Supplemental Material

Long-term trends in the PM_{2.5}- and O₃-related mortality burdens in the United States under emission reductions from 1990 to 2010

Yuqiang Zhang, J. Jason West, Rohit Mathur, Jia Xing, Christian Hogrefe, Shawn J. Roselle, Jesse O. Bash, Jonathan E. Pleim, Chuen-Meei Gan, David C. Wong

Table of Contents

- 1. Estimating county-level baseline mortality rates from CDC WONDER database
- 2. Sensitivity analysis for the O3 mortality burden with simulated pre-industrial O3 background concentration

References

1. Estimating county-level baseline mortality rates from CDC WONDER database

To get the baseline mortality rates for counties with suppressed data, we grouped counties with unsuppressed mortality in each state, calculated the total deaths, and then subtracted these unsuppressed deaths from the total deaths in that state. The resulting total deaths count for the suppressed counties were then divided by the total population in these suppressed counties to get the baseline mortality rates. In some instances, the state-level death counts were also suppressed (e.g. for IHD and STROKE, age-specific baseline mortality rates are required). When this happens, we calculated the national-level baseline mortality rates and assign the value to those suppressed states.

To get the baseline mortality rates for the counties with "missing" or "unreliable" data (hereafter, "unreliable counties"), we summed the total deaths from the unreliable counties in each state, divided the summed total deaths by the total population in these unreliable counties to calculate the average baseline mortality rate (y_0) , and assigned this average y_0 to those counties; if the summed deaths from those counties in this state are still unreliable/missing, we aggregated

unreliable counties at a regional level, dividing the US into four regions: Northeast, Midwest, South and West (BenMAP, 2017), recalculated the baseline mortality rates at the regional level, and then assign the regional y_0 to the counties; if there are still counties with no available data, we estimated and assigned the national-level y_0 . By using the state/regional/national average to estimate the suppressed or unreliable mortality data, the accuracy of the local baseline mortality rates can be improved (Tiwari et al. 2014).

2. Sensitivity analysis for the O₃ mortality burden with simulated pre-industrial O₃ background concentration

We did a sensitivity analysis by using the "pre-industrial" O₃ concentration as the counterfactual, which evaluates the burden due to "anthropogenic" pollution, following previous studies (Anenberg et al. 2010; Fang et al. 2013; Lelieveld et al. 2013; Silva et al. 2013, 2016). We obtain the pre-industrial O₃ concentrations by using an ensemble of 14 global chemistry climate models under the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) (Lamarque et al. 2013; Silva et al. 2013), in which pre-industrial air quality was simulated using anthropogenic emissions in 1850. The pre-industrial summertime (April to September) average of 1hr daily maximum O₃ simulated under the ACCMIP is higher in the southeast and intermountain areas of US (>30 ppbv), and lower in the northeast and central U.S, (>28 ppbv) (see Fig. S10), which are both higher than the counterfactual assumed by Fann et al. (2012) (30 ppb in the west and 22 ppb in the east). According to the HIF, higher background O₃ concentrations are expected to lead to lower O₃ mortality burden estimates in the current year. The summertime O₃ concentrations from the ensemble mean are lower than the average O₃ counterfactual (37.6 ppbv) we originally used in the O₃ mortality burden, which is expected to lead to higher O₃ mortality burden estimates.

