

be to solve for separate components of fossil fuel and NEE fluxes. For example, if fossil fuel fluxes were split into those fluxes
from sectors which change slowly and those which change more quickly, the inversion could solve for a mean weekly flux over
the month for the slow fluxes, and for sectors with faster changes, the inversion could solve for individual weekly fluxes. This
would allow greater uncertainty reductions for those fluxes for which a mean weekly flux could be solved, which would in turn
reduce the overall uncertainty in the aggregated fossil fuel flux. The NEE flux could also potentially be split into a slow and
fast component. The fast component responds to local climate conditions and this component could be tightly constrained by

the available climate data. The inversion could solve for the slower component which is much harder to model, and-to-whieh
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rallowing this estimate to be
constant for a relatively long period, thereby allowing for stronger constraint from the observations.

4.4 Inversion sensitivity

If we consider the aggregated flux-over-the-full-measurementperiod-presentedin-Table-3posterior fluxes, the variability between

flux estimates across those inversions which used the reference control vector is 2024-1962 kt CO». This is largely driven by
the inversions using different prior products, and this wneertainty-drops-to-487 variability drops to 469 if these two inversions
are removed;-and-, It drops further to 393-375 if the inversions with the transformed prior information are removed. This
represents the variability in the aggregated flux estimate across all inversions which used the same prior information products.
If we compare this to the uncertainty in the aggregated fluxes, which is approximately 185 kt COo, it shows that variability
between posterior flux estimates from different inversion frameworks is still very large when compared to-with the uncertainty
we expect around the posterior flux estimates. If the inversions with no error correlation between biospheric fluxes are removed,
then the variability between inversions drops to +43-117 kt CO2 — now below the expected uncertainty around the posterior
flux from a single inversion. All the inversions that we removed from the estimate of variability were those which had a large
influence on the error correlations of the NEE fluxes, either because they were specifically manipulated or because they were
affected by the choice of prior product. This demonstrates the important role errer-uncertainty correlations in the prior fluxes
have on the posterior flux estimates obtained from an inversion.

Exceptions are the inversions which changed the prior estimates of the fossil fuel fluxes. These-The fossil fuel fluxes were
not assigned errer-uncertainty correlations. Those inversions which altered the prior estimates of the fossil fuel fluxes also
had vartable-aggregated-fluxes-aggregated fluxes that differed when compared with the reference inversion. This is due to the
inversion having limited ability to make large changes to the fossil fuel fluxes. The ensemble of posterior fluxes obtained from
inversions with alternative prior fluxes allowed us to determine in which direction the inversion was attempting to adjust these
fluxes, and provided us with an interval in which we could deduce the bestestimate-of-the-true aggregated flux would Hiemost
likely be located. Changing the control vector also had a large influence on the aggregated flux, but this was largely due to

periods with low data completeness.

5 Conclusions

Sensitivity tests have shown that to improve the inversion results for the Cape Town inversion, two important advancements
should be made to the inversion framework. Firstly the NEE estimates need to be improved. The results from the reference
inversion and from these sensitivity tests clearly indicate that CABLE is generally overestimating the amount of CO4 uptake
in the domain. Where there is more confidence in the estimation of the biogenic fluxes, either from CABLE for an alternative

land-atmosphere exchange model, these reduced uncertainties should be incorporated into the prior information, rather than
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applying a blanket uncertainty equal to the NPP as done for the reference inversion. For example, over agricultural areas, where
the biogenic fluxes may be more reliably modelled, uncertainties may be substantially reduced.

Solving for mean weekly fluxes over a month produced much larger uncertainty reductions. Using an alternative control
vector which solves for separate components of the fossil fuel and NEE fluxes that can be split into slow and fast components
could take advantage of the larger uncertainty reduction achieved from solving for a mean weekly flux for each month. This
could potentially allow the inversion to better distinguish between NEE and fossil fuel fluxes, allowing the inversion to apply
corrections to the eorreet-fhuxright flux component (fossil or biogenic), and at the same time obtain aggregated flux estimates
with smaller uncertainties than those obtained for the reference inversion. The estimates of the aggregated fluxes was-were
shown to be more reliable in the reference inversion than those for the individual fossil fuel and NEE fluxes (Nickless et al.,
2018).

The posterior uncertainties are highly dependent on the prior uncertainties.

s-Of more concern is the large impact that the uncertainty correlation
assumed for the NEE fluxes had on the aggregated flux estimates and on the spatial distribution of the posterior fluxes. This has
been observed in previous inversions (Lauvaux et al., 2016). Of all the specifications made, the correlation lengths are the most
arbitrary, but ean-redefine-the-posteriorflux-estimateschanging this parameter can entirely alter the distribution of the posterior
fluxes. The sensitivity tests suggested that correlations between observation errors were of less importance to the inversion
result.

Approaches which =

allow the data to inform the estimates of the uncertainties and correlation lengths are likely to be more successful at obtainin
estimates of the true uncertainty bounds around the inversion posterior flux estimates. Michalak et al. (2005) proposed a

maximum likelihood approach to solve for the parameters, and Ganesan et al. (2014) and Wu et al. (2013) prepose-proposed
an hierarchical Bayesian approach to solve for hyper-parameters of the inversion, including the covariance terms;—whieh
. These approaches have required
simplifying assumptions in order to use iterative methods to solve for the parameters, such as assuming the uncertainty is the

same across all fluxes or groups of fluxes, or solving for a scaling parameter of the fluxes rather than the fluxes themselves.
These sensitivity analyses performed for this paper did not consider alternative atmospheric transport models. Sensitiv-

ity tests on previous city-scale inversions have shown this to be an important source of variation between inversion results

Lauvaux et al., 2016; Staufer et al., 2016; Karion et al., 2019). Future work on the

Cape Town inversion will consider muttipte-atmospherie—transpert-alternative regional climate models, such as the WRF
(Weather Research and Forecasting model coupled with Chemistry) regional climate model —and alternative atmospheric

transport models (Karion et al., 2019).
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