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 15 

Abstract  16 

The air quality of the Texas Gulf Coast region historically has been influenced heavily by 17 

regional shipping emissions. However, the effects of the recently established North American 18 

Emissions Control Area on aerosol concentrations and properties in this region are presently 19 

unknown. In order to better understand the current sources and processing mechanisms 20 

influencing coastal aerosol near Houston, a high-resolution time-of-flight aerosol mass 21 
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spectrometer (HR-ToF-AMS) was deployed for three weeks at a coastal location during May-22 

June 2016.  Total mass loadings of organic and inorganic non-refractory aerosol components 23 

during onshore flow periods were similar to those published before establishment of the 24 

regulations. Based on estimated methanesulfonic acid (MSA) mass loadings and published 25 

biogenic MSA to non-sea-salt-sulfate (nss-SO4) ratios, an average of over 75% of the observed 26 

nss-SO4 was from anthropogenic sources, predominantly shipping emissions. Mass spectral 27 

analysis indicated that for periods with similar backward-trajectory-averaged meteorological 28 

conditions, air masses influenced by shipping emissions had an increased mass fraction of ions 29 

related to carboxylic acids and larger oxygen-to-carbon ratios than those that avoided shipping 30 

lanes, suggesting that shipping emissions increase marine organic aerosol (OA) oxidation state. 31 

Amine fragment mass loadings were correlated positively with anthropogenic nss-SO4 during 32 

onshore flow, implying anthropogenic-biogenic interaction in marine OA production. Model 33 

calculations also suggest that advection of shipping-derived aerosol may enhance inland 34 

aqueous-phase secondary OA production. These results emphasize the continuing role of 35 

shipping emissions on aerosol properties over the Gulf of Mexico and suggest that further 36 

regulation of shipping fuel sulfur content will reduce coastal submicron aerosol mass loadings 37 

near Houston. 38 

 39 

1. Introduction 40 

Seaborne trade is a relatively inexpensive and efficient mechanism to transport goods across 41 

the globe (IMO, 2012). As a result, such transportation is thought to account for more than 90% 42 

of global trade volume (Eyring et al., 2010; IMO, 2012) and has been growing rapidly in the past 43 

two decades (Lack et al., 2009; Eyring et al., 2010; Tournadre, 2014; Johansson et al., 2017). As 44 
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large commercial shipping vessels historically have had little or inconsistent regulation in 45 

international waters, they frequently burn low-quality residual fuel oils, leading to considerable 46 

emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) (Lack et 47 

al., 2009; Murphy et al., 2009; Czech et al., 2017). Recently, increasing attention has been paid 48 

to the impact of these emissions on ambient PM mass loadings in coastal areas, with notable 49 

contributions in Europe (Viana et al., 2014 and references therein; Aksoyoglu et al., 2016), Asia 50 

(Zhao et al., 2012; Liu et al., 2016), and the United States (Vutukuru and Dabdub, 2008; 51 

Agrawal et al., 2009). Coastal populations exposed to these emissions are subsequently affected 52 

by numerous negative health impacts. Corbett et al. (2007) estimated that shipping activity was 53 

responsible for 60,000 global premature mortalities annually. More recent studies have 54 

confirmed links between shipping emissions and increased hospitalizations (Tian et al., 2013).   55 

The Port of Houston is the second largest in the United States (U.S.) by tonnage (Port of 56 

Houston, 2017), and the Gulf of Mexico has a high density of marine vessel emissions relative to 57 

many other marine locations (Tournadre, 2014; Johansson et al., 2017); however, relatively little 58 

research has aimed to characterize the impact of shipping emissions on Houston air quality. 59 

During the Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate 60 

Study 2006, measurements onboard the R/V Brown were used to characterize aerosol sources 61 

over the Gulf of Mexico (Bates et al., 2008; Russell et al., 2009). Measured submicron aerosol 62 

sulfate (SO4) mass loadings during periods of onshore flow were significantly larger than 63 

expected for a marine environment, leading Bates et al. (2008) to conclude that shipping 64 

emissions contributed heavily to total submicron aerosol mass. Russell et al. (2009) further 65 

determined that an “oil combustion/refining” organic factor accounted for 33-68% of organic 66 

aerosol (OA) mass during onshore flow periods. Using a large-scale three dimensional air quality 67 
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model, Caiazzo et al. (2013) calculated that in 2005, marine vessel emissions increased annual 68 

average PM mass loadings across the Texas Gulf Coast by ~0.5 to 1 µg m-3, leading to 645 69 

estimated premature mortalities in Texas. 70 

Recent concerns over the health impacts of marine vessel emissions led to the establishment 71 

of the North American Emissions Control Area (ECA; U.S. Environmental Protection Agency 72 

(EPA), 2010). Prior to establishment of the ECA, multiple studies demonstrated that shipping 73 

emissions of PM were related to fuel sulfur content (FSC) (Kasper et al., 2007; Lack et al., 2009 74 

and references therein), leading to the requirement that shipping vessels within 200 nautical 75 

miles of the U.S. and Canadian coast reduce their FSC from the commonly utilized 3-4% (by 76 

mass) to only 1%. In 2015, the limit was reduced to 0.1% (Zetterdahl et al., 2017). In order to 77 

comply with these regulations, marine vessels typically switch from low-grade heavy fuel oil to 78 

marine gas oil or marine diesel oil at the ECA boundary; however, low-FSC residual fuels have 79 

also recently become available (Wan et al., 2016; Czech et al., 2017). Numerous studies have 80 

demonstrated that such fuel switching dramatically reduces emissions of SO2, SO4, primary OA 81 

(POA), and black carbon (Lack et al., 2011; Browning et al., 2012; Zetterdahl et al., 2017). 82 

Using the U.S. Interagency Monitoring of Protected Visual Environments network and 83 

positive matrix factorization (PMF) modeling, Kotchenruther (2016) determined that the average 84 

decrease in annual PM2.5 (that with diameters less than or equal to 2.5 m) from residual fuel 85 

combustion (i.e., shipping emissions) in U.S. coastal locations due to establishment of the ECA 86 

(i.e., pre-2012 to 2016) was 74.1%. However, at three sites along the Gulf Coast (located in 87 

Louisiana and Florida), the average reduction was only 35-50% (Kotchenruther, 2016). While 88 

the reason for the difference between the Gulf sites and the rest of the country is currently 89 

unclear, it is nevertheless evident that the implementation of the ECA may have changed 90 
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drastically the speciation and total mass loading of aerosol over the Gulf of Mexico, presenting 91 

the need for further research on this source. 92 

Shipping emissions also may have numerous secondary effects on marine aerosol. Models 93 

indicate that shipping-related NOx emissions likely elevate hydroxyl radical (OH) concentrations 94 

within the marine boundary layer (MBL) (Chen et al., 2005; Kim et al., 2009; Kim et al., 2013), 95 

potentially impacting the oxidation state of marine OA. Furthermore, production of the two most 96 

commonly identified components of marine secondary OA (SOA), methanesulfonic acid (MSA) 97 

and dimethyl/diethylamines (Facchini et al., 2008; Claeys et al., 2009; Rinaldi et al., 2010), may 98 

be enhanced in the presence of shipping emissions (Gaston et al., 2010; Sorooshian et al., 2015). 99 

Finally, shipping-related SO4 should increase submicron mass loadings of aerosol liquid water 100 

(ALW), which may subsequently impact aqueous processing of water-soluble organics (Carlton 101 

and Turpin, 2013). These effects are difficult to model on a global scale due to the complexities 102 

of accurately simulating the photochemistry and physical transport of shipping plumes (Kim et 103 

al., 2009), making field measurements useful to evaluate these hypotheses. 104 

In the present study, three weeks of coastal air measurements were performed near Houston, 105 

TX, to investigate the impact of marine vessel emissions on ambient aerosol mass and 106 

composition. Specific focus was placed on apportioning anthropogenic and biogenic sources of 107 

SO4, attributing anthropogenic SO4 to marine vessel emissions, investigating links between 108 

marine vessel emissions and measured OA, and exploring whether these emissions appear to 109 

influence OA composition, amine/MSA aerosol formation, or ALW. 110 

2. Experimental Methods  111 

2.1 Sampling Site Characterization 112 
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Atmospheric measurements were conducted May 24 - June 14, 2016, at a private coastal 113 

home southwest of Galveston, Texas (29.074oN, 95.125oW). Figure 1 presents an overview of 114 

the sampling location. The site is approximately 75 km directly south of the Houston Ship 115 

Channel (HSC) and is therefore a similar distance from Houston’s urban core. In addition, the 116 

primary inlet to Galveston Bay used for commercial shipping is about 45 km to the northeast. 117 

The nearest road, Highway 257 just north of the site, connects the cities of Galveston and 118 

Freeport, TX, and receives relatively little traffic. As a result, this location is likely to be less 119 

influenced by primary anthropogenic emissions than recent campaigns in Houston that took 120 

place closer to the urban core (Cleveland et al., 2012; Bean et al., 2016; Leong et al., 2017; 121 

Wallace et al., 2018).  Instruments including a high-resolution time-of-flight aerosol mass 122 

spectrometer (HR-ToF-AMS, Aerodyne, Inc.) and those measuring traces gases and 123 

meteorological parameters were housed inside the University of Houston/Rice University Mobile 124 

Air Quality Laboratory (MAQL), which was stationed outside of the private home and has been 125 

described previously (Leong et al., 2017). 126 

2.2 HR-ToF-AMS Operation 127 

The chemical composition of non-refractory submicron PM (NR-PM1) was determined 128 

through the use of a HR-ToF-AMS (DeCarlo et al., 2006). Numerous detailed descriptions of 129 

HR-ToF-AMS operation can be found elsewhere (DeCarlo et al., 2006; Canagaratna et al., 130 

2007). Air flow was drawn into the HR-ToF-AMS through a 2.5-μm cut diameter Teflon®-131 

coated cyclone located on top of the MAQL mast approximately 6 m above ground level. 132 

