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Abstract. Reducing ambient formaldehyde concentrations is a complex task because formaldehyde is both a primary and a

secondary air pollutant, with significant anthropogenic and biogenic sources of volatile organic compounds (VOC) precursor

emissions. This work uses adjoint sensitivity analysis in a chemical transport model to identify emission sources and chemical

reactions that influence formaldehyde mixing ratios in the San Francisco Bay Area, and within three urbanized sub-areas. For

each of these receptors, the use of the adjoint technique allows for efficient calculation of the sensitivity of formaldehyde to5

emissions of NOx, formaldehyde, and VOC precursors occurring at any location and time. Formaldehyde mixing ratios are

found to be generally higher in summer than in winter. The opposite seasonal trend is observed for the sensitivities of these mix-

ing ratios to formaldehyde emissions. In other words, even though formaldehyde is higher in summer, reducing formaldehyde

emissions has a greater impact in winter. In winter, 85–90 % of the sensitivity to emissions is attributed to direct formaldehyde

emissions. In summer, this contribution is smaller and more variable, ranging from 26 to 72 % among the receptor areas inves-10

tigated in this study. Higher relative contributions of secondary formation versus direct emissions are associated with receptors

located farther away from heavily urbanized and emission-rich areas. In particular, the relative contribution of biogenic VOC

emissions (15–41 % in summer) is largest for these receptors. Ethene and other alkenes are the most influential anthropogenic

precursors to secondary formaldehyde. Isoprene is the most influential biogenic precursor. Sensitivities of formaldehyde to

NOx emissions are generally negative, but small in magnitude compared to sensitivities to VOC emissions. The magnitude15

of anthropogenic emissions of organic compounds other than formaldehyde is found to correlate reasonably well with their

influence on population-weighted formaldehyde mixing ratios at the air basin scale. This correlation does not hold for ambient

formaldehyde in smaller urbanized sub-areas. The magnitude of biogenic emissions does not correlate with their influence in

either case.
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1 Introduction

Formaldehyde is one of the major contributors to increased cancer risk associated with exposure to hazardous air pollutants

in the United States (USEPA, 2012; Strum and Scheffe, 2016). Based on observations, Strum and Scheffe (2016) estimated

that the cancer risk associated with exposure to ambient formaldehyde in major U.S. cities was of the order of 50 per million

people, with values reaching 150 per million people in the southeast part of the country. In contrast, Zhu et al. (2017) estimated5

using a modeling approach that the upper bound for this cancer risk was in the range 20–40 per million people. Average

ambient formaldehyde mixing ratios in U.S. urban areas typically range from 1 to 3 ppb (Strum and Scheffe, 2016), where

1 ppb = 1 nmol/mol. Peak mixing ratios can be an order of magnitude larger (Dasgupta et al., 2005). In contrast, background

mixing ratios are estimated to be in the range 0.1 to 0.2 ppb (McCarthy et al., 2006).

Formaldehyde is directly emitted by anthropogenic activities that include a number of industrial processes and combustion10

of fossil fuels in stationary applications and motor vehicles (e.g. Grosjean et al., 2001; Ban-Weiss et al., 2008). Formaldehyde

is also formed photochemically in the atmosphere through oxidation of other volatile organic compounds (Finlayson-Pitts and

Pitts Jr., 2000; Seinfeld and Pandis, 2016). Examples of chemical pathways that can lead to secondary formation of formalde-

hyde are: addition of OH, ozone, or the nitrate radical to the C=C double bond of alkenes, and photolysis of acetaldehyde. In

the presence of sunlight, formaldehyde undergoes photolysis following one of two pathways (Seinfeld and Pandis, 2016):15

HCHO +hν→H + HCO 2O2→ 2HO2 + CO (R1)

or:

HCHO +hν→H2 + CO (R2)

where h is Plank’s constant and hν is the energy of a photon of frequency ν. In addition to photolysis, removal of formaldehyde

occurs through abstraction of a hydrogen atom by OH radicals, and to a lesser extent by free chlorine atoms and nitrate radicals.20

These reactions form formyl radicals and, respectively, water, hydrochloric acid, and nitric acid (Finlayson-Pitts and Pitts Jr.,

2000; Seinfeld and Pandis, 2016). For example with OH:

HCHO + OH→H2O + HCO (R3)

As indicated in the reactions presented above, formaldehyde is a source of radicals, and therefore affects the formation and

removal of other air pollutants such as ozone and secondary organic aerosols (Xiaoyan et al., 2010; Luecken et al., 2012; Zheng25

et al., 2013; Seinfeld and Pandis, 2016). While other carbonyl species undergo photolysis and are also sources of radicals, the

photolysis rate coefficient and therefore the potential for radical production are much larger for formaldehyde (Finlayson-Pitts

and Pitts Jr., 2000).

Mitigating exposure to ambient formaldehyde requires a clear understanding of the contributions of primary versus sec-

ondary and anthropogenic versus biogenic sources of formaldehyde. Various approaches have been used to estimate the relative30

2

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-496
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 November 2018
c© Author(s) 2018. CC BY 4.0 License.



importance of direct emissions versus secondary formation of formaldehyde. One approach consists of studying the statistical

relationships between observed mixing ratios or concentrations of formaldehyde and species that are predominantly of primary

origin (e.g. CO) versus species that are predominantly of secondary origin (e.g. O3). Using this approach, the average contribu-

tion of primary emissions to total ambient formaldehyde in Houston, TX was estimated to be a third to a half (Friedfeld et al.,

2002; Rappenglück et al., 2010); similar findings are reported for Mexico City (Garcia et al., 2006). Parrish et al. (2012) discuss5

the limitations and sources of uncertainties inherent to these statistical methods. Using an emission inventory constrained by

observations and product yields of formaldehyde from oxidation of some of its precursors, they attributed over 90 % of ambient

formaldehyde over the Houston region to secondary formation.

