Supplementary Information for: Contributions to local and regional-scale formaldehyde concentrations

Lucas A. J. Bastien^{1,2}, Nancy J. Brown², and Robert A. Harley^{1,2}

 $^1\mathrm{Department}$ of Civil and Environmental Engineering, University of California at Berkeley, Berkeley CA 94720

²Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720

Correspondence: Robert A. Harley (harley@ce.berkeley.edu)

Notes on units of gas-phase mixing ratios: 1 ppb = 1 nmol/mol; 1 ppt = 1 pmol/mol.

Figure S1: Measurement sites used for the evaluation of the forward model. Sites include ambient air monitoring locations from the air basin- and state-wide regulatory agencies.

Figure S2: Observed (filled circles) and modeled (solid line) hourly ozone mixing ratios at twenty different monitoring sites in July. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. At each hour, the value is averaged over all the days included in the data set. The locations of the measuring sites are shown on Figure S1.

Figure S3: Observed (filled circles) and modeled (solid line) hourly ozone mixing ratios at fourteen different monitoring sites in December. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. At each hour, the value is averaged over all the days included in the data set. The locations of the measuring sites are shown on Figure S1.

Figure S4: Observed (filled circles) and modeled (solid line) hourly NO_2 mixing ratios at thirteen different monitoring sites in July. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. At each hour, the value is averaged over all the days included in the data set. The locations of the measuring sites are shown on Figure S1.

Figure S5: Observed (filled circles) and modeled (solid line) hourly NO_2 mixing ratios at thirteen different monitoring sites in December. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. At each hour, the value is averaged over all the days included in the data set. The locations of the measuring sites are shown on Figure S1.

Figure S6: Observed (filled circles) and modeled (solid line) hourly NO mixing ratios at thirteen different monitoring sites in July. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. At each hour, the value is averaged over all the days included in the data set. The locations of the measuring sites are shown on Figure S1.

Figure S7: Observed (filled circles) and modeled (solid line) hourly NO mixing ratios at thirteen different monitoring sites in December. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. At each hour, the value is averaged over all the days included in the data set. The locations of the measuring sites are shown on Figure S1.

Figure S8: Observed (black, left) and modeled (green, right) 24-hour average formaldehyde mixing ratios at three different monitoring sites in (a) July and (b) December. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. Each box-and-whiskers plot represents, for the corresponding data set, the mean (dot), the median (central horizontal line), the first and third quartiles (bottom and top edges of the box), the minimum and maximum values (bottom and top whiskers), and the number of available data points (top number). The locations of the measuring sites are shown on Figure S1.

Figure S9: Observed (black, left) and modeled (green, right) 24-hour average acetaldehyde mixing ratios at three different monitoring sites in (a) July and (b) December. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. Each box-and-whiskers plot represents, for the corresponding data set, the mean (dot), the median (central horizontal line), the first and third quartiles (bottom and top edges of the box), the minimum and maximum values (bottom and top whiskers), and the number of available data points (top number). The locations of the measuring sites are shown on Figure S1.

Figure S10: Observed (black, left) and modeled (green, right) 24-hour average acetone mixing ratios at three different monitoring sites in (a) July and (b) December. Observed values combine data from years 2004, 2005, and 2006, by selecting, in each of these years, the days of the year that correspond to the month-long simulation period. Each box-and-whiskers plot represents, for the corresponding data set, the mean (dot), the median (central horizontal line), the first and third quartiles (bottom and top edges of the box), the minimum and maximum values (bottom and top whiskers), and the number of available data points (top number). The locations of the measuring sites are shown on Figure S1.

Table S1: Average surface mixing ratios in the air basin-wide receptor area for each model species, separately for the July and December simulation periods. Surface mixing ratios are mixing ratios in the bottom model layer. Mixing ratios are averaged over the duration of the corresponding simulation period and over the extent of the receptor area. See Carter (2000, Appendix A, Table A-1) for a description of model species.