References

- Anderson RN, Miniño AM, Hoyert DL, Rosenberg HM. 2001. Comparability of cause of death between ICD-9 and ICD-10: preliminary estimates. Natl. Vital Stat. Rep. 49: 1–32.
- Anderson RN, Rosenberg HM. 2003. Disease classification: Measuring the effect of the tenth revision of the international classification of diseases on cause-of-death data in the United States. Stat. Med. 22:1551–1570; doi:10.1002/sim.1511.
- Anenberg SC, Horowitz LW, Tong DQ, West JJ. 2010. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 118:1189–1195; doi:10.1289/ehp.0901220.
- Environmental Benefits Mapping and Analysis Program Community Edition, User's Manual, Appendices, 2017 (BenMAP 2017), https://www.epa.gov/sites/production/files/2017-04/documents/benmap_ce_um_appendices_april_2017.pdf, [accessed in 04/25/2017].
- Fang Y, Naik V, Horowitz LW, Mauzerall DL. 2013. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos. Chem. Phys. 13:1377–1394; doi:10.5194/acp-13-1377-2013.
- Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ. 2012. Estimating the national public health burden associated with exposure to ambient PM_{2.5} and ozone. Risk Anal. 32:81–95; doi:10.1111/j.1539-6924.2011.01630.x.
- Lelieveld J, Barlas C, Giannadaki D, Pozzer A. 2013. Model calculated global, regional and megacity premature mortality due to air pollution. Atmos. Chem. Phys. 13:7023–7037; doi:10.5194/acp-13-7023-2013.
- Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque J-F, Shindell DT, et al. 2013. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 8:34005; doi:10.1088/1748-9326/8/3/034005.
- Silva RA, West JJ, Lamarque JF, Shindell DT, Collins WJ, Dalsoren S, et al. 2016. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos. Chem. Phys. 16:9847–9862; doi:10.5194/acp-16-9847-2016.
- Tiwari C, Beyer K, Rushton G. 2014. The impact of data suppression on local mortality rates: The case of cdc wonder. Am. J. Public Health 104:1386–1388; doi:10.2105/AJPH.2014.301900.

Table S1. The list of International Classification of Diseases (ICD) codes for specific causes of death, with ICD9 implemented from 1990 to 1998, and ICD10 from 1999 to 2010.

	ICD9 code	ICD10
chronic respiratory diseases	070.22-070.23, 070.32-	B18, D86.0, D86.2, D86.9,
(RESP)	070.33, 070.44-070.49,	I85, J30-J39, J40-J47, J60-
	070.54-070.59, 135, 456.0-	J65, J66-J70(except J69), J82,
	456.2, 470-475, 477-478,	J84, J92, J93.0, J93.1, J95,
	490-492.8, 493-496, 500-506,	J98 (except J98.1, J98.2,
	508, 515-519, 571, 572.3-	J98.3, J98.9), K70, K71.7,
	572.8, 573.9	K72.1-K72.9, K73-K74,
		K75.2-K75.9, K76.6-K76.7,
		K76.9
chronic obstructive	490-492.8, 494, 496	J40-J44, J47
pulmonary disease (COPD)		
ischemic heart disease (IHD)	410-414, 429.2	I20-I25
lung cancer (LC)	162-162.9, 231.1, 231.2,	C33-C34, D02.1-D02.2,
	231.8, 235.7	D38.1
cerebrovascular disease and	430-435, 437.0-437.2, 437.5-	I60-I63, I65-I67, I69.0-I69.3
ischemic stroke (STROKE)	437.8	

Table S2. The comparability ratios for baseline mortality rates for specific causes of death between ICD9 and ICD10. The ratios for each disease were calculated as the total deaths categorized in ICD10 divided by the same total deaths categorized in ICD9 (Anderson et al., 2001; Anderson & Rosenberg, 2003). To eliminate the discontinuity, the health burden from 1990 to 1998 is multiplied by this ratio. For details please see methods.

Diseases	Ratio	
RESP	1.046	
COPD	1.056	
IHD	0.999	
LC	0.984	
STROKE	1.059	

Table S3. The regional mean of annual $PM_{2.5}$ and summertime average of 1hr daily maximum O_3 concentration in 1990, 2010, and decadal trends (units μg m⁻³ per decade for $PM_{2.5}$, and ppbv per decade for O_3). Bold values indicate trends that are significant with P-values for the standard Student-t test smaller than 0.05. Regions are defined as the US nine climate regions (see Fig. S3).

	Annual PM _{2.5} (μg m ⁻³)			Summertim 1hr daily ma	e (Apr-Sep) aximum O ₃ (_
	1990	2010	trends	1990	2010	trends
Northwest	4.2	3.6	-0.10	46	43	-1.0
West	4.9	3.3	0.16	55	52	-1.1
West N. Central	4.8	4.2	-0.37	50	47	-1.1
Southwest	3.6	3.1	-0.07	55	53	-1.0
South	9.9	7.9	-1.00	58	52	-2.7
East N. Central	11.9	7.7	-2.06	51	47	-2.2
Central	18.0	11.5	-3.48	61	53	-5.1
Southeast	14.0	9.6	-1.53	62	52	-4.3
Northeast	14.7	7.9	-3.14	57	50	-4.4

Table S4. The mortality burden associated with ambient $PM_{2.5}$ for specific causes of death (COPD, IHD, LC and STROKE), and with O_3 (for COPD and RESP) from 1990 to 2010, and their trends (deaths yr⁻¹). For O_3 , COPD is a subset of RESP.

