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We thank the referees for reviewing this manuscript. Their comments and our responses are 11 
below.  12 
Referee comments are in blue with a gray vertical line on the left side. 13 
Our responses are in black. 14 
Edits Changes to the manuscript are shown with tracked changes in red. 15 
 16 
While preparing responses to the referees we also made a necessary improvement to the 17 
inversion which altered the flux results. Our revised manuscript reflects these changes. 18 
 19 
 20 
R1C1 - My main concern is regarding the a priori flux estimates used in this work, 21 
particularly given the acknowledged existing higher accuracy inventories. I understand 22 
that the methodology was designed to be applicable globally, but it is not clear how 23 
much the quality of the inversion suffers from this goal. 24 
 25 
How different are the CO2 fluxes using the modified ODIAC as compared to using 26 
Hestia-LA? Lauvaux et al (2016) used a different Hestia data product and tower 27 
measurements in a substantially smaller city; it isn’t obvious that the comparison holds 28 
over SoCAB with remote sensing data. 29 
We made a sensitivity test using the latest version of Hestia (V2.5). The forward model 30 
was more accurate using Hestia V2.5, and the overall flux inversion differed by less 31 
than 10%, in agreement with previous studies. 32 
 33 
Added to Sect 2.2 34 
As a sensitivity test we also derive a flux based on Hestia-LA 2.5 over the region it is available 35 
and Vulcan 3.0 is used for the rest of the area in the U.S. These were gridded to the same scale as 36 
the ODIAC. 37 
 38 
Added to Sect 4.3 39 
We note that the correlation between the forward model data and TCCON is slightly higher with 40 
Hestia than ODIAC, and there are fewer outliers that differ by a factor of 10x or more. However, 41 
the flux estimate of 110 ± 28 is similar to the posterior flux estimate using ODIAC. 42 
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 43 
 44 
 45 
R1C2 - Given a lack of information on landfills and the variability in the relationship 46 
between nightlights and emissions, is the custom tuned CH4 inventory used in this work 47 
functionally more globally scalable than existing emissions inventories? 48 
We have clarified that the CH4 inventory we made in this study is not scalable beyond a 49 
national level. 50 
 51 
A detailed CH4 inventory is also available for the SoCAB, which we do not use because it would 52 
be difficult to scale (Carranza et al., 2018). We make our own 0.01°×0.01°For the U.S. the 53 
Harvard-EPA inventory is already available at 0.1°×0.1° (Maasakkers et al., 2016), and globally 54 
the EDGAR inventory is available at 0.1°×0.1° (EC-JRC/PBL, 2009).We make our own 30 55 
arcsec × 30 arcsec methane prior using landfills, nightlights, expected total emissions, and the 56 
Harvard-Environmental Protection Agency (EPA) United States (U.S.) inventory (Maasakkers et 57 
al., 2016) shown in Fig. 1. A more detailed CH4 inventory is also available for the SoCAB, 58 
which we do not use because it would be difficult to scale globally Due to a lack of information 59 
outside the U.S. on point sources, such as landfills, our methane prior is also not scalable beyond 60 
a national level. For our methane prior we first(Carranza et al., 2018). First, we distribute 61 
emissions from landfills as point sources (available 2010–2015, 62 
https://ghgdata.epa.gov/ghgp/main.do) and use 2015 emissions for 2016. 63 
 64 
R1C3 - Additionally, this paper should include a data availability section as per the ACP 65 
data policy: https://www.atmospheric-chemistry-and-physics.net/about/data_policy.html 66 
All data used in this study are publically available. No new data were generated. The 67 
data availability section is located between the Conclusions section and Appendix (page 68 
18 of the original manuscript). 69 
 70 
R1C4 - Figure 1 & 2: The boundaries drawn on the map in blue and black should be 71 
described in the figure captions. 72 
Thanks. We’ve added the following to both figure captions: 73 
 74 
The black lines are coastlines and the geopolitical boundaries of the SoCAB. Blue lines are 75 
county borders. 76 
 77 
R1C5 - Figure 5: The grey and blue lines should be described in the caption. 78 
We’ve added the following to the figure caption: 79 
 80 
For every 5th sounding the set of backtrajectories is shown in gray. Backtrajectories originating 81 
from the AFRC site are shown in blue. Coastlines and the geopolitical boundaries of the SoCAB 82 
are shown in black. County borders are shown in blue. 83 
 84 
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 85 
R1C6 - P4 L5: Please provide more detail or a citation regarding CO emissions as 1% 86 
of CO2. 87 
We added a citation for Wunch et al., 2009. 88 
 89 
This same prior is used for CO, but total emissions are 1 % of CO2 emissions on a molar basis 90 
(0.6 % of mass) based on the results of Wunch et al. (2009). 91 
 92 
 93 
R1C7 - P5 L18: Is the assumption that the flux from vegetation is balanced based on 94 
previous literature? 95 
Estimating the net vegetation flux from the whole basin has been elusive. Due to lack of 96 
data some studies are for less than a year, or focus on a few receptor sites. There 97 
seems to be a discrepancy for the SoCAB as to whether the biosphere is a net source 98 
(Newman et al., 2016) or a net sink (Park et al., 2018). The two studies may not be 99 
completely comparable due to different time frames and techniques, but shows that 100 
reasonably determining CO2 fluxes from biospheric sources remains a challenge (Feng 101 
et al. 2016). 102 
    103 
We assume the flux from vegetation is balanced (i.e., no net change in plant biomass or soil 104 
carbon) within the basin. This choice is because of uncertainty as to whether there is a net uptake 105 
of CO2 by the biosphere in the SoCAB (Park et al., 2018) or if the excess CO2 in the atmosphere 106 
from the biosphere (Newman et al., 2016) is due to more respiration than photosynthetic uptake. 107 
We estimate the uncertainty due to the biosphere is less than ±10%. 108 
 109 
 110 
R1C8 - P13 L1 & P18 L27: Why a factor of 64? 111 
The factor of 64 for filtering was a somewhat arbitrary choice, but was originally chosen 112 
to exclude few observations. Upon reconsidering, we decided on a factor of 10 in this 113 
revision due to the possibility of a few outliers strongly affecting results. The sensitivity 114 
test in Sect. 4.3 includes changing this factor. 115 
 116 
(Sect. 4.3) 117 
We start with a threshold that is a scale from the starting factor of 64adjust from there10× (Appendix 118 
A1). 119 
 120 
(Appendix A1) 121 
We also exclude data that differ from the model by a factor of 10 or more. This factor of 10 is 122 
somewhat arbitrary and an argument could be made against using this criterion as a filter. 123 
However, a few large outliers can significantly affect inversion results (Appendix D2) so we opt 124 
to remove suspect values. A sensitivity test including different filter cutoffs for TCCON XCO2 is 125 
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described in Sect. 4.3. This leaves 2,714 After filtering 2,361 paired OCO-2 - AFRC observations 126 
remain. 127 
 128 
For TCCON observations we use the public data, which already has some static within-range 129 
filters applied. We also exclude data that differ from the model by a factor of 6410 or greater, 130 
leaving 5,0604,872 observations. 131 
 132 
 133 
R1C9 - P14 L3: Where is the 20% uncertainty from model winds discussed? If it isn’t 134 
until the appendix, consider referencing that here. 135 
Yes, the 20% is from the appendix. 136 
 137 
… and 20% from model winds (Appendix B). 138 
 139 
 140 
R1C10 - P25 L24: How was this tuning with OCO-2 observations done? 141 
The same way as for the three gases retrieved by TCCON. We’ve clarified this in the 142 
latest revision. 143 
 144 
For simplicity, Sa is chosen as a single scalar value for the linear model (Eq. E3). We selectWe 145 
tune two parameters, namely Sa values which keep the interannual variability under about 25 %,, 146 
and minimize dependence onthe threshold for determining linear independence in the prior as 147 
noted by a sensitivity test scaling the prior (Fig. 7).QR decomposition. This is also a trade-off 148 
between maximizing the degrees of freedom and r, avoiding unstable conditions, and minimizing 149 
χ2. We scan over a variety of Sa and threshold values. We use interannual variability, and 150 
dependence on the prior as noted by a sensitivity test (Fig. 7) to judge the quality. Generally as 151 
we increase the threshold fewer elements are allowed in the state vector, the dependence on the 152 
prior decreases, and the interannual range increases. As Sa increases, so does the interannual 153 
range, and the dependence on the prior decreases. We select values which keep the interannual 154 
variability under about 25%, and minimize dependence on the prior. We repeat this procedure for 155 
the three gases retrieved by TCCON, and for OCO-2 observations. Sa is tuned to 0.0701 for CO2, 156 
0.007 for CH4, 0.00207 for CO, and 0.204 for CO2 using OCO-2 observations. Generally as Sa 157 
increases the interannual range increases, but the dependence on the prior decreases. These 158 
values were selected to have the smallest dependence on the prior while keeping the interannual 159 
range within our arbitrary 25% limit. For the 40 factor inversion looser constraints are used 160 
withSa is a matrix and diagonal values of CO2: 0.7, CH4: 0.7, CO: 0.04, and CO2 (OCO-2): 7are 161 
the same as the linear inversion. Off-diagonal values between adjacent elements (e.g., years, 162 
months) are one-third of those along the diagonal in the 40 factor inversion, which is a somewhat 163 
arbitrary choice based on our a priori guess of how strongly adjacent elements are related. 164 
 165 
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 166 
R1C11 - P31 L36: Reference formatted incorrectly 167 
Fixed, thanks. 168 
 169 
 170 
 171 
R2C1 - I found the paper to be very informative and thorough, and overall correct as far 172 
as I can judge. It does get buried in detail and side alleys and repetitions that make it 173 
difficult to read. The authors might consider cutting back unnecessary parts. 174 
We have reread over the paper with fresh eyes and have tried to better group similar 175 
topics and eliminate repetitions. Parts not essential to the central story, but that are 176 
required for reproducibility are left in the Appendices. 177 
 178 
 179 
R2C2 - Also, the advertised premise of the paper is to demonstrate a simple remote 180 
sensing method that can be used for estimating urban fluxes worldwide, which a reader 181 
might expect to mean using satellite observations, but in fact much of the analysis rests 182 
on the TCCON sites (all of it for methane and CO), and LA is of course an unusually 183 
large city which makes the application easier. TCCON is of course “remote sensing”, 184 
but the title and conclusions may be a little misleading. 185 
We modified the advertised premise throughout to lessons learned that will be important 186 
for future studies estimating urban fluxes worldwide using satellite observations.  187 
The choice of “remote sensing” in the title was to encompass both satellite and TCCON. 188 
However, to try to reduce unintentionally misleading readers we have modified the title 189 
to: 190 
 191 
Southern California Megacity CO2, CH4, and CO flux estimates using ground and space-based 192 
remote sensing and a Lagrangian model 193 
 194 
 195 
 196 
R2C3 - Introduction: not obvious why one needs top-down estimate of urban fluxes, 197 
particularly for CO2 where bottom-up estimates (it seems to me) are likely more reliable. 198 
It would be good to give some justification of the need for top-down approaches. 199 
Likely the greatest confidence in emission estimates will be achieved when both bottom-200 
up and top-down approaches agree. Inventories for CO2 are probably much better than 201 
say CH4, but there still can be large discrepancies between different inventories (though 202 
these might not all be considered “bottom-up”). We’ve added the following paragraph to 203 
the introduction:  204 
 205 
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Bottom-up inventories (e.g., of CO2) can be derived by accounting for various emission activities 206 
such as transportation, electricity generation, industry, and heating. Bottom-up inventories have 207 
some inherent uncertainty due to imperfect emission models which are largely based on 208 
extrapolation of controlled studies and rely on assumptions of fuel consumption, and from 209 
disagreements in downscaling methods (Duren and Miller, 2012; Sargent et al., 2018). 210 
Uncertainties in how emissions are calculated and in the underlying activity data used to 211 
construct inventories makes them susceptible to systematic biases by nature (Oda et al, 2017). 212 
On the national level, 2σ uncertainties range from 4.0-17.5% for the 10 largest emitters (Oda et 213 
al, 2018). Uncertainties on the grid cell level are unique to the disaggregation method, but may 214 
be in the range of 4—190% (2σ) (Andres et al., 2016). Top-down (TD) emission estimates 215 
methods rely on measurements of gases along with models of atmospheric transport, which have 216 
their own inherent uncertainties. Measures of emissions, and emission changes are generally 217 
more reliable when TD and BU methods are in agreement (Duren and Miller, 2012). 218 
 219 
 220 
 221 
R2C4 - Introduction: not clear what the “100+ cities” refers to. 222 
Here “100+ cities” was our way of being quantitative, but it seems to disrupt the flow.  223 
 224 
but are too sparse to track emissions from 100+more than a few cities 225 
 226 
are difficult to scale-up to many (100+)more than a few dozen areas for long-term observations 227 
 228 
 229 
R2C5 - Section 2.2: I presume that seasonality of the CO2 flux is neglected since I saw 230 
no mention of it. It would be worth making the point that the biospheric term is small in 231 
LA, because I wondered about it. Is there also no seasonal pattern in fuel usage? 232 
The seasonality in the CO2 prior flux is driven by seasonality in ODAIC. We’ve added 233 
the following: 234 
 235 
ODIAC has a monthly variation and compared to the annual average, seasonal flux rates are 1.06 236 
(DJF), 0.97 (MAM), 1.00 (JJA), and 0.97 (SON). 237 
 238 
See our response to R1C7 on the biospheric flux term in LA. 239 
 240 
R2C6 - Section 2.4: if the linear inverse model is the way to go why even mention the 241 
other two models? Why detail them in the Appendix? 242 
Mostly because we were curious as to how they would compare in the end. We think 243 
this may be of interest to others in the community so we opted to leave it in. 244 
 245 
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 246 
R2C7 - Section 4.1: I didn’t understand the sentence on “Blooming effects” 247 
We have revised this part and added a reference. 248 
 249 
ODIAC could be low from incorrectly distributing too much of the emissions to rural areas due 250 
to . Bblooming effects (Small et al., 2005). (exaggerating the extent of cites Blooming effects 251 
refer to the tendency for nightlights to exaggerate settlement areas compared with actual extent 252 
due to coarse gridded spatial resolution and indirect or non-electrical lights) in the underlying 253 
nightlight data fields in ODAIC could contribute to an incorrect distribution.. 254 
 255 
 256 



