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Abstract. Particulate amines play an important role for the particle acidity and 43 

hygroscopicity and also contribute to secondary organic aerosol mass. We investigated 44 

the sources and mixing states of particulate amines using a single-particle aerosol 45 

mass spectrometer (SPAMS) during summer and winter 2014 at a rural site in the 46 

Pearl River Delta, China. Amine-containing particles accounted for 11.1 % and 9.4 % 47 

of the total detected individual particles in summer and winter, respectively. Although 48 

the increase of amine-containing particle count mostly occurred at night, no obvious 49 

correlations between amine-containing particles and ambient relative humidity (RH) 50 

were found during the sampling period. Among the three markers we considered, the 51 

most abundant amine marker was 
74

(C2H5)2NH2
+
, which was detected in 90% and 86% 52 

of amine-containing particles in summer and winter, followed by amine marker ions 53 

of 
59

(CH3)3N
+
, and 

86
(C2H5)2NCH2

+
 which were detected in less than 10% of 54 

amine-containing particles during sampling period. The amine-containing particles 55 

were characterized by high fractions of carbonaceous marker ions, carbon-nitrogen 56 

fragments, sulfate and nitrate in both summer and winter. More than 90% of 57 

amine-containing particles were found to be internally mixed with sulfate throughout 58 

the sampling period, while the percentage of amine particles containing nitrate 59 

increased from 43% in summer to 69% in winter. Robust correlations between the 60 

peak intensities of amines and the sum of nitrate and sulfate were observed, 61 

suggesting the possible formation of aminium sulfate and nitrate salts. Interestingly, 62 

only 8% of amine particles contained ammonium in summer, while the percentage 63 

increased dramatically to 54 % in winter, indicating a relatively ammonium-poor state 64 

in summer and an ammonium-rich state in winter. The total ammonium-containing 65 

particles were investigated and showed a much lower abundance in ambient particles 66 

in summer (3.6%) than that in winter (32.6%), which suggests the ammonium-poor 67 

state of amine-containing particles in summer may be related to the lower abundance 68 

of ammonia/ammonium in gas and particle phase. In addition, higher abundance of 69 

amines in ammonium-containing particles than that of ammonium in 70 

amine-containing particles suggests a possible contribution of ammonium–amine 71 

exchange reactions to the low abundance of ammonium in amine-containing particles 72 
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at high ambient RH (72 ± 13 %) in summer. The particle acidity of amine-containing 73 

particles is estimated via the relative acidity ratio (Ra), which is defined as the ratio of 74 

the sum of the sulfate and nitrate peak areas divided by the ammonium peak area. The 75 

Ra was 326 ± 326 in summer and 31 ± 13 in winter, indicating that the 76 

amine-containing particles were more acidic in summer than in winter. However, after 77 

including amines along with the ammonium in the acidity calculation, the new Ra' 78 

values showed no seasonal change in summer (11 ± 4) and winter (10 ± 2), which 79 

suggests that amines could be a buffer for the particle acidity of ammonium-poor 80 

particles.  81 

Keywords: Amine; Single particles; Mixing state; Aminium salts; Particle acidity; 82 

SPAMS. 83 

1 Introduction 84 

Amines, a group of nitrogen-containing organic compounds, are ubiquitous in 85 

the atmospheric gas and particle phases (Ge et al., 2011b). A variety of low molecular 86 

weight (LMW) aliphatic amines have been detected in emissions from anthropogenic 87 

and natural sources, including animal husbandry, biomass burning, industrial 88 

emissions, vehicle exhaust, and marine sources (Rogge et al., 1994;Rappert and 89 

Muller, 2005;Calderon et al., 2007;Ngwabie et al., 2007;Ge et al., 2011b). LMW 90 

aliphatic amines have gas-phase concentrations two orders of magnitude lower than 91 

that of ammonia (NH3) (Sorooshian et al., 2008), but are more alkaline than NH3 (Ge 92 

et al., 2011a). Due to their strong basicity and water solubility, LMW amines can 93 

undergo acid-base reactions with sulfuric and nitric acid to form aminium salts 94 

(Angelino et al., 2001;Sorooshian et al., 2007;Pratt et al., 2009), which has been 95 

found to enhance new particle formation beyond the amounts produced from reactions 96 

between acids and NH3 alone (Kurten et al., 2008;Berndt et al., 2010;Place et al., 97 

2010;Wang et al., 2010). In addition, once partitioned into the particle phase, these 98 

LMW aliphatic amines can enhance aerosol particle hygroscopicity (Chu et al., 99 

2015;Sauerwein et al., 2015). Furthermore, amines can be oxidized by OH radicals, 100 

