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 10 
We thank the referees for reviewing this manuscript. Their comments and our responses are 11 
below.  12 
Referee comments are in blue with a gray vertical line on the left side. 13 
Our responses are in black. 14 
Edits Changes to the manuscript are shown with tracked changes in red. 15 
 16 
While preparing responses to the referees we also made a necessary improvement to the 17 
inversion which altered the flux results. Our revised manuscript reflects these changes. 18 
 19 
 20 
R1C1 - My main concern is regarding the a priori flux estimates used in this work, 21 
particularly given the acknowledged existing higher accuracy inventories. I understand 22 
that the methodology was designed to be applicable globally, but it is not clear how 23 
much the quality of the inversion suffers from this goal. 24 
 25 
How different are the CO2 fluxes using the modified ODIAC as compared to using 26 
Hestia-LA? Lauvaux et al (2016) used a different Hestia data product and tower 27 
measurements in a substantially smaller city; it isn’t obvious that the comparison holds 28 
over SoCAB with remote sensing data. 29 
We made a sensitivity test using the latest version of Hestia (V2.5). The forward model 30 
was more accurate using Hestia V2.5, and the overall flux inversion differed by less 31 
than 10%, in agreement with previous studies. 32 
 33 
Added to Sect 2.2 34 
As a sensitivity test we also derive a flux based on Hestia-LA 2.5 over the region it is available 35 
and Vulcan 3.0 is used for the rest of the area in the U.S. These were gridded to the same scale as 36 
the ODIAC. 37 
 38 
Added to Sect 4.3 39 
We note that the correlation between the forward model data and TCCON is slightly higher with 40 
Hestia than ODIAC, and there are fewer outliers that differ by a factor of 10x or more. However, 41 
the flux estimate of 110 ± 28 is similar to the posterior flux estimate using ODIAC. 42 
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 43 
 44 
 45 
R1C2 - Given a lack of information on landfills and the variability in the relationship 46 
between nightlights and emissions, is the custom tuned CH4 inventory used in this work 47 
functionally more globally scalable than existing emissions inventories? 48 
We have clarified that the CH4 inventory we made in this study is not scalable beyond a 49 
national level. 50 
 51 
A detailed CH4 inventory is also available for the SoCAB, which we do not use because it would 52 
be difficult to scale (Carranza et al., 2018). We make our own 0.01°×0.01°For the U.S. the 53 
Harvard-EPA inventory is already available at 0.1°×0.1° (Maasakkers et al., 2016), and globally 54 
the EDGAR inventory is available at 0.1°×0.1° (EC-JRC/PBL, 2009).We make our own 30 55 
arcsec × 30 arcsec methane prior using landfills, nightlights, expected total emissions, and the 56 
Harvard-Environmental Protection Agency (EPA) United States (U.S.) inventory (Maasakkers et 57 
al., 2016) shown in Fig. 1. A more detailed CH4 inventory is also available for the SoCAB, 58 
which we do not use because it would be difficult to scale globally Due to a lack of information 59 
outside the U.S. on point sources, such as landfills, our methane prior is also not scalable beyond 60 
a national level. For our methane prior we first(Carranza et al., 2018). First, we distribute 61 
emissions from landfills as point sources (available 2010–2015, 62 
https://ghgdata.epa.gov/ghgp/main.do) and use 2015 emissions for 2016. 63 
 64 
R1C3 - Additionally, this paper should include a data availability section as per the ACP 65 
data policy: https://www.atmospheric-chemistry-and-physics.net/about/data_policy.html 66 
All data used in this study are publically available. No new data were generated. The 67 
data availability section is located between the Conclusions section and Appendix (page 68 
18 of the original manuscript). 69 
 70 
R1C4 - Figure 1 & 2: The boundaries drawn on the map in blue and black should be 71 
described in the figure captions. 72 
Thanks. We’ve added the following to both figure captions: 73 
 74 
The black lines are coastlines and the geopolitical boundaries of the SoCAB. Blue lines are 75 
county borders. 76 
 77 
R1C5 - Figure 5: The grey and blue lines should be described in the caption. 78 
We’ve added the following to the figure caption: 79 
 80 
For every 5th sounding the set of backtrajectories is shown in gray. Backtrajectories originating 81 
from the AFRC site are shown in blue. Coastlines and the geopolitical boundaries of the SoCAB 82 
are shown in black. County borders are shown in blue. 83 
 84 
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 85 
R1C6 - P4 L5: Please provide more detail or a citation regarding CO emissions as 1% 86 
of CO2. 87 
We added a citation for Wunch et al., 2009. 88 
 89 
This same prior is used for CO, but total emissions are 1 % of CO2 emissions on a molar basis 90 
(0.6 % of mass) based on the results of Wunch et al. (2009). 91 
 92 
 93 
R1C7 - P5 L18: Is the assumption that the flux from vegetation is balanced based on 94 
previous literature? 95 
Estimating the net vegetation flux from the whole basin has been elusive. Due to lack of 96 