Incoming air is transmitted through a 100-μm critical orifice, after which particles are focused 133 

into a beam through the use of an aerodynamic lens and accelerated under high vacuum (10-5 134 

Torr) into the sizing chamber. After passing the sizing chamber, non-refractory chemical 135 
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components are flash vaporized at approximately 600oC and ionized at 70 eV. Ionized mass 136 

fragments are then directed into the time-of-flight mass spectral detection region. For this study, 137 

the HR-ToF-AMS was operated in V-mode (higher signal, less mass-to-charge (m/z) resolution 138 

compared to the alternative W-mode), and data were collected over 80-s intervals. A nafion dryer 139 

was placed upstream of the HR-ToF-AMS inlet to maintain a sampling line relative humidity 140 

(RH) below 40%.  141 

2.3 HR-ToF-AMS Data Analysis 142 

The HR-ToF-AMS data were analyzed with the SQUIRREL v 1.57I and PiKA v 1.16I 143 

(D. Sueper, University of Colorado-Boulder) software packages within Igor Pro (Wavemetrics, 144 

Inc.). The collection efficiency (CE) of the HR-ToF-AMS, which is influenced by sampling line 145 

RH as well as particle composition, was determined using the composition-dependent calculator 146 

within the SQUIRREL and PiKA software packages (Middlebrook et al., 2011). This method 147 

produced a CE of 0.5 for the majority of the campaign (89% of the time). High-resolution 148 

analysis was performed on each ion in the m/z range 10-125, and elemental analysis of organic 149 

composition was performed using the Improved-Ambient method (Canagaratna et al., 2015). The 150 

ionization efficiency of the HR-ToF-AMS with respect to nitrate (NO3) was calibrated before 151 

and after the campaign using 350-nm ammonium nitrate (NH4NO3) particles following standard 152 

procedures. In order to calculate campaign-averaged detection limits, filtered air was sampled 153 

every two days for approximately 30 minutes at a time, and the detection limit was calculated as 154 

three times the standard deviation of the filter measurements. Detection limits are provided in 155 

Table S1 in the supplemental information (SI).  156 

2.4 Positive Matrix Factorization 157 
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Positive matrix factorization analysis (Paatero and Tapper, 1994) was performed on the 158 

high-resolution HR-ToF-AMS mass spectral dataset in order to further investigate potential 159 

sources and transformation processes of measured OA. The PMF technique has been applied 160 

extensively in urban (Ulbrich et al., 2009; Ng et al., 2010), rural/downwind (Crippa et al., 2014 161 

and references therein), and coastal locations (Hildebrandt et al., 2010; Hildebrandt et al., 2011; 162 

Schmale et al., 2013) to characterize classes of compounds that constitute OA. The PMF model 163 

assumes that the time series of organic mass spectra can be divided into a number of temporally 164 

unvarying components. These components, defined by their fixed mass spectra, contribute 165 

varying amounts of organic mass to the total organic signal at each time.  Details on PMF and 166 

the resulting factors are included in the SI. 167 

2.5 HYSPLIT Backward Trajectory Calculation 168 

Analysis of air mass history is often a useful tool for characterizing likely sources and 169 

processes affecting measured aerosol composition. As a result, 120-hr backward trajectories 170 

were calculated at heights of 100, 200, 300, 400, and 500 m using the Hybrid Single-Particle 171 

Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Rolph, 2003) for every hour 172 

during the campaign. Meteorological data at a resolution of 1o (latitude-longitude) were obtained 173 

from the Global Data Assimilation System archive 174 

(http:www.arl.noaa.gov/ss/transport/archives.html) through the HYSPLIT software. Recorded 175 

meteorological parameters such as solar flux (W/m2), mixing layer depth, and precipitation were 176 

averaged for each trajectory to provide insight into influences of photochemistry, mixing, and 177 

possible wet deposition during transport. In addition, the overall length of each five-day 178 

trajectory was used to represent an average wind speed, as knowledge of historical wind speed is 179 
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important for predictions concerning the influence of POA particles in ocean environments (Zorn 180 

et al., 2008; Russell et al., 2010; Ovadnevaite et al., 2011).  181 

2.6 Weighted Potential Source Contribution Function 182 

In order to provide further insight into likely aerosol source regions during the campaign, 183 

the weighted potential source contribution function (WPSCF) was applied to the dataset. The 184 

WPSCF combines measured mass loadings of atmospheric species with air mass trajectories to 185 

determine probable source locations. The WPSCF method has been used to study regional 186 

sources of air pollutants at different receptor sites (Hopke et al., 1995; Zhu et al., 2011; Guo et 187 

al., 2014). For this study, the WPSCF analysis utilized HYSPLIT trajectories described 188 

previously. The spatial area covered by the trajectories was divided into a grid of 0.25o x 0.25o 189 

cells, and the number of trajectory segment endpoints located in each cell for five different 190 

starting heights (100, 200, 300, 400, and 500 m) was determined. Incorporation of multiple 191 

starting heights accounts for the general clockwise rotation of air mass backward trajectories 192 

with altitude. While these cell sizes are slightly smaller than those often used (~0.5o-2o), this 193 

study was particularly focused on attribution of measured SO4 to specific locations within the 194 

Gulf of Mexico (i.e., shipping lanes), which requires a small cell size.  195 

In order to calculate the WPSCF value for each cell, the total potential source 196 

contribution function (TPSCF) value is first calculated and then weighted. The value of the 197 

TPSCF function for a specific grid cell (i, j) is calculated using (Hopke et al., 1995; Guo et al., 198 

2014): 199 

                                                       𝑇𝑃𝑆𝐶𝐹𝑖,𝑗 = 
∑𝑚𝑖,𝑗

𝑘

∑𝑛𝑖,𝑗
𝑘                                                     (1) 200 
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where 𝑛𝑖,𝑗
𝑘  represents the total number of trajectory segment endpoints located within cell i,j for 201 

height k, while 𝑚𝑖,𝑗
𝑘  represents the number of these endpoints that also correspond to measured 202 

values of a specific species above a critical value, in this case the 75th percentile (Hopke et al., 203 

1995; Guo et al., 2014). 204 

In the case of highly variable air mass trajectories or strong local sources during a campaign, 205 

distant grid cells that were intersected by only a small number of trajectories may be incorrectly 206 

assumed to represent likely sources. To prevent this, a weighting function is applied to TPSCF 207 

values based on the 𝑛𝑖,𝑗
𝑘  value, with higher weight given to cells that were intersected by more 208 

trajectories. The weighting method, based on the power of the number of trajectories at a specific 209 

height, is (Guo et al., 2014)  210 

                               𝑊(∑𝑛𝑖,𝑗
𝑘 ) =  

{
 
 

 
 
1,        𝑇0.7 < ∑𝑛𝑖,𝑗

𝑘                    

0.7,    𝑇0.56 < ∑𝑛𝑖,𝑗
𝑘 ≤    𝑇0.7  

0.42,   𝑇0.42 < ∑𝑛𝑖,𝑗
𝑘  ≤  𝑇0.56

0.17,        ∑ 𝑛𝑖,𝑗
𝑘  ≤   𝑇0.42         }

 
 

 
 

                              (2) 211 

where T represents the total number of trajectories calculated at each specific height. The 212 

WPSCF value is then calculated by applying the relevant weights to each cell. 213 

                                                  𝑊𝑃𝑆𝐶𝐹𝑖,𝑗 = 𝑊𝑖,𝑗 × 𝑇𝑃𝑆𝐶𝐹𝑖,𝑗                                        (3)  214 

2.7 MSA Calibration 215 

Methanesulfonic acid is widely regarded as a robust indicator of SOA production from 216 

marine sources (Facchini et al., 2008; Crippa et al., 2013; Schmale et al., 2013; Ovadnevaite et 217 

al., 2014). In addition, MSA is often the most abundant identifiable component of marine OA 218 

(Facchini et al., 2008; Claeys et al., 2009). Recent work has identified that MSA mass loadings 219 
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can be quantified in near-real time by the HR-ToF-AMS provided that accurate instrument-220 

specific calibrations are performed (Zorn et al., 2008; Ovadenvaite et al., 2014; Huang et al., 221 

2017). As MSA fragments into both organic and inorganic SO4-containing ions within the HR-222 

ToF-AMS, accurate mass prediction requires reconstruction of the compound based on 223 

knowledge of the fragmentation pattern in the specific instrument being used (Zorn et al., 2008). 224 

As such, calibrations were performed following the procedure of Ovadnevaite et al. (2014). 225 

A 0.02% aqueous solution of MSA (Sigma-Aldrich, >99.0% purity) was nebulized by a 226 

TSI, Inc. atomizer (model 3076) and passed through a differential mobility analyzer (BMI, Inc.) 227 

to size select particles 300-nm in mobility diameter. These particles were then measured by the 228 

HR-ToF-AMS. Mass spectra from two separate calibrations are provided in Figure S13 While 229 

MSA fragments into a variety of ions within the HR-ToF-AMS (CH3
+, CHS+, CH3SO2

+, SO+, 230 

SO2
+, etc.), the CH3SO2

+ ion is thought to originate almost exclusively from MSA, as other 231 

organosulfate standards measured by the HR-ToF-AMS show negligible contributions to 232 

CH3SO2
+ (Huang et al., 2015). Therefore, MSA mass loadings during the campaign were 233 

calculated based on the ratio of this ion to the total MSA mass measured during the calibrations 234 

(Huang et al., 2015; Huang et al., 2017). The average ratio measured during the two calibrations 235 

(18.18), was similar to that determined from the calibration of Huang et al. (2017) (23.81). 236 