The contribution of direct emissions versus secondary formation of aldehydes has also been investigated using modeling

approaches. Luecken et al. (2012) used a chemical transport model where species that form formaldehyde are tracked and10

allocated to the emitted precursor species from which they originated. These investigators estimated the relative contribution

of secondary formation to total ambient formaldehyde in the eastern U.S to be 70–90 % in July versus 30–90 % in January,

with significant spatial variability. They also found that alkenes were often the most significant precursors to formaldehyde,

with isoprene contributing 15–60 % of secondary formation in certain areas in July. Uncertainties in emission inventories,

particularly for alkenes, an incomplete understanding of atmospheric reactions that influence formaldehyde concentrations, and15

the condensation of chemical mechanisms in air quality models have been proposed as likely sources of uncertainties in model

simulations (Luecken et al., 2012, 2018). Additionally, formaldehyde concentrations exhibit sharp spatial gradients at sub-

kilometer scales (Kheirbek et al., 2012), further complicating modeling efforts, as horizontal grid sizes in model simulations

typically range from 4 to 32 km in regional air quality models (Fountoukis et al., 2013).

Sensitivity analysis is another modeling approach used to investigate the drivers of air pollution. The aim is to quantify the20

effects of model parameters such as emission sources on air quality (Cohan and Napelenok, 2011). Most sensitivity analysis

techniques can be classified as either source-oriented or receptor-oriented. Source-oriented techniques, such as the Decoupled

Direct Method (DDM, Dunker, 1981, 1984; Yang et al., 1997; Dunker et al., 2002; Hakami et al., 2003; Napelenok et al.,

2006; Koo et al., 2007), require one large-scale simulation for each parameter of interest, but allow for quantifying sensitivities

of multiple air quality metrics at little additional cost. In contrast, receptor-oriented techniques, such as the adjoint method25

(Sandu et al., 2005; Martien et al., 2006; Hakami et al., 2007; Henze et al., 2007; Bastien et al., 2015), require one large-scale

simulation for each air quality metric of interest, but allow for the efficient calculation of sensitivities to large numbers of

model parameters. While there have been numerous analyses of ozone and particulate matter, little attention has been devoted

to analysis of formaldehyde mixing ratios. Dunker et al. (2015) used the path-integral method with sensitivities calculated

with the DDM, and found that the relative participation of different anthropogenic emission sectors (e.g. point sources, light30

duty vehicles) in the overall reduction of formaldehyde depended on the order in which these emissions were removed. The

path-integral method (Dunker, 2015) uses sensitivity coefficients to apportion changes in mixing ratios associated with specific

emission changes. More recently, Luecken et al. (2018) used the DDM to apportion U.S. ambient formaldehyde to its precursor

emissions. They estimated the relative contribution of secondary formation to be in the range 60–90 %, with alkenes being the

most influential precursors.35
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Our understanding of the relative contributions to formaldehyde exposure of primary versus secondary formation and of

biogenic versus anthropogenic emissions is still incomplete. In particular, we have yet to fully characterize how this appor-

tionment varies across sub-areas of an urbanized region. The present study uses a chemical transport model and its adjoint

to identify the emission sources and chemical reactions that influence ambient formaldehyde, overall for the San Francisco

Bay Area, and within three urbanized sub-areas. The relative influence of primary versus secondary formation, anthropogenic5

versus biogenic emissions, and of different anthropogenic emission sectors is quantified for each urban sub-area and for the

entire air basin. The sensitivities of formaldehyde to rate coefficients of over 200 chemical reactions are calculated and ranked.

The study is conducted for two month-long simulation periods, in July and December, to study the seasonality effects on the

analysis. The use of the adjoint approach allows for spatial, temporal, and by-species resolution in the calculation of sensi-

tivities at a reasonable computational cost, such that reaction rate coefficients and emissions of each species at each location10

and at each hour of the simulations can be treated as distinct model parameters. There are billions of such sensitivities, and

the computational cost of this endeavor would be prohibitive if a source-oriented sensitivity analysis technique were used in

place of the adjoint method. The approach employed here can be used, for example, to draw “maps of influence”; these identify

upwind areas whose emissions have the greatest influence on model responses. To the best of our knowledge, this study is the

first to use adjoint sensitivity analysis to identify the emissions and chemical reactions that have the most influence on regional-15

and local-scale ambient formaldehyde.

2 Methods

2.1 Chemical transport modeling, air quality metrics, and sensitivity analysis

Chemical transport models (CTMs) are used to synthesize understanding of atmospheric processes relevant to air pollution,

test new scientific hypotheses, estimate pollutant levels where there are no available observations, and estimate past or future20

changes in air quality due, for example, to emission reductions or climate change. CTMs estimate mixing ratios of airborne

pollutants of interest over a user-defined gridded domain and simulation period, by numerically solving a system of coupled,

and in general non-linear, partial differential equations that express conservation of mass (Seinfeld and Pandis, 2016). Model

input parameters include: meteorology, emissions of pollutants of interest and their precursors, description of relevant atmo-

spheric chemical reactions, mixing ratios at the beginning of the simulation period (initial conditions) and pollutant levels in25

air entering the modeling domain through lateral boundaries and from above (boundary conditions).

CTMs estimate space- and time-resolved fields of pollutant mixing ratios, but typically do not provide information about

which model parameters (e.g. which emission sources and which chemical reactions) contribute to specific air pollution prob-

lems. Mathematical and numerical tools that aim at elucidating these relationships have been implemented in CTMs. In partic-

ular, sensitivity analysis in air quality models quantifies changes in a specified air quality metric R resulting from variations in30

model parameters α1,α2, . . . ,αN through the calculation of first-order sensitivity coefficients of the form:

S+
αi

=
∂R

∂αi
(1)
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or, in semi-normalized form:

S×αi
=
∂R

∂αi
αi (2)

Air quality metrics of interest are calculated from model output mixing ratios. This study uses sensitivity analysis to identify

emission sources and chemical reactions that influence metrics related to exposure to ambient formaldehyde. More precisely,

the metrics of interest are defined as population-weighted formaldehyde mixing ratios of the form:5

R=
∫

ω

∫

T

Pω(x1,x2)C(x1,x2, t)dtdx1dx2 (3)

where ω is the receptor area of interest, T is the simulation period excluding spin-up, Pω is the population-weighting probability

density function over receptor ω, C is the surface mixing ratio of formaldehyde, and (x1,x2) and t are the horizontal position

and time coordinates, respectively. Population-weighting functions are based on 2010 U.S. census data. Four receptor areas are

investigated (Fig. 1). Three of these receptor areas (Pittsburg/Antioch, San Jose, and the East Bay) are urban areas that have10

been identified by the Bay Area Air Quality Management District as heavily impacted by air pollution (BAAQMD, 2014). The

fourth receptor is defined as the entire San Francisco Bay Area air basin. Each model response R is a real-valued function that

depends on the model parameters α1,α2, . . . ,αN : R=R(α) =R(α1,α2, . . . ,αN ). Model parameters are denoted collectively

as a vector α= (α1,α2, . . . ,αN ), where N is the total number of parameters.