Model	July	December	 Model	July	December
Species	Simulation	Simulation	 Species	Simulation	Simulation
NO2	4.1 ppb	10 ppb	BZCO_O2	$9.9 \times 10^{-04} \text{ ppt}$	$4.3 \times 10^{-05} \text{ ppt}$
NO	1.1 ppb	4.0 ppb	PBZN	1.1 ppt	0.57 ppt
O3P	$2.9 \times 10^{-04} \text{ ppt}$	$1.0 \times 10^{-04} \text{ ppt}$	BZ_O	$6.2 \times 10^{-04} \text{ ppt}$	$4.2 \times 10^{-04} \text{ ppt}$
O3	36 ppb	26 ppb	MA_RCO3	0.033 ppt	$5.4 \times 10^{-04} \text{ ppt}$
NO3	$1.0 \mathrm{ppt}$	2.4 ppt	MA_PAN	25 ppt	5.7 ppt
N2O5	$9.1 \mathrm{ppt}$	60 ppt	TBU_O	$1.2 \times 10^{-06} \text{ ppt}$	$5.6 \times 10^{-07} \text{ ppt}$
HNO3	$650 \mathrm{ppt}$	520 ppt	ACET	1.2 ppb	1.1 ppb
O1D2	$7.0 \times 10^{-10} \text{ ppt}$	$4.1 \times 10^{-11} \text{ ppt}$	NPHE	$6.9 \mathrm{ppt}$	$7.7 \mathrm{ppt}$
HO	0.13 ppt	0.010 ppt	PHEN	0.84 ppt	26 ppt
HONO	13 ppt	$5.8 \mathrm{ppt}$	BZNO2_O	$3.6 \times 10^{-18} \text{ ppt}$	$3.0 \times 10^{-17} \text{ ppt}$
HO2	$6.3 \; \mathrm{ppt}$	$0.79 \mathrm{ppt}$	HOCOO	$1.6 \times 10^{-04} \text{ ppt}$	$1.6 \times 10^{-05} \text{ ppt}$
CO	140 ppb	240 ppb	HCOOH	15 ppt	13 ppt
HNO4	$6.0 \; \mathrm{ppt}$	11 ppt	RCHO	190 ppt	180 ppt
HO2H	1.9 ppb	230 ppt	GLY	13 ppt	16 ppt
SO2	450 ppt	430 ppt	MGLY	40 ppt	28 ppt
SULF	360 ppt	290 ppt	BACL	2.6 ppt	3.9 ppt
CO2	2.0 ppt	0.41 ppt	CRES	5.7 ppt	6.4 ppt
HCHO	1.5 ppb	580 ppt	BALD	5.3 ppt	9.4 ppt
COOH	56 ppt	3.9 ppt	METHACRO	160 ppt	36 ppt
MEOH	9.0 ppb	500 ppt	MVK	230 ppt	44 ppt
RO2_R	4.7 ppt	2.9 ppt	ISOPROD	52 ppt	27 ppt
ROOH	110 ppt	37 ppt	DCB1	16 ppt	34 ppt
R2O2	$5.9 \; \mathrm{ppt}$	$6.3 \mathrm{ppt}$	DCB2	1.2 ppt	$1.9 \mathrm{ppt}$
RO2_N	1.8 ppt	$1.9 \mathrm{ppt}$	DCB3	0.49 ppt	1.0 ppt
RNO3	93 ppt	89 ppt	ETHENE	260 ppt	770 ppt
MEK	270 ppt	480 ppt	ISOPRENE	200 ppt	160 ppt
PROD2	190 ppt	440 ppt	TERP	$68 \mathrm{\ ppt}$	81 ppt
CCO_O2	0.34 ppt	0.016 ppt	ALK1	1.2 ppb	2.4 ppb
PAN	270 ppt	180 ppt	ALK2	380 ppt	930 ppt
CCO_OOH	26 ppt	0.68 ppt	ALK3	710 ppt	1.9 ppb
CCO_OH	27 ppt	10 ppt	ALK4	630 ppt	1.8 ppb
RCO_O2	0.094 ppt	2.6×10^{-03} ppt	ALK5	800 ppt	2.0 ppb
PAN2	58 ppt	20 ppt	ARO1	280 ppt	760 ppt
CCHO	270 ppt	350 ppt	ARO2	200 ppt	860 ppt
RCO_OOH	11 ppt	0.15 ppt	OLE1	89 ppt	270 ppt
RCO_OH	22 ppt	22 ppt	OLE2	$75 \mathrm{ppt}$	220 ppt