Year	COPD	IHD	LC	STROKE	COPD-O ₃	RESP-O ₃
1990	5941	96495	12469	8830	6875	10903
1991	6090	95053	12447	8392	7334	11545
1992	6074	93108	12392	8135	6627	10355
1993	6365	91860	11986	7614	7334	11226
1994	6638	92066	12495	8054	7691	11816
1995	6103	87079	11505	7303	8215	12651
1996	6381	86883	11756	7384	7435	11403
1997	6213	81730	11199	7083	7580	11590
1998	6386	79298	11323	6891	9175	13981
1999	6870	81395	11351	7153	9275	13499
2000	6846	79664	11728	7478	8475	12471
2001	6571	75530	11253	6859	8607	12732
2002	5742	68842	9835	5894	8296	12208
2003	5978	68317	10092	6053	7978	11760
2004	5529	62375	9635	5693	6651	9999
2005	5965	61577	9785	5357	8671	13039
2006	5363	58175	9183	4840	7651	11863
2007	5797	56745	9578	4956	8252	12716
2008	5771	54163	8677	4464	7797	11834
2009	4509	45319	7049	3580	6738	10379
2010	4465	43611	6963	3541	7942	12275
Trend	-64	-2636	-251	-241	24	24

Table S5. The trends (TRE) and relative changes (REL) for the spatial average, population-weighted average air quality concentration, total mortality burdens change and due to changes in each of three factors (concentration only, baseline mortality rates only and population only), and where the concentration change is excluded, for $PM_{2.5}$ and O_3 from 1990-2000, 2000-2010, and 1990 to 2010. The units for the trends in concentrations are $\mu g \ m^{-3} \ decade^{-1}$ for $PM_{2.5}$, and ppbv decade⁻¹ for O_3 . The units for the trends of mortality burden are deaths yr⁻¹. The REL for the pollutants concentration changes are calculated as (Last year – First year)/First year, while for REL in mortality are used linear regression periods for each period to avoid inter-annual variability.

	199	00-2000		2000-2	2010	1990-2	2010
		TRE	REL	TRE	REL	TRE	REL
	Spatial average	-0.77	-7%	-1.4	-24%	-1.1	-29%
	Population-weighted average	-2.9	-14%	-3.8	-29%	-3.2	-39%
	Mortality burden	-2100	-15%	-4400	-45%	-3200	-53%
$PM_{2.5}$	Concentration change only	-1400	-9%	-2800	-30%	-2000	-36%
	MortalityRates change only	-2500	-20%	-3100	-31%	-2800	-45%
	Population change only	2200	18%	2800	19%	2400	40%
	Concentration change excluded	-700	-6%	-2300	-19%	-1600	-24%
	Spatial average	-0.32	-2%	-4.4	-8%	-2.4	-9%
	Population-weighted average	-1.2	-4%	-4.0	-5%	-3.0	-9%
	Mortality burden	240	14%	-70	-2%	24	13%
O_3	Concentration change only	-60	-11%	-210	-16%	-160	-25%
	MortalityRates change only	140	11%	110	8%	90	20%
	Population change only	170	15%	160	12%	160	30%
	Concentration change excluded	330	28%	310	21%	280	55%

Table S6. The standard deviation (STD) and coefficient of variation (CV) for the detrended annual mortality burden for $PM_{2.5}$ and O_3 for the periods 1990-2000, 2000-2010, and 1990 to 2010. In addition to the total mortality burdens, we show mortality burdens considering changes from 1990 to 2010 in each factor individually (concentration only, baseline mortality rates only and population only), and with the concentration change excluded. The units for the STD are μg m⁻³ and ppbv for $PM_{2.5}$ and O_3 .