Sensitivity analysis is used to calculate and compare changes ∆R in model response resulting from different perturbations15

in model parameters at any location in the domain and any time in the simulation period. This study focuses on two categories

of parameters: emissions and reaction rate coefficients. Changes in parameters are calculated with respect to nominal values,

denoted α0 = (α0
1,α

0
2, . . . ,α

0
N ). Nominal values are meant to describe actual conditions of the reference year. Assuming thatR

is differentiable at α0, the change ∆R in model response corresponding to a change in model parameters from nominal values

α0 to arbitrary values α is given by:20

∆R=R(α)−R(α0) (4)

=
N∑

i=1

∂R

∂αi

∣∣∣∣
(α0)

∆αi +hα0(α) (5)

where ∆αi = (αi−α0
i ) is the change in parameter αi and hα0 is a real-valued function (a priori a different function for each

set of nominal values α0) with domain in RN , and that has the property:

lim
∆αi→0

i={1,2,...,N}

hα0(α) = 0 (6)25

Provided that R is sufficiently differentiable at α0, the value of hα0(α) can be calculated from the knowledge of higher-order

derivatives of the form ∂βR/(∂αβ1
1 ∂αβ2

2 · · ·∂αβN

N ) evaluated at α0, where β = β1 +β2 + · · ·+βN > 2. This study focuses on

first-order sensitivities and makes the assumption that model responses vary linearly with model parameters, in which case

5
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Equation 5 simplifies to:

∆R=
N∑

i=1

∂R

∂αi

∣∣∣∣
(α0)

∆αi =
N∑

i=1

S+
αi

∆αi (7)

The value of hα0(α) measures the error made when using Equation 7 in lieu of Equation 5. As indicated by Equation 6, the

linear approximation holds exactly for infinitesimally small perturbations but not necessarily for larger perturbations. Previous

modeling studies investigated the range of perturbations over which Equation 7 holds reasonably well (Vuilleumier et al.,5

1997; Hakami et al., 2003, 2004; Cohan et al., 2005). These studies suggest that ozone responses vary nearly linearly with

emissions of precursor species for perturbations up to about 15–20 % of the nominal value. Since formaldehyde is a ubiquitous

intermediate species in atmospheric oxidation cycles, we hypothesize that formaldehyde responses investigated here also vary

approximately linearly with precursor emissions for perturbations up to about 15–20 % of the nominal values. Extending the

results presented in this study to larger perturbations should be done with care. In particular, non-linear behavior is likely to be10

significant when first-order sensitivities are large, and in regions where ozone chemistry is near the transition regime between

VOC- and NOx-controlled conditions (Vuilleumier et al., 1997; Hakami et al., 2003, 2004; Cohan et al., 2005; Jin et al., 2008).

Both the first-order sensitivity S+
αi

and its semi-normalized counterpart S×αi
are useful in quantifying the sensitivity of air

quality metrics to model parameters, but these quantities differ in their interpretation. S+
αi

measures the change ∆R in metric

R resulting from increasing the value of parameter αi by an amount ∆αi, whereas S×αi
measures the change ∆R in metric R15

resulting from scaling parameter αi using a multiplicative factor (e.g. ξ = 0.1 for a 10 % increase in αi):

∆R≈ S+
αi

∆αi (8)

∆R≈ S×αi
ξ (9)

Semi-normalized sensitivities are zero whenever the underlying parameter is itself zero. In contrast, this statement does not

hold in the general case for S+
αi

. All model parameters of interest in this study vary in time and space, and the values of these20

parameters at each location and at each time step are regarded as distinct parameters. Sensitivities calculated here are there-

fore local quantities. For example, the semi-normalized sensitivity of a model response R to the formaldehyde emission rate

EHCHO(x, t) at location x and time t is S×EHCHO(x,t). Semi-normalized sensitivities may be grouped together. For example, the

semi-normalized sensitivity to VOC emissions is the sum of the semi-normalized sensitivities to emissions of each individual

species that is used to represent VOC in the model.25

2.2 Computational approach

The Community Multiscale Air Quality model (CMAQ, Byun and Schere, 2006) is used at 4 km horizontal resolution to

simulate atmospheric formaldehyde mixing ratios in the San Francisco Bay Area, during two month-long simulation periods:

summer (July) and winter (December). The modeling domain consists of 38 × 52 grid cells in the horizontal directions and

35 vertical layers, extending to about 15 km above ground level. Atmospheric photochemistry is simulated with the SAPRC9930

chemical mechanism (Carter, 2000). SAPRC99 comprises 72 model species and 211 chemical reactions (listed in Carter, 2000,

6
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Appendix A). Some model species represent individual chemical species such as formaldehyde, ozone, ethene, and isoprene.

Other model species lump multiple organic species together, based on similarities in molecular structures and/or reactivity.

Lumped model species include ALK1 through ALK5 (“alkanes and other non-aromatic compounds that react only with OH”,

Carter, 2000), OLE1 and OLE2 (alkenes other than ethene), ARO1 and ARO2 (aromatics), and TERP (terpenes). The numbers

in lumped model species names for a given molecular structure (e.g. OLE1 versus OLE2) separate species according to their5

reactivity with the OH radical, a higher number meaning higher reactivity (Carter, 2000).

Hourly gridded emissions at 4 km horizontal resolution were provided by the Bay Area Air Quality Management Dis-

trict (BAAQMD, 2009) for the year 2005. The emissions data account for weekday–weekend and seasonal variations in

anthropogenic and biogenic emissions. Meteorological conditions were modeled at 4 km resolution using the MM5 model

(BAAQMD, 2009). A study by Bastien et al. (2015) suggests that year 2000 meteorological conditions used here represent10

typical conditions for multi-week simulation periods. Initial and boundary conditions for 34 out of the 72 model species de-

scribed in the SAPRC99 chemical mechanism were derived from the global-scale MOZART-4 modeling system (Emmons

et al., 2010). Boundary conditions for these species vary in the vertical direction, and also vary hourly throughout the sim-

ulation. The remaining 38 SAPRC99 model species could not be mapped to any MOZART-4 species. Initial and boundary

conditions for these species were set to zero. A two-day model spin-up period is used to reduce the influence of uncertainties15

in initial conditions on this analysis.