:

Southern California Megacity CO2, CH4, and CO flux estimates
using

::::::::::
ground

:::::::
and

::::::::::::::::::
space-based

:
remote sensing and a Lagrangian

model
Jacob K. Hedelius1,2, Junjie Liu3,1, Tomohiro Oda4,5, Shamil Maksyutov6, Coleen M. Roehl1, Laura
T. Iraci7, James R. Podolske7, Patrick W. Hillyard8, Jianming Liang9, Kevin R. Gurney9,10,
Debra Wunch2, and Paul O. Wennberg1,11

1Division of Geology and Planetary Science, California Institute of Technology, Pasadena, California, USA
2University of Toronto, Department of Physics, Toronto, Ontario, Canada
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
4Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
5Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD, USA
6Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
7NASA Ames Research Center, Mountain View, CA, USA
8Bay Area Environmental Research Institute, Petaluma, CA
9School of Life Science, Arizona State University, Tempe, Arizona, USA
10School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
11Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA

Correspondence: Hedelius, J. K. (jacob.hedelius@utoronto.ca)

Abstract. We estimate the overall CO2, CH4, and CO flux from the South Coast Air Basin using an inversion that couples To-

tal Carbon Column Observing Network (TCCON) and Orbiting Carbon Observatory-2 (OCO-2) observations, with the Hybrid

Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and the Open-source Data Inventory for Anthropogenic

CO2 (ODIAC). Using TCCON data we estimate the direct net CO2 flux from the SoCAB to be 139
:::
104± 35

::
26 Tg CO2 yr−1 for5

the study period of July 2013–August 2016. We obtain a slightly lower estimate of 118
:::::
higher

:::::::
estimate

::
of

:::
120± 29

::
30 Tg CO2 yr−1

using OCO-2 data. These CO2 emission estimates are in general agreement with
::
on

:::
the

:::
low

::::
end

::
of

:
previous work. Our net

CH4 (325
:::
360± 81

::
90 Gg CH4 yr−1) flux estimate is slightly lower than

::::
also

::
in

:::::::::
agreement

::::
with

:
central values from previous

top-down studies going back to 2010 (342–440 Gg CH4 yr−1). CO emissions are estimated at 555
:::
487± 136

:::
122 Gg CO yr−1,

much lower than previous top-down estimates (1440 Gg CO yr−1). Given the decreasing emissions of CO, this finding is not10

unexpected. We perform sensitivity tests to estimate how much errors in the prior, errors in the covariance, different inversions

schemes or a coarser dynamical model influence the emission estimates. Overall, the uncertainty is estimated to be 25 %, with

the largest contribution from the dynamical model. The methods described are scalable and can be used to estimate direct net

CO2 fluxes from other urban regions
:::::::
Lessons

::::::
learned

::::
here

::::
may

::::
help

::
in

:::::
future

:::::::::
inversions

::
of

:::::::
satellite

::::
data

::::
over

:::::
urban

::::
areas.

1



1 Introduction

About 43 % of global anthropogenic carbon dioxide (CO2) emissions come directly from urban areas, and urban final energy

use accounts for about 76 % of CO2 emissions (Seto and Dhakal, 2014). Associations of cities that recognize their significant

emissions of CO2 to the atmosphere—such as the C40 Cities Climate Leadership Group (C40)—seek to reduce their green-

house gas (GHG) emissions and develop local resilience to changing climate. There is a need to track long-term anthropogenic5

GHG emissions from urban areas to aid urban planners and ensure commitments are met.

Tracking emissions from a top-down (TD)
:::::::::
Bottom-up

:::::::::
inventories

:::::
(e.g.,

::
of

:::::
CO2)

:::
can

:::
be

::::::
derived

:::
by

:::::::::
accounting

:::
for

:::::::
various

:::::::
emission

::::::::
activities

:::::
such

::
as

:::::::::::::
transportation,

::::::::
electricity

::::::::::
generation,

::::::::
industry,

::::
and

:::::::
heating.

:::::::::
Bottom-up

::::::::::
inventories

:::::
have

:::::
some

:::::::
inherent

:::::::::
uncertainty

:::
due

::
to

::::::::
imperfect

::::::::
emission

::::::
models

:::::
which

:::
are

::::::
largely

:::::
based

::
on

:::::::::::
extrapolation

::
of

:::::::::
controlled

::::::
studies

:::
and

:::
rely

:::
on

::::::::::
assumptions

::
of

:::
fuel

::::::::::::
consumption,

:::
and

::::
from

::::::::::::
disagreements

::
in

::::::::::
downscaling

::::::::
methods

:::::::::::::::::::::::::::::::::::::
(Duren and Miller, 2012; Sargent et al., 2018).10

:::::::::::
Uncertainties

::
in

::::
how

:::::::::
emissions

:::
are

::::::::
calculated

::::
and

::
in

:::
the

::::::::::
underlying

::::::
activity

::::
data

:::::
used

::
to

::::::::
construct

:::::::::
inventories

::::::
makes

:::::
them

:::::::::
susceptible

::
to

:::::::::
systematic

:::::
biases

:::
by

:::::
nature

:::::::::::::::
(Oda et al., 2017).

:::
On

:::
the

:::::::
national

:::::
level,

::
2σ

:::::::::::
uncertainties

:::::
range

::::
from

::::::::::
4.0–17.5 %

:::
for

::
the

:::
10

::::::
largest

:::::::
emitters

:::::::::::::::
(Oda et al., 2018).

:::::::::::
Uncertainties

::
on

:::
the

::::
grid

:::
cell

:::::
level

:::
are

::::::
unique

::
to

:::
the

::::::::::::
disaggregation

:::::::
method,

:::
but

::::
may

::
be

::
in

:::
the

:::::
range

::
of

::::::::
4–190 %

::::
(2σ)

::::::::::::::::::
(Andres et al., 2016).

::::::::
Top-down

:::::
(TD)

::::::::
emission

::::::::
estimates

:::::::
methods

::::
rely

::
on

::::::::::::
measurements

:::
of

::::
gases

:::::
along

:::::
with

::::::
models

::
of

:::::::::::
atmospheric

::::::::
transport,

:::::
which

:::::
have

::::
their

::::
own

:::::::
inherent

::::::::::::
uncertainties.

::::::::
Measures

::
of

:::::::::
emissions,

::::
and15

:::::::
emission

:::::::
changes

:::
are

::::::::
generally

:::::
more

::::::
reliable

:::::
when

:::
TD

:::
and

::::
BU

:::::::
methods

:::
are

::
in

:::::::::
agreement

:::::::::::::::::::::
(Duren and Miller, 2012).

:

:::::::
Tracking

:::::::::
emissions

::::
from

::
a

:::
TD perspective requires observations. Various networks, such as the Total Carbon Column Ob-

serving Network (TCCON), and the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Lab-

oratory (ESRL) in situ CO2 network can aid in long-term measurements, but are too sparse to track emissions from 100+
::::
more

:::
than

::
a
:::
few cities. Some urban areas have ground-based networks (e.g., Lauvaux et al., 2016; Shusterman et al., 2016; Verhulst et al., 2017; Mitchell et al., 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Lauvaux et al., 2016; Shusterman et al., 2016; Verhulst et al., 2017; Mitchell et al., 2018; Sargent et al., 2018).20

Significant progress has been made in minimizing the cost, deployment time, and data delivery from these networks. However,

they still require a significant number of personnel hours and are difficult to scale-up to many (100+)
::::
more

::::
than

::
a

:::
few

:::::
dozen

:
ar-

eas for long-term observations. Urban observation networks can provide finer spatial and temporal details on emission sources,

but space-based observations are likely the only way to track emissions from a large number of
::
TD

:::
for

:::::
more

::::
than

:
a
:::
few

::::::
dozen

cities.25

Within the past 10 years, 2 satellites have been shown to have high precision (better than 1 ppm) small footprint (< 100 km2)

CO2 observing capabilities, including the Greenhouse Gases Observing Satellite (GOSAT, in orbit 2009) and the Orbiting

Carbon Observatory-2 (OCO-2, in orbit 2014). Several other satellites are planned or are already in orbit with this same

potential. Combined, OCO-2 and GOSAT can cover about 1 % of the Earth’s surface every 3 days, and though this is only

a small fraction, it is unprecedented. Other missions such as TanSat (in orbit, 2016), GAS onboard FY-3D (in orbit, 2017),30

GOSAT-2 (expected, 2018), and GeoCARB (expected, 2022
::::
2023) may further bolster coverage. Space-based observations of

methane (CH4) have been made from GOSAT and the TROPOspheric Monitoring Instrument (TROPOMI, in orbit 2017), and

will be made from the planned GOSAT-2 and GeoCARB missions. Carbon monoxide (CO) is measured using Measurements of

Pollutants in the Troposphere (MOPITT, in orbit 1999), TROPOMI, and will be from GOSAT-2. There is a need to assimilate

2



these data in
::::::::
presently

:
a
::::
lack

:::
of

::::::
studies

::::
that

::::
have

::::::::::
assimilated

:::::::
satellite

::::
trace

::::
gas

:::::::::
abundance

::::
data

::::
into

:
inversion schemes to

determine urban fluxes, and long-term trends. Ideally, such a scheme will be efficient enough to scale up and to incorporate

future datasets.
::::::::
emissions.

We test trajectory-based inversion schemes to see if they can reproduce known emissions (from inventories and previous

studies) from the California South Coast Air Basin (SoCAB). Our goal is not to apportion spatially, but rather to come up with5

a single number for the total flux, and an estimate of uncertainty. Fluxes from this urban area (pop. ∼16.3 million) have been

studied extensively, and it provides a test bed to evaluate methods. We discuss the components used to build our inversion in

Sect. 2. Typical urban enhancements are described in Sect. 3. Fluxes of CO2, CO, and CH4 using TCCON data, and of CO2

using OCO-2 data are discussed in Sect. 4 along with sources of uncertainty. In Sect. 5 we discuss emission ratios, which can

also be used to validate our
:::::::
evaluate

:::
our

::::
flux results. We conclude by summarizing uncertainty, mentioning expansions, and10

areas of improvement in Sect. 6.

2 Data sources and methods

2.1 Column-averaged
::::::::::::
Observations

::
of

:::::::::::::::
column-averaged dry-air mole fraction observations

:::::::
fractions

We use
::::::::::
observations

:::
of column-averaged dry-air mole fraction observations (denoted Xgas) to tie model abundances to fluxes.

Column-averages are calculated by dividing the retrieved amount of the gas of interest (in molecules cm−2) by the retrieved15

total column of dry-air (in molecules cm−2). Xgas values are less sensitive to changes in surface pressure and water vapor than

total column amounts in units of molecules cm−2 (Wunch et al., 2015).

Data are obtained from the TCCON and OCO-2. We use TCCON data from the California Institute of Technology (Caltech)

site in Pasadena, California (Wennberg et al., 2014), as well as
:::
and

::::
from

:
the NASA Armstrong Flight Research Center (AFRC)

site near Lancaster, California (Iraci et al., 2014). Values of XCO2 , XCO, and XCH4 were generated using the operational20

GGG2014 algorithm (Wunch et al., 2015). The Caltech site (34.136◦ N, 118.127◦ W, 240 m a.s.l.) is located in an urban

environment within the SoCAB. As the name implies, the SoCAB is a basin surrounded by mountains, except towards the

southwest which boarders the Pacific Ocean. AFRC (34.960◦ N, 117.881◦ W, 700 m a.s.l.) is located outside the basin∼100 km

to the north in a much more sparsely populated area. Because of the lower population density, the AFRC is often considered

a ‘background’ site. However, depending on airflow patterns recent emissions from the SoCAB may be observed at the AFRC25

so we use the term ‘background’ loosely to indicate where lower concentrations are typically observed. Coincident data from

both sites are available from July 2013–August 2016 after which the AFRC instrument was relocated. In total, there are 5,355

paired hourly averaged observations on 783 days.