NO3 radicals, and O3 in the atmosphere to form semi-volatile and non-volatile 101 
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compounds, some of which are highly toxic (Lee and Wexler, 2013), and which 102 

contribute to secondary organic aerosol (SOA) mass (Murphy et al., 2007;Malloy et 103 

al., 2009).  104 

The mass concentration and temporal distribution of LMW aliphatic amines in 105 

aerosols have been studied extensively in a variety of environments, and LMW 106 

aliphatic amines account for 2–12 % of organic mass (Day et al., 2009;Gilardoni et al., 107 

2009;Liu et al., 2009;Russell et al., 2009;Williams et al., 2010). In recent years, 108 

real-time single particle mass spectrometry has been used to measure the size and 109 

chemical composition of individual amine-containing particles with high time 110 

resolution. The mixing state and single-particle characteristics of amines have been 111 

investigated in laboratory and field environments (Angelino et al., 2001;Moffet et al., 112 

2008;Silva et al., 2008;Pratt et al., 2009;Huang et al., 2012;Zhang et al., 2012). Pratt 113 

et al. (2009) studied seasonal differences in aminium and ammonium salts on a 114 

single-particle basis using an aerosol time-of-flight mass spectrometer (ATOFMS) 115 

coupled with a thermodenuder and reported that the gas-to-particle partitioning of 116 

amines is dependent on particle acidity. Healy et al. (2015) investigated the temporal 117 

distributions of alkylamines at five European sites, and found that alkylamines were 118 

internally mixed with both sulfate and nitrate, which suggests that the formation of 119 

aminium salts was important at all sites. Zauscher et al. (2013) detected strong signals 120 

of amine marker (
86

(C2H5)2NCH2
+
) in biomass burning aerosols associated with the 121 

increase of ambient relative humidity, indicating the direct emission of amines from 122 

biomass burning and the important influence of high RH (>90%) on the partitioning 123 

process of amines. Huang et al. (2012) determined the mixing state of 124 

amine-containing particles in Shanghai and found higher number concentrations of 125 

amine-containing particles in winter than in summer, which they attributed to 126 

effective acid-base reactions between sulfuric acid and amines under low-temperature, 127 

high-RH conditions. Zhang et al. (2012) measured trimethylamine-containing 128 

particles in Guangzhou and found preferential trimethylamine gas-to-particle 129 

partitioning during fog events. These field observations emphasize the important role 130 

of acid-base reactions in the partitioning of amines from the gas phase to the particle 131 
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phase. Recent laboratory studies have revealed that the exchange between amine 132 

gases and particulate NH3 and/or ammonium also contributes substantially to amine 133 

content and results in a depletion of NH3 and/or ammonium in the particle phase 134 

(Lloyd et al., 2009;Bzdek et al., 2010;Qiu et al., 2011;Liu et al., 2012;Chan and Chan, 135 

2013;Chu and Chan, 2016, 2017;Sauerwein and Chan, 2017); however, the 136 

significance of such exchange reactions in the ambient environment has not been fully 137 

explored. Therefore, the influence of ammonia and particle acidity on the distribution 138 

of amines in the particle phase should be studied comprehensively through field 139 

measurements. 140 

The aim of this study was to investigate the mixing state of a series of LMW 141 

aliphatic amines with sulfate, nitrate, and ammonium in individual particles using a 142 

single-particle aerosol mass spectrometer (SPAMS) at a rural site in the Pearl River 143 

Delta, China. In order to explore amine origins and gas-to-particle partitioning 144 

processes, amine-containing particles from both summer and winter were classified 145 

into three types based on mass spectral patterns. The aminium sulfate and nitrate salt 146 

formation processes and internal mixing state with ammonium were used to deduce 147 

the relationship between amines and ammonium in the particle phase and the 148 

influence of amines on particle acidity. 149 

2 Methods 150 

2.1 Aerosol sampling 151 

Ambient single particles were collected and analyzed using a SPAMS at the 152 

Guangdong Atmospheric Supersite (22.73 N, 112.93 E), a rural site in Heshan City 153 

in the Pearl River Delta (PRD), China (Figure S1). The sampling site is surrounded by 154 

villages and experiences little influence from local industrial emissions (Cheng et al., 155 

2017). The SPAMS was installed at the top of the main building, and aerosols were 156 

introduced to the SPAMS through a 2.5 m copper tube. SPAMS sampling was 157 

conducted continuously from 18 July to 1 August 2014 and from 27 January to 8 158 

February 2015; several hours of data are missing due to technical maintenance. 159 