CMAQ is used to calculate model responses of interest for nominal values of the model parameters. The adjoint of CMAQ

is used to calculate the local sensitivity coefficients S+
αi

and S×αi
. The use of adjoint methods to calculate first-order sensitivity

coefficients has been described elsewhere (Sandu et al., 2005; Martien et al., 2006; Hakami et al., 2007; Henze et al., 2007;

Bastien et al., 2015). As previously explained, the adjoint sensitivity technique is particularly attractive when the number of20

model parameters of interest is large compared to the number of model responses of interest. Eight model responses are inves-

tigated here (2 seasons × 4 receptor areas) but there are billions of model parameters: emissions and reaction rate coefficients

at each location and each hourly time step. The computer code used in this study is based on the work by Hakami et al.

(2007) with modifications described in Bastien et al. (2015). Additionally, the CB-IV chemical mechanism used in Hakami

et al. (2007) was replaced by the SAPRC99 chemical mechanism. The chemical solver and adjoint sensitivity routines for25

SAPRC99 were created with the Kinetic Pre-Processor (KPP, Sandu et al., 2003; Daescu et al., 2003; Sandu and Sander, 2006)

version 2.2.3. The original adjoint code was further adapted so that it could be run using multiple processors in a parallel

computing environment. This study expands on previous work of Bastien et al. (2015), where emission sources that influenced

mixing ratios of two primary air pollutants (benzene and diesel black carbon) were mapped. Benzene and diesel black carbon

were treated as non-reactive, whereas in the present study formaldehyde is reactive and is also formed photochemically from30

other VOC precursors.

7

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-496
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 November 2018
c© Author(s) 2018. CC BY 4.0 License.



3 Results and discussion

3.1 Model evaluation

The forward model is the component of the model that estimates ambient mixing ratios of model species for a given set of

input parameters. In other words, the forward model relates an emission inventory and a set of meteorological conditions to the

resulting air quality in the modeling domain, accounting for atmospheric chemistry and other relevant processes. In contrast,5

the adjoint of the forward model is the component of the model used to calculate first-order sensitivities i.e. rates of change

of air quality when input parameters such as emissions are perturbed. Once the forward model has been run for a given set

of input parameters, the adjoint model can be run once for each air quality metric of interest without re-running the forward

model. The accuracy of these two components are evaluated separately.

The forward model is evaluated by comparing modeled mixing ratios of a number of species to ground-based observa-10

tions from routine monitoring stations (Fig. S1 through S10). Hourly measurements of O3 were available at 20 sites, hourly

measurements of CO, NO, and NO2 were available at 13 sites, and daily observations (24-hour averages) of formaldehyde,

acetaldehyde, and acetone were available at 3 sites. The comparison for CO was presented in a previous study by Bastien et al.

(2015). Agreement is good for O3 mixing ratios in July and December as well as for NO2 in December: the model captures

reasonably well the diurnal variations and the magnitude of these mixing ratios at most sites. The agreement between modeled15

and observed values is less satisfactory for NO2 in July as well as for CO and NO, particularly in December: the model does

not capture the magnitude and diurnal variations of these mixing ratios at several sites. Mean mixing ratios of formaldehyde

and acetaldehyde estimated by the model are within 35 % of observed values at two of the three available sites in each case.

The model consistently underestimates acetone mixing ratios.

The adjoint of the forward model is evaluated by comparing the change ∆R in model response estimated using adjoint20

sensitivities versus values calculated using a brute-force approach, which involves running the forward model with perturbed

parameters and comparing the outputs with those from the baseline simulation. Since the calculation of each brute-force

estimate requires a separate model run, this evaluation is conducted for one-day episodes in July and December, in each case

the first day of the corresponding month-long simulation period. The model responses used for evaluation are domain-wide

population-weighted mixing ratios of formaldehyde and ozone. The ozone responses are defined similarly to the formaldehyde25

responses (i.e. Eq. 3). Additive 24-hour perturbations to emissions of NO, formaldehyde, ethene, and isoprene at several

locations within the modeling domain are used for the evaluation. The magnitude of the perturbations for a given species is

set to be roughly 10 % of the maximum emission rate observed at any location of the modeling domain and throughout the

simulation period. Adjoint and brute-force estimates of ∆R are in good agreement for perturbations in formaldehyde, ethene,

and isoprene emissions (Fig. 2), with a corresponding coefficient of determination r2 = 0.95 or above. The agreement is less30

satisfactory for perturbations in NO emissions, and including the corresponding data points in the analysis lowers the coefficient

of determination to the 0.86–0.93 range. Discrepancies between adjoint-based and brute-force estimates are generally larger

when ∆R is large. A likely explanation for the larger discrepancies observed for NO is that non-linearities in the relationship

8
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between model responses and emissions are stronger for NOx than for emissions of other species. The brute-force approach

includes non-linearities whereas first-order adjoint sensitivities do not.

3.2 Sensitivity apportionment

This section identifies species whose emissions most strongly influence formaldehyde model responses. All the sensitivity

values presented and discussed in this section are “overall sensitivities”, obtained by summing individual semi-normalized5

sensitivities over the modeling domain and the month-long duration of the simulation. The next section discusses the influence

of the location of sources relative to receptors on model responses. It is worth noting that summing non-normalized sensitivities

over the modeling domain would measure the air quality effects of adding a fixed amount of emissions at all locations, includ-

ing over the ocean, where there are few anthropogenic sources. The summing procedure is only applied to semi-normalized

sensitivities, and the overall sensitivity of a model response to emissions of species i measures the effects on that response of10

uniformly scaling up the existing emissions of this species. Sensitivities to initial conditions of all model species were also cal-

culated, but were found to be negligible compared to emissions sensitivities, indicating that the spin-up and simulation periods

are long enough such that initial conditions have negligible influence on model responses of interest here.

The magnitude of population-weighted formaldehyde mixing ratios (i.e. the model responses, Table 1) is in the 1.5–1.7 ppb

range for all receptor areas in July, decreasing by 18 to 64 % going from July to December. San Jose sees the smallest seasonal15

decrease and Pittsburg/Antioch has the largest decrease. In contrast, mixing ratios of many formaldehyde precursors are higher

in December than in July (Tables S1 through S4).