OCO-2 data are available starting September 2014 when the instrument began its nominal operational mission (OCO-2

Science Team et al., 2017). Here, we use XCO2
data generated using the NASA Atmospheric CO2 Observations from Space30

(ACOS) version 8r algorithm (Crisp et al., 2012; O’Dell et al., 2012)
::::::::::::::::
(O’Dell et al., 2018). We also do a partial analysis on V7r

data for comparison with past studies that used these data with a focus on the SoCAB (Hedelius et al., 2017a; Schwandner

et al., 2017). Because OCO-2 is in a sun-synchronous orbit with an equatorial crossing time of around 1 pm local solar time, all

3



observations of the SoCAB are made
:::
are in the early afternoon. OCO-2 has 8 longitudinal pixels, with a footprint of ∼3 km2

each. To reduce over-weighting target mode observations, OCO-2 data are gridded to 0.01◦×0.01◦. There
:::::
Before

:::::::
filtering are

6,098 pre-averaged OCO-2 observations on 29 different overpass days when the AFRC TCCON site also collected background

observationsbefore filtering.

In Appendix A we describe filtering, background subtraction, boundary conditions, and our accounting for averaging kernels.5

In short, we determine enhancements of various gases (∆Xgas) by finding the difference between observations within the basin

(either the Caltech TCCON, or OCO-2) compared with the AFRC TCCON site.

2.2 A priori flux estimates

Our flux estimate involves scaling the a priori spatial inventory, or sub-regions of the prior up or down to reduce the measured−model

mismatch. More important than the total prior absolute flux is the distribution of sources. Hestia-LA v2.0 is likely the most10

accurate spatiotemporal inventory for the SoCAB, however it is not available globally. EDGAR (Emissions database for global

atmospheric research, EC-JRC/PBL (2009)) and FFDAS v2
:::
V2.0 (Fossil Fuel Data Assimilation System, Asefi-Najafabady

et al. (2014)) are available globally at a 0.1◦ resolution. We use the year 2016 version of the Open-source Data Inventory

for Anthropogenic CO2 (ODIAC2016) which is available globally at a resolution of 30 arcseconds from 2000–2015 (Oda

and Maksyutov, 2011, 2015; Oda et al., 2018). We also compare total SoCAB emissions from the 2015 version of ODIAC15

(ODIAC2015) which is based on a projection of the Carbon Dioxide Information Analysis Center (CDIAC) country total

emissions. For the Indianapolis region, Lauvaux et al. (2016) noted little difference in the aggregate inversion flux when using

ODIAC compared with Hestia
::::::
ODIAC

:::
has

::
a
:::::::
monthly

::::::::
variation

:::
and

:::::::::
compared

::
to

:::
the

::::::
annual

:::::::
average,

::::::::
seasonal

::::
flux

:::::
ratios

:::
are

::::
1.06

:::::
(DJF),

::::
0.97

:::::::
(MAM),

::::
1.00

:::::
(JJA),

::::
and

::::
0.97

::::::
(SON). We assume that 2015 emissions are identical to those in 2016. A generic

temporal hourly scaling factor product (TIMES - Temporal Improvements for Modeling Emissions by Scaling) available at a20

0.25◦× 0.25◦ can be applied to spatial inventories such as ODIAC to improve temporal emissions (Nassar et al., 2013). How-

ever, TIMES has a single peak for mid-day emissions, which is inconsistent with morning and afternoon rush hour periods in

the SoCAB. We instead use the Hestia-LA v1.0 weekly profile reported by Hedelius et al., (2017a, Fig. 2 therein) which has

both morning and afternoon rush hour peaks. We downscale the ODIAC to a 0.01◦×0.01◦ grid

:::
We

:::
use

::::::
ODIAC

:
over the domain 121.5◦W–114.5◦W and 30.5◦N–37.5◦N. This same prior is used for CO, but total emissions25

are 1 % of CO2 emissions on a molar basis (0.6 % of mass)
:::::
based

::
on

:::
the

::::::
results

:::
of

::::::::::::::::
Wunch et al. (2009). Figure 1 shows the

ODIAC2016 prior for one month.
::::::::
Hestia-LA

:::::
V2.5

::
is

::::::::
expected

::
to

::
be

:::
an

::::
even

:::::
more

:::::::
accurate

:::::::::::::
spatiotemporal

::::::::
inventory

:::
for

:::
the

::::::
SoCAB

:::::::::::::::::::::::::::::::::::
(Gurney et al., 2012; Gurney, 2018, : )The

:::::
Hestia

:::::
fossil

::::
fuel

::::
CO2:::::::::

emissions
::::
data

::::::
product

:::
for

:::
the

::::
Los

:::::::
Angeles

::::::
Basin,

:::::::::::::::::::::::::::::::::
submitted to: Earth System Science Data

:
.
::
As

::
a
:::::::::
sensitivity

:::
test

:::
we

:::
also

::::::
derive

:
a
::::
flux

:::::
based

:::
on

::::::::
Hestia-LA

::::
2.5

::::
over

::
the

::::::
region

::
it

:
is
::::::::
available

:::
and

::::::
Vulcan

:::
3.0

::
is
::::
used

:::
for

:::
the

::::
rest

::
of

:::
the

::::
area

::
in

:::
the

::::
U.S.

:::::
These

::::
were

:::::::
gridded

::
to

:::
the

:::::
same

::::
scale

::
as

:::
the

:::::::
ODIAC.

:
30

:
A
::::::::

detailed
::::
CH4::::::::

inventory
::

is
::::

also
::::::::

available
:::

for
::::

the
:::::::
SoCAB,

::::::
which

:::
we

:::
do

:::
not

:::
use

:::::::
because

::
it
::::::
would

:::
be

:::::::
difficult

::
to

:::::
scale

::::::::::::::::::
(Carranza et al., 2018).

::::
For

:::
the

::::
U.S.

:::
the

:::::::::::
Harvard-EPA

::::::::
inventory

::
is
:::::::
already

::::::::
available

::
at

:::::::::
0.1◦× 0.1◦

::::::::::::::::::::::
(Maasakkers et al., 2016),

:::
and

:::::::
globally

:::
the

:::::::
EDGAR

::::::::
inventory

::
is

:::::::
available

::
at

:::::::::
0.1◦× 0.1◦

:::::::::::::::::::
(EC-JRC/PBL, 2009). We make our own 0.01◦× 0.01◦

::::::::::::::::
30 arcsec×30 arcsec

methane prior using landfills, nightlights, expected total emissions, and the Harvard-Environmental Protection Agency (EPA)
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Figure 1. A priori flux maps for CO2 (left) and CH4 (right) for select months. The same spatiotemporal prior for CO2 (ODIAC2016) was

used for CO, but scaled to 1 % on a per mole basis. The ODIAC product was downscaled to 0.01◦ resolution. The methane prior was created

based on point sources, total emissions, and the population distribution.
:::
The

::::
black

::::
lines

:::
are

:::::::
coastlines

:::
and

:::
the

:::::::::
geopolitical

::::::::
boundaries

::
of

:::
the

::::::
SoCAB.

::::
Blue

::::
lines

::
are

::::::
county

::::::
borders.

United States (U.S. ) inventory (Maasakkers et al., 2016) shown in Fig. 1. A more detailed CH4 inventory is also available for

the SoCAB, which we do not use because it would be difficult to scale globally (Carranza et al., 2018). First, we
:::
Due

:::
to

:
a
::::
lack

::
of

::::::::::
information

::::::
outside

:::
the

::::
U.S.

:::
on

:::::
point

:::::::
sources,

::::
such

:::
as

:::::::
landfills,

::::
our

:::::::
methane

::::
prior

::
is
::::

also
::::
not

:::::::
scalable

::::::
beyond

::
a

:::::::
national

::::
level.

:

:::
For

:::
our

::::::::
methane

::::
prior

:::
we

::::
first

:
distribute emissions from landfills as point sources (available 2010–2015, https://ghgdata.5

epa.gov/ghgp/main.do) and use 2015 emissions for 2016. Emissions from the Puente Hills landfill were doubled because the

EPA estimate (average 13.6 Gg CH4 yr−1) is low compared to previous estimates of 34 Gg CH4 yr−1 (Peischl et al., 2013).

After doubling Puente Hills emissions, EPA total SoCAB (144 Gg CH4 yr−1) and Olinda Alpha (13.5 Gg CH4 yr−1) landfill

emissions are similar enough to other studies (164 Gg CH4 yr−1 and 12.5 Gg CH4 yr−1 respectively, Peischl et al., 2013) that

we do not double emissions from other landfills in the SoCAB. Chino dairy emissions were added in as a ∼ 0.1◦×0.1◦ source10

(Chen et al., 2016; Viatte et al., 2017). Outside of the SoCAB CH4 manure and enteric fermentation were added from the

0.1◦× 0.1◦ Harvard-EPA inventory (Maasakkers et al., 2016). SoCAB emissions are assumed to sum to 400 Gg CH4 yr−1

::

−1
:
based on the work of Wunch et al. (2016), and the rest of the emissions were distributed based on population which was

assumed to correspond with the January 2017 Suomi NPP nightlights (15 arcseconds). An average monthly trend was included

based on results of Wong et al. (2016), and emissions were assumed to be constant on a monthly timescale. Because the Aliso15

5
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Canyon leak effectively doubled the SoCAB CH4 emissions for its duration from 23 October 2015 to 11 February 2016 (Conley

et al., 2016), it was also added as a point source.

We use various publicly available statistics to get a sense of annual CO2 emissions from the SoCAB. Literature estimates

range from 99 Tg CO2 yr−1 (Vulcan, Fischer et al., 2017) to 211 Tg CO2 yr−1 (EDGAR v4.0, as reported by Wunch et al., 2009)

:::::::::::::::::::::::::::::::::::::::::
(EDGAR V4.0, as reported by Wunch et al., 2009). Table 1 lists statistics for the SoCAB. We assume the non-residential5

natural gas (NG) use is for industry or power accounted for in the EPA inventory. Because most of the food consumed in the

SoCAB is grown outside the basin, such as in the Midwestern U.S. and Central Valley (CV), there is a CO2 return flux to the

croplands from both human respiration and food waste. In the U.S. 60 million metric tonnes (MMT) of food are lost annaully

at the retail and consumer levels compared with 129 MMT consumed (Dou et al., 2016), roughly one-third of all food calories

(not counting inedible food related biomass). Presumably, most food waste decomposition would be accounted for in EPA10

landfill emissions. However, CO2 emissions from food waste could be underestimated if food waste is composted, if there

were unaccounted for methanotrophs, or if aerobic respiration is significantly underestimated (e.g., from rapid decomposition

while still exposed to oxygen) which would decrease the CH4:CO2 emission ratio commonly assumed to be unity for managed

landfills on a per mole basis (RTI, 2010). Thus, we add 30 % to human respiration emissions of 917 g CO2 d−1 person−1

(Prairie and Duarte, 2007) for food waste losses. We assume the flux from vegetation is balanced (i.e., no net change in plant15

biomass or soil carbon) within the basin.
:::
This

::::::
choice

::
is

::::::
because

:::
of

:::::::::
uncertainty

::
as

::
to

:::::::
whether

::::
there

::
is
::
a

::
net

::::::
uptake

::
of

::::
CO2:::

by
:::
the

::::::::
biosphere

::
in

:::
the

::::::
SoCAB

:::::::::::::::::
(Park et al., 2018) or

::
if

:::
the

:::::
excess

:::::
CO2 ::

in
::
the

::::::::::
atmosphere

::::
from

:::
the

:::::::::
biosphere

::::::::::::::::::::
(Newman et al., 2016) is

:::
due

::
to

::::
more

:::::::::
respiration

::::
than

:::::::::::::
photosynthetic

::::::
uptake.

:::
We

:::::::
estimate

:::
the

:::::::::
uncertainty

::::
due

::
to

:::
the

::::::::
biosphere

::
is

:::
less

::::
than

::::::
±10 %.

:
Based

on these various statistics we estimate a bottom-up net flux on the order of 110 Tg CO2 yr−1 from the SoCAB.

2.3 Dynamical models20

A dynamical model is needed in conjunction with the a priori flux estimates to generate forward model Xgas enhancements. This

may be as complex as a custom high-resolution Weather Research and Forecasting (WRF) model (e.g., Lauvaux et al., 2016) or

as simple as an average mixed layer wind velocity (e.g., Chen et al., 2016). Our model uses Lagrangian trajectories driven by

existing, archived forecast or reanalysis datasets.

An advantage of archived model data is there is no need to run an Eulerian model first, and they are more accessible to a25

broader community. However, taking existing results without model evaluation may propagate hidden errors and biases which

could influence flux results. Archived data usually have coarser spatiotemporal resolutions than custom models, and cover

larger domains than the area of interest. Custom runs allow models to be parameterized differently and nudged to reduce the

measured−model mismatch for the regions of interest.