		1990-2000)	2000-2010		1990-2010	
		STD	CV	STD	CV	STD	CV
	Mortality burden	4300	4%	4900	6%	4200	4%
$PM_{2.5}$	Concentration change only	2800	2%	4700	5%	3700	3%
	MortalityRates change only	1500	1%	1400	2%	1400	1%
	Population change only	600	0.4%	1300	0.8%	1000	0.7%
	Concentration change excluded	3100	3%	2800	3%	2800	3%
	Mortality burden	1700	15%	1000	9%	1400	12%
	Concentration change only	680	7%	660	8%	670	7%
O_3	MortalityRates change only	220	2%	290	2%	270	2%
	Population change only	60	0.5%	20	0.1%	40	0.4%
	Concentration change excluded	260	2%	380	2%	340	2%

Table S7. The relative (%) mortality burden changes for US 48 states and District of Columbia from 1990 to 2010, for the mortality burden calculated as the total, concentration change only, mortality rates change only and population change only. The relative changes are calculated as $(2010-1990)/1990\times100\%$.

		PM _{2.5} -rela	ited mortality		O ₃ -related mortality				
	Total	Concentration	Mortality Rates	Population	Total	Concentration	Mortality Rates	Population	
AL	-45	-34	-36	36	-5	-43	34	24	
AR	-33	-25	-32	32	20	-27	31	27	
AZ	-65	-66	-48	102	73	-6	2	84	
CA	-64	-50	-51	54	39	-3	6	40	
CO	-84	-78	-55	80	39	-22	14	59	
CT	-74	-59	-49	31	-15	-28	8	11	
DC	-37	-29	-36	38	-23	-19	-21	21	
DE	-46	-35	-43	53	34	-23	28	36	
FL	-48	-40	-46	64	5	-38	17	47	
GA	-38	-28	-48	75	14	-38	21	55	
IA	-50	-30	-39	21	1	-29	26	13	
ID	-31	-31	-48	96	54	-21	21	65	
IL	-54	-28	-47	26	8	-10	9	15	
IN	-46	-28	-41	33	25	-25	40	20	
KS	-35	-11	-42	28	21	-24	37	17	
KY	-43	-28	-38	35	10	-33	34	24	
LA	-51	-34	-43	32	2	-30	25	15	
MA	-68	-46	-49	27	-22	-37	7	14	
MD	-41	-30	-39	46	1	-24	8	24	
ME	-99	-98	-52	42	-46	-64	24	21	
MI	-56	-40	-42	33	13	-22	33	12	
MN	-57	-30	-55	42	18	-17	13	28	
MO	-39	-24	-37	30	12	-27	28	21	
MS	-55	-35	-44	28	5	-37	38	23	
MT	-82	-80	-46	69	6	-31	20	28	
NC	-41	-30	-47	68	19	-38	32	47	

ND	-69	-58	-46	28	1	-38	39	9
NE	-52	-28	-47	29	9	-21	17	18
NH	-84	-74	-51	51	-34	-54	14	25
NJ	-59	-39	-48	34	8	-16	9	18
NM	-26	-38	-38	97	64	-15	33	44
NV	-97	-98	-52	175	76	-15	-10	140
NY	-62	-40	-47	25	-12	-15	-2	11
OH	-50	-30	-42	28	18	-21	34	12
OK	-29	-20	-33	33	45	-25	58	22
OR	-65	-45	-56	55	-27	-53	14	41
PA	-60	-37	-46	26	-11	-29	15	10
RI	-73	-55	-47	23	-10	-35	25	10
SC	-42	-34	-44	66	16	-42	41	41
SD	-51	-35	-44	29	17	-32	40	19
TN	-39	-34	-36	50	4	-40	31	35
TX	-36	-35	-46	73	34	-28	26	50
UT	-90	-88	-56	80	68	-11	9	76
VA	-43	-32	-43	56	10	-27	19	30
VT	-93	-90	-45	47	-53	-65	14	20
WA	-57	-45	-49	63	-27	-52	9	44
WI	-61	-42	-46	34	31	-14	23	26
WV	-54	-34	-40	22	-7	-38	38	11
WY	-65	-64	-26	132	51	-13	30	34

Table S8. The calculated $PM_{2.5}$ - and O_3 -related mortality burdens for the US from 1990 to 2010 with County-level baseline mortality rates and National-average baseline mortality rates. The absolute differences (Abs diff) are using the National-average method minus County-level method, and the relative differences (Rel diff) are calculated as (National-County)/County. Units are deaths yr^{-1} .