Figures 3a and 3c show the emissions sensitivity of the air basin-wide response for summer (July) and winter (December),

respectively. Organic species other than methane are grouped together as VOC, and likewise NO and NO2 are grouped together

as NOx. Of the remaining species, those whose relative contribution is smaller than 5 % are lumped together as “others”20

in the gray portions of each subplot, separately for positive and negative sensitivities. The sensitivity to VOC emissions is

further separated into the contributions of different source sectors: biogenic emissions, on-road vehicle emissions, and other

anthropogenic emissions. Apportionment of the overall sensitivity to VOC emissions is shown in the pie chart insets. Figures

similar to Fig. 3 but for the other receptor areas investigated here can be found in the supplementary information (SI, Fig. S11

through S13). For a more detailed apportionment of the emissions sensitivity of each model response, see Table S5 in the SI.25

In both summer and winter, the emissions sensitivity of the air basin-wide response is dominated by anthropogenic VOC

emissions. The contribution from biogenic emissions is about a third of that due to anthropogenic emissions in summer; the

biogenic contribution is negligible in winter. The air basin-wide response decreases by a factor of 1.6 between summer and

winter, while its sensitivity to emissions almost doubles. In other words, even though the population-weighted formaldehyde

mixing ratio is larger in summer, scaling emissions uniformly year-round would result in a larger mixing ratio change in30

winter. This statement holds whether or not biogenic emissions are scaled along with anthropogenic emissions. Controlling

anthropogenic emissions is therefore less effective at reducing mixing ratios when mixing ratios are higher (i.e. in summer).

A similar seasonal trend in the emissions sensitivity is observed for the other receptor areas except for Pittsburg/Antioch,

where overall emissions sensitivity varies little by season. The increase in emissions sensitivity between summer and winter is

9
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driven by the 3-fold increase in the sensitivity to formaldehyde emissions. In contrast, sensitivity to emissions of most other

species is smaller in winter than in summer. In fact, almost 90 % of the sensitivity in December is attributed to formaldehyde

emissions, indicating that secondary formation of formaldehyde is negligible in winter. Secondary formation is very significant

in summer, when the influence of emissions of organic precursors is comparable to the influence of direct formaldehyde

emissions. The influence of organic precursors is dominated by alkenes, of which isoprene is the largest contributor. The5

individual contributions of non-alkene species are all smaller than 5 %. OLE2 is the only organic model species other than

formaldehyde that consistently yields higher sensitivities in winter than in summer, meaning that controlling these reactive

alkenes has a greater impact on formaldehyde during winter.

The relative contribution of direct formaldehyde emissions to the VOC emissions sensitivity in summer varies significantly

across the receptor areas investigated here (Fig. 4): 45 % for the air-basin as a whole, 59 % for the East Bay, 45 % for San10

Jose, and 24 % for Pittsburg/Antioch, located further inland/downwind. Results presented below in Section 3.5 indicate that the

zones of emissions influence are larger and extend farther upwind from the receptor area for precursors compared to formalde-

hyde itself. As a consequence, the relative importance of precursor emissions versus directly-emitted formaldehyde increases

for receptor areas located further downwind of emission-rich areas. This trend is attributed to the increased opportunity for

secondary formation associated with the longer transport time required for distant emissions to reach receptors. For example,15

in July, the Pittsburg/Antioch receptor is relatively far (∼ 50 km) downwind of many high-emission areas, including San Fran-

cisco and the East Bay. The influence of direct formaldehyde emissions on air quality at this receptor is small compared to

emissions of other species. In contrast, the East Bay is ∼ 10 km downwind of the San Francisco peninsula, and the relative

influence of direct formaldehyde emissions is considerably higher for this receptor. The San Jose and air basin-wide responses

represent intermediate cases. This finding applies to both anthropogenic and biogenic emissions. In particular, the relative con-20

tribution of biogenic emissions is largest for Pittsburg/Antioch (40 %) and smallest for the East Bay (15 %). On-road vehicle

emissions of VOC contribute roughly half as much as other sources of anthropogenic VOC emissions, for all model responses

investigated here (Table S5). The sensitivity of formaldehyde responses to NOx emissions is negative in both seasons for all

receptor areas, with a magnitude that ranges from 8 to 24 % of the corresponding overall sensitivity to emissions.

3.3 Drivers of seasonal changes in sensitivity25

Seasonal changes in the emissions sensitivities discussed above cannot be explained by changes in emissions alone: emissions

of formaldehyde and its precursors vary little between summer and winter in this study. A notable exception is biogenic

emissions of isoprene and terpenes, which are about eight and two times higher in July than in December, respectively. Terpenes

contribute little to the overall sensitivity to emissions: less than 5 % in both seasons for all model responses. Isoprene is

responsible for 10 to 35 % of the overall emissions sensitivity for the July responses, but has little influence in December.30

The following two key mechanisms are possible contributors to the seasonal change of sensitivity to formaldehyde emis-

sions. First, the mixing height in the modeling domain is generally lower in winter than in summer. Formaldehyde emissions are

therefore mixed within a smaller vertical column in winter, resulting in higher near-surface mixing ratios. This phenomenon, in

turn, makes surface-level model responses more sensitive to formaldehyde emissions. A previous study by Bastien et al. (2015)
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suggests that the mixing height has a great influence on the emissions sensitivity of surface mixing ratios for primary pollutants;

it is likely that it would have a comparable influence on the sensitivity of formaldehyde mixing ratios to formaldehyde emis-

sions. The second mechanism is seasonal variations of formaldehyde lifetime in the atmosphere. Table 2 shows month-long

averages of rates of formaldehyde removal, separately for the July and December simulations, and separately for the following

removal processes: photolysis, chemical reactions other than photolysis, and dry deposition. Removal by wet deposition is5

neglected as precipitation events are rare in the simulations. The atmospheric lifetime of formaldehyde is greater in December

than in July: removal by dry deposition decreases by a factor of three between July and December, and photochemical removal

decreases by one to two orders of magnitude between these two periods. The longer atmospheric lifetime of formaldehyde in

winter may increase the sensitivity of model responses to directly emitted formaldehyde.

The influence on sensitivities of photochemical removal of formaldehyde is investigated by running model simulations in10

which chemistry has been turned off, such that formaldehyde can only be removed by deposition. Following this modification,

formaldehyde emissions sensitivities increased by 10 to 30 % in July, but by only a few percent in December (Table 3).