We use the North American Mesoscale Forecast System (NAM) at 12 km resolution (3 hr temporal) from the NOAA30

data archive as the primary model source. NAM is run with a non-hydrostatic version of the WRF at its core with a Mel-

lor–Yamada–Janjić planetary boundary layer (PBL) scheme (Coniglio et al., 2013). Estimates of model error are described in

Appendix B. Though NAM data are only available over North America, other archived models are available at lower resolu-

tion with global coverage (e.g., the Global Data Assimilation System (GDAS) 0.5 ◦, 3 hr product). The NOAA ESRL recently

6



Table 1. Statistics for the SoCAB

Description Value Description Value

Population 16.3 million Motor gasolined,e 6.8 B gal yr−1

Population (of CA) 42 % 60 Tg CO2 yr−1

Area 17,100 km2 Diesel fueld,e 1.3 B gal yr−1

Direct U.S. GHG 2 % 13 Tg CO2 yr−1

Direct global GHG 0.25 % Human respiration + food wastef 8 Tg CO2 yr−1

Citiesa 162 Natural gas total (residential)g,h 430 (190) TBTU

Vehicle miles (VM)b 140 B yr−1 23 (10) Tg CO2 yr−1

Passenger VM emissionsc,d 55 Tg CO2 yr−1 EPA industry/power/wastei 20.5 Tg CO2 yr−1

Truck VM emissionsc,d 12 Tg CO2 yr−1 Air traffic est.i 0.5 Tg CO2 yr−1

Cargo ships est.i 2 Tg CO2 yr−1

Most of these values are approximations. ahttp://www.aqmd.gov/home/about/jurisdiction
bhttp://www.dot.ca.gov/hq/tsip/hpms/datalibrary.php cAssuming 95 % of miles light duty vehicles with 21.5 mile per gallon (MPG) fuel

efficiency, and 5 % trucks with 5.8 MPG (https://www.fhwa.dot.gov/policyinformation/statistics/2013/, VM-1) dVehicle miles and fuel

emissions are independent estimates. ehttp://www.cdtfa.ca.gov/taxes-and-fees/spftrpts.htm fBased on emissions of

1.3×917 g CO2 d−1 person−1 (Prairie and Duarte, 2007) ghttp://www.ecdms.energy.ca.gov/gasbycounty.aspx
hhttps://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf iEmissions within or near geographical SoCAB

boundaries only

began publicly releasing 3 km, 1 hr archived data from the High Resolution Rapid Refresh (HRRR) model that covers the U.S.

(Benjamin et al., 2016). This product holds the potential to improve flux estimates at smaller scales.

We use HYSPLIT-4 (Hybrid Single Particle Lagrangian Integrated Trajectory-4; Stein et al., 2015) with the 3 archived

NOAA data products described above. Our base method is to use mean 48 hr back trajectories with NAM 12 km for the

lowest 20 % of the atmosphere, which we assume is the only part of the atmosphere enhanced with local emissions at the5

measurement site. Trajectories are equally spaced in pressure every 0.3 % of the column. By comparison, the GDAS model

takes 0.71±0.18 (1σ) times as long to run, and the HRRR model takes 33.3±7.1 (1σ) times as long. Because HRRR takes

substantially longer, we only run it for a subset of months—July, October 2015, and January, April 2016. Other studies (e.g.,

Janardanan et al., 2016; Fischer et al., 2017) used multiple particles released at each level. We assume that over the multi-

year time series the ensemble of mean trajectories is, on average, representative of the upwind influences on the receptor sites10

without the additional turbulence term.

Figure 2 shows back trajectories for one layer and 2 different times that end at the observation sites
:
at

::::::
14:00

:::::::
(UTC-7).

Trajectories from multiple vertical levels are combined to determine residence times or footprints as described in Appendix C.

HYSPLIT shows 3
::::
There

:::
are

:::::
three major origins for air at the Caltech site. The primary source is from over the ocean and over

7
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Figure 2. HYSPLIT 400 m a.g.l. back trajectories for NAM 12 km for 2015. For each day trajectories are shown ending at the 2 different

TCCON receptor sites at 14:00 (UTC-7). Magenta trajectories end at Caltech. Cyan trajectories end at AFRC.
::

The
:::::
black

::::
lines

::
are

::::::::
coastlines

:::
and

::
the

:::::::::
geopolitical

:::::::::
boundaries

:
of
:::

the
:::::::
SoCAB.

:::
Blue

::::
lines

:::
are

:::::
county

:::::::
borders.

downtown Los Angeles (southwest). The second major source is from the Mojave desert (northeast), and the third source is

from the Central Valley (northwest, see Fig. E1).

:::::
Others

:::::::::
interested

::
in

::::::::::
undertaking

:::::::
similar

::::::
studies

::::
may

::::
also

::::::::
consider

:::::
using

:::
the

:::::::
recently

:::::::::
developed

::::::::
X-STILT

::::::::::::
(X-Stochastic

:::::::::::
Time-Inverted

::::::::::
Lagrangian

::::::::
Transport

::::::
model)

::
to
::::::
obtain

::::::::
footprints

:::
for

:::::::
column

::::::::::
observations

:::::::::::::::
(Wu et al., 2018).

2.4 Inverse methods for comparing measured to model data5

Different schemes can be applied to reduce the measured−model mismatch. One of the simplest is to find the ratio between

the average enhancements in the observations compared with the forward model and then to scale the prior based on this ratio.

Bayesian inversions are more complex, but can also improve information on the spatial distribution and intensity of fluxes

(e.g., Turner et al., 2016; Lauvaux et al., 2016); they can be solved by analytical or adjoint methods (Rodgers, 2000; Kopacz

et al., 2009). Different cost functions can be used, which might change the results. Here we test 3
::
and

::::::::
compare

::::
three

:
different10

methods. The first is a Kalman filter (described in Appendix D) which is computationally cheap, but has only one degree of

freedom. For scaling retrievals, using too few degrees of freedom can cause the results to be heavily weighted by the largest

8



model results relative to the observations (Appendix D2). We also use Bayesian inversions based on the methods of Rodgers

(2000) (described in Appendix E). One Bayesian inversion is based on a non-linear forward model with 40 different scaling

factors (Eq. E2), and the other is a linear forward model with up to nearly 35,000 scaling factors (Eq. E3), though only a

fraction (< 1000) of these are used. Because of potential bias in the first two methods, we focus on the linear forward model.

Uncertainty estimates are stated for the linear forward model while disregarding the other methods.5

2.5 Summary: Data sources and methods

In summary, we have 4 sets of observations of Xgas differences: Caltech TCCON − AFRC TCCON (CO2, CH4, and CO),

and OCO-2 − AFRC TCCON (CO2). We use one gridded spatiotemporal inventory for CO2 and CO (ODIAC2016, with a

weekly pattern for hourly emissions), and one gridded spatiotemporal inventory for CH4 (Sect. 2.2). HYSPLIT is run with

three dynamical models for the Caltech TCCON − AFRC TCCON differences (GDAS 0.5◦, NAM 12 km, and HRRR 3km for10

a subset), and is run with NAM 12 km for the OCO-2 − AFRC TCCON differences. Three different inversion techniques are

used including a Bayesian inversion with a linear forward model, a Bayesian inversion with a non-linear forward model, and

a Kalman filter. Unless specified, values reported are from the Caltech TCCON − AFRC TCCON difference with the NAM

12 km model and the Bayesian inversion with the linear forward model.

3 Typical Xgas enhancements15

Several previous studies have discussed the SoCAB XCO2 , XCH4 , and XCO enhancements from local anthropogenic activity

(Wunch et al., 2009; Kort et al., 2012; Janardanan et al., 2016; Wunch et al., 2016; Hedelius et al., 2017a; Schwandner et al.,

2017). There have also been several studies which have discussed enhancements noted from the CLARS (California Laboratory

for Atmospheric Remote Sensing). CLARS has a viewing geometry that is more sensitive to the mixing layer than TCCON

and nadir-viewing satellites, which leads to larger typical enhancements in CO2 and CH4 (Wong et al., 2015, 2016). For20

comparability we exclude enhancements from CLARS and in situ observations (e.g., Verhulst et al., 2017) in this section.

Kort et al. (2012) noted that observing changes in typical Xgas enhancements from space-borne
:::::::::
space-based

:
instruments can

provide a first order estimate of how local emissions have changed year-to-year
::::::
without

:::
the

:::::
need

:::
for

:
a
::::

full
::::::::
inversion. This

requires similar year-to-year ventilation patterns, and sufficiently large and representative sample sizes which is becoming

less of an issue as more space-based observations become available. Changes in Xgas enhancements can provide a first-order25

estimate of how much local emissions have decreased without the need for a full inversion.

Table 2 lists XCO2 enhancements observed over the SoCAB compared to an external background. An instrument with a

smaller footprint (e.g., OCO-2, about 1.3 km×2.25 km) could observe a wider range of XCO2 enhancements than an instru-

ment with a larger footprint (e.g., GOSAT, about 10.5 km diameter). However, the footprint size should not affect the average

enhancement over a domain much larger than an individual footprint. In Fig. 3 are histograms of enhancements for all dates30

of this study. Most enhancements
::::
Most

::::::::::::
enhancements

::
in

:::::
Table

:
2
:

are on order of 2–3 ppm except for those from the recently

published paper
::::::
reported

:
by Schwandner et al. (2017), which are about double. Though their enhancements are within the

9



Table 2. SoCAB XCO2 enhancements.

Citation Observations ∆XCO2 (ppm)

Kort et al. (2012) GOSAT-ACOS v2
:::
V2.9 3.2 ± (1.5) (1σ)

Janardanan et al. (2016) GOSAT 2.75 ± (2.86) (1σ)

Hakkarainen et al. (2016) OCO-2 v7r
:::
V7r ∼2–2.5a

Hedelius et al. (2017a) OCO-2 v7r
:::
V7r & TCCON 2.4 ± (1.5) (1σ)

TCCON, v2014
:::::
V2014 2.3 ± (1.2) (1σ)

Schwandner et al. (2017) OCO-2 v7r
:::
V7r 4.4–6.1

This studyb OCO-2 v8r
:::
V8r & TCCON 2.1 ± (1.7) (1σ)

TCCON, v2014
:::::
V2014 2.7 ± (1.4) (1σ)

aQualitative estimate based on Fig. 1 and Supplemental Fig. 3 therein. bWe modified the boundary condition compared to our previous

work (see Appendix A), values are for 14:00 (UTC-7).

range of ∆XCO2
enhancements in the v7r and v8r

:::
V7r

:::
and

::::
V8r

:
histograms in Fig. 3 (bottom row), they are atypical. Their

results are likely atypically large because of dynamics on the two particular dates analyzed, and do not include enough data to

determine typical enhancements, trends, and source and sink attribution. We disagree with their conclusions that these values

are in agreement with Kort et al. (2012) and that TCCON validates this high of a typical SoCAB enhancement. Their conclusion

that seasonal variations are 1.5–2 ppm does appear to be supported by previous work (Hedelius et al., 2017a). However, their5

full attribution of the seasonal cycle to biospheric processes within the basin is not supported by the findings of Newman et al.

(2016) who found the excess CO2 from the biosphere only varied from 8 % (summer) to 16 % (winter) of fossil fuel excess.

More likely the changing enhancement reflects a small change in the biosphere, and most importantly, seasonal differences in

the basin ventilation.

Models that assimilate only global in situ (i.e., no total column) CO2 data are biased by only about ±1 ppm (1σ ∼1 ppm)10

compared with TCCON observations (Kulawik et al., 2016). This highlights the need to understand bias and uncertainty in

total column observations to the order of a few tenths of a ppm or better to provide new information. The TCCON-predicted

bias uncertainty is 0.4 ppm or less (<0.1 %). A long-term CO2 reduction goal is to reach 20 % of 1990 levels by 2050. This is

about a 2–3 % decrease per year assuming a constant reduction. Thus a 0.4 ppm bias is on order of 4–9 years worth of emission

reductions.15

4 SoCAB flux estimates

4.1 Carbon dioxide

Our flux estimate of CO2 using the TCCON sites and linear model (Eq. E3) is 139
:::
104±35

::
26

:
TgCO2 yr−1. An error assess-

ment is described in Sec
:::
Sect. 4.3. This estimate is shown, along with estimates from past studies, in Fig. 4. Our estimate is

10
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Figure 3. Histograms of Xgas enhancements observed in the SoCAB
::
for

:::
all

::::
dates

::
of

:::
this

::::
study

::::
(Sect.

:::
2.1).

:
Data are averaged for ± 30 minutes

centered on the hour. Top row: Enhancements are defined as Caltech TCCON observations minus AFRC TCCON observations (Appendix

A). Colors represent the hour of day, and white lines with black dots in the top row are hourly medians. Enhancements peak in early afternoon

from morning rush hour emissions getting transported from downtown Los Angeles (southwest) to Caltech, and from mixed layer dynamics.