Table S2: Average surface mixing ratios in the Pittsburg/Antioch receptor area for each model species, separately for the July and December simulation periods. Surface mixing ratios are mixing ratios in the bottom model layer. Mixing ratios are averaged over the duration of the corresponding simulation period and over the extent of the receptor area. See Carter (2000, Appendix A, Table A-1) for a description of model species.

Model	July	December	 Model	July	December
Species	Simulation	Simulation	Species	Simulation	Simulation
NO2	5.3 ppb	11 ppb	BZCO_O2	$1.1 \times 10^{-03} \text{ ppt}$	$2.8 \times 10^{-05} \text{ ppt}$
NO	920 ppt	1.9 ppb	PBZN	1.6 ppt	0.67 ppt
O3P	$3.3 \times 10^{-04} \text{ ppt}$	$8.6 \times 10^{-05} \text{ ppt}$	BZ_O	$5.5 \times 10^{-04} \text{ ppt}$	$6.6 \times 10^{-04} \text{ ppt}$
O3	37 ppb	26 ppb	MA_RCO3	0.012 ppt	$1.6 \times 10^{-04} \text{ ppt}$
NO3	1.1 ppt	1.2 ppt	MA_PAN	26 ppt	5.2 ppt
N2O5	$9.0 \; \mathrm{ppt}$	51 ppt	TBU_O	$1.4 \times 10^{-06} \text{ ppt}$	$6.5 \times 10^{-07} \text{ ppt}$
HNO3	810 ppt	$590 \mathrm{~ppt}$	ACET	1.2 ppb	1.1 ppb
O1D2	$7.6 \times 10^{-10} \text{ ppt}$	$3.8 \times 10^{-11} \text{ ppt}$	NPHE	11 ppt	13 ppt
НО	0.17 ppt	$8.8 \times 10^{-03} \text{ ppt}$	PHEN	1.4 ppt	$67 \mathrm{ppt}$
HONO	17 ppt	4.1 ppt	BZNO2_O	$3.8 \times 10^{-18} \text{ ppt}$	$3.9 \times 10^{-17} \text{ ppt}$
HO2	$5.2 \mathrm{~ppt}$	0.40 ppt	HOCOO	1.1×10^{-04} ppt	1.0×10^{-05} ppt
CO	150 ppb	250 ppb	HCOOH	19 ppt	11 ppt
HNO4	$6.8 \; \mathrm{ppt}$	$9.4 \mathrm{ppt}$	RCHO	230 ppt	190 ppt
HO2H	1.8 ppb	220 ppt	GLY	14 ppt	15 ppt
SO2	460 ppt	430 ppt	MGLY	44 ppt	28 ppt
SULF	360 ppt	290 ppt	BACL	3.1 ppt	4.0 ppt
CO2	$1.3 \; \mathrm{ppt}$	0.091 ppt	CRES	$5.9 \mathrm{ppt}$	6.4 ppt
HCHO	1.7 ppb	540 ppt	BALD	$6.7 \mathrm{ppt}$	$9.6 \mathrm{ppt}$
COOH	$65 \mathrm{~ppt}$	3.6 ppt	METHACRO	130 ppt	31 ppt
MEOH	$8.8 \ \mathrm{ppb}$	490 ppt	MVK	190 ppt	37 ppt
RO2_R	1.8 ppt	0.21 ppt	ISOPROD	61 ppt	18 ppt
ROOH	110 ppt	27 ppt	DCB1	18 ppt	36 ppt
R2O2	$1.2 \mathrm{~ppt}$	0.18 ppt	DCB2	1.4 ppt	2.1 ppt
RO2_N	$0.39 \; \mathrm{ppt}$	0.046 ppt	DCB3	0.65 ppt	1.2 ppt
RNO3	120 ppt	72 ppt	ETHENE	290 ppt	$690 \mathrm{ppt}$
MEK	300 ppt	490 ppt	ISOPRENE	110 ppt	36 ppt
PROD2	190 ppt	440 ppt	TERP	76 ppt	20 ppt
CCO_O2	0.23 ppt	$7.7 \times 10^{-03} \text{ ppt}$	ALK1	1.3 ppb	2.4 ppb
PAN	270 ppt	190 ppt	ALK2	620 ppt	1.2 ppb
CCO_OOH	35 ppt	$0.59 \mathrm{ppt}$	ALK3	890 ppt	1.9 ppb
CCO_OH	35 ppt	$9.5 \mathrm{ppt}$	ALK4	900 ppt	2.1 ppb
RCO_O2	0.087 ppt	$1.1 \times 10^{-03} \text{ ppt}$	ALK5	1.0 ppb	2.1 ppb
PAN2	83 ppt	20 ppt	ARO1	330 ppt	740 ppt
CCHO	330 ppt	340 ppt	ARO2	230 ppt	1.2 ppb
RCO_OOH	15 ppt	0.13 ppt	OLE1	100 ppt	240 ppt
RCO_OH	29 ppt	$19 \mathrm{\ ppt}$	OLE2	80 ppt	190 ppt