2.8 Distinction Between Anthropogenic and Biogenic nss-SO4 237 

The MSA measurements also allow estimation of the relative contributions of biogenic and 238 

anthropogenic (primarily due to shipping) sources of non-sea-salt (nss)-SO4 in marine 239 

environments.  In many studies attempting to apportion the impact of shipping emissions on 240 

measured aerosol mass, ratios of trace metals specific to heavy fuel oil combustion are used as 241 

tracers (Zhao et al., 2012; Viana et al., 2014; Kotchenruther, 2016).  However, in cases where 242 
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such data are unavailable, biogenic sulfur sources, based on the oxidation chemistry of dimethyl 243 

sulfide (DMS), should produce a latitude-specific biogenic MSA/nss-SO4 ratio, presenting a 244 

metric to apportion biogenic and anthropogenic nss-SO4 (Jung et al., 2014). Specifically, DMS 245 

oxidation, which primarily occurs through initial reaction with OH, can either proceed through 246 

an abstraction or addition pathway (Hynes et al., 1986). The addition pathway, which is favored 247 

at lower temperatures prevalent at higher latitudes, mainly produces dimethylsulfoxide and 248 

MSA. The abstraction pathway, favored in higher temperatures, primarily produces SO2 and 249 

therefore eventually nss-SO4 (Hynes et al., 1986; Jung et al., 2014). As a result, previous long 250 

distance remote trans-oceanic cruises have observed significant latitudinal gradients in the 251 

MSA/nss-SO4 ratio in both the Atlantic and Pacific Oceans (Jung et al., 2014; Huang et al., 252 

2017), with consistently larger values at high latitudes.  253 

As nss-SO4 measured in marine environments is often produced by a combination of 254 

anthropogenic and biogenic sources, multiple linear regression (MLR) analysis is often used to 255 

extract the biogenic MSA/nss-SO4 ratio from ambient marine aerosol data. The MLR technique 256 

assumes that marine nss-SO4 is produced from a biogenic source, which can be traced with MSA 257 

mass loadings (used as one predictor variable), and an anthropogenic source, which can be traced 258 

using concentrations of heavy metals emitted by shipping vessels (e.g., antimony) (used as the 259 

second predictor variable) (Savoie et al., 2002).  Previously published agreement between 260 

measured and predicted nss-SO4 using the MLR method was robust (R2 > 0.7) (Savoie et al., 261 

2002). For this study, the biogenic MSA/nss-SO4 ratio (0.053) determined by Savoie et al. (2002) 262 

using multiple linear regression (MLR) at Bermuda was utilized to apportion biogenic versus 263 

anthropogenic sources of nss-SO4, as Bermuda is the closest location to our sampling site in 264 

terms of latitude (32oN at Bermuda versus 29oN at our sampling site). In addition to being 265 
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collected at the closest location to our sampling site, the ratio extracted at Bermuda is the lowest 266 

reported ratio in the literature, to the authors’ knowledge. A more recent study by Lin et al. 267 

(2012) quantified the biogenic MSA/nss-SO4 ratio of submicron marine aerosol using sulfur 268 

isotopic data at varying latitudes across the Atlantic Ocean. The authors reported ratios similar to 269 

or larger than 0.053 at all sampled latitudes. As a result, the application of other published ratios 270 

will only increase the fraction of nss-SO4 attributed to anthropogenic sources.  271 

However, as the biogenic MSA/nss-SO4 ratio was originally determined using samples of 272 

total suspended particulate matter (i.e., no size-cutoff) application of the ratio to PM1 data should 273 

produce an upper-limit estimate of the anthropogenic fraction of marine nss-SO4. Briefly, as 274 

previous field and laboratory studies have noted that MSA solubility decreases with solution 275 

acidity (Kerminen et al., 1997; Jung et al., 2014), the presence of acidic sulfate aerosol can shift 276 

the size distribution of MSA towards larger, more alkaline particles relative to sulfate (a stronger 277 

acid) (Jung et al., 2014). This effect, if substantial, could cause the HR-ToF-AMS to report a 278 

lower observed MSA/nss-SO4 ratio than would be observed by an instrument measuring both 279 

submicron and super-micron PM. However, Saltzman et al. (1983) found that the size 280 

distributions of MSA and SO4 measured in the Gulf of Mexico were quite similar, with around 281 

75% of MSA and approximately 87% of nss-SO4 contained within sub-micron particles, 282 

suggesting that the overall uncertainty resulting from this effect is small.  283 

Quantification of anthropogenic nss-SO4 also requires that the contribution of sea salt 284 

(ss)-SO4 be determined. Using laboratory calibrations, the ss-SO4 mass loading measured by the 285 

HR-ToF-AMS when sampling a sea-salt standard (Lake Products Co., ASTM D1141), is 286 

approximately 26 ± 2% of the corresponding chloride mass loading. Using this ratio and 287 

measured chloride mass loadings during the campaign, ss-SO4 contributed only 0.4 ± 0.4% of the 288 
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total SO4 mass loading. Therefore, to produce an estimate of anthropogenic nss-SO4, the HR-289 

ToF-AMS estimate of MSA is divided by the biogenic MSA/nss-SO4 ratio published by Savoie 290 

et al. (2002) to produce a “biogenic” mass loading of nss-SO4. This amount is subtracted from 291 

the total nss-SO4 measured by the HR-ToF-AMS, and the remaining nss-SO4 is assumed to be 292 

anthropogenic. Multiple lines of evidence described in Section 3.2 support the use of this 293 

technique.  294 

2.9 Ancillary Measurements 295 

A variety of trace gases and meteorological parameters were measured during the campaign. 296 

All trace gas and meteorological data were measured with a 5-minute averaging time. Individual 297 

NOx species (nitric oxide and nitrogen dioxide (NO2)) and total reactive gas-phase nitrogen were 298 

measured using high sensitivity chemiluminescence monitors (AQD, Inc.). Ozone (O3) mixing 299 

ratios were measured with an ultraviolet absorption instrument (2BTech, Inc., model 205), and 300 

carbon monoxide mixing ratios were measured using high-resolution cavity enhanced direct-301 

absorption spectroscopy (Los Gatos Research, Inc.). Sulfur dioxide was measured with a pulsed 302 

fluorescence analyzer (ThermoFischer Scientific, model 43i). Ambient temperature, pressure, 303 

wind speed, and wind direction were measured using an RM Young meteorological station. 304 

3. Results and Discussion 305 

3.1 Campaign Overview 306 

Figure 2 displays the speciated aerosol mass loadings, PMF factor contributions, important 307 

trace gas concentrations, and meteorological conditions encountered during the campaign. 308 

Overall, the average NR-PM1 mass loading was 4.66 ± 3.17 (one standard deviation) µg m-3 and 309 

was dominated at times by either SO4 (44% on average) or OA (42%). As the measurements 310 
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were performed in the early summer in close proximity to the coast, RH was relatively high 311 

(average 81%), conditions were generally sunny, and temperatures were warm (average 27.3oC). 312 

Examination of the aerosol time series data reveals three distinct period types.  Marine periods 313 

are characterized by consistent on-shore flow, while continental periods are characterized by off-314 

shore flow or daily land- and sea-breeze circulation patterns. A three-day period influenced by 315 

the passage of two cold fronts and a low pressure (LP) system that produced heavy cloud cover, 316 

intermittent rain, and a distinct aerosol diurnal profile was termed “Frontal/LP.”  317 

Each of these periods contained a unique dominant PMF factor resembling low-volatility 318 

oxygenated organic aerosol (OOA) (Ng et al., 2010), denoted as OOA-1, OOA-2, or OOA-3 319 

(Figure 3). An overview of the average aerosol and trace gas characteristics during each period is 320 

provided in Table 1, and a comparison to previous campaigns in the Houston region is shown in 321 

Figure S14. While the extracted PMF factors are highlighted briefly below and summarized in 322 

Table 2, more detailed factor descriptions are included in the SI. 323 

The majority of the campaign (~12 days total), characterized by onshore flow conditions with 324 

wind directions generally between 120o and 240o, was classified as “marine.” During these 325 

periods, which encompass 5/24-6/1 and 6/10-6/14, aerosol mass loadings were relatively stable 326 

from day-to-day. Interestingly, average observed mass loadings were much larger in the first 327 

portion of the marine period (4.69 µg m-3) (5/24-6/1) than in the second (2.71 µg m-3) (6/10-328 

6/14), despite similar local wind direction, O3, and meteorological conditions, implying that air 329 

mass history has a large influence on marine aerosol loadings. The observation of SO4 mass 330 

loadings much larger than 1 µg m-3, which is generally the maximum observed in remote marine 331 

locations, even during periods of high biological activity (Zorn et al., 2008; Rinaldi et al., 2010; 332 

Schmale et al., 2013; Ovadnevaite et al., 2014), supports a major anthropogenic aerosol source in 333 
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the Gulf of Mexico. The average mass loading of SO4 plus NH4 (3.04 µg m-3) was similar to that 334 

measured during onshore flow by Bates et al. (2008) (3 µg m-3), despite recent regulations on 335 

shipping emissions, while measured OA mass loadings were larger during this study (0.72 µg m-336 

3 versus 0.38 µg m-3 from Bates et al. (2008)). The OA, which constituted 21% of total mass, was 337 

highly oxidized (average oxygen to carbon ratio, O:C = 0.73), consistent with previous 338 

measurements of marine aerosols (Russell et al. 2009; Chang et al., 2011; Schmale et al., 2013). 339 

The average mass fraction of m/z 44 (f44), a metric used to describe the extent of OA oxidation, 340 

was 0.15, a value very similar to that observed by Russell et al. (2009) during marine flow 341 

conditions (0.16), suggesting that on average, the oxidation state of marine OA over the Gulf of 342 

Mexico has not changed substantially since ECA implementation. 343 

The light winds observed during the campaign suggest that little of the measured marine OA 344 

was the result of organic-enriched sea spray, as this production pathway generally requires 345 

significant white-cap coverage, which is typically only observed above wind speeds of 7-8 m/s 346 