Although the relative increase in sensitivity is larger in July for all receptor areas, the actual magnitude of this change is similar

in July and December for two of these receptors (air basin and San Jose), because sensitivities to formaldehyde emissions

are larger in December. Overall, seasonal variations in photochemical removal rates of formaldehyde do not explain the large15

(∼200 %) increase in formaldehyde emissions sensitivity of model responses from July to December. These results suggest that

reduced transport and mixing are the main drivers of the enhanced influence on air quality of directly-emitted formaldehyde in

December compared to July.

3.4 Sensitivities to reaction rate coefficients

Comparing sensitivities to reaction rate coefficients gives insights into which species and chemical reactions contribute the20

most to photochemical production and removal of formaldehyde. Rate sensitivities for each model response and for each of

the 211 chemical reactions represented in the SAPRC99 chemical mechanism were calculated and ranked by magnitude. Table

4 shows the 12 reactions with the largest sensitivities for the air basin-wide response, separately for July and December. A

negative rate sensitivity indicates that increasing the reaction rate coefficient would decrease the formaldehyde response, and

vice-versa. It should be noted that ordering reactions by rate sensitivity versus ordering them by reaction rate yields different25

rankings. Rate sensitivity is a more comprehensive measure of the influence of a specific reaction on formaldehyde because it

accounts for both the rate and the formaldehyde yield of the reaction. In other words, it accounts for how often the reaction

occurs and how many molecules of formaldehyde are eventually formed or destroyed every time the reaction occurs. Only

semi-normalized sensitivities are considered here. Non-normalized sensitivities cannot be ranked in the same manner because

they have different dimensions depending on whether the reaction is uni-, bi-, or termolecular.30

We first discuss the summertime results. In this season, attack by the OH radical (R3) is the most influential reaction among

the five photochemical pathways for formaldehyde removal represented in the model. While the average formaldehyde photol-

ysis rate is only 50 % larger for the channel that yields stable products (R2) than for the channel that yields radicals (R1), the

rate sensitivity corresponding to R1 is almost twice as large in magnitude as for R2. The reason for this difference is that the
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HO2 radicals generated as products of R1 can themselves participate in secondary formation of formaldehyde, thus partially

offsetting the initial loss of formaldehyde. The net effect of the reaction is nevertheless a loss of formaldehyde, as indicated by

the negative sign of the corresponding sensitivity. Secondary formation of formaldehyde is enhanced by NO2 to NO conver-

sions associated with the photolysis of NO2, and is inhibited by NO to NO2 conversions associated with the reaction of NO

with ozone and by the OH + NO2 chain-terminating reaction. The most influential reaction that yields a positive sensitivity is5

the reaction of methane with the OH radical. This reaction leads to the formation of methyl peroxy radical, which can itself

lead to formaldehyde. Other influential pathways to secondary formaldehyde are attack of methanol by the OH radical, and the

photolysis of methacrolein (METHACRO) and glyoxal (GLY). In Section 3.2, ISOPRENE, ETHENE, OLE1, and OLE2 were

identified as the main contributors to secondary formaldehyde in July, yet none of the reactions that directly involve any of

these species appear in Table 4. For species such as glyoxal and methacrolein, emissions are small but secondary formation is10

large. These species do contribute significantly to secondary formation of formaldehyde, yet the corresponding emissions sen-

sitivities are small because these species are formed chemically within rather than being directly emitted into the atmosphere;

they can also be transported from upwind regions.

As discussed previously, secondary formation of formaldehyde is far less significant in December than in July. This trend is

also reflected in the rate sensitivities, which are consistently smaller in magnitude in December. Ten out of the top 12 reactions15

in July are also among the top reactions in December, although the ordering of these reactions is different. In particular, the

dominant pathway for formaldehyde removal in December is the photolysis channel that leads to stable products (Reaction

R2). We note the opposite effects on formaldehyde of two competing fates for peroxy acetyl radicals (CH3C(=O)OO•). The

corresponding sensitivities are of comparable magnitudes but opposite signs. Reaction of these radicals with NO2 yields a

negative sensitivity; the corresponding product, peroxy acetyl nitrate (PAN), is relatively stable in winter when temperature is20

low. In contrast, reaction in the presence of oxygen of peroxy acetyl radicals with NO forms CO2 and methyl peroxy radicals

(CH3OO•). The latter are readily oxidized to formaldehyde. The corresponding rate sensitivity is, accordingly, positive.

3.5 Spatial distributions of sensitivities

The apportionment analysis presented in Section 3.2 identifies the chemical species whose emissions have a large influence on

formaldehyde mixing ratios within the study domain. To mitigate air pollution problems effectively, the influence of emissions25

as a function of location and time must be understood. The influence of a source depends not only on its strength, but also

on parameters such as location relative to receptor, meteorological conditions, and the chemical state of the atmosphere. This

section investigates how the spatial distribution of emission sources affects their influence on air pollution within different

receptor areas. We also consider whether the magnitude of an emission source correlates with the influence of that source.

Figure 5 shows the relationship between the magnitude of emissions of selected species and their influence on the air basin-30

wide (left column) and East Bay (right column) responses, separately for July and December. Figure 5 also shows, for each

model response, each model species, and each simulation period, the corresponding linear regression line and coefficient of

determination, r2. The formaldehyde emissions sensitivity of the air basin-wide model response correlates only moderately well

with the magnitude of these emissions, both in July (r2 = 0.46) and December (r2 = 0.59). The largest formaldehyde emission
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source in the modeling domain is located near Fairfield. As this source is comparatively far from and often downwind of the

most populated areas of the air basin, it contributes little to the air basin-wide response, and thus drives down the corresponding

correlation between emissions and sensitivity. Removing this point from the analysis yields better correlations (r2 = 0.70 and

0.76 in July and December, respectively). There is no correlation between the magnitude of formaldehyde emission sources

and the corresponding sensitivities for any of the more local model responses investigated in this study: Pittsburg/Antioch, San5

Jose, and the East Bay. For example, r2 = 0.18 and 0.12 in July and December, respectively, for the East Bay (Fig. 5b). As

discussed further below, the location of emission sources relative to the receptor becomes crucial in determining their effects

on air quality within localized receptor areas.