Table S3: Average surface mixing ratios in the San Jose receptor area for each model species, separately for the July and December simulation periods. Surface mixing ratios are mixing ratios in the bottom model layer. Mixing ratios are averaged over the duration of the corresponding simulation period and over the extent of the receptor area. See Carter (2000, Appendix A, Table A-1) for a description of model species.

Model	July	December	Model	July	December
Species	Simulation	Simulation	Species	Simulation	Simulation
NO9	14 pph	20 nnh	PZCO O2	2.2×10^{-04} ppt	4.2×10^{-06} ppt
NO2 NO	14 ppb	32 ppb 21 ppb	DDZUU-U2	2.2 × 10 ° ppt	4.5×10^{-10} ppt
NU	4.0 ppb	31 ppb $3.7 \times 10^{-04} \text{ mm}$		1.0 ppt $1.7 \times 10^{-04} \text{ mmt}$	0.75 ppt
03P	$0.4 \times 10^{-0.1}$ ppt	$2.7 \times 10^{-0.1}$ ppt	BZ_U	$1.7 \times 10^{-0.3}$ ppt	3.7×10^{-05} ppt
03	29 ppb	7.0 ppb	MA_RCO3	$2.6 \times 10^{-0.0}$ ppt	$4.7 \times 10^{\circ\circ}$ ppt
NO3	0.48 ppt	0.16 ppt	MA_PAN	26 ppt	6.4 ppt
N2O5	12 ppt	13 ppt	TBU_O	1.7×10^{-00} ppt	5.5×10^{-61} ppt
HNO3	1.0 ppb	700 ppt	ACET	1.3 ppb	1.3 ppb
OID2	$6.2 \times 10^{-10} \text{ ppt}$	1.8×10^{-11} ppt	NPHE	11 ppt	11 ppt
HO	0.082 ppt	3.4×10^{-03} ppt	PHEN	1.7 ppt	86 ppt
HONO	33 ppt	24 ppt	BZNO2_O	1.3×10^{-18} ppt	1.2×10^{-18} ppt
HO2	1.0 ppt	0.067 ppt	HOCOO	$2.9 \times 10^{-05} \text{ ppt}$	$1.8 \times 10^{-06} \text{ ppt}$
CO	250 ppb	610 ppb	HCOOH	22 ppt	22 ppt
HNO4	6.1 ppt	$3.2 \mathrm{ppt}$	RCHO	290 ppt	390 ppt
HO2H	1.8 ppb	210 ppt	GLY	22 ppt	32 ppt
SO2	550 ppt	770 ppt	MGLY	54 ppt	45 ppt
SULF	370 ppt	270 ppt	BACL	4.1 ppt	5.6 ppt
CO2	0.22 ppt	0.014 ppt	CRES	11 ppt	15 ppt
HCHO	1.8 ppb	1.3 ppb	BALD	10 ppt	17 ppt
COOH	50 ppt	4.9 ppt	METHACRO	140 ppt	39 ppt
MEOH	8.7 ppb	730 ppt	MVK	210 ppt	48 ppt
RO2_R	0.43 ppt	0.042 ppt	ISOPROD	62 ppt	40 ppt
ROOH	96 ppt	48 ppt	DCB1	30 ppt	56 ppt
R2O2	0.26 ppt	0.050 ppt	DCB2	2.2 ppt	2.9 ppt
RO2_N	0.080 ppt	0.015 ppt	DCB3	0.99 ppt	1.7 ppt
RNO3	150 ppt	150 ppt	ETHENE	810 ppt	2.7 ppb
MEK	320 ppt	540 ppt	ISOPRENE	190 ppt	390 ppt
PROD2	220 ppt	450 ppt	TERP	79 ppt	150 ppt
CCO_O2	0.044 ppt	1.6×10^{-03} ppt	ALK1	1.2 ppb	3.2 ppb
PAN	280 ppt	160 ppt	ALK2	700 ppt	2.1 ppb
CCO_OOH	26 ppt	0.87 ppt	ALK3	1.9 ppb	6.2 ppb
CCO OH	31 ppt	19 ppt	ALK4	1.7 ppb	5.7 ppł
RCO O2	0.014 ppt	2.2×10^{-04} ppt	ALK5	2.2 ppb	6.5 ppt
PAN2	72 ppt	24 ppt	ARO1	840 ppt	2.6 ppt
CCHO	420 ppt	580 ppt	ARO2	580 ppt	2.6 ppt
BCO OOH	11 ppt	0.20 ppt	OLE1	360 ppt	1.2 ppt
RCO OH	33 ppt	41 ppt	OLE2	300 ppt	1.2 pp
	oo ppo	pp	~=	ooo ppe	1.1 PJ

Table S4: Average surface mixing ratios in the East Bay receptor area for each model species, separately for the July and December simulation periods. Surface mixing ratios are mixing ratios in the bottom model layer. Mixing ratios are averaged over the duration of the corresponding simulation period and over the extent of the receptor area. See Carter (2000, Appendix A, Table A-1) for a description of model species.