(Gantt et al., 2011; Shank et al., 2012; Ovadnevaite et al., 2011; Schmale et al., 2013; Frossard et 347 

al., 2014). Local wind speeds were virtually never above 8 m/s (Figure 2), and 5-day averaged 348 

wind speeds calculated using total trajectory lengths were only >8 m/s for 4% of the marine 349 

period. Potential major sources of OA therefore include secondary production through 350 

processing of biogenic volatile organic compounds (VOCs), as well as primary and secondary 351 

production from shipping emissions (Lack et al., 2009; Coggon et al., 2012). This hypothesis is 352 

supported by the fact that marine OA composition was dominated by a highly oxidized PMF 353 

factor, OOA-3 (O:C = 0.77; 55% of OA on average) (Figure S5), that was moderately correlated 354 

with SO4 (R
2 = 0.55) and displayed little diurnal variation.  355 
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Two storms occurred during the sampling campaign.  The first (5/27) caused a loss of power 356 

to the HR-ToF-AMS and the data gap shown in Figure 2; the second, denoting the beginning of 357 

the “Frontal/LP” period, caused a rapid reduction in aerosol mass that was followed by three 358 

days of markedly different aerosol characteristics, despite initially similar wind directions. 359 

Diurnal profiles of virtually all NR-PM1 species during the frontal/LP period are distinct from 360 

the preceding marine period (Figure 3) and show maximum concentrations at night. Satellite 361 

images of the area show the arrival of a large-scale frontal system on 6/2 and the presence of 362 

heavy cloud cover through 6/5 (Figure S15). The O:C ratio during this period is the highest of 363 

the campaign, which, combined with the strong correlation between diurnal trends of OA and 364 

SO4 (R
2 = 0.78) suggests measured OA represents regional background OA that is diluted with 365 

the rise of the boundary layer in the morning. The dominant PMF factor extracted during this 366 

period (OOA-1) had an O:C ratio (1.15) similar to the most aged OA observed in urban areas 367 

(Hayes et al., 2013) implying an influence of either extensive atmospheric processing during 368 

transport (Ortega et al., 2016), aqueous processing of highly oxidized water soluble organics 369 

(e.g., glyoxal O:C = 1) (Chhabra et al., 2010), or some combination of the two.  370 

The third identified period, which occurred from 6/6-6/9, shows evidence of continentally 371 

influenced air masses and a multi-day increase of NR-PM1 following passage of the frontal 372 

system. The organic to SO4 ratio shifts from a value of 0.34 during the marine period, typical of 373 

marine environments (Coggon et al., 2012), to an average value of 3.08, highlighting the 374 

predominance of OA sources within the Houston region. Local wind direction measured from 375 

6/6-6/8 appears to show a land-sea breeze type circulation pattern, and midday O3 concentrations 376 

during this period reach the highest levels of the campaign (Figure 2). Diurnal profiles of NR-377 

PM1 species highlight the influence of local photochemistry on aerosol formation (Figure 3). 378 
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OOA-2, the dominant PMF factor during this period (72%), displays a photochemical 379 

dependence similar to previously extracted OOA factors in Houston’s urban core (Cleveland et 380 

al., 2012) but is much more oxidized (O:C = 0.79 in this study versus 0.46 in Cleveland et al. 381 

(2012)), highlighting the effect of aging during transport. Plotting mass loadings of OOA-2 382 

against ambient CO concentrations produces a slope of ~150 µg m-3/ppmv during this period.  383 

This value is similar to previous aircraft measurements of aged industrial plumes in Houston 384 

(Bahreini et al., 2009; Wood et al., 2010). Modeling results have suggested that biogenic VOCs 385 

contribute little OA during Houston industrial plume transport (Bahreini et al., 2009) except in 386 

the case of advection into the forested north of Houston (Brown et al., 2013), which suggests a 387 

likely anthropogenic origin of OOA-2.  388 

3.2 Analysis of MSA Mass Loadings 389 

The time series of calculated MSA mass loadings is shown in Figure 4, as are concentrations 390 

determined for the three distinct periods described previously and comparisons with literature 391 

values. Overall during the marine period, MSA mass ranged from ~0 to 0.07 µg m-3 and showed 392 

moderate correlation with nss-SO4 (R
2 = 0.46) and weak correlation with OA (R2 = 0.12), 393 

suggesting major additional sources of both nss-SO4 and OA over the MBL. While previous 394 

MSA measurements in the Gulf of Mexico are sparse, Saltzman et al. (1983) recorded submicron 395 

mass loadings of 0.022-0.066 µg m-3 in Miami, in agreement with our results. In addition, our 396 

results align well with previous submicron measurements taken at lower latitudes in both the 397 

Atlantic and Pacific Oceans, as well as with measurements taken at higher latitudes while 398 

sampling tropical air masses (Figure 4) (Zorn et al., 2008; Ovadnevaite et al., 2014; Huang et al., 399 

2017).  400 
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On average, MSA accounts for only 3.2% of submicron OA during marine periods, a value 401 

much lower than observed in previous coastal measurements with a HR-ToF-AMS. For instance, 402 

Crippa et al. (2013) reported that MSA accounted for approximately 20% of submicron OA in 403 

Paris when air masses traveled from marine locations. At Mace Head, Ireland, MSA represented 404 

12.5-18% of submicron OA during May and June when air masses traveled from the tropics 405 

(Ovadnevaite et al., 2014). However, before establishment of the ECA, Russell et al. (2009) 406 

found that during onshore flow in the Gulf of Mexico, between 52 and 89% of organic mass 407 

could be attributed to oil combustion/refining and wood smoke-related sources. Therefore, the 408 

small MSA mass fraction observed here is likely the result of strong remaining anthropogenic 409 

OA sources over the Gulf. This hypothesis is supported by the relatively weak correlation 410 

between the dominant marine PMF factor (OOA-3) and MSA (R2 = 0.41). For comparison, the 411 

distinctly biogenic marine PMF factor extracted by Crippa et al. (2013) in Paris correlated 412 

strongly with MSA (R2 = 0.84).  413 

Quantification of the MSA/OA ratio permits a rough calculation of the contribution of 414 

biogenic sources to total marine OA. Using an assumption that MSA should only represent 5-415 

10% of total biogenic OA under pristine conditions over the Gulf of Mexico (a low estimate 416 

based on the previous observations discussed), calculation of the mass fraction of biogenic OA 417 

based on this ratio (MSA/Bio. OA = 0.05-0.1) and the measured MSA/Total OA ratio 418 

(MSA/Total OA = 0.032) implies biogenic sources only produce ~32-64% of total measured OA. 419 

In addition, vanadium, an element common to shipping emissions, is thought to act as a catalyst 420 

to MSA formation (Gaston et al., 2010). As oil combustion emissions were responsible for a 421 

major fraction of OA over the Gulf of Mexico in the past (Russell et al., 2009), this type of 422 

catalytic process may be enhancing MSA production relative to more pristine locations at similar 423 
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latitudes. This further suggests that the assumption that MSA accounts for only 5-10% of 424 

biogenic OA is likely a low estimate. 425 

MSA mass loadings were positively, though only slightly, correlated with trajectory-426 

averaged solar flux (R2 = 0.12) and negatively correlated with trajectory length (i.e., wind speed) 427 

(R2 = 0.16). The lack of a strong correlation with these parameters is partly due to the fact that 428 

DMS is emitted primarily in regions with high concentrations of biological organisms in the sea-429 

surface layer, which typically occur close to the coast. Therefore, emissions are not uniform 430 

across the Gulf of Mexico (Sorooshian et al., 2009). Often, high MSA mass loadings are linked 431 

to specific locations of high biological activity through analysis of backward trajectories and 432 

comparison to chlorophyll-a levels (Sorooshian et al., 2009; Gaston et al., 2010; Schmale et al., 433 

2013; Sorooshian et al., 2015; Huang et al., 2017). While the accuracy of satellite-derived 434 

measures of chlorophyll-a as an indicator of DMS production potential is still under debate 435 

(Sorooshian et al., 2009; Huang et al., 2017), the data here support a link between oceanic 436 

chlorophyll-a and MSA mass loadings, as a peak in MSA mass is observed on 6/11, when 437 

backward trajectory analysis indicates air masses slowly traveled over the nutrient-rich waters 438 

close to the coast and near the mouth of the Rio Grande River (Figure S16). 439 

3.3. Quantifying Anthropogenic Contributions to Marine Aerosol Mass 440 

The average MSA/nss-SO4 ratio measured during the marine period was 0.012.  Applying the 441 

biogenic MSA/nss-SO4 ratio determined by Savoie et al. (2002) indicates that an average of 77% 442 

of nss-SO4 (1.8 μg m-3) is the result of anthropogenic sources during onshore flow (Figure 4c). 443 

This value likely represents an upper limit (see Section 2.8). Furthermore, as the partitioning of 444 

gaseous ammonia (NH3) to the aerosol phase is driven by the neutralization of acidic SO4, mass 445 

loadings of nss-SO4 and NH4 are highly correlated during the marine period (R2 = 0.97). As a 446 
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result, an estimate of an “anthropogenic” mass loading of NH4 can be calculated based on the 447 

NH4/nss-SO4 ratio and the calculated anthropogenic fraction of nss-SO4. The classification of a 448 

fraction of NH4 as “anthropogenic” therefore refers to the necessity of an anthropogenic species 449 

(in this case nss-SO4) for the production of NH4 aerosol, rather than anthropogenic NH3 450 

emissions. By applying this method and combining anthropogenic NH4 and nss-SO4 mass 451 

loadings, anthropogenic sources contribute 73% of total inorganic NR-PM1 (2.3 μg m-3) on 452 

average during marine flow conditions.  453 

Multiple lines of evidence support the use of MSA measurements coupled with the biogenic 454 

MSA/nss-SO4 ratio to apportion anthropogenic and biogenic nss-SO4. Using measurements of 455 

chlorophyll-a concentrations, wind speeds measured onboard the R.V. Brown, and the wind 456 

speed/transfer velocity relationship determined by Nightingale et al. (2000), Bates et al. (2008) 457 

estimated that the DMS flux from the Gulf of Mexico was capable of producing between 0.2 and 458 