Bottom row: Enhancements are OCO-2 observations minus AFRC TCCON observations. Colors represent the distance from the Caltech

TCCON site.Histograms are for all dates of this study (Section 2.1).

comparable to
::::
lower

::::
than

:::::
those

::::
from Vulcan (Brioude et al., 2013; Fischer et al., 2017), Hestia-LA v1

::
V1.0, EDGAR v4.2

:::::
Hestia

::::
V2.5, and the California Air Resources Board (CARB) 2017 population scaling estimates, within uncertainty. Our result is also

in excellent, but perhaps fortuitous agreement with
::::::
slightly

:::::
lower

::::
than

:::::
those

::
of

:
Ye et al. (2017) who estimated emissions by

comparing OCO-2 observations with forward model results from a WRF-Chem model. However, our
:::
Our

:
result differs sig-

nificantly from previous top-down (TD )
:::
TD estimates from aircraft flights, EDGAR v4

:::
V4.0 (as reported by Wunch et al.,5

2009), and CARB 2011. Between 2011 and 2012 CARB changed how bunker fuels and aircraft emissions were reported for

the state, which caused a significant decrease in reported emissions. Our posterior estimate is larger than
:::::
similar

::
to

::::::::
EDGAR

::::
V4.2,

::::
and ODIAC2016, which is slightly less than ODIAC2015. The ODIAC2016 is based on disaggregation of CDIAC na-

11
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Figure 4. Estimates of SoCAB CO2 fluxes (annual estimates from TCCON are shown as black triangles and OCO-2 are shown in pink)

compared with previous studies. Top-down (TD ) flight
:::::

aircraft estimates are from Brioude et al. (2013). TD estimate from Ye et al. (2017)

is based on OCO-2 observations and 5 % random uncertainty has been added. The Hestia-LA v1
::
V1.0 estimate was inferred after a forward

implementation into a WRF model (Hedelius et al., 2017a). EDGAR v4
::
V4.2, ODIAC, and CARB emissions were calculated from databases.

EDGAR v4
:::
V4.0 value was reported by Wunch et al. (2009). All other values were found in a literature review.

:::
The

::::
large

::::
range

::
of

::::::::
variability

:::::::
highlights

:::
the

::::
need

::
for

::::::::
additional

::::
study

::
of

::::::
SoCAB

::::
CO2:::::

fluxes.

tional total emissions. Thus, unlike locally developed emission inventories the interannual variations in subnational emissions

are driven by the national emission trends. ODIAC could be low from incorrectly distributing
:::
too

:::::
much

::
of

:::
the

:::::::::
emissions to

rural areas
:::
due

::
to

::::::::
blooming

::::::
effects

:::::::::::::::
(Small et al., 2005). Blooming effects (exaggerating the extent of cites

::::
refer

::
to

:::
the

::::::::
tendency

::
for

:::::::::
nightlights

::
to
::::::::::
exaggerate

::::::::
settlement

:::::
areas

::::::::
compared

::::
with

::::::
actual

:::::
extent due to coarse gridded spatial resolution and indirect

or non-electrical lights) in the underlying nightlight data fields in ODAIC could contribute to an incorrect distribution
::::
light.5

Most of the estimates from previous studies include only emissions from fossil fuel use. We have not separately accounted

for biospheric uptake (emissions) in the model, and if it is significant, the anthropogenic flux would be larger (smaller) than

our net estimate. In the GEOS-Chem model described by Liu et al. (2017) the nearby ocean is a neutral to weak sink, likely

from biological activity.

OCO-2 provides better spatial coverage than TCCON (Fig. 5), and the orbit tracks can change longitudinally with season10

or when the spacecraft moves for collision avoidance. However, observations only occur at the same local solar time, and

are days to weeks apart. The estimate using OCO-2 data is slightly lower at 118
::::
larger

::
at
::::
120±29

::
30

:
TgCO2 yr−1,

::::::
which

::
is

::
in

:::::
better

:::::::::
agreement

::::
with

:::
the

::::::
results

::
of

:::::::::::::
Ye et al. (2017). This value varies by up to 43

::
12 TgCO2 yr−1 depending on filtering

methods (e.g., warn levels, WL). Warn levels are a global metric of data quality, where WLs less than or equal to (0, 1, 2, 3,

12



Figure 5. A visualization of OCO-2 observations and the forward model used in the flux inversion on June 20, 2015. The nadir track is shown

:
in
:::
red

:
starting at the bottom and ∼ 117.6◦W and going towards the northwest. Observations are overlaid on the

::::
green

:
ODIAC prior at 14:00

(UTC-7). For every 5th sounding the set of backtrajectories is shown
::
in

:::
gray.

::::::::::::
Backtrajectories

::::::::
originating

::::
from

:::
the

:::::
AFRC

:::
site

:::
are

:::::
shown

::
in

::::
blue.

::::::::
Coastlines

:::
and

::
the

:::::::::
geopolitical

::::::::
boundaries

::
of
:::
the

::::::
SoCAB

:::
are

:::::
shown

::
in

:::::
black.

:::::
County

::::::
borders

:::
are

:::::
shown

::
in

::::
blue.

4, 5) correspond to about (50 %, 60 %, 70 %, 80 %, 90 %, 100 %) of data passing in V8r, and larger WLs generally correspond

to less reliable data. After excluding just the 2 largest WLs, the total net flux varies by only 23 TgCO2 yr−1 when applying

additional filters.
::::::::
Appendix

::::
A1).

:

4.2 CH4 and CO

Using the same methodology we estimate a CH4 flux of 325
:::
360±81

::
90 Gg CH4 yr−1. This is less than the estimate by Wunch5

et al. (2009), but similar to estimates from
::::::::::::::::::
Wong et al. (2016) and CARB (Fig. 6). CARB-based CH4 fluxes for just the SoCAB

were estimated by subtracting Agriculture and Forest emissions (53–61 % of total depending on version and year), and out-of-

state electricity generation (0–0.1 %). The remaining flux was scaled by 42 % based on the population of the SoCAB, and 5 %

of the Agriculture and Forestry emissions were added back in. Our estimate is
::::::
slightly lower than previous estimates of CH4

fluxes using in situ (tower and aircraft) data (Hsu et al., 2010; Wennberg et al., 2012; Peischl et al., 2013; Wecht et al., 2014;10

Cui et al., 2015).

We also estimate a CO flux of 555
:::
487±136

:::
122 Gg CO yr−1. This is significantly less than the estimates by Wunch et al.

(2009) of 1,400±300 Gg CO yr−1 from Aug 2007–June 2008, and the estimate of 1,440±110 Gg CO yr−1 by Brioude et al.

(2013) for summer 2010. Wunch et al. (2009) used a tracer-tracer relationship where the assumed CO2 was likely too large

(191 TgCO2 yr−1). When their results are scaled down based on our posterior CO2 fluxes (118–139
:::::::
104–120 TgCO2 yr−1), the15

CO flux is 830–970
:::::::
750–880 Gg CO yr−1 which is in better agreement with the CARB inventory. The CARB CO inventories,

specific to the SoCAB have decreasing CO emissions; part of the difference could be from different observation periods.

CARB2017 emissions are 581 Gg CO yr−1 for 2015.
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Figure 6. SoCAB CH4 and CO flux estimates. Annual estimates from this study are shown as light blue triangles. Brioude et al. (2013) and

Wecht et al. (2014) (in situ estimates and GOSAT inv) used meteorological models to estimate fluxes, similar to the work presented here.

Tracer-tracer relations were used for the TCCON (Wunch et al., 2009, 2016), CLARS (Wong et al., 2015, 2016), and in situ observations

(Hsu et al., 2010; Wennberg et al., 2012). The "W09 adj" are the results of Wunch et al. (2009) when adjusted for our posterior CO2 flux.

Methane in situ results for CalNex (May–June 2010) are from Wennberg et al. (2012). CO in situ results in 2002 and 2010 are from Brioude

et al. (2013).

4.3 Sensitivity tests and error assessment

For a single estimate of the SoCAB flux, we have a sufficiently large sample that random uncertainty is small. This is supported

by a bootstrap analysis where we select a random subset of data equal in size to the original n= 200 times (Efron and Gong,

1983). The random uncertainty estimate is 8
:
4 Tg CO2 yr−1 (2σ), or about 6

:
4 %. Persistent biases from a priori flux uncertainty,

model errors, observation biases including boundary conditions, and poorly chosen initial values are more detrimental to our5

flux estimate.

Several variables (xa, Sε, Sa) need initial values (see Appendix E3), and how these are chosen can affect the final flux

calculated. We evaluate 4 sensitivity tests (Fig. 7). For the first test, we filter out data where the observations differ from the

model above a threshold. We start with a threshold that is a factor of 64 and adjust from there
::::
scale

:::::
from

:::
the

::::::
starting

::::::
factor

::
of

::::
10×

:::::::::
(Appendix

::::
A1). We also adjust values of xa, Sε, and Sa by factors of 2−10 to 210. These results show the overall10

flux generally has low sensitivity to scaling Sε, and Sa but has some sensitivity when filtering more data and about a 10
::
30 %

14



Table 3. Fluxes from various methods.

Method Tg CO2 yr−1 Gg CH4 yr−1 Gg CO yr−1

GDAS (0.5◦)a 104±26 365±91 530±133

HRRR (3 km) 147±37 439±110 616±154

NAM (12 km) 139±35 325±81 555±139

Kalman filter 97±24 104±26 379±95

non-linear inv. 151±38 103±26 374±94

GDAS (0.5◦)a 109
::

±27
:::

349
::

±87
:::

514
::

±128
::::

HRRR (3 km) 105
::

±26
:::

415
::

±104
::::

444
::

±111
::::

NAM (12 km) 102
::

±26
:::

360
::

±90
:::

487
::

±122
::::

Kalman filter 94
:
±23
:::

185
::

±46
:::

391
::

±98
:::

non-linear inv. 149
::

±37
:::

20
:

8±52
:::

362
::

±91
:::

For a given gas, all the inversions use the same observed ∆Xgas (Caltech TCCON − AFRC TCCON)
:::
data. The top 3 rows are from using

different meteorological models, with the same inversion scheme (Eq. E3). The last 3 rows are from using the same meteorological model

(NAM 12 km) with different inversion schemes. Errors are 25 %. aFor GDAS Sa is 30
::
20× smaller

sensitivity to the scaling of xa. The interannual variability, which we expect is less than about 25 %, increases for large Sa.

Increasing Sa increases r, and the degrees of freedom for the signal (dofs) with only a small effect on the overall flux, but

also increases the interannual range. Decreasing Sε increases r and dofs, but it also increases χ2 and the interannual range. We

estimate an overall uncertainty of 10 % from these parameters.

Hedelius et al. (2017b) reported 2σ measurement bias of less than∼0.2 ppm XCO2 (central estimate, maximum range<0.5 ppm)5

between the AFRC and Caltech TCCON sites, but even a bias of 0.2–0.3 ppm XCO2
will produce an error of ∼ 10 % in the

flux. This bias could also arise from improper boundary conditions or application of averaging kernels.

We
:::
We

::::
next test the sensitivity to different inversion and modeling schemes (Table 3). The Kalman filter (Appendix D) and

the non-linear inversion (Eq. E2) results are not unreasonable for CO2. However, their CH4 flux results are unreasonably low,

likely from high model:measured values having unreasonably high weights in these particular schemes with few scaling factors10

(Appendix D2). GDAS and HRRR results are within uncertainty.

:::::
There

:
is
:::::
some

:::::::::
uncertainty

::::
due

::
to

::
the

::::::::
accuracy

:::
and

::::::::
resolution

:::
of

::
the

::::::::
emission

::::::::::
inventories.

:::::::::::::::::::::::::::::
Gately and Hutyra (2017) compared

:::::::
emission

:::::::::
inventories

:::::
over

:::
the

::::::::::
northeastern

::::
U.S.

::::
and

:::::
noted

::::::::
inventory

:::::::::
differences

::
of

::::::
100 %

:::
for

:::
half

:::
of

:::
the

::::
0.1◦

:::
grid

:::::
cells

::
in

:::
the

:::::::
domain.

::::::::::::::::::::::
Lauvaux et al. (2016) and

::::::::::::::::::::::
Oda et al. (2017) compared

:::::::::
aggregate

::::::::
posteriori

::::::::
inversion

::::::
results

::::
from

::::::::
different

::::::::
emission

:::::::::
inventories

:::
and

:::::
noted

:::::::::
differences

:::
of

::::
only

:::::
5–8 %

:::
for

:::
the

::::::::::
Indianapolis

::::::
region

::::::
despite

::::
large

::::::::::
differences

:
at
:::
the

::::
grid

:::::
level.

:::
We

:::::
make15

:
a
::::::
similar

::::::::::
comparison

::::::
where

:::
we

:::
use

:::
the

:::::
more

:::::::
spatially

::::
and

:::::::::
temporally

::::::::
accurate

:::::
Hestia

:::::
V2.5

:::::
fossil

::::
fuel

::::::::
inventory

::::::
instead

:::
of

::::::
ODIAC

:::
as

:::
the

:::::
prior.

:::
We

::::
note

::::
that

:::
the

:::::::::
correlation

::::::::
between

:::
the

:::::::
forward

::::::
model

::::
data

:::
and

::::::::
TCCON

::
is

::::::
higher

::::
with

::::::
Hestia

::::
than

15
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Figure 7. Assessment of sensitivity to initial values
:::
for

:::
CO2. On the left is the reduced

:::
Left:

:::::::
Reduced state vector with 7 categories (overall,

spatial, vertical, time of day, weekday/end, month, and year). λ values indicate how much the prior is scaled on average compared to other

elements in its category. Gray lines are results from all tests, and colored lines are from the Sa test. As Sa gets larger, the variability in the

retrieved γ factors increases. The right shows overall
::::::
Missing

:::::::
elements

::::::::
represents

:::
lack

::
of

::::::::
sensitivity.