During the sampling period, hourly O3 concentrations were measured using an O3 160 
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analyzer (model 49i, Thermo Scientific). Meteorological data, including temperature, 161 

relative humidity, wind speed, and wind direction, were also measured during SPAMS 162 

sampling. 163 

2.2 SPAMS 164 

SPAMS was designed by the Guangzhou Hexin Analytical Company based on 165 

preexisting ATOFMS principles (Prather et al., 1994;Noble and Prather, 1996). The 166 

setup and design of the SPAMS has been detailed previously (Li et al., 2011). Briefly, 167 

single particles are sampled through an 80 μm critical orifice into the aerodynamic 168 

lens at a flow rate of 75 ml min
-1

. Then, the particles pass consecutively through two 169 

laser beams (diode Nd:YAG, 532 nm) spaced 6 cm apart, and the aerodynamic 170 

diameter of the single particle is calculated using the particle flight time and velocity 171 

between the two laser beams. The single particle velocity is also used to calculate the 172 

precise time at which to fire the desorption and ionization laser (Nd:YAG laser, 173 

266nm), which is positioned 12 cm downstream from the second laser beam. After 174 

ionization, the positive and negative ions are detected by a Z-shaped bipolar 175 

time-of-flight mass spectrometer. In this work, the ionization laser pulse energy was 176 

0.6 mJ and the power density was 1.06 × 10
8
 W cm

–2
 throughout the campaign. The 177 

size range of single particles detected by SPAMS ranged from 0.2 to 2 μm, calibrated 178 

with standard polystyrene latex spheres (Nanosphere size standards, Duke Scientific 179 

Corp., Palo Alto) of 0.22–2.0 μm diameter before and after the campaign (Cheng et al., 180 

2017). 181 

2.3 Data analysis 182 

Particle size and chemical composition were obtained via SPAMS mass spectral 183 

analysis using the Computational Continuation Core (COCO; version 3.0) toolkit in 184 

Matlab. According to the field studies of ATOFMS and SPAMS, it is difficult to 185 

accurately determine the number concentration of ambient particles using SPAMS 186 

alone due to the size-dependent transmission efficiencies of particles through 187 

aerodynamic lens and composition dependent matrix effect (Gross et al., 2000;Pratt 188 

and Prather, 2012). Thus, the particle counts and size distributions presented in this 189 

work should be interpreted as semi-quantitative and serve as a basis of comparison 190 
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analysis (Healy et al., 2012). Based on previous studies using ATOFMS and SPAMS 191 

instruments (Angelino et al., 2001;Huang et al., 2012;Zhang et al., 2012;Zauscher et 192 

al., 2013;Healy et al., 2015), amine-containing particles were characterized by marker 193 

ions, including m/z 
59

(CH3)3N
+
, 

74
(C2H5)2NH2

+
, 

86
(C2H5)2NCH2

+
, 

101
(C2H5)3N

+
, 194 

102
(C3H7)2NH2

+
, and 

143
(C3H7)3N

+
 (Table 1). In this work, a particle was identified as 195 

amine-containing if it contained any of the marker ions listed above with a relative 196 

peak area (defined as the percentage contribution of the target ion peak area to the 197 

sum of all ion peak areas) greater than 1%. It should be noted that amine-containing 198 

particles are operationally defined and not exclusive, which also contained various 199 

chemical species in addition to amines. According to this criterion, 57452 and 68026 200 

amine-containing particles were identified in summer and winter, respectively, which 201 

accounted for 11.1 % and 9.4 % of the total detected particles. These number fractions 202 

are consistent with previously reported observations in the PRD (Zhang et al., 2012). 203 

However, due to the absence of fog events during the campaign, no dramatic increases 204 

in amine-containing particles associated with high RH conditions (RH > 90 %) were 205 

observed. Marker ions of 
59

(CH3)3N
+
, 

74
(C2H5)2NH2

+
, 

86
(C2H5)2NCH2

+
 were detected 206 

as the most abundant amines species during the sampling period, so particles 207 

containing each marker ion were selected to investigate the possible sources and 208 

characteristics of amine-containing particles.
 30

CH3NH
+
 is also an amine marker 209 

which has been reported by other single particle studies (Phares et al., 210 

2003;Glagolenko and Phares, 2004). In this work the peak intensity of 
30

CH3NH
+
 was 211 

much lower compared with other amine markers, and all the particles containing 212 

30
CH3NH

+
 had strong signal of 

74
(C2H5)2NH2

+
, so the 

30
CH3NH

+
-containing particles 213 

were not specifically discussed. Ion of m/z +46 was detected in the ambient single 214 

particles, which could be the amine marker of 
46

(CH3)2NH2
+
 and/or 

46
Na2

+
 according 215 

to reported studies (Guazzotti et al., 2001;Gaston et al., 2011;Healy et al., 2015). In 216 

this work the m/z +46-containing particles had no other amine markers as listed above, 217 

besides, these particles were enriched with sodium salts like 
62

Na2O
+
, 

81
Na2Cl

+
 and 218 

147
Na(NO3)2

-
. Thus, m/z +46-containing particles were not classified as 219 

amine-containing particles. 220 
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3 Results and Discussion 221 

3.1 Seasonal variation of amine-containing particles 222 

Spatial distributions of amine-containing particles associated with backward 223 

trajectories (48 hour) of air masses at 500m levels above the ground during the 224 

sampling period are shown in Figure 1. Cluster trajectories were calculated by 225 