	PM _{2.5} -related mortality					O ₃ -related mortality				
Year	County	National	Abs diff	Rel diff	County	National	Abs diff	Rel diff		
1990	123735	121587	-2148	-1.7%	10903	10930	27	0.2%		
1991	121982	120015	-1967	-1.6%	11545	11604	59	0.5%		
1992	119709	117734	-1975	-1.7%	10355	10350	-5	0.0%		
1993	117825	115686	-2139	-1.8%	11226	11265	39	0.3%		
1994	119253	116909	-2344	-2.0%	11816	11827	11	0.1%		
1995	111990	109589	-2401	-2.1%	12651	12664	13	0.1%		
1996	112404	110353	-2051	-1.8%	11403	11354	-49	-0.4%		
1997	106225	104335	-1890	-1.8%	11590	11598	8	0.1%		
1998	103898	102113	-1785	-1.7%	13981	13964	-17	-0.1%		
1999	106770	104891	-1879	-1.8%	13499	13440	-59	-0.4%		
2000	105717	103691	-2026	-1.9%	12471	12338	-133	-1.1%		
2001	100213	98533	-1680	-1.7%	12732	12726	-6	0.0%		
2002	90312	88907	-1405	-1.6%	12208	12193	-15	-0.1%		
2003	90441	89082	-1359	-1.5%	11760	11751	-9	-0.1%		
2004	83231	81862	-1369	-1.6%	9999	10049	50	0.5%		
2005	82684	81200	-1484	-1.8%	13039	13132	93	0.7%		
2006	77561	76208	-1353	-1.7%	11863	11913	50	0.4%		
2007	77076	75865	-1211	-1.6%	12716	12832	116	0.9%		
2008	73074	72031	-1043	-1.4%	11834	12070	236	2.0%		
2009	60457	59642	-815	-1.3%	10379	10557	178	1.7%		
2010	58580	57306	-1274	-2.2%	12275	12507	232	1.9%		

Table S9. Comparisons between estimates of PM_{2.5}- related deaths in the US for the period 1990 to 2010 between this study and previous studies, corresponding to Figure 6 in the main paper.

Health impact	Disease category	Air pollution	Year of	Attributable
study		metrics	deaths	deaths
				(thousands)
			1990	124 (71-178)
			1995	112 (62-164)
This study ^a	COPD+IHD+LC+STROKE	Annual mean	2000	106 (57-157)
		24-h PM _{2.5}	2005	83 (42-128)
			2010	59 (25-99)
			1990	170 (110-220)
Fann et al.,	Total all-cause deaths	Annual mean	2000	140 (98-190)
2017^{b}		24-h PM _{2.5}	2010	120 (83-160)
			1990	106 (84-129)
			1995	107 (85-133)
Cohen et al.,	COPD+IHD+LC+STROKE	Annual mean	2000	106 (84-133)
2017 ^a	+ lower respiratory infections	24-h PM _{2.5}	2005	100 (78-127)
			2010	83 (64-108)
			2015	88 (67-115)
Punger &	Total all-cause deaths	Annual mean	2005	73 (43-93)
West, 2013 ^b		24-h PM _{2.5}		
Fann et al.,	Total all-cause deaths	Annual mean	2005	130 (51-200)
2012 ^b		24-h PM _{2.5}		
Giannadaki et	COPD+IHD+LC+STROKE	Annual mean	2010	52 (25-76)
al., 2017 ^b	+ lower respiratory infections	24-h PM _{2.5}	1.1	

^aThe exposed population for these studies are for adults above 25-year old. ^bThe exposed population for these studies are for adults above 30-year old.

Table S10. Comparisons between estimates of O_3 - related mortality burdens in the US for the period 1990 to 2010 between this study and previous studies, corresponding to Figure 6 in the main paper.