:::::
Right:

::::::
Overall fit parameters, including

the overall flux, the dofs, χ2, Pearson’s correlation coefficient between observed and post-inversion model values, and the interannual range.

Note the log2 axes which indicate the magnitude of change in the sensitivity test compared with the base case (sf=scaling factor). Moving

left filtering (ftr) becomes more stringent, constraints on Sa or Se are increased, or xa is scaled down. Generally
::
For

:::::::
scalings

:::
less

:::
than

:::::
about

::
8×

:
the total flux

:::::
change

:
is unchanged

::::
small,

:
except for scaling xa which increases the flux by about 10

::
30 % of the change in the prior. Here

the goal was to simultaneously increase dofs, decrease χ2, and increase r while keeping the interannual variability below about 25 %.

:::::::
ODIAC,

:::
and

:::::
there

:::
are

:::::
fewer

::::::
outliers

::::
that

::::
differ

:::
by

:
a
:::::
factor

:::
of

::::
10×

::
or

:::::
more.

::::::::
However,

:::
the

:::
flux

::::::::
estimate

::
of

:::::::
110±28

::
is

::::::
similar

::
to

::
the

::::::::
posterior

::::
flux

:::::::
estimate

:::::
using

:::::::
ODIAC.
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::::::
Finally

::
we

::::::::
consider

::
the

::::::::::
observation

::::::::::
uncertainty.

::::::::::::::::::::::::::
Hedelius et al. (2017b) reported

::
2σ

:::::::::::
measurement

::::
bias

::
of

::::
less

:::
than

:::::::::
∼0.2 ppm

:::::
XCO2 ::::::

(central
::::::::
estimate,

::::::::
maximum

:::::
range

:::::::::
<0.5 ppm)

:::::::
between

:::
the

::::::
AFRC

:::
and

::::::
Caltech

:::::::
TCCON

:::::
sites,

:::
but

::::
even

:
a
::::
bias

::
of

::::::::::
0.2–0.3 ppm

:::::
XCO2 :::

will
:::::::
produce

:::
an

::::
error

::
of

::::::
∼ 10 %

:::
in

::
the

:::::
flux.

::::
This

:::
bias

:::::
could

::::
also

::::
arise

:::::
from

:::::::
improper

::::::::
boundary

:::::::::
conditions

::
or

::::::::::
application

::
of

::::::::
averaging

:::::::
kernels.

In summary, we estimate a 20
:
5 % uncertainty from model winds

::::::
random

:::::::::
uncertainty

:::::
from

::
the

::::::::
bootstrap

:::::::
analysis, 10 % from5

our choice of initial values,
:::
5 %

::::
from

:::
the

::::
prior

:::::
flux, 10 % from observations and the boundary condition, 5

:::
and

::
20 % from the

prior flux (based on results of Lauvaux et al., 2016), and 5 % from additional random uncertainty
:::::
model

::::::
winds

:::::::::
(Appendix

::
B).

The sum in quadrature is 25 %. By comparison, uncertainty estimates from other inversions were 11 % (inner 50 percentile

range from an ensemble) for Indianapolis (Lauvaux et al., 2016), and 5 % for the Bay Area using pseudo-observations (Turner

et al., 2016). Both of these studies benefited from additional sites (9 and 34 respectively) and custom WRF model runs. Ye10

et al. (2017) estimated an uncertainty of 5 % for the SoCAB flux by using data from 10 OCO-2 tracks, however this is not

directly comparable with our result because it does not include uncertainty from biases in the forward model, observations, and

inversion scheme.

5 Discussion

5.1 Emission Ratios15

Emission ratios can help us evaluate the inversion for the SoCAB. Previous studies (Newman et al., 2016; Wunch et al., 2009, 2016) have

::
In

:::::::
previous

::::::
studies

::
it
::::
was noted that the Pasadena area is a good receptor site for the basin, so tracer-tracer ratios observed

there should approximately correlate with emission ratios
:::::::::::::::::::::::::::::::::::::::
(Newman et al., 2016; Wunch et al., 2009, 2016). If the ratios are

significantly different it could highlight an error in the inversion scheme, or the a priori assumption of sources. However, errors

in the model can be correlated for different tracers which would obscure universal biases to all gases. Interannual ranges for20

CO, CH4, and CO2 are 19 %, 13 %, and 11 % compared to their central estimates. The interannual range of ratios for CO:CH4,

and CO:CO2 are similar at 21 % and 22 % respectively, but the CH4:
:::
For

::::::::
example,

:::
the

:::
CO:CO2 range is smaller at 2 %

::::
flux

::::
ratio

::
of

::::::::::
7.5 ppb:ppm

::
is

::
in

:::::
good

::::::::
agreement

::::
with

::::
past

::::::::
literature,

::::::
despite

:::
the

::::::::
absolute

:::::
fluxes

:::::
being

:::::
lower

::
on

:::::::
average.

We estimate emission ratios using the solar zenith angle (SZA) anomaly method described by Wunch et al. (2009, 2016),

as well as from the average enhancement compared with AFRC or the Pasadena:Lancaster gradient ratio. Errors are assumed25

to equal the standard deviation of all the data, and a linear fit is made using the methods of York et al. (2004)
::
on

::::::::
monthly

::::::::
timescales. We estimate the emission ratio from the work of Verhulst et al. (2017) using the weighted mean of the excess ratios

from their 5 in-basin sites, with weights 1
σ2 . Emission ratios from the SZA anomaly method and the differenced enhancement

are in agreement with ratios from previous studies (Fig. 8). The CH4:CO2 from the inversion is slightly lower than but similar

to other studies.
::
at

::::::::::
9.7 ppb:ppm

::
is
:::::
larger

::::
than

::::
past

:::::::
studies,

:::::::::
suggesting

:::::
either

:::
our

:::::
CH4 :::

flux
::
is
:::
too

:::::
large,

:::
or

:::
our

::::
CO2::::

flux
::
is

:::
too30

:::
low

:::
(or

:::::
some

::::::::::
combination

::
of

::::::
both).

::
If

::::
both

::::
were

:::::::
adjusted

:::
by

::::
15 %

:::
the

:::::
ratio

:::::
would

:::
be

:::::::::::
7.1 ppb:ppm. The CO:CO2 ratio is also

lower
::
in

::::
good

:::::::::
agreement

::::
with

:::
the

:::::
ratios

:::::
using

::
the

:::::
SZA

:::::::
anomaly

:::::::
method,

:::
but

::
is

:::::
lower

::::
than

::::
past

::::::::
estimates. Based on the CARB
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TCCON observations. Values from Silva et al. (2013); Silva and Arellano (2017) were part of global studies.

inventories, a decrease is expected because CO emissions have decreased more than CO2 emissions over the past decade
::::::
almost

:::::::::::
exponentially

::::
over

:::
the

::::
past

:::::::
decades,

:::::::
whereas

::::
CO2::::::::

emissions
:::::
have

::::::::
decreased

::::
only

::::::::::
moderately

::::
(e.g.,

::::::::
compare

::::::
Figures

::
4

:::
and

::
6).

In November 2015, the large CH4:CO2 ratio is from additional methane emissions from the Aliso Canyon gas leak (Conley

et al., 2016). Though this leak persisted until February 2016, different wind patterns caused less of the highly methane enriched

air to be transported and observed in Pasadena after the first 2 months. The large CO:CO2 ratios seen in summer 2016 are from5

wildfires. The San Gabriel Complex Fire was less than 25 km to the east and burned 22 km2 over a month. It was close enough

for ash to be transported to Pasadena. Eight other major fires within 150 km burned an additional 400 km2 during June–August

2016 (https://firetracker.scpr.org/wildfires/archives/).

5.2 Weekend effect

The weekday to weekend flux ratios (WD:WE) are listed in Table 4. The uncertainty is estimated to be ±0.17
:::::
±0.10

:
based on10

changes in the ratio from the Sa scaling test up to 8×
::::
16× (Fig. 7). Weekday:weekend ratios are larger than

::::::
similar

::
to

:
those

from previous studies for CO (Pollack et al., 2012; Brioude et al., 2013). Compared with the prior, the
:::
The

:
CO2 ratio is scaled

down , and the CO ratio remains equal to the prior
:::
and

:::
CO

:::::
ratios

:::
are

::::::
scaled

:::::
down

::::::::
compared

::::
with

:::
the

:::::
prior,

:::::
which

::::
puts

::::
CO

::
in
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Table 4. Weekday:weekend emission ratios.

CO2 CO CH4

Pollack et al. (2012)a 1.10± 0.32 1.08± 0.31

Brioude et al. (2013)b 0.91± 0.09 1.17± 0.19

TIMESc 1.09

Hestia-LA v1
::
V1.0d 1.23

::::::::
Hestia-LA

::::
V2.5

:::
1.12

:

This study 1.11
::::
1.02± 0.17

:::
0.10

:
1.23

::::
1.15± 0.17

:::
0.10

:
1.17

::::
1.05± 0.17

:::
0.10

:

aWD:WE CO ratios from Pollack et al. (2012) were calculated using the difference between the CalNex-Pasadena and Mt. Wilson Flasks

(Table 2 therein). For CO2 we used the CO WD:WE ratios with the CO/CO2 WD:WE ratios in Pasadena (Table 3 therein). bWD:WE ratios

from Brioude et al. (2013) were calculated by assuming ratios between daytime and all day emissions in the posterior were equal using

Table 3 therein. cTemporal Improvements for Modeling Emissions by Scaling (TIMES) were reported for the contiguous United States by

Nassar et al. (2013). dHestia-LA is based on Fig. 2 from Hedelius et al. (2017a). This same ratio is used in the CO and CO2 priors in this

study.

:::::
better

::::::::
agreement

::::
with

:::::::::
Hestia-LA

:::::
V2.5. Methane has a ratio that is

::::::
slightly larger than unity. In contrast to our inversion results,

methane
:::::::
Methane

:
is not expected to vary significantly

:
as

:::::
much

:::
as

::::
CO2::

or
::::
CO on weekdays compared to weekends because

production from biogenic sources and fugitive losses from natural gas infrastructure are less time variantthan CO and CO2

emissions.

6 Conclusions5

This study demonstrates a method to readily obtain estimates of net CO2 fluxes over regions on order of 10,000 km using only

remote sensing observations. This method could be applied almost anywhere globally using only OCO-2 or other
::::
work

::
is

:
a
::::
step

::::::
towards

:::::::::
estimating

:::::
fluxes

:::::
from

:
a
::::::
greater

:::::::
number

::
of

:::::
urban

::::
areas

:::::
using

:
space-based observations of CO2(e. g., GOSAT) without

the need for ground observations, or a specialized model.
:
. Our estimates of total annual CO2 fluxes from the SoCAB using

HYSPLIT with NAM 12 km as our dynamical model are similar to some
::
on

:::
the

::::
low

:::
end

::
of

:
previous estimates (Fig. 4), but

:::
and10

::::
about

::::::::
28–47 % less than inventory values reported in tracer-tracer flux estimate papers (Wunch et al., 2009; Wong et al., 2015).

This has important implications for these studies, which would have overestimated CH4 emissions if CO2 emissions were also

too large. Net CO and CH4 fluxes are slightly
:::::
fluxes

:::
are

:::::::::::
significantly less than previous studies,

:::::
likely

:::::
from

::
an

::::::::::::
underestimate

::
of

:::::
about

::::
20 %

::::::::
combined

:::::
with

:
a
::::::
known

:::::::
decrease

::
in

:::::::::
emissions.

::::
Net

::::
CH4 :::::

fluxes
:::
are

::
in

:::::::::
agreement

::::
with

:::::::
previous

:::::::
studies.

::::
This

::::
study

::
is
::::
one

::
of

::::
only

:
a
::::
few

:::::
where

:::::::
satellite

:::::::::::
observations

::::
were

::::
used

::
to

::::
help

:::::
infer

::
the

:::
net

::::
flux

::
of

::::
CO2:::::

from
::
an

:::::
urban

:::::
area.15

::::::
Several

::::::
lessons

:::::::
learned

::::
here

::::
will

:::
be

::::::::
important

:::
for

::::::
future

::::::
studies

:::::
using

::::::::::
space-based

:::::::::::
observations

::
of

:::::
CO2 :::

for
::::
flux

::::::::
estimates

::::
from

:::::
other

:::::
urban

:::::::
regions.

:::
We

::::
have

::::::
shown

:
a
:::::::
method

:::
for

:::::::::
accounting

:::
for

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::
instrument

::
to

::::
true

:::::::
changes

::
in

:::
the

::::::::::
atmospheric

::::::::::
composition

:::::
(i.e.,

:::::::::
accounting

:::
for

:::::::::
averaging

:::::::
kernels).

::::
We

::::
have

::::
also

::::::
shown

:
a
:::::::

method
::
to

:::::::
account

:::
for

::::::::::
differences
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::
in

::::::
column

:::::::::::
observations

::::
that

:::::
could

::::
arise

:::::
from

:::::::::
difference

::::::
surface

::::::::
altitudes.