0.4 µg m-3 of biogenic nss-SO4. For comparison, the average mass loading of biogenic nss-SO4 459 

calculated using the biogenic MSA/nss-SO4 ratio during marine periods in our study is 0.54 µg 460 

m-3, in relatively good agreement with those results. Furthermore, Figure 5 shows the WPSCF 461 

analysis of anthropogenic nss-SO4 and MSA, the Automated Mutual Assistance Vessel Rescue 462 

System (AMVER) shipping spatial proxy map (Wang et al., 2008), and chlorophyll-a levels 463 

observed by the MODIS satellite. The use of the biogenic MSA/nss-SO4 ratio is qualitatively 464 

supported by the relatively distinct WPSCF results of anthropogenic nss-SO4 and MSA and by 465 

the agreement between the anthropogenic nss-SO4 WPSCF map and the region of high shipping 466 

traffic indicated by the AMVER inventory. The high probability region of anthropogenic nss-467 

SO4 is located predominately outside of the ECA boundary where shipping lanes converge, while 468 
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the MSA high probability region is largely within the ECA where surface chlorophyll-a 469 

concentrations are elevated (Figure 5).  470 

While point-source emissions in Florida or long-range transport could contribute to the 471 

anthropogenic nss-SO4 measured during this study, further analysis suggests these sources are 472 

minor in comparison to marine vessel emissions. According to the National Emissions Inventory 473 

(NEI), ~160,000 tons of SO2 were emitted in Florida in 2014 (U.S. EPA, 2014). However, only 474 

~30,000 tons (~19%) were emitted in the southern peninsular region indicated as a potential 475 

source by the WPSCF analysis (south of 28oN) (Figure S17). While point-source distributed NEI 476 

data are not yet available for 2016, EPA statewide average data suggest that Florida SO2 477 

emissions were approximately half of those in 2014 (~80,000 tons), with the change almost 478 

entirely due to a 75% reduction in emissions from electricity generating stations (U.S. EPA, 479 

2017). If emissions from individual electricity generating stations south of 28oN have been 480 

similarly reduced, only ~20,000 tons of SO2 were emitted in the southern peninsular region in 481 

2016. For comparison, recent emissions inventories predict that marine vessels emit as much as 482 

75,000 tons of SO2 annually in the Gulf of Mexico after accounting for the ECA, nearly four 483 

times as much as the geographically relevant Florida emissions (Johansson et al., 2017).  484 

In terms of the contribution from long-range transport, air masses that originated in Europe 485 

or Africa required 15 days of transit or more to reach the measurement site based on HYSPLIT 486 

modeling. Assuming that sulfur compounds have a lifetime of ~5-7 days in the MBL (Faloona, 487 

2009), 89-95% of the original sulfur in these air masses would be lost prior to measurement. This 488 

agrees with the finding by Bates et al. (2008) that only a small fraction of SO4 measured in the 489 

Gulf of Mexico was contributed by African dust during measurements in 2006.  490 
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Volcanic sources of SO2 have occasionally contributed significantly to nss-SO4 in marine 491 

regions during previous campaigns (Jung et al., 2014). Any nss-SO4 produced by volcanic 492 

emissions would be apportioned to anthropogenic sources due to the apportionment technique 493 

used (i.e., volcanoes would not be expected to produce substantial MSA, leading to a depression 494 

of the MSA/nss-SO4 ratio). Therefore, the influence of volcanic emissions would incorrectly 495 

increase the fraction of measured nss-SO4 attributed to anthropogenic sources. However, the only 496 

relevant volcanoes in the area are along the Caribbean islands, and backward trajectory analysis 497 

reveals that the largest measured mass loadings of nss-SO4 correspond to air masses that passed 498 

far north of them. It therefore appears that the vast majority of measured anthropogenic nss-SO4 499 

was emitted by marine vessels rather than other sources. 500 

These results contrast with those from the previous model study of Lauer et al. (2007), who 501 

predicted using a global model that shipping contributes only ~30% of sub-micron SO4 over the 502 

Gulf of Mexico using the AMVER-distributed shipping inventory from Eyring et al. (2005) and 503 

as little as 15% or less using the International Comprehensive Ocean-Atmospheric Dataset-504 

distributed inventory from Corbett and Kohler (2003) on an annual basis. Multiple lines of 505 

evidence suggest that the discrepancies observed between our results and previous modeling 506 

results are not simply due to the timing of our measurements. For instance, while less shipping-507 

related SO4 is likely produced in the fall/winter due to the reduction in photochemical activity 508 

during that time, conversion of biologically-emitted SO2 into nss-SO4 should have the same 509 

photochemical dependence. Furthermore, the SO2 yield from DMS oxidation, the major 510 

biological nss-SO4 production pathway, is reduced in the winter due to the temperature 511 

dependence of DMS oxidation chemistry, as previously explained (Section 2.8) (Jung et al., 512 

2014). Finally, data from the Port of Houston suggests that shipping traffic (estimated by the 513 
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number of twenty-foot equivalent cargo units (TEUs) processed at the port) is only reduced by 514 

~10% in the winter (Figure S18) (Port of Houston, 2017). However, a portion of this discrepancy 515 

is likely attributable to the fact that the marine period of our study only encompasses onshore 516 

flow conditions, whereas the annual average calculated by Lauer et al. (2007) also incorporates 517 

periods of offshore flow, when continental emissions act as source of nss-SO4 to the MBL over 518 

the Gulf of Mexico.  519 

Quantification of anthropogenic nss-SO4 allows for a more detailed apportionment of marine 520 

OA than was possible based on MSA alone. While the correlation between total nss-SO4 and 521 

OOA-3 (the dominant marine OA factor) is moderate (R2 = 0.55), anthropogenic nss-SO4 is 522 

strongly correlated with OOA-3 (R2 ≥ 0.78) (Figure S12), suggesting OOA-3 is coupled to 523 

shipping emissions either directly (e.g., SOA from marine vessel VOCs) or indirectly (e.g., 524 

increased uptake of water soluble gases over the MBL due to increased ALW). Substantial 525 

processing of OOA-3 during transport leads to the removal of major mass spectral tracers; 526 

however, there is some evidence for a contribution from naphthalene OA (discussed in the SI), 527 

which is the dominant commonly-measured VOC emitted by major commercial shipping vessels 528 

(Agrawal et al., 2008; Murphy et al., 2009; Czech et al., 2017). Assuming, as a strictly upper 529 

bound estimate, that OOA-3 production is entirely dependent on shipping emissions, 530 

anthropogenic sources contributed 71% of total NR-PM1 (2.7 μg m-3) on average during the 531 

marine period. 532 

Comparing the submicron mass loadings of nss-SO4 and NH4 measured during marine 533 

periods by Bates et al. (2008) (pre-ECA) (3 µg m-3) to those measured during our study (3.04 µg 534 

m-3) suggests ECA implementation has had a negligible effect on aerosol mass. However, the 535 

amount of shipping traffic within the Gulf of Mexico, estimated with the total number of loaded 536 
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TEUs processed at the ports of Houston, TX, Galveston, TX, Freeport, TX, New Orleans, LA, 537 

and Mobile, AL has increased by approximately 42% since 2006 (Figure S19) (U.S. Army Corps 538 

of Engineers, Navigation Data Center, 2016), suggesting that emissions reductions per vessel 539 

within the ECA boundary may have been offset by increased traffic. On a yearly basis, the 540 

estimated increase in shipping traffic since 2006 (4.6% per year) is similar to the annual growth 541 

in seaborne trade observed between 2002 and 2007 (5.2%) and is within the range of growth 542 

predicted through 2050 (3.6-5.9%) (Corbett et al., 2007; Eyring et al., 2010). In support of these 543 

rapid growth estimates, Tournadre (2014) recently concluded that shipping traffic in the Atlantic 544 

Ocean nearly doubled between 2006 and 2012, corresponding to an average annual increase of 545 

~8%. While it is also possible that the specific meteorological conditions encountered during this 546 

campaign (i.e., air mass trajectories, average wind speeds, etc.) were more conducive to the 547 

accumulation of anthropogenic nss-SO4 than during the study of Bates et al. (2008), this is 548 

unlikely to be the dominant reason for the little change observed since ECA implementation. 549 

Therefore, our results suggest that the ECA has reduced shipping emissions on a per vessel basis, 550 

as there has been little change in shipping-related aerosol despite significant growth in the 551 

shipping trade. However, these results also provide justification for further limits on FSC, which 552 

are expected to be implemented in 2020 and require a reduction of FSC to a maximum of 0.5% 553 

globally (Kotchenruther, 2016). 554 

3.4 Relationship Between Shipping Emissions and OA Oxidation State 555 

In order to obtain a quantitative measure of the difference in OA composition between air 556 

masses influenced by shipping emissions and those lacking such influence, a 12-hour period was 557 

isolated on 6/10-6/11 when the site encountered air masses that had been inside the ECA 558 

boundary but over the ocean (i.e., within 200 nautical miles of the coast) for virtually their entire 559 
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five-day history (Figure S20). Assuming ECA compliance, these air masses should receive only 560 

a small fraction of the particulate, SO2, and NOx emissions encountered by those originating 561 

outside the boundary (Lack et al., 2009; Lack et al., 2011; Browning et al., 2012). Based on air 562 

mass history and the accompanying mass spectral analysis described below, we classified OA 563 

measured during this period as “marine-biogenic.” For comparison, we distinguished a second 564 

24-hour period (5/30) that had similar 5-day backward-trajectory-averaged meteorological 565 

conditions to the biogenic period (faster average wind speed and comparable average solar flux) 566 

but had trajectories that originated outside the ECA boundary and passed through the high 567 

intensity shipping region. The shipping-influenced period had notably larger mass loadings of 568 

anthropogenic nss-SO4 (2.24 versus 1.09 µg m-3) and OA (1.04 versus 0.288 µg m-3).  569 