Health impact	Disease category	Air pollution	Year of	Attributable
study		metrics	deaths	deaths
				(thousands)
			1990	6.9 (2.3-11.0)
This study as		G .:	1995	8.2 (2.8-13.2)
reported in	RESP	Summertime	2000	8.5 (2.9-13.6)
Table S4 ^a		1-hr daily maximum O ₃	2005	8.7 (2.9-14.0)
		maximum O ₃	2010	7.9 (2.7-12.8)
			1990	6.9 (2.3-11.0)
This study as		Summertime	1995	8.2 (2.8-13.2)
reported in	COPD	1-hr daily	2000	8.5 (2.9-13.6)
Table S4 ^a		maximum O ₃	2005	8.7 (2.0-14.0)
			2010	7.9 (2.7-12.8)
	RESP		1990	15.0 (5.1-23.8)
This study with		Summertime	1995	17.3 (5.9-27.5)
pre-industrial		1-hr daily	2000	17.6 (6.0-28.0)
background		maximum O ₃	2005	18.7 (6.4-29.8)
O_3 ^a			2010	18.4 (6.3-29.6)
			1990	7.5 (2.9-12.5)
			1995	9.2 (3.5-15.2)
Cohen et al.,	COPD	3-month of	2000	10.6 (4.0-17.6)
2017 ^a		1-hr daily	2005	11.1 (4.2-18.5)
		maximum O ₃	2010	11.2 (4.3-18.7)
			2015	11.7 (4.4-19.6)
Punger &	RESP	6-month of	2005	24.0 (6.3-38.3)
West, 2013 ^b		1-hr daily		
		maximum O ₃		
Fann et al.,	RESP	Summertime	2005	19.0 (7.6-29.0)
2012^{b}		daily 8-hour		
		maximum		

^aThe exposed population for these studies are for adults above 25-year old.

^bThe exposed population for these studies are for adults above 30-year old.

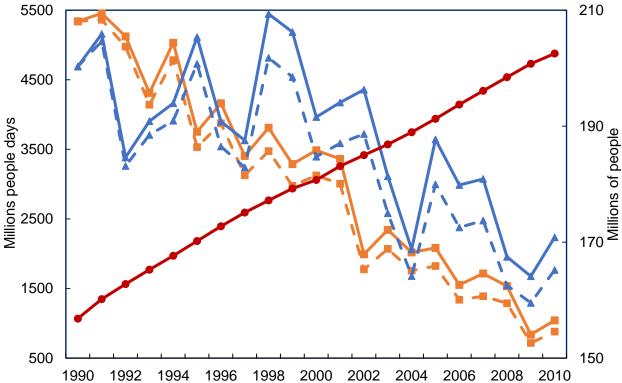


Figure S1. The population exposure exceedance using the adult population (> 25 yrs old) multiplied by the air quality exceedance days (million people-days, the number of days that exceed the daily PM_{2.5} standard (35 μ g m⁻³), and the daily MDA8 O₃ standard (70 ppbv)), for each year for PM_{2.5} (orange lines) and O₃ (blue lines). The dashed lines are the population exposure exceedance in the case where the population stays constant at the 1990 level. The red line is the US total adult population > 25 yrs old from 1990 to 2010 with the y-axis on the right.

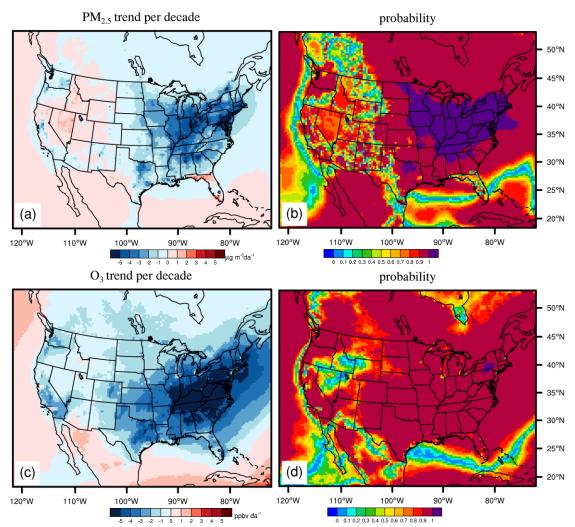


Figure S2. 21-yr air quality trends for annual mean $PM_{2.5}$ (a), and summertime (April to September) average of 1hr daily maximum O_3 (c) from 1990 to 2010, with the probability (the confidence estimated for the hypothesis that the trend is significant) for the trends (b,d). The purple color on the rightmost plot means the probability equals to 1.