Species NO2 NO	Simulation 15 ppb 7.2 ppb	Simulation 27 ppb	 Species	Simulation	Simulation
NO2 NO	15 ppb 7.2 ppb	27 ppb			
NO2 NO	15 ppb 7.2 ppb	27 ppb			
NO	7.2 ppb		BZCO_O2	$8.8 \times 10^{-05} \text{ ppt}$	$3.8 \times 10^{-06} \text{ ppt}$
OoD	7010-04	23 ppb	PBZN	1.0 ppt	$0.62 \mathrm{\ ppt}$
O3P	7.2×10^{-04} ppt	$2.1 \times 10^{-04} \text{ ppt}$	BZ_O	$1.1 \times 10^{-04} \text{ ppt}$	$5.1 \times 10^{-05} \text{ ppt}$
O3	25 ppb	12 ppb	MA_RCO3	$1.3 \times 10^{-03} \text{ ppt}$	$4.7 \times 10^{-05} \text{ ppt}$
NO3	0.48 ppt	0.27 ppt	MA_PAN	22 ppt	5.5 ppt
N2O5	10 ppt	22 ppt	TBU_O	$1.5 \times 10^{-06} \text{ ppt}$	$4.6 \times 10^{-07} \text{ ppt}$
HNO3	$790 \mathrm{ppt}$	550 ppt	ACET	1.2 ppb	1.1 ppb
O1D2	5.0×10^{-10} ppt	2.1×10^{-11} ppt	NPHE	$7.2 \mathrm{ppt}$	10 ppt
НО	0.061 ppt	$3.9 \times 10^{-03} \text{ ppt}$	PHEN	1.6 ppt	61 ppt
HONO	37 ppt	14 ppt	BZNO2_O	$1.0 \times 10^{-18} \text{ ppt}$	$2.7 \times 10^{-18} \text{ ppt}$
HO2	$0.60 \mathrm{~ppt}$	0.100 ppt	HOCOO	$2.0 \times 10^{-05} \text{ ppt}$	$2.9 \times 10^{-06} \text{ ppt}$
CO	220 ppb	420 ppb	HCOOH	16 ppt	15 ppt
HNO4	5.0 ppt	4.9 ppt	RCHO	240 ppt	270 ppt
HO2H	1.7 ppb	220 ppt	GLY	18 ppt	23 ppt
SO2	1.1 ppb	1.2 ppb	MGLY	47 ppt	34 ppt
SULF	360 ppt	280 ppt	BACL	3.6 ppt	4.5 ppt
CO2	0.13 ppt	0.020 ppt	CRES	11 ppt	9.9 ppt
HCHO	1.6 ppb	1.0 ppb	BALD	9.0 ppt	12 ppt
COOH	37 ppt	3.9 ppt	METHACRO	150 ppt	35 ppt
MEOH	8.4 ppb	580 ppt	MVK	230 ppt	42 ppt