MeteoInfo (Wang, 2014), and the box plots were conducted by Igor Pro-based 226 

program Histbox (Wu et al., 2018;Wu and Yu, 2018). In summer, high 227 

amine-containing particle counts were associated with air masses of Cluster 3 228 

(41.67%) and Cluster 4 (30.06%) (Figure 1a) from continent and South China Sea 229 

separately, suggesting that the majority of amine-containing particles came from 230 

anthropogenic and marine sources. However, in winter, large amounts of 231 

amine-containing particles were associated with air masses of Cluster 4 (48.08%) 232 

(Figure 1b), indicating that amine-containing particles were related primarily with 233 

local emissions, such as animal husbandry, biomass burning, and vehicle exhaust. 234 

Anthropogenic emissions from Foshan and Guangzhou may also have contributed, as 235 

the sampling site is only 40 km and 56 km from these cities, respectively (Figure S1).  236 

The amine-containing particle count observed in summer (57452) was lower than 237 

it observed in winter (68026), but the abundance of amine-containing particles 238 

relative to the total particle count was higher in summer (11.1%) than in winter (9.4%). 239 

Temporal variations of total amine-containing particles and three amine marker ions 240 

are shown in Figure 2. The increase of amine-containing particles was mostly 241 

associated with high relative humidity (RH) at night in summer, while no direct 242 

connection between particle counts and RH was found in winter (Figure S2 a and b). 243 

High counts of amine-containing particles that extended in a few days were found 244 

from 22 to 24 July (in summer) and from 5 to 8 February (in winter). Among the three 245 

markers we considered, the most abundant amine marker was 
74

(C2H5)2NH2
+
, which 246 

was detected in 90% and 86% of amine-containing particles in summer and winter 247 

(Table 2), followed by 
59

(CH3)3N
+
 and 

86
(C2H5)2NCH2

+
 which were detected in less 248 

than 10% of amine-containing particles during sampling period. The amine particles 249 
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containing 
74

(C2H5)2NH2
+
 and 

86
(C2H5)2NCH2

+
 both exhibited similar variation 250 

pattern with total amine-containing particles suggesting a similar emission source of 251 

74
(C2H5)2NH2

+
 and 

86
(C2H5)2NCH2

+
 (Figure 2). The temporal trend of 252 

59
(CH3)3N

+
-containing particles were different from those of 

74
(C2H5)2NH2

+
 and 253 

86
(C2H5)2NCH2

+
; and the two sudden episodes of 

59
(CH3)3N

+
 occurred from 27 to 29 254 

July in summer were possibly due to the special emission sources of trimethylamine 255 

(TMA). 256 

The diurnal patterns of amine-containing particles are investigated in summer 257 

and winter (Figure 3) and both showed higher count at night. The small increase from 258 

6:00 to 9:00 LST throughout the campaign may have been due to local emissions 259 

from vehicle exhaust (Cadle and Mulawa, 1980). Several field studies have revealed 260 

the strong correlation between RH and particulate amines, suggesting that high RH in 261 

fog events is favorable for the gas-to-particle partitioning of amines (Jeong et al., 262 

2011;Rehbein et al., 2011;Huang et al., 2012;Zhang et al., 2012). In this work, 263 

although the increase of amine-containing particle count mostly occurred at night, no 264 

obvious correlations between diurnal amine-containing particles and RH were found 265 

in summer (r
2
=0.33) and winter (r

2
=0.0003) (Figure S2). The increase of 266 

amine-containing particles at night may be influenced by particle acidity and emission 267 

sources of amines (Murphy et al., 2007;Kurten et al., 2008;Silva et al., 2008). 268 

3.2 Characteristics of amine-containing particles 269 

The average mass spectra of amine-containing particles in summer and winter 270 

are shown in Figure 4. The amine-containing particles were characterized by high 271 

fractions of carbonaceous marker ions, including 
27

C2H3
+
, 

29
C2H5

+
, 

36
C3

+
, 

37
C3H

+
, 272 

43
C2H3O

+
, 

48
C4

+
, 

51
C4H3

+
, 

53
C4H5

+
, 

60
C5

+
, 

63
C5H3

+
, 

65
C5H5

+
, and 

77
C6H5

+
; and amine 273 

marker ions of 
30

CH3NH
+
, 

59
(CH3)3N

+
, 

74
(C2H5)2NH2

+
 and 

86
(C2H5)2NCH2

+
 in the 274 

positive mass spectrum in both summer and winter. The negative mass spectrum was 275 

characterized by strong carbon-nitrogen fragments like 
26

CN
-
 and 

42
CNO

-
, as well as 276 

abundant secondary ions of 
46

NO2
-
, 

62
NO3

-
, 

80
SO3

-
, and 

97
HSO4

-
 in both summer and 277 

winter. In many field studies, aged carbonaceous particles always contain abundant 278 

secondary ions of sulfate, nitrate, and ammonium. Interestingly, in this work, the 279 
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signals of 
18