::
In

:::
the

:::::::::
Appendix

:::
we

:::::::::
document

::::
how

::::::::
changing

:::
the

::::::
number

::
of

::::::::
elements

::
in

:
a
:::::::
retrieval

::::
state

::::::
vector

::::
can,

::
in

::::
some

::::::
cases,

:::
bias

:::
the

:::::::
inferred

::::
flux

:::::
result.

::::
This

:::::
effect

:::::::
becomes

:::::::::::
increasingly

::::::::
important

:::
for

:::::::::
inversions

:::::
using

::::
only

:::
one

:::::
scale

:::::
factor

:::::
with

:
a
:::::
large

::::::::::
discrepancy

:::::::
between

:::
the

:::::::
forward

::::::
model

:::
and

::::::::::::
observations.

::::::
Finally,

:::
we

:::::::
describe

:::
the

:::::::::
sensitivity

::
of
::::

the
:::::
results

:::
to

:::::::
filtering

:::
and

::::::::::
parameters

::::
such

::
as

:::
the

::
a
:::::
priori,

::::
and

:::
the

:
a
::::::

priori
:::::::::
covariance

:::::
matrix

:::
Sa.5

The overall uncertainty is 25 %, with the dynamical model contributing the most.
:::::::
X-STILT

::::::::::::::::::
(Wu et al., 2018) and

::::::
higher

::::::::
resolution

::::::
models

::::
may

::::
help

::::::
reduce

:::::::::
dynamical

::::::
model

:::::::::
uncertainty

:::
in

:::::
future

:::::::::
inversions.

:
We consider an uncertainty of 25 % to

be large and shows additional work is needed to improve constraints. If errors are from persistent biases, then relative changes

in time can be observed, though such changes might also be observed using just the observations without a model (e.g., Kort

et al., 2012).
::::::::::::
Understanding

:::::::::::
contributions

::::
from

:::
the

:::::::::
biosphere

::::
may

:::
also

:::
be

::::::::
important

::
in
::::::
future

::::::
studies

::
to

::::::::
diagnose

::::
how

:::::
much10

:::::
carbon

::
is
:::::
from

::::
fossil

:::::
fuels

::::::::::::::::::::::
(e.g., Newman et al., 2016).

:
The wide range of uncertainty suggests that CO2 flux estimates from the

SoCAB will benefit from additional measurements—such as the LA Megacity Carbon Project in situ tower network (Verhulst

et al., 2017), the planned geostationary GeoCARB mission, and the OCO-3 mission which has a raster mode that can scan

throughout the basin. Further improvements in modeling and inversion techniques will also help, including assimilating all

available observations (in situ network, TCCON, CLARS, OCO-2, and GOSAT). These additional surface and space-based15

observations can aid in not only improving the accuracy of the overall flux, but also may be incorporated into spatiotemporal

inversions to map fluxes from sub-regions of the SoCAB with confidence. Understanding the contributions from the biosphere

will also be important to diagnose how much carbon is from fossil fuels. For example, Newman et al. (2016) showed the typical

contribution of the biosphere to the excess CO2 in Pasadena was 8–16 % as large as the fossil fuel contribution using ∆14C

observations.20

Data availability. TCCON data used in this study (GGG2014) are hosted on the TCCON data archive (https://tccondata.org/) and are used in

accordance with the Data Use Policy (https://tccon-wiki.caltech.edu/Network_Policy/Data_Use_Policy). OCO-2 data are hosted by Goddard

Earth Sciences (GES) Data and Information Services Center (DISC) (https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_8r/summary).

ODIAC2016 data are hosted by NIES (http://db.cger.nies.go.jp/dataset/ODIAC/). Hestia-LA and Vulcan data can be obtained by contacting

Kevin Gurney (Kevin.Gurney@nau.edu). Nightlight products were obtained from the Earth Observation Group, NOAA National Geophysical25

Data Center and are based on Suomi NPP satellite observations (http://ngdc.noaa.gov/eog/viirs/). Gridded Harvard-EPA emissions are hosted

on the EPA website (https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions). NOAA gridded meteorological data are hosted

on the NOAA ARL server (https://www.ready.noaa.gov/archives.php).

The CARB regularly publishes emission inventories of various gases. CO inventories are available online (2017: https://www.arb.ca.

gov/app/emsinv/2017/emssumcat.php, 2013: https://www.arb.ca.gov/app/emsinv/2013/emssumcat.php, 2009: https://www.arb.ca.gov/app/30

emsinv/fcemssumcat2009.php), as are CH4 inventories (2017: https://www.arb.ca.gov/app/ghg/2000_2015/ghg_sector_data.php, 2013: https:

//www.arb.ca.gov/app/ghg/2000_2011/ghg_sector_data.php, 2009: https://www.arb.ca.gov/app/ghg/2000_2006/ghg_sector.php).
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Appendix A: Observation data filtering, and boundary condition

GOSAT-ACOS v2
::
V2.9 XCO2

levels are enhanced by only 3.2± 1.5 (1σ) ppm in the SoCAB (Kort et al., 2012). This means a

bias of 0.3 ppm could lead to a 10% bias in the flux. Thus it is critical to account for biases down to the tenths of a ppm level

or better. This is a challenge given that the accuracy of OCO-2 (v7r
:::
V7r) over land had been estimated as 0.65 ppm (Worden

et al., 2017), and OCO-2 comparisons with TCCON range from -0.1 ppm to 1.6 ppm (Wunch et al., 2017).5

A1 Quality filters

Compared with the TCCON, OCO-2 spectra are lower resolution. OCO-2 observations are also sensitive to surface albedo, and

are more sensitive to aerosol scattering than solar-viewing instruments. These sensitivities can cause spurious results which

need to be filtered out. Included in the OCO-2 data is a binary flag as well as warn levels (WL) for quality filtering
:
.
:::::
Warn

:::::
levels

::
are

::
a
:::::
global

::::::
metric

::
of

::::
data

::::::
quality,

::::::
where

::::
WLs

:::
less

::::
than

::
or

:::::
equal

::
to

::
(0, where higher WLs indicate less

:
1,
::
2,
::
3,

::
4,

::
5)

::::::::::
correspond10

::
to

:::::
about

:::::
(50 %,

:::::
60 %,

:::::
70 %,

::::::
80 %,

:::::
90 %,

::::::
100 %)

::
of

::::
data

:::::::
passing

::
in

::::
V8r,

:::
and

:::::
larger

:::::
WLs

::::::::
generally

:::::::::
correspond

:::
to

:::
less

:
reliable

data. WL definitions are different for v7 and v8
::
V7

::::
and

:::
V8, but here we use the binary XCO2

filter and only include v8
:::
V8

data with a WL≤ 1. WL≥ 4 data are already removed by the binary flag. This leaves
:::
We

:::
also

:::::::
exclude

::::
data

:::
that

:::::
differ

:::::
from

:::
the

:::::
model

:::
by

:
a
:::::
factor

:::
of

::
10

:::
or

:::::
more.

::::
This

:::::
factor

:::
of

::
10

::
is

:::::::::
somewhat

:::::::
arbitrary

::::
and

::
an

::::::::
argument

::::::
could

::
be

:::::
made

::::::
against

:::::
using

::::
this

:::::::
criterion

::
as

:
a
:::::
filter.

::::::::
However,

::
a

:::
few

:::::
large

::::::
outliers

:::
can

:::::::::::
significantly

:::::
affect

::::::::
inversion

:::::
results

:::::::::
(Appendix

::::
D2)

::
so

:::
we

:::
opt

::
to

:::::::
remove15

::::::
suspect

::::::
values.

::
A

:::::::::
sensitivity

:::
test

:::::::::
including

:::::::
different

::::
filter

:::::::
cutoffs

:::
for

:::::::
TCCON

:::::
XCO2::

is
:::::::::
described

::
in

::::
Sect.

::::
4.3.

:::::
After

:::::::
filtering

2,714 observations
:::
361

:::::
paired

::::::::::::::
OCO-2−AFRC

::::::::::
observations

:::::::
remain.

For TCCON observations we use the public data, which already has some static within-range filters applied. We also exclude

data that differ from the model by a factor of 64
::
10 or greater, leaving 5,060

:::::
4,872 observations.

A2 Background, boundary conditions, and averaging kernels20

To eliminate the ambient Xgas levels that would be observed in the absence of local emissions, we subtract values measured

by the AFRC TCCON site from both the Caltech TCCON and OCO-2 data obtained in the basin. We choose TCCON data

as background for OCO-2 to reduce the likelihood of albedo related bias from using OCO-2 observations over the Mojave

desert (Wunch et al., 2017) as well as the chance of inducing a bias from using different viewing modes by using ocean glint

observations. For expanding these methods globally, OCO-2
:
In

:::::
other

::::::
studies

::
of

:::::
XCO2:::::::::::::

enhancements, observations not directly25

influenced by the source could be
::::
were

:
used as background. For example, Janardanan et al. (2016) categorized space-based

observations of XCO2 by making a forward model estimate of XCO2 enhancements from fossil fuel combustion and setting a

threshold to define as polluted or unpolluted. Such an approach could work globally, but may have errors if there are errors in

::::
from the prior emissions or transport model.

Because we expect most of the difference
::
in

:::::
XCO2

to arise from polluted air near the surface, we divide the enhancements by30

the surface averaging kernels of the in-basin observations. OCO-2 surface averaging kernels in the basin are 0.986±0.010 (1σ)
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Figure B1. Histogram of Wind speed errors (HYSPLIT-measured) compared to surface observations at the San Gabriel airport. The mean

error is −0.9 m s−1 (−30 %), the 95 % confidence interval is [-3.7, 2.3] m s−1. The mean direction error is less than 5◦, and 75 % of direction

errors are within ±45◦.

with a 99 % confidence interval of 0.955 to 1.016. TCCON surface averaging kernels depend on surface pressure and solar

zenith angle (SZA) and are 0.96±0.14 (1σ) throughout the full range of observations.

Even in the absence of local anthropogenic emissions the XCO2 measured within the SoCAB could be different from that

measured outside
:
at

::::::
AFRC by a few tenths of a ppm because of different measurement heights and atmospheric CO2 profiles

:::::::::::::::::::
(Hedelius et al., 2017a). We account for a boundary condition of the form:5

bgas =

(
Xgas,a,S

Xgas,a,B
− 1

)
X̂gas,B, (A1)

where subscript a represents the a priori, S represents a measurement within the SoCAB, B represents the background, and

the hat represents a retrieved value. Equation A1 can be interpreted as the difference that would be observed between sites due

to differences in the gas vertical profiles. The a priori profiles do not include local anthropogenic emissions. The boundary

condition
::::
result

:::::
from

:::
Eq.

:::
A1

:
is subtracted from the SoCAB−AFRC difference.

:::
We

:::::::
perform

::
the

:::::
same

:::::::::
adjustment

:::
for

::::
CH4::::

and10

:::
CO.

Appendix B: Dynamical model error

The dynamical model could
:::::::::
Dynamical

::::::
models

:::
can

:
have errors in the PBL height estimation as well as in the wind speed and

direction. In a case study for spring 2011 and 2012 primarily over the Midwestern U.S. a NAM temperature derived PBL height

had a mean bias of about −50 m, with an inner 50 percentile range of about ±250 m (Coniglio et al., 2013). For wind error we15

compare with 10 m winds from the San Gabriel (El Monte) Airport 10 km SE of Caltech (34.083◦, -118.033◦, 90 m a.s.l.). We
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Figure C1. Maps of monthly averaged residence times in the ML per pixel for trajectories ending at 21 UTC, shown for all times leading up

to the observation. Pixels are 0.01◦ × 0.01◦, or approximately 1.03 km2. In July the origins were more predictable, but in January there was

greater variation.
:::::::
Coastlines

:::
and

:::
the

:::::::::
geopolitical

::::::::
boundaries

::
of

:::
the

::::::
SoCAB

::
are

::::::
shown

:
in
:::::

black.
::::::
County

::::::
borders

::
are

::::::
shown

:
in
::::

blue.

assume the winds are the same at both locations. Airport meteorological data are obtain through the NOAA National Centers

for Environmental Information (https://www.ncdc.noaa.gov/cdo-web/datatools/lcd).

Trajectory speed and direction are estimated based on when and where trajectories ending at 50 m a.g.l. enter a 5 km radius

circle around the receptor site. Results are shown in Fig. B1. The mean speed of HYSPLIT trajectories is less than what is

expected by comparing with the surface winds. In contrast, previous studies have shown high model wind speed bias near5

the surface at the LAX airport, 34 km SW and near the coast (Feng et al., 2016; Angevine et al., 2012; Ye et al., 2017). The

difference biases could in part be from coastal versus inland however, Feng et al. (2016) also showed a high model bias closer

to Caltech. Model differences, the 10 km horizontal and ∼150 m height difference between Caltech and the airport could also

contribute to the discrepancy. We expect the average bias throughout the PBL to be lower than at the surface, and assign an

uncertainty of up to ∼20 % to the average wind.10

Appendix C: Residence times from HYSPLIT

HYSPLIT mean trajectories are air parcel locations at different heights for select times (in our case, every 20 min). These

are aggregated and normalized for each 0.01◦× 0.01◦ pixel
:::
cell and for each hour. First each trajectory is interpolated to 1 s
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positions. Then we determine the vertical fraction of the mixing layer (ML) the trajectory takes. This fraction is the vertical

spacing between trajectories (in hPa) divided by the ML depth (in hPa). The HYSPLIT mixing depth is based on the underlying

Eulerian model. Parcels above the ML get counted as zero. Then we count how long any parcel was in each pixel
:::
cell (in s)

to get the residence time. Monthly average examples of this are shown in Fig. C1. The residence time is multiplied by the a

priori flux to determine the column enhancement (in g m−2). By dividing by a model estimate of the dry-air mol m−2 based on5

model surface pressure we obtain a forward model estimate of the Xgas enhancement from local sources (in ppm or ppb).