RO2_R	0.32 ppt	0.069 ppt	ISOPROD	48 ppt	25 ppt
ROOH	84 ppt	33 ppt	DCB1	28 ppt	40 ppt
R2O2	0.28 ppt	0.097 ppt	DCB2	1.9 ppt	2.3 ppt
RO2_N	0.084 ppt	0.028 ppt	DCB3	0.80 ppt	1.3 ppt
RNO3	110 ppt	100 ppt	ETHENE	870 ppt	2.1 ppb
MEK	280 ppt	500 ppt	ISOPRENE	130 ppt	240 ppt
PROD2	210 ppt	440 ppt	TERP	61 ppt	120 ppt
CCO_O2	0.022 ppt	$1.8 \times 10^{-03} \text{ ppt}$	ALK1	1.2 ppb	2.6 ppb
PAN	260 ppt	170 ppt	ALK2	590 ppt	1.5 ppb
CCO_OOH	18 ppt	0.67 ppt	ALK3	1.7 ppb	3.9 ppb
CCO_OH	23 ppt	13 ppt	ALK4	1.5 ppb	3.6 ppb
RCO_O2	5.7×10^{-03} ppt	$2.4 \times 10^{-04} \text{ ppt}$	ALK5	2.0 ppb	4.2 ppb
PAN2	50 ppt	20 ppt	ARO1	730 ppt	1.6 ppb
CCHO	350 ppt	470 ppt	ARO2	530 ppt	1.7 ppb
RCO_OOH	7.1 ppt	0.14 ppt	OLE1	290 ppt	710 ppt
RCO_OH	24 ppt	28 ppt	OLE2	260 ppt	660 ppt

Sensitivities are summed over the entire modeling domain and duration of the simulation period. Species are omitted if the corresponding sensitivities to emissions are negligible for all model responses. For each sensitivity S^{\times} , the number in Table S5: Overall semi-normalized sensitivities (ppt) of formaldehyde model responses to emissions, by model species. parentheses is $S^{\times}/|S_{\text{tot}}^{\times}|$ where S_{tot}^{\times} is the overall semi-normalized emissions sensitivity of the corresponding response, summed across all model species. See Carter (2000, Appendix A, Table A-1) for a description of model species.