NH4
+
 were weak and only observed in less than 10% of amine-containing 280 

particles in summer, but moderate signal of 
18

NH4
+
 was detected in half of 281 

amine-containing particles in winter. The low 
18

NH4
+
 signal in amine-containing 282 

particles may have been due to the emission sources of ammonia and particle acidity, 283 

which will be discussed in Section 3.3.  284 

The unscaled size-resolved number distributions of total amine-containing 285 

particles and amine particles containing three marker ions of 
59

(CH3)3N
+
, 286 

74
(C2H5)2NH2

+
, and 

86
(C2H5)2NCH2

+
 are shown in Figure 5. The amine-containing 287 

particles exhibited unimodal distributions in the submicron mode from 0.4 to 1.5 μm 288 

in both summer and winter, which may have resulted from gaseous amine 289 

condensation on and/or reaction with fine mode particles from anthropogenic 290 

emissions. Although amine-containing particles peaked at the size range of 0.5-0.7 μm 291 

in both summer and winter, a broader size range of amine-containing particles was 292 

observed in winter, which may be due to more complex anthropogenic emission 293 

sources of primary particles in winter. The 
74

(C2H5)2NH2
+
-containing particles showed 294 

similar variation patterns as total amine-containing particles both in summer and 295 

winter. However, 
59

(CH3)3N
+
- and 

86
(C2H5)2NCH2

+
-containing particles showed less 296 

distinct peaks in winter. 297 

3.3 Mixing state and formation processes of amine-containing particles 298 

To investigate the aging state of amine-containing particles, the abundances of 299 

sulfate-, nitrate-, and ammonium-containing amine particles are shown in Table 3. 300 

More than 90% of amine-containing particles were found to be internally mixed with 301 

sulfate throughout the sampling period. The abundance of nitrate in amine particles 302 

increased from 43% in summer to 69% in winter. The high abundances of sulfate and 303 

nitrate in amine-containing particles suggest the possible formation of aminium 304 

sulfate and nitrate salts. Interestingly, only 8% of amine-containing particles mixed 305 

with ammonium (NH4
+
) in summer, while the percentage increased dramatically to 306 

54 % in winter, indicating a relatively NH4
+
-poor state in summer and an NH4

+
-rich 307 

state in winter.  308 

The seasonal differences of the mixing state of amines and NH4
+
 may be 309 
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influenced by the seasonal variation of source strength of NH4
+
. To investigate the 310 

temporal variation and abundance of NH4
+
 in total detected single particles, the total 311 

NH4
+
-containing particles were identified with relative area of 

18
NH4

+
 larger than 1%. 312 

Using this criterion, 18336 and 235312 of NH4
+
-containing particles were detected in 313 

summer and winter separately, accounting for 3.6% and 32.6% of the total detected 314 

particles. The averaged positive and negative ion mass spectra of NH4
+
-containing 315 

particles are exhibited in Figure 6. During entire sampling period the NH4
+
-containing 316 

particles were characterized by abundant hydrocarbon fragments and secondary 317 

organic species like 
43

C2H3O
+
 and 

89
HC2O4

-
, as well as strong signals of 

26
CN

-
, 318 

42
CNO

-
, 

62
NO3

-
 and 

97
HSO4

-
, indicating an aging state of NH4

+
-containing particles. 319 

Also, 20% of NH4
+
-containing particles contained 

74
(C2H5)2NH2

+
, which indicates a 320 

close connection between NH3 and diethylamine (DEA), possibly due to the similar 321 

emission sources.  322 

Temporal variations of total amine-containing particles, total 323 

ammonium-containing (NH4
+
-containing) particles and particles containing both 324 

ammonium and amine (NH4
+
-amine) are shown in Figure 7. The total 325 

NH4
+
-containing particles and NH4

+
-amine particles were both much lower in summer 326 

than in winter. This seasonal difference may be due to the low emission sources of 327 

ammonia and preferred partitioning in gas phase in summer. Backward trajectories 328 

analysis (Figure 1) showed that in summer the air mass was mainly from south of the 329 

sampling site and linked to the marine region with low emission of anthropogenic 330 

pollutants. By contrast, in winter, the air mass was mainly from northwest of the 331 

sampling site and associated with relatively polluted megacities like Guangzhou and 332 

Foshan. RH does not seem to exert a major influence on particulate NH4
+
 (Huang et 333 

al., 2012), because lower abundance of NH4
+
 was observed in summer (RH = 72 ± 334 