data some studies are for less than a year, or focus on a few receptor sites. There 97 
seems to be a discrepancy for the SoCAB as to whether the biosphere is a net source 98 
(Newman et al., 2016) or a net sink (Park et al., 2018). The two studies may not be 99 
completely comparable due to different time frames and techniques, but shows that 100 
reasonably determining CO2 fluxes from biospheric sources remains a challenge (Feng 101 
et al. 2016). 102 
    103 
We assume the flux from vegetation is balanced (i.e., no net change in plant biomass or soil 104 
carbon) within the basin. This choice is because of uncertainty as to whether there is a net uptake 105 
of CO2 by the biosphere in the SoCAB (Park et al., 2018) or if the excess CO2 in the atmosphere 106 
from the biosphere (Newman et al., 2016) is due to more respiration than photosynthetic uptake. 107 
We estimate the uncertainty due to the biosphere is less than ±10%. 108 
 109 
 110 
R1C8 - P13 L1 & P18 L27: Why a factor of 64? 111 
The factor of 64 for filtering was a somewhat arbitrary choice, but was originally chosen 112 
to exclude few observations. Upon reconsidering, we decided on a factor of 10 in this 113 
revision due to the possibility of a few outliers strongly affecting results. The sensitivity 114 
test in Sect. 4.3 includes changing this factor. 115 
 116 
(Sect. 4.3) 117 
We start with a threshold that is a scale from the starting factor of 64adjust from there10× (Appendix 118 
A1). 119 
 120 
(Appendix A1) 121 
We also exclude data that differ from the model by a factor of 10 or more. This factor of 10 is 122 
somewhat arbitrary and an argument could be made against using this criterion as a filter. 123 
However, a few large outliers can significantly affect inversion results (Appendix D2) so we opt 124 
to remove suspect values. A sensitivity test including different filter cutoffs for TCCON XCO2 is 125 
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described in Sect. 4.3. This leaves 2,714 After filtering 2,361 paired OCO-2 - AFRC observations 126 
remain. 127 
 128 
For TCCON observations we use the public data, which already has some static within-range 129 
filters applied. We also exclude data that differ from the model by a factor of 6410 or greater, 130 
leaving 5,0604,872 observations. 131 
 132 
 133 
R1C9 - P14 L3: Where is the 20% uncertainty from model winds discussed? If it isn’t 134 
until the appendix, consider referencing that here. 135 
Yes, the 20% is from the appendix. 136 
 137 
… and 20% from model winds (Appendix B). 138 
 139 
 140 
R1C10 - P25 L24: How was this tuning with OCO-2 observations done? 141 
The same way as for the three gases retrieved by TCCON. We’ve clarified this in the 142 
latest revision. 143 
 144 
For simplicity, Sa is chosen as a single scalar value for the linear model (Eq. E3). We selectWe 145 
tune two parameters, namely Sa values which keep the interannual variability under about 25 %,, 146 
and minimize dependence onthe threshold for determining linear independence in the prior as 147 
noted by a sensitivity test scaling the prior (Fig. 7).QR decomposition. This is also a trade-off 148 
between maximizing the degrees of freedom and r, avoiding unstable conditions, and minimizing 149 
χ2. We scan over a variety of Sa and threshold values. We use interannual variability, and 150 
dependence on the prior as noted by a sensitivity test (Fig. 7) to judge the quality. Generally as 151 
we increase the threshold fewer elements are allowed in the state vector, the dependence on the 152 
prior decreases, and the interannual range increases. As Sa increases, so does the interannual 153 
range, and the dependence on the prior decreases. We select values which keep the interannual 154 
variability under about 25%, and minimize dependence on the prior. We repeat this procedure for 155 
the three gases retrieved by TCCON, and for OCO-2 observations. Sa is tuned to 0.0701 for CO2, 156 
0.007 for CH4, 0.00207 for CO, and 0.204 for CO2 using OCO-2 observations. Generally as Sa 157 
increases the interannual range increases, but the dependence on the prior decreases. These 158 
values were selected to have the smallest dependence on the prior while keeping the interannual 159 
range within our arbitrary 25% limit. For the 40 factor inversion looser constraints are used 160 
withSa is a matrix and diagonal values of CO2: 0.7, CH4: 0.7, CO: 0.04, and CO2 (OCO-2): 7are 161 
the same as the linear inversion. Off-diagonal values between adjacent elements (e.g., years, 162 
months) are one-third of those along the diagonal in the 40 factor inversion, which is a somewhat 163 
arbitrary choice based on our a priori guess of how strongly adjacent elements are related. 164 
 165 
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 166 
R1C11 - P31 L36: Reference formatted incorrectly 167 
Fixed, thanks. 168 
 169 
 170 
 171 
R2C1 - I found the paper to be very informative and thorough, and overall correct as far 172 
as I can judge. It does get buried in detail and side alleys and repetitions that make it 173 
difficult to read. The authors might consider cutting back unnecessary parts. 174 
We have reread over the paper with fresh eyes and have tried to better group similar 175 