The sensitivity of model responses to anthropogenic emissions of organic precursors correlates more strongly with the mag-

nitude of these emissions than was the case for formaldehyde emissions. This finding holds for the air basin-wide response10

and for all the local responses under investigation, with stronger correlations for the air basin-wide response than for the local

responses. Examples are shown on Fig. 5c (air basin-wide response) and 5d (East Bay response) for ethene. The strength of the

correlations between the NOx emissions sensitivity of formaldehyde model responses and the magnitude of these emissions

(Fig. 5e and 5f) is similar to that observed for anthropogenic emissions of organic precursors. The correlation between sensitiv-

ity to biogenic emissions and the magnitude of these emissions is weak, as illustrated by Figures 5g and 5h for isoprene. There15

are large biogenic emission source regions which do not contribute significantly to local and regional formaldehyde exposure,

while other smaller sources, located upwind of densely populated areas, have a much greater influence.

The spatial distributions of anthropogenic emissions are similar for most model species, and the strength of the correlations

discussed here gives an indication of how strongly the influence of emission sources depends on their location relative to the

receptor area. A weak correlation suggests a high dependence on location. Results discussed above suggest that the location20

of emission sources has a greater influence for directly-emitted formaldehyde than for anthropogenic precursors to secondary

formation. This conclusion is further supported by the spatial distributions of sensitivity to emissions of formaldehyde and

other precursors, as discussed below. Non-normalized sensitivity to emissions at location x measures the change in model

response resulting from adding new emissions at that location, where the amount of pollutant thus added is independent of

the magnitude of existing emissions. In other words, it measures how much a certain location can affect a specified model25

response. A spatially invariant non-normalized sensitivity means that the influence that emissions have on air quality does

not depend on their location, only on their magnitude. If non-normalized sensitivity is not uniform, then the magnitude of its

gradient indicates how much the location of emissions matters in determining their impact on air quality.

Figures 6a and 6b show the non-normalized sensitivity for July of the San Jose response to formaldehyde and ethene emis-

sions, respectively. The sensitivity to formaldehyde emissions exhibits strong spatial gradients, indicating that the influence of30

direct formaldehyde emissions strongly depends on location. In contrast, the sensitivity to ethene emissions exhibits weaker

spatial gradients over a larger region, especially along the prevailing direction of surface winds (roughly northwest to southeast

in the case of San Jose). The influence of ethene emissions is not as dependent on the location of the emissions compared to

formaldehyde. Similar features are observed in the spatial distributions of non-normalized sensitivities for the other summer-

season responses.35
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The contribution of an existing emission source to a model response is measured by the corresponding semi-normalized

sensitivity, which is calculated as the product of the potential influence of the location of this source and its magnitude.

Mathematically:

S×E = S+
E ×E (10)

where the three terms are, respectively: semi-normalized sensitivity to emissions, non-normalized sensitivity to emissions,5

and magnitude of emissions. Figures 6c and 6d show the semi-normalized sensitivity for July of the San Jose response to

formaldehyde and ethene emissions, respectively. The influence of formaldehyde emissions is dominated by local sources

while the influence of ethene emissions is more affected by sources located further upwind of the receptor area.

Similar observations can be made for the other local responses investigated in this study. For example, Fig. 7a and 7b show

the spatial distributions of semi-normalized sensitivity of the Pittsburg/Antioch response in July to emissions of formaldehyde10

and VOC precursors, respectively. Precursor emissions originating from San Francisco have a strong influence on formaldehyde

in Pittsburg/Antioch even though these emissions are located more than 50 km away from the receptor. Precursor emissions

originating from the East Bay and from within the receptor itself, as well as from regions along this path also have a significant

influence on this response. In contrast, formaldehyde emissions originating from San Francisco and the East Bay do not

contribute as much as local formaldehyde emissions to the sensitivity of the Pittsburg/Antioch response. The same trend is15

observed in December (Fig. 7e and 7f)

Compared to summer, the relative contribution of sources located within or near the receptor area is larger in winter for

both formaldehyde and ethene emissions. This same seasonal pattern was also noted for benzene and diesel black carbon

(Bastien et al., 2015), and was attributed to differences in meteorology between the two seasons. In July, near-surface winds

are predominantly from the northwest or west. In December, near-surface winds are weaker and do not have a clear prevailing20

direction. The more quiescent meteorological conditions associated with the winter season increase the relative importance of

nearby sources. Relevant upwind areas of influence extend west of the receptor areas in July and to a lesser extent east of the

receptor areas in December. The relative contribution of local versus upwind formaldehyde emissions increases significantly

for the Pittsburg/Antioch receptor between July and December (44 to 77 %), decreases for San Jose (73 to 62 %), and is

about 75 % in both seasons for the East Bay. As an additional example, Figures 7c and 7g show the formaldehyde emissions25

that influence formaldehyde in the East Bay in July and December, respectively. Emissions originating from San Francisco

have more influence on formaldehyde in the East Bay in July compared to December, and East Bay emissions become more

influential in December. Figure 7d shows the semi-normalized sensitivity of the air basin-wide July response to NOx emissions,

which is negative in and around the most densely populated areas but is positive for highway emissions in the North and for

ship emissions over the Pacific ocean. These positive NOx sensitivities are, however, small in magnitude (see also Fig. 5e).30

4 Conclusions

The adjoint of a chemical transport model is used to identify emission sources and chemical reactions that have the most influ-

ence on formaldehyde, separately for summer- and winter-season conditions. Air quality metrics investigated in this work are
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population-weighted mixing ratios in the San Francisco Bay Area as a whole and within three of its urbanized sub-areas. The

results of the sensitivity analysis are used to quantify the relative importance of primary versus secondary formation, anthro-

pogenic versus biogenic sources, and of different emission sectors on formaldehyde pollution. Secondary formation has little

influence on formaldehyde in winter: 85–90 % of the sensitivity of formaldehyde to emissions is attributed to directly-emitted

formaldehyde, and 62–77 % of this contribution is attributed to local sources. In summer, the relative contribution of direct5

formaldehyde emissions is more variable and ranges between 26 and 72 %. The remainder of the formaldehyde sensitivity is

attributed to emissions of precursors, mainly ethene and other alkenes. Areas of influence extend farther upwind for precursors

than for direct emissions of formaldehyde. The relative influence of secondary formation versus direct emissions on formalde-

hyde is largest for receptors located farther away from heavily urbanized and emission-rich areas. The relative importance

of biogenic emissions is also largest for these receptors. This pattern is attributed to the increased opportunity for secondary10

formation associated with the longer transport time required for polluted air masses to reach distant receptors. Increasing NOx

emissions decreases formaldehyde pollution at receptors, but the magnitude of this effect is small. To summarize, winter-season

formaldehyde is greatly influenced by direct local emissions of formaldehyde. In contrast, summer-season formaldehyde is in-

fluenced by both direct local emissions of formaldehyde and regional emissions of other organic precursors. The magnitude

of anthropogenic emissions of species other than formaldehyde correlates reasonably well with their influence on regional15

formaldehyde exposure. They do not, however, correlate with their influence on pollution within specific urban sub-areas.
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Figure 1. Modeling domain and receptor areas investigated in this work. The color scale shows population density as of the 2010 U.S.