13%) than in winter (RH =63 ± 11%). 335 

The temporal variations of the peak areas of amines, ammonium, and the sum of 336 

sulfate and nitrate in amine-containing particles are shown in Figure 8. The peak areas 337 

of amines and the sum of nitrate and sulfate had similar variation patterns both in 338 

summer and winter. The linear regression between them showed robust correlations 339 
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both in summer (r
2
=0.74) and winter (r

2
=0.88) (Figure S3), indicating the formation 340 

of aminium salts. Low peak area of ammonium was found in the amine-containing 341 

particles in summer which was in accordance with the small amount of NH4
+
-amine 342 

particles. However, in winter, the peak area of ammonium was comparable with 343 

amines and they both exhibited similar temporal trends. The sum of the sulfate and 344 

nitrate peak areas had a higher increase rate than the amine peak area from 6 to 8 345 

February, which may have been caused by an increase of ammonium during this 346 

period. In this work the particle acidity of amine-containing particles is represented by 347 

the relative acidity ratio (Ra), which is defined as the ratio of the sum of the sulfate 348 

and nitrate peak areas divided by the ammonium peak area (Denkenberger et al., 349 

2007;Pratt et al., 2009;Cheng et al., 2017). Huang et al. (2013) obtained a robust 350 

correlation (r
2
=0.82) between the particle acidity calculated from inorganic ions 351 

obtained from MARGA and relative acidity ratio obtained from single particle mass 352 

spectrometer, allowing us to use Ra for comparison of particle acidity(Huang et al., 353 

2013). The Ra was 326 ± 326 in summer and 31 ± 13 in winter (Figure 8), indicating 354 

that the amine-containing particles were more acidic in summer than in winter.  355 

Although high acidity promotes gaseous ammonia partitioning, extremely low 356 

ammonium peak areas were found for the amine-containing particles in summer 357 

(Figure 8), which may be associated with ammonium–amine exchange reactions in 358 

addition to the low emission source of ammonia. The exchange between amine gases 359 

and particulate NH3 and/or ammonium highly depends on the RH and particle acidity 360 

(Chan and Chan, 2013;Chu and Chan, 2016). According to the study of Sauerwein 361 

and Chan, the co-uptake of dimethylamine (DMA) and ammonia (NH3) by sulfuric 362 

acid particles at 50% RH led to particle-phase dimethylaminium (DMAH
+
) to 363 

ammonium (NH4
+
) molar ratio up to four times that of gas-phase DMA to ammonia 364 

molar ratio (0.1 and 0.5), suggesting the displacement of NH4
+
 by DMA during the 365 

uptake process (Sauerwein and Chan, 2017). In this work, the ambient RH and acidic 366 

particles containing abundant sulfate and nitrate were similar to the experimental 367 

conditions used in Sauerwein and Chan (2017). In summer 8% of amine-containing 368 

particles contained NH4
+
, while 25% of ammonium-containing particles contained 369 
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amines (Figure 7). Although the gas-phase concentrations of amines and NH3 are not 370 

quantified, higher abundance of amines in ammonium-containing particles than that of 371 

ammonium in amine-containing particles suggests a possible ammonium–amine 372 

exchange reactions in acidic particles in summer. 373 

As strong bases, the presence of amines could have an impact on the particle 374 

acidity. After including amines along with the ammonium in the relative acidity ratio 375 

calculation, the new Ra' values (redefined as the ratio of the sum of the sulfate and 376 

nitrate peak areas to the sum of the ammonium and amine peak areas) decrease to 11 377 

± 4 and 10 ± 2 in summer and winter, respectively, which are 30 and 3 times lower 378 

than Ra values. Besides, Ra' showed no obvious seasonal change of particle acidity, 379 

which suggests that amines could be a buffer for the particle acidity of 380 

ammonium-poor particles, implying that it is reasonable to consider amines to 381 

calculate particle acidity and actual pH. In addition, the presence of aminium salts 382 

affects the water activities and osmotic coefficients of aqueous solutions, which may 383 

influence the calculation of pH using aerosol thermodynamic models (Sauerwein et al., 384 

2015). Furthermore, it should be noted that the measured pH of bulk ambient aerosols 385 

may not be representative of the actual single particle acidity. Hence, the mixing state 386 

of aerosols should be considered in order to comprehensively estimate the aerosol pH 387 

(Pratt et al., 2009). Several recent studies have reported a ‘missing’ source of sulfate 388 

produced from the oxidation of SO2 by NO2 during haze episodes with high ambient 389 

relative humidity in northern China, and the neutralization of particulate ammonium is 390 

a key factor in this formation mechanism (Cheng et al., 2016;Wang et al., 2016). Our 391 

study reveals that amines have a potential influence on particle acidity, which could 392 

also impact this sulfate formation process during haze episodes. In order to discuss the 393 

potential role of amines in this sulfate formation pathway, real-time concentrations of 394 

amines, ammonium, sulfate, nitrate, and their precursors must be available. The 395 

results of this study suggest that amine chemistry involving particle acidity and 396 

mixing state with sulfate, nitrate and ammonium may have an important role in the 397 

aging process of particles in regions with high concentration of amines. 398 
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4 Summary and Conclusions 399 

Amine-containing particles were investigated using a single particle aerosol mass 400 

spectrometer from 18 July to 1 August 2014, and from 27 January to 8 February 2015 401 

in Heshan, China. Amine-containing particles accounted for 11.1 % and 9.4 % of the 402 

total detected single particles in summer and winter, respectively; both seasons were 403 

dominated by amine marker of 
74

(C2H5)2NH2
+
 in 90% and 86% of amine-containing 404 

particles in summer and winter, respectively.
 