Appendix D: Kalman filter

The Kalman filter used to estimate SoCAB CO2 emissions is based on methods described by Kleiman and Prinn (2000) with

modifications. This is an iterative approach using a single overall scaling factor. The difference in XCO2
between measurements

in the SoCAB and AFRC is the observed measurement, yobs. The error σy associated with each yobs is estimated from the sum10

in quadrature of the error from each site, i.e.,

σy =
√

¯̂y2err,C + ¯̂y2err,A, (D1)

where the subscript C is for Caltech (or measurements in the SoCAB), and A is for AFRC (or ‘background’). The error of the

averaged data for an individual site is calculated by
::::::::
estimated

::
as

:

¯̂yerr =

√
1

n− 1

1∑
ẑ−2
i,err

∑
i

ẑ−2
i,err

(
ẑi− ¯̂y

)2
, (D2)15

where n is the number of measurements, ẑi are the individual XCO2
measurements, ẑi,err are the reported errors associated

with the measurements, and ¯̂y is the weighted average using ẑ−2
err as weights. Note that Eq. D2 takes into account both the

measurement errors as well as the spread of the measurements.
:::::::
However,

:::
we

::::
note

::::
that

:
a
::::::
similar

::::::::
equation

:::::::::::::
underestimated

:::
the

::::
error

::::::::
compared

::::
with

::
a
::::::::
bootstrap

::::::
method

::::::::::::::::::::
(Gatz and Smith, 1995).

D1 Iterations20

We initialize the iterations with an arbitrary scaling factor α0 = 1 and an associated error of σα0 = 0.7. These initial values

have little influence on the final result.

We iterate over the k measurements by calculating the partial derivative:

hk =
∂yest

k

∂αk
=
∑
j

sj,ktj,k, (D3)

where subscript j is for a particular grid box, s is the a priori surface flux, and t is the residence time. Equation D3 is identical25

to Eq. A2 in Kleiman and Prinn (2000). Because this is a scaling retrieval, hk is the observation operator. We can multiply it

by the state element (α) to obtain the estimated observation (Eq. D6). The gain scalar gk and new state error are calculated by

(Eq. A4 and A5 in Kleiman and Prinn (2000)):

gk = σ2
α,k−1hk

(
h2kσ

2
α,k−1 +σ2

z,k

)−1
, (D4)
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σ2
α,k = σ2

α,k−1 (1−hkgk) . (D5)

We make a modification to calculate the estimated measurement, omitting the term for the convergence of fluxes due to

unresolved motions in the transport model. The estimated forward model is

yest
k = αk−1hk, (D6)5

and the state estimate is

αk = αk−1 + gk
(
yobs
k − yest

k

)
. (D7)

D2 A note on single scale factor inversions with large outliers

Some single scale factor inversions can be written in the form

ŷ = λymod, (D8)10

where “mod” represents the initial model values. We consider the case when cost function is of the form:

Jc =
(yobs−λymod)

2

y2err
(D9)

where the error term accounts for both the model and observation errors. If the error is not a function of λ then

∂Jc
∂λ

= 2

(
λy2mod− yobsymod

)
y2

err
. (D10)

Setting Eq. D10 equal to zero and solving for λ yields15

λ=
Σkyobs,kymod,k

Σiy2mod,k
. (D11)

Note the change from vector to summation notation. Equation D11 is a first order estimate of the overall scale factor λ. This

indicates that λ can be low with high model:observation ratios which heavily weight the result.

This is demonstrated in a sensitivity test, where we scale a subset of points (Fig. D1). We create pseudo-observed values by

using the original model values. We create pseudo-model data by scaling a random subset of the original model data by (1.1)
n
s20

where n is the total number of points, and s is the number in the subset. For example, when 100 % of the model points are

adjusted we scale them all up by 10 %. The test is repeated multiple times, with fewer repeats for the non-linear model because

it takes the longest. These results show that having a few large outliers in the Kalman filter (1 scale factor) and the non-linear

(40 scale factor, Sect. E) inversions can significantly pull the results compared with the linear (∼1,000 scale factor, Sect. E)

inversion.25
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Figure D1. Effects of scaling a random subset of model data compared to no scaling. When fewer points are scaled, they are scaled by a

larger amount. The Kalman filter and non-linear inversion are more affect by a few strong outliers than the linear inversion.

Appendix E: Bayesian inversions

The Bayesian approach to solving atmospheric inverse problems has been described in more detail by Rodgers (2000) (see

Section 2.3.2
::::::::::::::::::::::::::::
Rodgers (2000, see Section 2.3.2) (). Turner et al. (2016) describes this approach for an urban region. Here we

follow the notation of Rodgers (2000). For scaling retrievals, Bayesian inversions minimizes a cost function (−2 lnP (y|x)) of

the form in Eq. D9. This assumes error statistics are adequately known, and are Gaussian for both the state vector x (length n)5

and the measurement vector y (length m).

E1 Forward model

The generalized forward model can be written as

y = F(x) + ε, (E1)

where ε is an error term. We test 2 similar forward models for the Bayesian inversions. The first is chosen to reduce the number10

of elements in the state vector. This choice was made based on having only 2 measurement locations. This model has 40 state

vector scaling factors λ in 7 different classes corresponding to year (6), month (12), weekday/end (2), time of day (6), vertical

level (5), spatial bin (8), and overall (1). Time of day bins cover 4 hours each with local ending times at 3:00, 7:00, 11:00,

15:00, 19:00, and 23:00. Aggregated vertical bins are each about 3.5 % of the atmosphere, split at 300, 612, 936, 1272, and

3200 m agl. These are designed to help diagnose transport or footprint extent errors, and the upper 2 levels are weighted less15

when estimating the total SoCAB flux. Spatial bins (Fig. E1) were chosen with one over the ocean, one over Central Valley,

26



-119 -118.5 -118 -117.5 -117 -116.5

33.5

34

34.5

35

C
Q1

Q2

Q3
Q4

O

D

CV

Figure E1. Extent of the 8 spatial sub-regions. C=center, Q1–Q4 are SoCAB quadrants, O=ocean, CV=Central Valley, D=all other areas,

mostly the Mojave Desert to the northeast.

one for the rest of the area outside the SoCAB, and five inside the SoCAB. Each SoCAB area has approximately the same

influence on observations at the Caltech (abbreviated CIT) site based on residence times. This model is

F(x) = λall

6∑
yr=1

12∑
mth=1

2∑
dow=1

6∑
tod=1

5∑
vbin=1

8∑
sbin=1

λyrλmthλdowλtodλvbinλsbin (mj,CIT−mj,AFRC) . (E2)

Here,m= Σt×s is the model amount determined by multiplying the residence time t by the a priori surface flux s and summing

over all times and 0.01◦×0.01◦ grid boxes in the bin. We use j here as shorthand for the subscript “yr,mth,dow,tod,vbin,sbin.”5

We also use a similar linear model of the form

F(x) =

34,560∑
j=1

λj (mj,CIT−mj,AFRC) . (E3)

In this form there are up to nearly 35,000 original elements in our state vector as opposed to the 40 elements in Eq. E2.

Most of the original elements are not ever sampled (e.g., from
:::::
during

:
2012 and 2017) and not used when reporting our total

fluxes. We remove elements which are not linearly independent which reduces the actual number used to less than (about10

one-fifth
:::::::
one-eight) the number of observations. We select the most important elements from matrix R found by performing a

QR decomposition on the K matrix. Changing the cutoff (and Sa) affects the sensitivity to the prior .
::::
(Sect.

::::
E3).

:

E2 Solutions

For the linear forward model (Eq. E3), the retrieved state vector (x̂) can be found in a single step,

x̂ = xa + SaKT
(

KSaKT + Sε
)−1

(y−Kxa) . (E4)15
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xa denotes the a priori state vector. Sa is the a priori covariance matrix for the state vector (denoted B in some texts). K is the

m×n Jacobian matrix (denoted H in some texts). Sε is the m×m measurement error covariance matrix (denoted R in some

texts), which includes errors from both the observations and the forward model. Sε is often treated as a diagonal matrix, with

σ2
k values along the diagonal.

For a non-linear forward model (e.g., Eq. E2), the inverse solution can be found using an iterative Levenberg-Marquardt5

method. This is described in more detail by Rodgers (2000) Section 5.7. The iterative solution is:

xi+1 = xi +
[
(1 + γ)S−1

a + KT
i S−1

ε Ki

]−1

{KT
i S−1

ε [y−F(xi)]−S−1
a [xi− xa]}. (E5)

The symbol γ is a factor chosen at each iteration to minimize the cost function based on how χ2 changes, and i+1 denotes the

current iteration.

E3 A priori values10

We define values for xa, Sε, and Sa. First, our state vector is composed of scaling factors and all elements in xa are unity

for CO and CH4. Because ODIAC2016 emissions for the SoCAB are low compared to other inventories we use
:::::::
multiply

:::
by

1.25 for CO2. Sε is a diagonal matrix. Along diagonal elements are the errors from the observations plus the errors from the

transport model. Observation errors are σ2
y determined from Eq. D1. We assume transport errors are constant and equal to the

overall median observation error.15

For simplicity, Sa is chosen as a single scalar value for the linear model (Eq. E3). We select
::::
tune

:::
two

::::::::::
parameters,

:::::::
namely

Savalues which keep the interannual variability under about 25 %, and minimize dependence on the prior as noted by a

sensitivity test scaling the prior (Fig. 7). This is also
:
,
:::
and

::::
the

::::::::
threshold

:::
for

::::::::::
determining

::::::
linear

::::::::::::
independence

::
in

:::
the

::::
QR

::::::::::::
decomposition.

::::
This

::
is
:
a trade-off between maximizing the degrees of freedom and r, avoiding unstable conditions, and min-

imizing χ2.
:::
We

::::
scan

::::
over

::
a
::::::
variety

:::
of Sa is tuned to 0.07 for CO2, 0.007 for CH4, 0.002 for CO, and 0.2 for CO2 using20

OCO-2 observations. Generally as
:::
and

::::::::
threshold

::::::
values.

:::
We

::::
use

:::::::::
interannual

:::::::::
variability,

::::
and

::::::::::
dependence

::
on

:::
the

:::::
prior

::
as

:::::
noted

::
by

::
a

::::::::
sensitivity

::::
test

::::
(Fig.

:::
7)

::
to

:::::
judge

:::
the

:::::::
quality.

::::::::
Generally

:::
as

:::
we

:::::::
increase

:::
the

::::::::
threshold

:::::
fewer

::::::::
elements

:::
are

:::::::
allowed

:::
in

:::
the

::::
state

::::::
vector,

:::
the

::::::::::
dependence

:::
on

:::
the

::::
prior

:::::::::
decreases,

::::
and

:::
the

:::::::::
interannual

:::::
range

:::::::::
increases.

:::
As Sa increases

:
,
::
so

:::::
does the inter-

annual rangeincreases, but ,
::::

and
:
the dependence on the prior decreases. These values were selected to have the smallest

:::
We

:::::
select

:::::
values

:::::
which

:::::
keep

:::
the

:::::::::
interannual

:::::::::
variability

:::::
under

:::::
about

:::::
25 %,

:::
and

::::::::
minimize dependence on the priorwhile keeping the25

interannual range within our arbitrary 25 % limit. For the 40 factor inversion looser constraints are used with diagonal values

of
:
.
:::
We

::::::
repeat

:::
this

:::::::::
procedure

:::
for

:::
the

::::
three

:::::
gases

::::::::
retrieved

:::
by

::::::::
TCCON,

:::
and

:::
for

:::::::
OCO-2

:::::::::::
observations.

::
Sa::

is
:::::

tuned
:::

to
::::
0.01

:::
for

CO2: 0.7,
:
,
:::::
0.007

:::
for CH4: 0.7, ,

::::::
0.0007

:::
for

::::
CO,

:::
and

::::
0.04

:::
for

:
CO: 0.04, and CO2 (

:::::
using OCO-2 ): 7.

:::::::::::
observations.

:::
For

:::
the

:::
40

:::::
factor

::::::::
inversion

::
Sa::

is
:
a
::::::
matrix

::::
and

:::::::
diagonal

::::::
values

:::
are

:::
the

::::
same

::
as

:::
the

::::::
linear

::::::::
inversion. Off-diagonal values between adjacent

elements (e.g., years, months) are one-third of those along the diagonalin the 40 factor inversion, which is a somewhat arbitrary30

choice based on our a priori guess of how strongly adjacent elements are related.
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