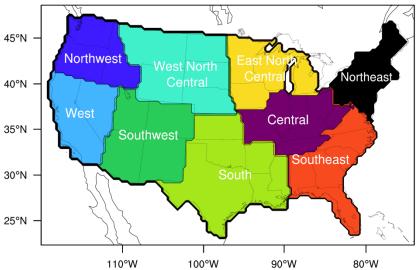


Figure S3. The nine US climate regions, following definitions from National Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php, accessed November 30 2017).

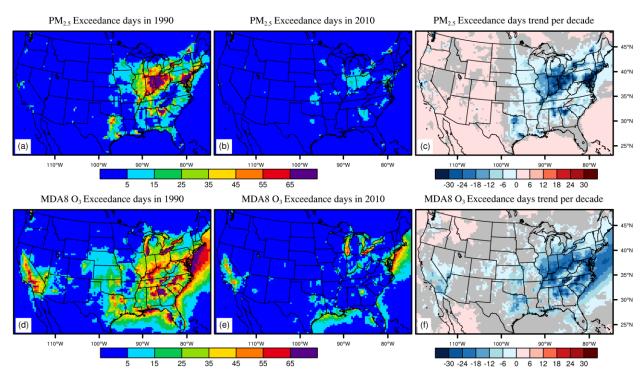


Figure S4. The total days of air quality exceedances for the year 1990 (a, d), 2010, (b, e) and the 21-yr trends (per decade, c,f), for daily $PM_{2.5}$ exceeding 35 µg m⁻³(top), and for daily MDA8 O_3 exceeding 70 ppbv (bottom). The gray areas in (c,f) means the increase/decrease trends are insignificant with p-values for the standard Student-t test larger than 0.05.

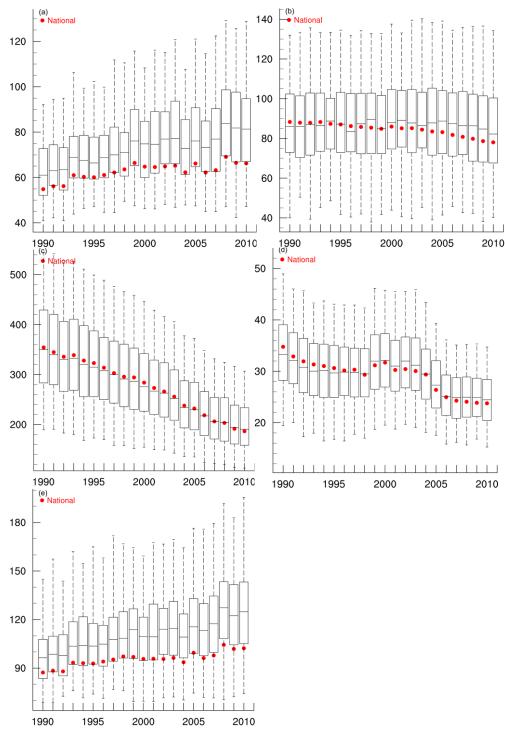


Figure S5: The baseline mortality rates for specific causes of death related with $PM_{2.5}$, including chronic obstructive pulmonary disease (a), lung cancer (b), ischemic heart disease (c) and stroke (d), and respiratory diseases related with O_3 (e). The bottom whiskers, bottom border, middle line, top border and the top whiskers of the boxes, indicate the 5th, 25th, 50th, and 75th, 95th percentiles, respectively, across all counties; the red circles are the national average rate. Baseline mortality rates are shown for 1990-1998 after they are corrected to ensure comparability between ICD9 and ICD10 codes.

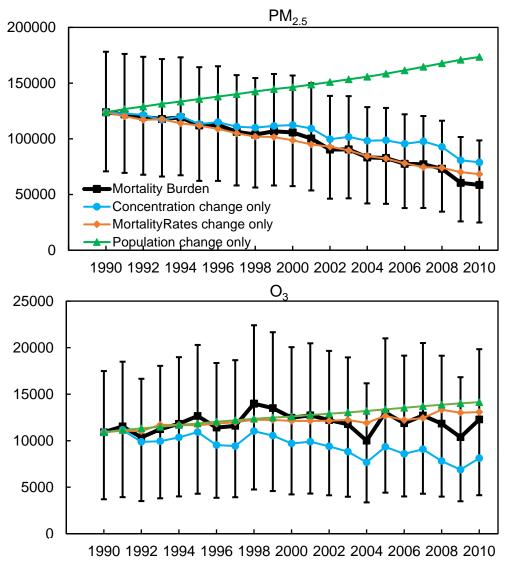


Figure S6: Total mortality burdens (black) attributed to $PM_{2.5}$ (top) and O_3 (bottom) considering all the three factors, mortality burden considering the air quality change only (blue), the baseline mortality rates change only (orange), and the population change only (green). Units are deaths yr¹. The error bars are the 95% CI for the total mortality burdens (black).