Amine markers of 

59
(CH3)3N

+
 and 405 

86
(C2H5)2NCH2

+
 were detected in 4.5% and 5.5% of amine-containing particles in 406 

summer, while their percentages both increased two times in winter. The amine 407 

particles contained 
74

(C2H5)2NH2
+
 and 

86
(C2H5)2NCH2

+
 both exhibited similar 408 

variation pattern with total amine-containing particles suggesting a similar emission 409 

source of 
74

(C2H5)2NH2
+
 and 

86
(C2H5)2NCH2

+
, while the 

59
(CH3)3N

+
-containing 410 

particles showed different temporal trends, and two sudden increase episodes of 411 

59
(CH3)3N

+
 in summer was possibly due to the special sources of trimethylamine. 412 

Although the increase of amine-containing particle count mostly occurred at night, no 413 

obvious correlations between amine-containing particles and RH were found in 414 

summer (r
2
=0.33) and winter (r

2
=0.0003). More than 90% of amine-containing 415 

particles contained strong signals of sulfate throughout the sampling period, while 43% 416 

and 69% of amine particles contained nitrate in summer in winter. Robust correlations 417 

between the peak intensities of amines and the sum of nitrate and sulfate suggested 418 

the possible formation of aminium sulfate and nitrate salts. Only 8% of amine 419 

particles contained ammonium in summer, while the percentage increased 420 

dramatically to 54% in winter. Due to the lower percentage of total 421 

ammonium-containing particles in summer (3.6%) than it in winter (32.6%), the 422 

relatively ammonium-poor state of amine-containing particles in summer may be due 423 

to the lower abundance of ammonia/ammonium in gas and particle phase. Besides, 8% 424 

of amine-containing particles contained ammonium while 25% of 425 

ammonium-containing particles contained amines in summer, suggesting a possible 426 

contribution of ammonium–amine exchange reactions to the low abundance of 427 



 

15 

 

ammonium in amine-containing particles at high ambient RH (72 ± 13 %) in summer. 428 

In order to estimate the particle acidity, the relative acidity ratio (Ra), defined as the 429 

ratio of the sum of the sulfate and nitrate peak areas divided by the ammonium peak 430 

area, was calculated and showed higher values in summer (326 ± 326) than (31 ± 13) 431 

in winter, suggesting the amine-containing particles were more acidic in summer than 432 

in winter. However, after including amines along with the ammonium in the acidity 433 

calculation, the new Ra' values showed no distinct seasonal change (summer: 11 ± 4; 434 

winter: 10 ± 2), suggesting that it is reasonable to consider amines when estimating 435 

particle acidity. 436 

 437 
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Tables and Figures 717 

Table list: 718 

Table 1. Marker ions chosen for the amine-containing particles 719 

 720 

Table 2. Seasonal distributions of amine-containing particles and three major amine 721 

markers in summer and winter in the PRD, China. 722 

 723 

Table 3. The abundances of ammonium-, nitrate- and sulfate-containing amine 724 

particles in total amine-containing particles. 725 

Figure captions: 726 

Figure 1. Spatial distributions of amine-containing particle counts associated with 727 

backward trajectories (48 hour) of air masses at 500m levels above the ground during 728 

the sampling period: (a) summer (from July 18 to August 1, 2014), (b) winter (from 729 

January 27 to February 8, 2015). 730 

 731 

Figure 2. Temporal variations of relative humidity (RH), temperature (T), total 732 

amine-containing particles, and three major marker ions-containing amine particles 733 

(
59

(CH3)3N
+
, 

74
(C2H5)2NH2

+
, 

86
(C2H5)2NCH2

+
) in Heshan, China during sampling 734 

periods.  735 

 736 

Figure 3. Diurnal variations of amine-containing particle counts in summer and winter 737 

in Heshan. 738 

 739 

Figure 4. Average ion mass spectra of amine-containing particles in summer and 740 

winter. The color bars represent each peak area corresponding to a specific ion in 741 

individual particles. 742 

 743 

Figure 5. Unscaled size-resolved number distributions of total amine-containing 744 

particles and amine particles containing three marker ions of 
59

(CH3)3N
+
, 745 

74
(C2H5)2NH2

+
, and 

86
(C2H5)2NCH2

+
 in summer and winter in Heshan. 746 

 747 

Figure 6. Mass spectra of total ammonium-containing (NH4
+
-containing) particles in 748 

summer and winter. The color bars represent each peak area corresponding to a 749 

specific fraction in individual particles. 750 

 751 

Figure 7. Temporal variations of total amine-containing particles, total 752 

ammonium-containing particles, and particles containing both ammonium and amine 753 