Model	Sens	sitivity	of the	6		Sensitivi	ity of t	he		Sensitiv	ity of 1	the		Sensiti	vity of	$_{\mathrm{the}}$	
species	Air E	3asin r€	suodse	ē	Pitt.	sburg/An	tioch r	esponse		San Jos	e respo	onse		East B	ay resp	onse	
		July / I	Decem	iber		July /	Decer	nber		July	/ Dece	ember		Jul	y / Dec	ember	
NO2	-3.2 (-0.99	- / (%6	-2.4 (-	0.40%)	-1.9 (-0.57%) /	-0.98	(-0.34%)	-6.0	(-1.3%)	/ -4.6	6-0.45%) -4.5	(-1.2%) / -1.9) (-0.32	8
NO	-49 (-15	5%) /	-76	(-13%)	-25	(-7.5%) /	-28	(%2.6-)	-110	(-23%)	/ -150	(-14%	81	(-21%) / -56	(-9.9	8
CO	-0.96 (-0.30	/ (%0	0.0	(0.0%)	-1.8 (-0.54%) /	0.0	(0.0%)	-0.98	-0.21%)	/ 0.0	0.0%	.00.87	. (-0.22%)/ 0.(0.0)	8
НСНО	170 (52	2%) / .	540	(88%)	86	(26%) /	250	(85%)	270	(56%)	/ 920	×06) (280	(72%) / 54(<u>(</u>) (8
MEOH	0.0 (0.0	/ (%0	0.0	(0.0%)	0.40	(0.12%) /	0.0	(0.0%)	0.49	(0.10%)	/ 0.0	(0.0%)	0.0	%0.0)	0.0 / (0.0) (8
CCHO	1.7 (0.5)	3%) / C).92 (0.15%)	1.9	(0.58%) /	0.0	(%0.0)	2.8	(0.58%)	/ 2.2	2 (0.21%	2.4	(0.62%) / 0.6	5 (0.11	8
ACET	0.0 (0.0	/ (%0	0.0	(0.0%)	0.33	(0.10%) /	0.0	(0.0%)	0.51	(0.11%)	/ 0.0	(0.0%)	0.0	%0.0%) / 0.0	0.0)	8
RCHO	0.0 0.0	/ (%0	0.0	(0.0%)	0.36	(0.11%) /	0.0	(0.0%)	0.49	(0.10%)	/ 0.0	(0.0%)	0.0	%0.0%) / 0.0	0.0)	8
ETHENE	35 (1)	1%) /	20	(3.3%)	42	(13%) /	10	(3.6%)	56	(12%)	/ 36	i (3.5%	() 47	. (12%) / 1(3 (2.7	8
ISOPRENE	74 (25	3%) /	30	(4.9%)	120	(35%) /	10	(3.6%)	100	(22%)	/ 46	5 (4.4%	()	(11%) / 2;	3.8	8
TERP	14 (4.4)	4%) /	12	(1.9%)	16	(4.9%)	3.7	(1.3%)	21	(4.4%)	/ 15	(1.8%)	12	(3.0%) / 6.	5 (1.6	8
ALK1	0.50(0.16)	6%) /	0.0	(0.0%)	0.99	(0.30%) /	0.0	(%0.0)	0.98	(0.21%)	/ 0.0	(0.0%)	0.0	%0.0%)/ 0.(0.0)	8
ALK2	0.60(0.15)	/ (%6	0.0	(0.0%)	0.78	(0.24%) /	0.0	(%0.0)	1.5	(0.31%)	/ 0.0	(0.0%)	0.0	%0.0))/ 0.(0.0) (8
ALK3	5.3 (1.7)	1%) /	1.2	0.20%)	8.3	(2.6%) /	0.59	(0.20%)	9.5	(2.0%)	/ 2.3	3 (0.22%	.) 4.6	(1.2%)/ 0.9(§ (0.16	8
ALK4	3.9 (1.5)	2%) /	0.0	(0.0%)	7.4	(2.3%) /	0.0	(0.0%)	7.8	(1.6%)	/ 0.0	(0.0%)) 2.5	(0.64%)/ 0.(0.0) (8
ALK5	3.7 (1.5	2%) / -	-1.6 (-	0.27%)	8.3	(2.6%) /	-0.67	(-0.23%)	9.1	(1.9%)	/ -3.1	(-0.30%	0.0	%0.0%) / -1.5	2 (-0.21	8