topics and eliminate repetitions. Parts not essential to the central story, but that are 176 
required for reproducibility are left in the Appendices. 177 
 178 
 179 
R2C2 - Also, the advertised premise of the paper is to demonstrate a simple remote 180 
sensing method that can be used for estimating urban fluxes worldwide, which a reader 181 
might expect to mean using satellite observations, but in fact much of the analysis rests 182 
on the TCCON sites (all of it for methane and CO), and LA is of course an unusually 183 
large city which makes the application easier. TCCON is of course “remote sensing”, 184 
but the title and conclusions may be a little misleading. 185 
We modified the advertised premise throughout to lessons learned that will be important 186 
for future studies estimating urban fluxes worldwide using satellite observations.  187 
The choice of “remote sensing” in the title was to encompass both satellite and TCCON. 188 
However, to try to reduce unintentionally misleading readers we have modified the title 189 
to: 190 
 191 
Southern California Megacity CO2, CH4, and CO flux estimates using ground and space-based 192 
remote sensing and a Lagrangian model 193 
 194 
 195 
 196 
R2C3 - Introduction: not obvious why one needs top-down estimate of urban fluxes, 197 
particularly for CO2 where bottom-up estimates (it seems to me) are likely more reliable. 198 
It would be good to give some justification of the need for top-down approaches. 199 
Likely the greatest confidence in emission estimates will be achieved when both bottom-200 
up and top-down approaches agree. Inventories for CO2 are probably much better than 201 
say CH4, but there still can be large discrepancies between different inventories (though 202 
these might not all be considered “bottom-up”). We’ve added the following paragraph to 203 
the introduction:  204 
 205 
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Bottom-up inventories (e.g., of CO2) can be derived by accounting for various emission activities 206 
such as transportation, electricity generation, industry, and heating. Bottom-up inventories have 207 
some inherent uncertainty due to imperfect emission models which are largely based on 208 
extrapolation of controlled studies and rely on assumptions of fuel consumption, and from 209 
disagreements in downscaling methods (Duren and Miller, 2012; Sargent et al., 2018). 210 
Uncertainties in how emissions are calculated and in the underlying activity data used to 211 
construct inventories makes them susceptible to systematic biases by nature (Oda et al, 2017). 212 
On the national level, 2σ uncertainties range from 4.0-17.5% for the 10 largest emitters (Oda et 213 
al, 2018). Uncertainties on the grid cell level are unique to the disaggregation method, but may 214 
be in the range of 4—190% (2σ) (Andres et al., 2016). Top-down (TD) emission estimates 215 
methods rely on measurements of gases along with models of atmospheric transport, which have 216 
their own inherent uncertainties. Measures of emissions, and emission changes are generally 217 
more reliable when TD and BU methods are in agreement (Duren and Miller, 2012). 218 
 219 
 220 
 221 
R2C4 - Introduction: not clear what the “100+ cities” refers to. 222 
Here “100+ cities” was our way of being quantitative, but it seems to disrupt the flow.  223 
 224 
but are too sparse to track emissions from 100+more than a few cities 225 
 226 
are difficult to scale-up to many (100+)more than a few dozen areas for long-term observations 227 
 228 
 229 
R2C5 - Section 2.2: I presume that seasonality of the CO2 flux is neglected since I saw 230 
no mention of it. It would be worth making the point that the biospheric term is small in 231 
LA, because I wondered about it. Is there also no seasonal pattern in fuel usage? 232 
The seasonality in the CO2 prior flux is driven by seasonality in ODAIC. We’ve added 233 
the following: 234 
 235 
ODIAC has a monthly variation and compared to the annual average, seasonal flux rates are 1.06 236 
(DJF), 0.97 (MAM), 1.00 (JJA), and 0.97 (SON). 237 
 238 
See our response to R1C7 on the biospheric flux term in LA. 239 
 240 
R2C6 - Section 2.4: if the linear inverse model is the way to go why even mention the 241 
other two models? Why detail them in the Appendix? 242 
Mostly because we were curious as to how they would compare in the end. We think 243 
this may be of interest to others in the community so we opted to leave it in. 244 
 245 
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 246 
R2C7 - Section 4.1: I didn’t understand the sentence on “Blooming effects” 247 
We have revised this part and added a reference. 248 
 249 
ODIAC could be low from incorrectly distributing too much of the emissions to rural areas due 250 
to . Bblooming effects (Small et al., 2005). (exaggerating the extent of cites Blooming effects 251 
refer to the tendency for nightlights to exaggerate settlement areas compared with actual extent 252 
due to coarse gridded spatial resolution and indirect or non-electrical lights) in the underlying 253 
nightlight data fields in ODAIC could contribute to an incorrect distribution.. 254 
 255 
 256 