Figure 6 presents the average OA mass spectra determined for each of these periods. In the 570 

shipping-influenced air masses, measured OA is highly processed, with a much larger f44 (0.20) 571 

(a marker of carboxylic acids) than is typical of marine biogenic OA (~0.08-0.14) (Chang et al., 572 

2011; Coggon et al., 2012; Crippa et al., 2013; Coggon et al., 2014) and a composition 573 

dominated by oxygenated species (66%). In contrast, OA measured during the period of minor 574 

shipping influence is notably less aged and contains numerous indicators of a marine biogenic 575 

source. For instance, prominent non-oxygenated spectral fragments are observed at m/z 27, 39, 576 

41, 43, 55, and 67 (Figure S21) implying the presence of alkenes, cycloalkenes, cycloalkanes, 577 

and dienes, in agreement with Ovadnevaite et al. (2011, 2014) for marine OA measured at Mace 578 

Head, Ireland and by Bates et al. (2012) in physically generated sea spray aerosol. A relatively 579 

significant contribution from m/z 79 (CH3SO2) (~1%) is also apparent, and as a result MSA 580 

contributes 9.3% of total OA, a value three times larger than the average during the marine 581 

period, and in closer agreement with previous measurements in remote marine regions 582 
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(Ovadnevaite et al., 2014). Furthermore, a prominent signal from the CHO+ ion, an aldehyde 583 

tracer, is observed (~7%), which is uncharacteristic of aged urban emissions (Ng et al., 2010) but 584 

has been observed in the mass spectra of numerous biogenic SOAs from both chamber 585 

experiments and ambient measurements (Shilling et al., 2009; Chhabra et al., 2010; Slowik et al., 586 

2010; Setyan et al., 2012) and from marine biogenic OA specifically (Chang et al., 2011; Crippa 587 

et al., 2013; Coggon et al., 2014). Ultimately, the biogenic period spectra correlates well with the 588 

marine biogenic factor extracted by Chang et al. (2011) over the Arctic Ocean (R2 = 0.78) as 589 

well as with the marine OA factor extracted by Crippa et al. (2013) in Paris (R2 = 0.68), while 590 

the shipping-influenced period spectra correlates extremely well with the continental factor 591 

extracted by Chang et al. (2011) (R2 = 0.95). 592 

The mass spectra from the shipping-influenced period has notably larger signals from m/z 44 593 

and m/z 28 than the biogenic period, suggesting a larger amount of atmospheric processing that 594 

converted OA components into organic acids (Chhabra et al., 2011). Numerous remote marine 595 

studies have shown that on average, the oxidation state of marine aerosol varies only slightly in 596 

the absence of anthropogenic influences (Gantt and Meskhidze, 2013; Wozniak et al., 2014). In 597 

this case, the absolute difference in the O:C ratio between the two scenarios is 0.29 (0.90 for the 598 

shipping-influenced period versus 0.61 for marine-biogenic), implying a major impact of 599 

shipping on related OA chemical and potentially physical properties. While primary marine 600 

aerosol particles can have high O:C ratios (~1) due to the significant mass fraction of 601 

carbohydrate components in dissolved organic matter (Russell et al., 2010), the low trajectory-602 

averaged wind speeds and high f44 suggest that OA measured during the shipping-influenced 603 

period is not primary (Frossard et al., 2014).  604 
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Using the function developed by Duplissy et al. (2011) to describe the relationship between 605 

OA oxidation state (represented by the mass fraction of m/z 44) and hygroscopicity, the 606 

calculated hygroscopic growth factor (ĸorg) for the shipping-influenced period is three times 607 

larger (0.31 versus 0.101) than that calculated for the marine-biogenic period. Therefore, despite 608 

the fact that freshly emitted in-plume shipping aerosol is thought to have a suppressed 609 

hygroscopic growth factor relative to background marine aerosol (Murphy et al., 2009), our 610 

results suggest that extensive aging during transport near shipping lanes (presumably due to 611 

increased oxidant levels) may lead to an eventual increase in bulk marine OA hygroscopicity 612 

relative to aerosol unaffected by shipping emissions. This hypothesis is supported by the 613 

relatively strong correlation observed between daily anthropogenic nss-SO4 and the organic 614 

hygroscopicity factor (R2 = 0.64) calculated using the Duplissy et al. (2011) method during the 615 

marine period (Figure 7).  616 

Figure 8 displays marine OA plotted on the f44 versus f43 triangle diagram (Ng et al., 2010) to 617 

describe OA aging. Less oxidized OA typically occupies a wide space at the bottom of the plot, 618 

indicative of variable ambient OA mass spectra, while aging causes movement diagonally 619 

upward, as mass spectra become more similar with age (Ng et al., 2010). Figure 8 highlights that 620 

OA oxidation is greatly influenced by a combination of physical air mass history and 621 

meteorology. Three specific days demonstrate these influences particularly well. On 5/24, 622 

backward trajectory analysis reveals that air masses passed directly over the region of major 623 

shipping influence, resulting in a substantial amount of nss-SO4 aerosol and highly oxidized OA. 624 

In contrast, on 6/11, despite the fact that trajectory-averaged wind speeds were lower and solar 625 

flux was comparable, suggesting meteorological conditions were more conducive to OA 626 

processing and elevated aerosol mass loadings, air masses largely missed the high intensity 627 
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shipping region (and remained largely within the ECA), resulting in less nss-SO4 and less-628 

oxidized OA. On 6/13, arriving air masses had faster average wind speeds and avoided shipping 629 

lanes, resulting in an extreme case of very little nss-SO4 and only minor processing. 630 

There are multiple ways in which the presence of shipping emissions could increase the rate 631 

of OA processing. While peak daytime concentrations of OH of 6 x 106 - 1 x 107 mol cm-3 are 632 

relatively consistent throughout the clean MBL (Raper et al., 2001; Vaughan et al., 2012), 633 

modeling results by Chen et al. (2005) and Kim et al. (2013) indicate that within individual 634 

shipping plumes, OH concentrations are elevated by a factor of 1.2 to 2.7, and OH 635 

concentrations can remain elevated up to 140 km behind an individual shipping vessel. 636 

Significant NO2 levels within the plume also increase concentrations of nitrate radical to several 637 

pptv, even during the daytime, which would hypothetically result in rapid oxidation of any 638 

unsaturated VOCs or components of primary marine OA (Myriokefalitakis et al., 2010; Bates et 639 

al., 2012; Kim et al., 2013). Additionally, elevated production of nss-SO4 aerosol increases 640 

ambient ALW mass, increasing the partitioning medium available to small, water-soluble 641 

organic gases (WSOG) produced from both biogenic and anthropogenic sources (i.e., glyoxal, 642 

methylglyoxal, acetaldehyde, etc.) and processed in the aqueous phase into highly oxidized 643 

species (such as glyoxylic acid/glyoxylate, O:C = 1.5, or oxalic acid/oxalate, O:C = 2) (Ervens et 644 

al., 2011; Ge et al., 2012).  645 

3.5 Relationship Between Shipping Emissions and Major Marine OA Components: 646 

Amines and MSA 647 

While MSA and alkyl-amines, such as dimethyl-amine (DMA) and diethyl-amine 648 

specifically, are frequently observed over the MBL and are linked to biogenic emissions 649 

(Murphy et al., 2007; Facchini et al., 2008; Sorooshian et al., 2009), the partitioning dynamics of 650 
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each are influenced by shipping emissions. For instance, recent single particle measurements in 651 

California reveal a possible catalytic role of vanadium in MSA formation (Gaston et al., 2010), 652 

while gaseous alkyl-amines typically undergo neutralization reactions with sulfuric or nitric 653 

acids to form aminium salts (Murphy et al., 2007). However, previous studies have produced 654 

conflicting results about whether biogenic marine SOA mass is maximized in clean or polluted 655 

environments. For instance, Sorooshian et al. (2009) and Facchini et al. (2008) both noted that 656 

mass loadings of amines and MSA were largest in clean rather than polluted air masses, 657 

supporting their attribution to biogenic sources; however, Sorooshian et al. (2015) observed 658 

similar size distributions of MSA and vanadium along the California coast, while Youn et al. 659 

(2015) reported noticeable long-term correlations between amines and SO4. Myriokefalitakis et 660 

al. (2010) suggested that on a global basis, modeled marine SOA originates almost entirely from 661 

either DMS oxidation (i.e., MSA-related) (~78%) or formation of dialkyl amine salts (~21%), 662 

highlighting the importance of understanding anthropogenic influences on their production in 663 

areas influenced heavily by ship traffic. To quantify a lower-bound ambient amine signal from 664 

this coastal dataset, individual mass spectral fragments typical of alkyl amines identified in 665 

previous HR-ToF-AMS studies, specifically those at m/z 27 (CHN), 30 (CH4N) , 44 (C2H6N), 56 666 

(C3H6N), 58 (C3H8N), and 72 (CH4N4), were combined (Murphy et al. 2007; Hildebrandt et al., 667 