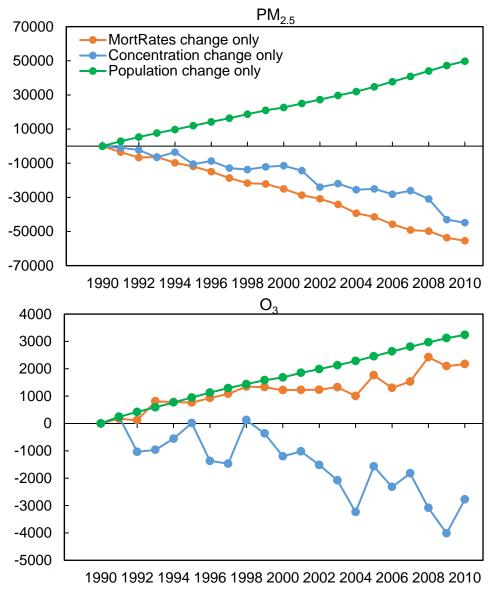


Figure S7: Trends for the absolute contribution of the three factors (baseline mortality rates, ambient air pollution concentration, and exposed population individually), in the net changes of the health burden changes for each year compared with 1990, for $PM_{2.5}$ (top) and O_3 (bottom). Units are deaths yr⁻¹.

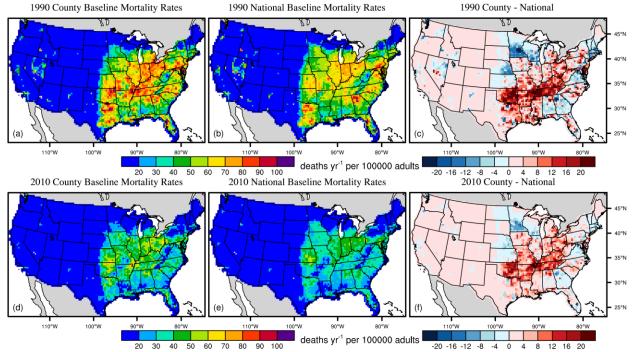
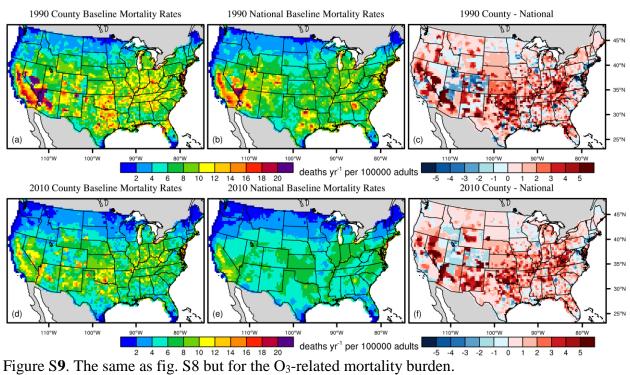



Figure S8. The mortality burden for PM_{2.5} using county-level baseline mortality rates (a, d), national baseline mortality rates (b, e) and their differences (c, f) for the year 1990 (top) and 2010 (bottom). The units are deaths yr⁻¹ per 100,000 adults.

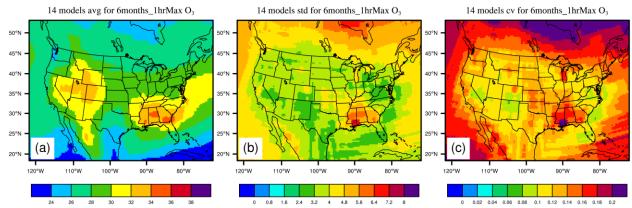


Figure S10. Spatial distribution of the summertime (April to September) average of 1hr daily maximum O_3 in 1850, for a) the 14 model average, b) standard deviation for the 14 models, and c) coefficient of variation. The results are regridded from the ACCMIP 14 model means.