Census. Gray lines indicate major roadways.
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Figure 2. Relative change in model response calculated from first-order adjoint sensitivities versus using a brute-force approach. The model

responses used for the evaluation are domain-wide population-weighted mixing ratios of (a) formaldehyde and (b) ozone. Simulation periods

used for this evaluation are one-day episodes in July (red filled symbols) and December (blue unfilled symbols). Each point corresponds to

the effect of an additive 24-hour perturbation in emissions applied to a single grid cell. Insets zoom in on a section of the corresponding plots.
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Figure 3. Semi-normalized sensitivity of the air basin-wide population-weighted formaldehyde mixing ratio to emissions, in (a) July and (b)

December. An apportionment by precursor species of the sensitivity to overall VOC emissions is shown in the pie chart insets.
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Figure 4. Apportionment by model species (pie charts) of the VOC emissions semi-normalized sensitivity of the formaldehyde response in

the San Francisco Bay Area air basin as a whole and within three of its urbanized sub-areas in (a) July and (b) December.
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Figure 5. Semi-normalized sensitivity of model responses to individual emission sources versus the magnitude of these sources. Values are

shown separately for the July (red circles) and December (blue triangles) simulation periods, along with the corresponding linear regression

affine lines (solid red line for July and dashed blue line for December). The corresponding coefficients of determination, r2, are indicated on

the top of each subplot. In this figure, an “individual emission source” corresponds to emissions of a model species in a single model grid

cell. Values are averaged over the simulation period.
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Figure 6. Non-normalized and semi-normalized sensitivity of the San Jose formaldehyde response in July to emissions of formaldehyde and

ethene. At each location, the sensitivity is summed over the duration of the simulation period. The San Jose receptor area is outlined in green.
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Figure 7. Semi-normalized sensitivity S× of the formaldehyde model response at different receptors to emissions of various species or

groups of species. In each grid cell, sensitivity values are summed over the duration of the simulation period. The boundary of the receptor

area under consideration in each case is indicated by a green or pink line.
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Table 1. Model responses in ppb. Model responses are population-weighted monthly average formaldehyde mixing ratios for the San Fran-

cisco Bay Area (air basin) and selected sub-areas.

Air Basin Pittsburg/Antioch San Jose East Bay

July 1.5 1.7 1.7 1.6

December 0.94 0.62 1.4 0.96

Table 2. Monthly average production and loss rates of formaldehyde by different mechanisms. Values are summed over the modeling domain.

Chemical Loss by Loss by Loss by

production photolysis other reactions dry deposition

(mol s−1) (mol s−1) (mol s−1) (mol s−1)

Surface-layer only:

July 6.1 1.3 2.2 8.6

December 0.70 0.095 0.066 2.9

Planetary boundary layer only:

July 770 230 370 8.6

December 15 2.7 1.7 2.9

All layers:

July 1800 610 870 8.6

December 240 61 52 2.9

Table 3. Increase (ppb) in the formaldehyde emissions semi-normalized sensitivity of model responses resulting from turning off chemistry

in the model. The numbers in parentheses indicate the magnitude of the increase relative to the original value.

Air Basin Pittsburg/Antioch San Jose East Bay

July 0.020 (12%) 0.025 (29%) 0.032 (12%) 0.028 (9.7%)

December 0.018 (3.3%) 0.005 (2.2%) 0.038 (4.2%) 0.013 (2.4%)
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Table 4. Reaction rates (averaged over the modeling domain and simulation period) and semi-normalized sensitivities S×k (summed over the

modeling domain and simulation period) of the air basin-wide response to reaction rate coefficients for the 12 reactions for which S×k has

the largest magnitude. Reactions are ranked separately for each season.

Rank Reaction(a) Average Actual sensitivity

reaction rate to reaction rate

(molecule cm−3 s−1) coefficient (ppb)

July

1 HCHO + OH→ HO2 + CO + H2O 8.8×10+5 −0.49

2 CH4 + OH→ CH3OO• + H2O 6.8×10+5 +0.31

3 HCHO + hν → CO + H2 5.0×10+5 −0.28

4 NO2 + hν → NO + O(3P) 7.4×10+7 +0.24

5 Methanol + OH→ HCHO + HO2 + H2O 4.5×10+5 +0.21

6 Methacrolein + hν → 0.67HCHO + 0.34HO2 + . . . 2.4×10+5 +0.20

7 O3 + NO→ NO2 + O2 6.6×10+7 −0.20

8 O3 + hν → O(1D) + O2 1.4×10+7 +0.15

9 Glyoxal + hν → HCHO + CO 2.7×10+5 +0.15

10 HCHO + hν → 2HO2 + CO 3.5×10+5 −0.15

11 O(1D) + M→ O(3P) + M 1.3×10+7 −0.14

12 OH + NO2→ HNO3 5.7×10+5 −0.13

December

1 Glyoxal + hν → HCHO + CO 9.8×10+4 +0.16

2 O3 + hν → O(1D) + O2 1.6×10+6 +0.15

3 NO2 + hν → NO + O(3P) 4.9×10+7 +0.14

4 O(1D) + M→ O(3P) + M 1.4×10+6 −0.13

5 O3 + NO→ NO2 + O2 4.3×10+7 −0.12

6 CH4 + OH→ CH3OO• + H2O 7.6×10+4 +0.09

7 OH + NO2→ HNO3 1.0×10+5 −0.09

8 HCHO + hν → CO + H2 4.4×10+4 −0.08

9 Methacrolein + hν → 0.67HCHO + 0.34HO2 + . . . 2.3×10+4 +0.08

10 CH3C(=O)OO• + NO2→ PAN 2.5×10+5 −0.05

11 HCHO + OH→ HO2 + CO + H2O 3.5×10+4 −0.05

12 CH3C(=O)OO• + NO→ CH3OO• + NO2 + CO2 4.7×10+4 +0.05
(a) O2 may be omitted as a reactant. PAN is peroxyacetyl nitrate.
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