2011; Sun et al., 2011).   668 

Figure 9 highlights that hourly-averaged amine mass loadings correlate well with 669 

anthropogenic nss-SO4 (R
2 = 0.63) while MSA mass loadings show a noticeably weaker 670 

relationship (R2 = 0.30). A strong correlation between MSA and anthropogenic nss-SO4 would 671 

indicate that either the biogenic nss-SO4 fraction had been under-predicted or that a strong 672 

catalytic effect on MSA production was occurring. 673 
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The correlation between anthropogenic nss-SO4 and amines is consistent with those observed 674 

by Youn et al. (2015) for DMA and SO4 in Tucson, AZ, in 2013 (r ≥ 0.72). Amines also display 675 

a positive relationship with NH4 (R
2 = 0.61, similarly to nss-SO4), in agreement with the fact that 676 

throughout the campaign, NR-PM1 was never fully neutralized by the small ammonia sources 677 

that exist over the MBL. This is highlighted by the fact that the average neutralization ratio, the 678 

molar ratio of ammonium to the sum of sulfate and nitrate ([NH4
+]/(2 x [SO4

2-] + [NO3
-]), was 679 

only 0.74, resulting in a consistent pathway for amine SOA formation through aqueous 680 

dissolution and partial neutralization of the acidic nss-SO4 aerosol. Furthermore, the correlation 681 

between amines and anthropogenic nss-SO4 is much stronger than correlations with average 682 

wind speed, solar flux, and mixing layer depth (R2 = 0.06, 0.17, and 0.06 respectively), 683 

suggesting that anthropogenic emissions play a larger role in amine aerosol formation than 684 

meteorology. 685 

The link between shipping emissions and amine formation also is supported by the high 686 

nitrogen to carbon ratio (N:C) of the dominant marine PMF factor, OOA-3 (N:C = 0.074), a 687 

value larger than that observed in aged marine OA (N:C ~0.04) (Schmale et al., 2013) and 688 

amine-related urban PMF factors extracted in Pasadena, CA (N:C = 0.052) (Hayes et al., 2013) 689 

and New York City (N:C = 0.053) (Sun et al., 2011), but similar to a biogenic MSA-related 690 

factor extracted at Bird Island near Antarctica (N:C = 0.08) (Schmale et al., 2013). It is likely 691 

that this anthropogenic-biogenic link can be extrapolated to other areas where marine biogenic 692 

and shipping emissions coexist. As a result, amines measured in heavily trafficked marine 693 

environments should not be interpreted exclusively as products of a purely biogenic SOA 694 

formation pathway. 695 

3.6 Anthropogenic ALW and Potential Influences on SOA formation 696 
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Despite the fact that shipping emissions produce substantial amounts of hygroscopic SO4 697 

aerosol, there have been few measurement-based predictions of the role of shipping on the 698 

production of ALW in coastal marine environments. In addition, organic gases capable of 699 

partitioning to ALW are present throughout the MBL (Sinreich et al., 2010), have elevated 700 

concentrations near the coasts (Fu et al., 2008; Fu et al., 2011), and contribute significantly to 701 

aerosol mass in both rural and urban areas within the southeastern United States (Li et al., 2015). 702 

As a result, measurement-based modeling of ALW is needed to inform understanding how future 703 

changes to shipping sulfur emissions may influence SOA formation in coastal environments.  704 

On average, ALW mass loadings of 5.21 ± 4.62 µg m-3 are modeled using ISORROPIA II 705 

(Fountoukis and Nenes, 2007) during the marine period, representing on average 58% of total 706 

NR-PM1 particle mass. This value is slightly larger than the average determined for the HSC 707 

region in September-October 2006 by Nguyen et al. (2016) (4.6 µg m-3), presumably because of 708 

higher average RH along the coast and similar total inorganic mass loadings, and is larger than 709 

the average values reported for every major city in North America analyzed by Nguyen et al. 710 

(2016). If anthropogenic nss-SO4 were eliminated completely, average ALW mass loadings 711 

associated with NR-PM1 aerosol would ultimately be reduced by 66.4%. As a result, the majority 712 

of NR-PM1-associated ALW over the Gulf of Mexico appears to be controllable. While 713 

concentrations of WSOG over the MBL are relatively small (Sinreich et al., 2010), advection of 714 

this ALW inland may have large impacts on nearby SOA formation where precursor sources are 715 

more prevalent. 716 

Multiple modeling studies have suggested that small WSOG, specifically glyoxal, 717 

methylglyoxal, and isoprene epoxides (IEPOX), contribute heavily to SOA mass in the Houston 718 

region (Li et al., 2015; Ying et al., 2015). Li et al. (2015) found that these three compounds were 719 
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responsible for nearly 80% of total SOA mass loadings at a downtown site during a simulated 720 

period in 2006, with the largest fraction (~30-50%) contributed by IEPOX. The authors also 721 

showed that these species dominate SOA mass across the Gulf Coast, with significant total 722 

loadings (~4 µg m-3 or greater) from the southern end of Texas to the Florida panhandle. Ying et 723 

al. (2015) used the Community Multi-scale Air Quality model (CMAQ) to characterize biogenic 724 

and anthropogenic contributions to glyoxal and methylglyoxal SOA and found that isoprene is a 725 

major contributor to both (47% of glyoxal and 82% of methylglyoxal SOA, specifically). As 726 

these compounds are precursors to aqueous SOA (aqSOA) formation, anthropogenic impacts on 727 

ALW represent another potential anthropogenic-biogenic link in SOA production (Carlton and 728 

Turpin, 2013). 729 

The aqSOA formation from these WSOG ultimately depends on both uptake into ALW 730 

and subsequent reactions to produce low-volatility organic acids or high-molecular weight 731 

oligomeric products (McNeill, 2015). However, as uptake of OH, the dominant aqueous phase 732 

oxidant, is typically surface-limited (Ervens et al., 2014), large scale models often simplify this 733 

process by assuming that aqSOA formation is irreversible and surface-controlled (Li et al., 2015; 734 

Ying et al., 2015), representing SOA production rate by 735 

                                                                    
𝑑𝑀𝑎,𝑖

𝑑𝑡
= 

1

4
𝛾𝑖𝑣𝑖𝐴𝑀𝑖                                                   (4)     736 

where Ma,i is the aerosol-phase mass concentration of species i (μg m-3), 𝛾𝑖 is its reactive uptake 737 

coefficient, 𝑣𝑖 is its gas-phase thermal velocity (m s-1), A is the ambient aerosol surface area 738 

concentration (m2 m-3), and Mi is the mass concentration of the species in the gas phase (μg m-3). 739 

As a fraction of WSOG partitioning is reversible (Chhabra et al., 2010; Wong et al., 2015), and 740 

SOA formation may be more dependent on the particle-phase reaction rate than simply the 741 
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particle surface area (SA) (Budisulistiorini et al., 2017), this estimated production rate likely 742 

represents an upper limit; however, published CMAQ results for OA mass loadings in the 743 

Houston area calculated in this manner agree well with observations (Li et al., 2015; Ying et al., 744 

2015). 745 

In order to approximate the effect of anthropogenic marine aerosol (AMA) on WSOG 746 

aqSOA production, we modeled aqSOA formation from isoprene-derived glyoxal, 747 

methylglyoxal, and IEPOX in the Houston area using the equation above and a previously 748 

developed 0-D model including a semi-explicit isoprene oxidation mechanism (Schulze et al., 749 

2017). This model assumes that air masses rich in AMA advect over the urban core of Houston, 750 

where the added SA due to anthropogenic emissions over the ocean increases SA-dependent 751 

aqSOA production rates. Total model SA was quantified by combining the dry mass size 752 

distribution measured by the HR-ToF-AMS at the coastal site during onshore flow and the mass 753 

added by NR-PM1-associated ALW; however, a correction was applied to account for SA loss 754 

due to deposition and ALW evaporation during transport to the HSC. A detailed description of 755 

all model assumptions (i.e., boundary layer height, aerosol deposition and ALW evaporation 756 

during transport, etc.) is provided in the SI. Average diurnal isoprene, O3, and NOx 757 

concentrations measured by five monitors within the HSC during the marine period were used as 758 

model constraints (Figure S22). Diurnal OH concentrations were taken from measurements in 759 

downtown Houston during the SHARP 2009 campaign (Ren et al., 2013). 760 

A diurnal model run was first performed using the total corrected marine aerosol SA to 761 

predict aqSOA formation in the HSC. This procedure isolates aqSOA production due to marine 762 

aerosol SA specifically. In order to produce an upper bound estimate of the effect of AMA, a 763 

second run was performed with all SA contributions from anthropogenic species removed (i.e., 764 
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anthropogenic nss-SO4, NH4, and ALW), and the difference in aqSOA was calculated. A lower 765 

bound estimate was calculated with a model run that only removed the SA contribution of 766 

anthropogenic ALW.  In order to ensure conservative results, OA was assumed to be entirely 767 

biogenic for the purposes of this calculation.  768 

To compare this effect with SOA production from locally-emitted anthropogenic VOCs 769 

(AVOC-SOA) in Houston, gas-phase AVOC data measured during the marine period 770 

(concentrations of 16 alkanes, 7 alkenes, and 9 aromatics) was obtained from the same 771 

monitoring sites around the HSC (Figure S22). Estimates of SOA production rates from these 32 772 

VOCs were calculated using the volatility basis set approach utilized in Tsimpidi et al. (2010). In 773 

this mechanism, organic condensable gases produced from initial VOC oxidation are allowed to 774 

undergo further aging to produce lower volatility products (Tsimpidi et al., 2010; Hayes et al., 775 

2015). A more detailed description of this process is provided in the SI. 776 

Figure 10 shows that on a daily basis, aqSOA production attributable to isoprene WSOG 777 

reactive uptake is primarily due to methylglyoxal rather than IEPOX, implying “high-NOx” 778 

rather than “low-NOx” ambient conditions (Budisulistiorini et al., 2017). Assuming high-NOx 779 

conditions, the modeled effect of AMA on aqSOA production in the HSC is equivalent to 6-23% 780 

of potential daily SOA production from AVOCs measured locally. Using data from the monitor 781 

with the highest isoprene concentrations (Haden Road; Figure S24), we predict that the AMA 782 

effect may constitute as much as 11-43% of total AVOC-SOA production, implying strong 783 

spatial variability in the relative contribution of this effect. Modeled AVOC-SOA production 784 

peaks in the early afternoon, consistent with the fact that the aging of condensable gases formed 785 

by measured VOCs produces the majority (~80%) of modeled AVOC-SOA.  786 
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Recent studies have revealed that a substantial fraction of SOA formation in urban 787 

environments may be produced by primary anthropogenic semi-volatile/intermediate volatility 788 