(NH4
+
-amine) during sampling period in Heshan. 754 

 755 

Figure 8. Temporal variations in the peak areas of amines, ammonium, and the sum of 756 

sulfate and nitrate in amine-containing particles during summer and winter. The 757 
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relative acidity ratio (Ra), which was calculated as the ratio of the total sulfate and 758 

nitrate peak areas to the ammonium peak area, is plotted as log(Ra).  759 
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Tables: 802 

 803 

Table 1. Marker ions chosen for the amine-containing particles 

Marker ion Alkylamine assignment 
59

(CH3)3N
+
 Trimethylamine (TMA) 

74
(C2H5)2NH2

+
 Diethylamine (DEA) 

86
(C2H5)2NCH2

+
 DEA, TEA, DPA 

101
(C2H5)3N

+
 Triethylamine (TEA) 

102
(C3H7)2NH2

+
 Dipropylamine (DPA) 

143
(C3H7)3N

+
 Tripropylamine (TPA) 

 804 

 805 

 806 

 807 

 808 

Table 2. Seasonal distributions of amine-containing particles and three major amine 

markers in summer and winter in the PRD, China. 

  Summer (18/7-1/8, 2014)   Winter (27/1-8/2, 2015) 

Particle type Count Percentage (%)
a
 

 
Count Percentage (%)

a
 

Total Amines 57452   68026  
59

(CH3)3N
+
  2581 4.5  6894 10 

74
(C2H5)2NH2

+
  51442 90  58272 86 

86
(C2H5)2NCH2

+
 3185 5.5  6119 9 

aThe percentage of each amine marker ion in total detected amine-containing particles. 

 809 

 810 

 811 

 812 

Table 3. The abundances of ammonium-, nitrate- and sulfate-containing 

amine particles in total amine-containing particles. 

Marker ions Summer Winter 
18

NH4
+
 8% 54% 

62
NO3

-
 43% 69% 

97
HSO4

-
 91% 94% 

The marker ions of 18NH4
+, 62NO3

- and 97HSO4
- were chosen to represent ammonium, nitrate and 

sulfate. 

 813 

 814 

 815 

 816 

 817 

 818 

 819 
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Figures: 820 

 821 

 822 

 823 

Figure 1. Spatial distributions of amine-containing particle counts associated with 824 

backward trajectories (48 hour) of air masses at 500m levels above the ground during 825 

the sampling period: (a) summer (from July 18 to August 1, 2014), (b) winter (from 826 

January 27 to February 8, 2015). 827 
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 829 

 830 

Figure 2. Temporal variations of relative humidity (RH), temperature (T), total 831 

amine-containing particles, and three major marker ions-containing amine particles 832 

(59
(CH3)3N

+
, 

74
(C2H5)2NH2

+
, 

86
(C2H5)2NCH2

+) in Heshan, China during sampling periods.  833 

 834 

 835 

 836 

 837 

Figure 3. Diurnal variations of amine-containing particle counts in summer and winter 838 

in Heshan. 839 
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 845 

Figure 4. Average ion mass spectra of amine-containing particles in summer and 846 

winter. The color bars represent each peak area corresponding to a specific ion in 847 

individual particles. 848 

 849 

 850 

 851 

 852 

 853 

Figure 5. Unscaled size-resolved number distributions of total amine-containing 854 

particles and amine particles containing three marker ions of 
59

(CH3)3N
+
, 855 

74
(C2H5)2NH2

+
, and 

86
(C2H5)2NCH2

+
 in summer and winter in Heshan. 856 
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 865 

 866 

 867 

Figure 6. Mass spectra of total ammonium-containing (NH4
+
-containing) particles in 868 

summer and winter. The color bars represent each peak area corresponding to a 869 

specific fraction in individual particles. 870 
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 873 

 874 

 875 

 876 

Figure 7. Temporal variations of total amine-containing particles, total 877 

ammonium-containing particles and particles containing both ammonium and amine 878 

(NH4
+
-amine) during sampling period in Heshan. 879 
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 885 

  886 

Figure 8. Temporal variations in the peak areas of amines, ammonium, and the sum of 887 

sulfate and nitrate in amine-containing particles during summer and winter. The 888 

relative acidity ratio (Ra), which was calculated as the ratio of the total sulfate and 889 

nitrate peak areas to the ammonium peak area, is plotted as log(Ra).  890 
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