AR01	3.0(0.9)	3%) /	1.0	0.17%)	4.0	(1.2%) /	0.0	(0.0%)	6.0	(1.2%)	/ 2.3	3 (0.23%) 2.6	(0.67%) / 0.6	5 (0.11	8
ARO2	9.3 (2.9	/ (%6	8.5	(1.4%)	11	(3.4%) /	3.1	(1.1%)	16	(3.4%)	/ 17	(1.7%	11	(2.8%)) / 6.	1.0	8
OLE1	19 (6.0	/ (%0	17	(2.7%)	20	(%0.9)	8.7	(3.0%)	32	(6.7%)	/ 30) (2.9%) 24	(6.1%) / 1:	3 (2.1	8
OLE2	34 (1)	1%) /	62	(10%)	32	(36.9%)	34	(12%)	59	(12%)	/ 110	(10%	() 43	(11%) / 46) (8.3	(%
Total	320	- -	610		330		290		480		/ 1000		390		/ 60(
Categories:																	
NOx	-52 (-16	9%) /	-79	(-13%)	-26	(-8.1%) /	-29	(-10%)	-120	(-24%)	/ -150) (-15%	-86	(-22%	.9- / (l (-10	8
VOCs (all)	370 (120) (%0	690	(110%)	350	(110%) /	320	(110%)	590	(120%)	/ 1200	(110%)	480 (1	(120%) / 66	(110)	8
VOCs (antropogenic)	280 (85	8%) /	640	(110%)	220	(%29)	300	(100%)	470	(88%)	/ 1100	(110%)	420	(110%) / 62((100)	8
VOCs (biogenic)	91 (25	8%) /	43	(7.1%)	130	(41%) /	16	(5.5%)	130	(27%)	/ 67	(6.5%)	.) 58	(15%) / 32	1 (5.7	8
VOCs (on-road)	110 (35)	5%) / .	220	(35%)	92	(28%) /	85	(30%)	190	(40%)	/ 400	(39%	160	(40%) / 23((39	8

Figure S11: Semi-normalized sensitivity of the Pittsburg/Antioch population-weighted formaldehyde mixing ratio to emissions, in (a) July and (b) December. An apportionment by precursor species of the sensitivity to overall VOC emissions is shown in the pie chart insets.

Figure S12: Semi-normalized sensitivity of the San Jose population-weighted formaldehyde mixing ratio to emissions, in (a) July and (b) December. An apportionment by precursor species of the sensitivity to overall VOC emissions is shown in the pie chart insets.

Figure S13: Semi-normalized sensitivity of the East Bay population-weighted formaldehyde mixing ratio to emissions, in (a) July and (b) December. An apportionment by precursor species of the sensitivity to overall VOC emissions is shown in the pie chart insets.

References

Carter, W. P. L.: Documentation of the SAPRC-99 Chemical Mechanism for VOC reactivity assessment. Volume 1 of 2. Documentation Text, Final Report to California Air Resources Board. Contract 92-329 and Contract 95-308. Report number 00-AP-RT17-001-FR, May 8th 2000, 2000.