VOCs (P-S/IVOCs) co-emitted with typical VOCs or evaporated during POA dilution but not 789 

typically measured (Hayes et al., 2015 and references therein). In Los Angeles, for instance, 790 

Hayes et al. (2015) predicted that P-S/IVOCs comprise between 44% and 92% of total modeled 791 

SOA depending on the specific SOA formation mechanism used. As a result, the relative 792 

magnitude of the AMA effect may be somewhat overestimated here. Still, the AMA effect is 793 

responsible for 0.2-0.35 µg m3 of ambient aqSOA according to the model calculations, which 794 

represents 4-6% of ambient OA measured by Cleveland et al. (2012) near downtown and ~10-795 

17% of average OA measured in Houston’s urban core by Leong et al. (2017). Furthermore, as 796 

AVOCs such as benzene and acetylene are known to produce glyoxal and methylglyoxal with 797 

high yields (Fu et al., 2008), the total OA mass attributable to AMA through this pathway (on an 798 

absolute rather than relative basis) may actually be larger than predicted here. Our results 799 

therefore suggest that future reductions in marine nss-SO4 may reduce aqSOA formation in both 800 

urban (e.g., Houston) and forested regions across the Gulf Coast. 801 

 802 

4 Conclusions 803 

Three weeks of continuous measurements with an HR-ToF-AMS at a coastal location 804 

near Houston, TX were used to gain further insight into the impact of shipping emissions on 805 

coastal aerosol properties. Measured mass loadings of inorganic NR-PM1 components were 806 

similar to those reported before establishment of the ECA within the Gulf of Mexico; however, 807 

data from nearby ports suggests that this is the result of growth in the shipping trade rather than 808 

regulatory ineffectiveness on a per vessel basis. Using MSA calibrations and published biogenic 809 
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MSA/nss-SO4 ratios, we predict that over 70% of inorganic marine NR-PM1 is anthropogenic 810 

rather than biogenic. Source apportionment using PMF revealed that the dominant marine OA 811 

factor (OOA-3) is highly correlated with calculated anthropogenic nss-SO4 (R
2 ≥ 0.78), 812 

supporting a link between shipping emissions and SOA production. Assuming, as an upper 813 

bound estimate, that OOA-3 production is entirely dependent on shipping emissions, 814 

anthropogenic sources contribute over 70% of total measured NR-PM1 during onshore flow, 815 

despite the regulations. This indicates that the proposed future global decrease in shipping FSC 816 

(decrease to 0.5%) should substantially reduce PM levels over the Gulf of Mexico.  817 

Shipping emissions were also found to have numerous secondary effects on OA 818 

composition. Detailed backward trajectory and mass spectral analysis revealed that air mass 819 

transit within shipping lanes leads to more processed (i.e., oxidized) OA than is encountered in 820 

“clean” marine air masses, and calculations suggest that this aging increases OA hygroscopicity. 821 

In addition, marine alkyl amine aerosol formation in the Gulf of Mexico appears to depend on 822 

ambient anthropogenic nss-SO4 mass, implying that marine amine aerosol cannot be viewed as 823 

purely biogenic in heavily trafficked marine environments. OOA-3 was found to have a larger 824 

N:C ratio than is typical of aged marine components, supporting this link. Finally, modeling 825 

suggests that inland advection of shipping-related nss-SO4 and related ALW may enhance 826 

aqSOA formation and produce 4 to 17% of OA in the urban core of Houston during marine flow 827 

for the conditions considered. More detailed 3-D modeling studies are warranted to better 828 

quantify this effect. 829 

 830 

 831 
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 1443 

 1444 

Table 1: Aerosol (μg m-3) and trace gas (ppbv) characteristics (avg. ± std. dev.) measured during 1445 

each distinct period type of the campaign.  1446 

Period NR-PM1 OA SO4 NH4 NO3 Chl. O3 NOx CO 

Marine 3.8±2.0 0.7±0.8 2.4±1.1 0.7±0.3 0.02±0.01 0.02±0.01 31.1±11.9 0.4±1.2 111.5±16.5 

Frontal/LP 2.6±2.1 1.0±0.9 1.3±1.2 0.3±0.4 0.04±0.03 0.02±0.01 43.8±11.1 1.0±1.3 107.2±14.4 

Continental 9.9±2.9 7.2±2.8 1.9±0.7 0.6±0.2 0.1±0.1 0.02±0.01 52.7±12.7 1.3±1.8 141.3±26.2 
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Table 2: Elemental composition of each PMF factor and average contributions to total OA during each 

period of the campaign. 
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 1471 

 Elemental Analysis Marine Period 
Frontal/LP 

Period 

Continental 

Period 

 O:C H:C N:C % µg m-3 % µg m-3 % µg m-3 

OOA – 1 1.16 1.29 0.013 21 0.14 65 0.63 15 1.10 

OOA – 2 0.79 1.41 0.007 11 0.08 6 0.06 72 5.21 

OOA – 3 0.76 1.44 0.077 55 0.40 11 0.11 2 0.15 

SV – OOA 0.43 1.77 0.013 3 0.02 9 0.09 8 0.60 

HOA 0.08 1.89 0.002 7 0.05 9 0.09 2 0.16 
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Figure 1: Map depicting the Houston region, the coastal study site 

(star), and the location of recent stationary campaigns that 

characterized aerosol dynamics in Houston. 
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Figure 2: From top to bottom, time series of major NR-PM1 species and 5-day 

backward trajectory lengths, extracted PMF factors, O3 and NO2, and 

meteorological variables (wind direction, wind speed, RH, and temperature) 

measured during the campaign. Dotted lines distinguish distinct time period types 

described in Section 3.1. 
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Figure 3: Diurnal variation of NR-PM1 component average concentrations (a-c) 

and PMF factors (d-f) during the marine period (a & d), the frontal/LP period (b 

& e), and the continental period (c & f). The legends above a-c describe how 

mass loadings of specific components were adjusted to fit the figure. Standard 

deviations are not included to aid visual distinction of individual NR-PM1 and 

OA components. Note the different y-axis ranges applicable to each period type. 
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Figure 4: (a) Comparison of average MSA mass loadings measured during each of the three 

major periods of the campaign with previously published values measured in Florida, on an 

Atlantic Cruise, and at Mace Head, Ireland. (b) Time series of MSA and nss-SO4. Black 

dashed lines denote boundaries of distinct time period types. Inset graph shows the 

correlation of total OA and SO4 with MSA during the marine period. (c)  Hourly averages of 

the estimated fraction of nss-SO4 attributed to anthropogenic sources. Inset pie charts depict 

anthropogenic and biogenic contributions to nss-SO4 (left) and total inorganic NR-PM1 

(right) during the marine period. Mass loadings of nitrate and chloride comprise less than 2% 

of total inorganic aerosol 
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Figure 5: WPSCF plots of MSA (a) and anthropogenic nss-SO4 (b) for the 

marine period of the study, along with the chlorophyll-a concentration 

observed by the NASA MODIS satellite (c) and AMVER shipping spatial 

proxy map (d). Warmer colors in the WPSCF grid cells indicate higher 

source probability. The color of each 0.1o x 0.1o grid cell in the AMVER 

map is based on the corresponding “shipping emissions allocation factor” 

(SEAF) value (Wang et al., 2008). The hatched region extending from the 

coasts in each panel represents the approximate area encompassed by the 

ECA (i.e., 200 nautical miles from the coastal U.S.).  
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Figure 6: Average OA mass spectra measured during (a) a period heavily influenced by shipping 

emissions (5/30/2016) and (b) the “marine-biogenic” period when air masses traveled within the 

ECA for their entire 5-day history. The overall organic fragment composition measured during each 

period is shown in the corresponding pie charts. 
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Figure 7: Correlation between daily-averaged anthropogenic nss-SO4 

and the OA hygroscopicity factor calculated using the method 

developed by Duplissy et al. (2011).  

 

 1705 

 1706 

 1707 

 1708 

 1709 

 1710 

 1711 

 1712 

 1713 

 1714 

 1715 

 1716 

 1717 

 1718 

 1719 

 1720 

 1721 

 1722 

 1723 

 1724 

 1725 

 1726 

 1727 

 1728 

 1729 

 1730 

 1731 

 1732 

 1733 

 1734 

 1735 

 1736 

 1737 

 1738 

 1739 

 1740 

 1741 

 1742 

 1743 

 1744 

 1745 

 1746 

 1747 

 1748 

 1749 
 1750 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-509
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 12 June 2018
c© Author(s) 2018. CC BY 4.0 License.



61 

 

Figure 8: (a) The f44:f43 diagram highlighting different influences on OA 

oxidation state during the marine period. Circles represent daily average 

values and bars indicate standard deviations. Periods with HOA mass 

loadings greater than twice the median value during the marine period 

were removed from the analysis. Two additional values from published 

marine studies are shown as a reference. (b) Map of Gulf of Mexico 

showing hourly 5-day back trajectories calculated for each of the three 

days identified in the f44:f43 diagram. The AMVER shipping emissions 

spatial proxy map (Wang et al., 2008) is shown for reference. 
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Figure 9: Observed correlation between anthropogenic nss-SO4 and (a) the sum of measured alkyl amine 

fragments and (b) MSA. 
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Figure 10: (a) Diurnal SOA production rate calculated from anthropogenic VOCs (low 

estimate) measured by monitors in the HSC (filled) and the modeled-estimated 

production rate from WSOGs (glyoxal, methylglyoxal, IEPOX) attributable to the 

effect of anthropogenic marine aerosol (AMA) (hatched). (b) Total daily SOA 

production from WSOGs (upper and lower estimates) and HSC AVOCs (upper and 

lower estimates). WSOG aqSOA production is characterized by individual species. 

AVOC SOA production is characterized by lumped VOC species defined in Tsimpidi 

et al. (2010). These species are further described in the SI. Upper and lower estimates 

of AVOC SOA production are based on the assumed background OA mass loading, as 

described in the SI. High-NOx product yields were used for both AVOC estimates. 
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