Atmospheric Chemistry and Physics

Supplemental Information for

A New Model of Meteoric Calcium in the Mesosphere and Lower Thermosphere

John M. C. Plane¹, Wuhu Feng^{1,2}, Juan Carlos Gómez Martín^{1,3}, Michael Gerding⁴, and Shikha Raizada⁵

¹ School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

² National Centre for Atmospheric Science and School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.

³ Instituto de Astrofísica de Andalucía (IAA-CSIC), 18008 Granada, Spain.

⁴ Leibniz Institute of Atmospheric Physics, Rostock University, Schlossstraße 6, 18225 Kühlungsborn, Germany.

⁵ Space and Atmospheric Science Department, Arecibo Observatory/SRI International, Arecibo 00612, Puerto Rico.

Contents of this file

Text S1 to S3 Figures S1 to S4 Tables S1 to S5

Introduction

Text S1 describes the method used to calculate the rate coefficient for the reaction between CaCO₃ and O, using the molecular parameters listed in Table S1. The potential energy surface for this reaction is shown in Figure S1. Text S2 describes the method used to calculate the rate coefficient for the reaction between CaCO₃ and O₂, using the molecular parameters listed in Table S2. Text S3 describes the method used to calculate the rate coefficient for the reaction between O₂CaCO₃ and O, using the molecular parameters listed in Table S3. The potential energy surface for this reaction is shown in Figure 2b in the main paper.

Figure S2 shows the vertically integrated Na and Ca meteoric input fluxes used in WACCM-Na and WACCM-Ca, plotted as a function of latitude and month. Figure S3 shows the monthly mean RMS (root-mean-square) width and centroid height of the Ca layer from WACCM-Ca, plotted as a function of latitude and month.

Figure S4 compares Na⁺ and Ca⁺ density profiles measured by rocket-borne mass spectrometry, compared with WACCM, at a selection of latitudes and seasons. Figure S5

compares the measured and modeled Na column abundance as a function of latitude and month.

Table S4 lists the monthly mean Ca atom column abundance, as a function of latitude and month. Table S5 lists the monthly mean Ca^+ ion column abundance, as a function of latitude and month.

Text S1. The reaction between CaCO₃ and O

The rate coefficient for reaction R16 in the paper

 $CaCO_3 + O \rightarrow CaO_2 + CO_2$

was calculated using transition state theory (TST). As shown in Figure S1, there is a deep well before the barrier where the O adds to the Ca. There is then a substantial barrier (33 kJ mol⁻¹) to formation of the products. The data required for the calculation is listed in Table S1, and the rate coefficient is $k_{16} = 4.0 \times 10^{-12} \exp(-4689/T) \text{ cm}^3$ molecule⁻¹ s⁻¹.

Note that although OCaCO₃ formation should be a reasonably fast recombination reaction, it will not compete with addition of O_2 because the concentration of O_2 is at least 10^3 times larger below 85 km.

Table S1. Molecular properties of the stationary points on the potential energy surface for $CaCO_3 + O$ (Figure S1), calculated at the B3LYP/6-311+g(2d,p) level of theory with the Gaussian suite of programs [*Frisch et al.*, 2009].

		, <u> </u>	
Molecule	Geometry (Cartesian co-	Rotational	Vibrational frequencies
	ordinates in Å)	constants (GHz)	(cm^{-1})
CaCO ₃	Ca, 0.0, 0.0, 0.0	12.621. 2.806,	120, 363, 453,
	O, 0.0, 0.0, 2.052	2.296	656, 762, 828,
	O, 1.876, 0.0, 0.832		951, 1084, 1752
	O, 2.016, 0.0, 3.100		
	C, 1.357, 0.0, 2.087		
OCaCO ₃	Ca, 0.0, 1.094, 0.0	11.626, 1.278,	26, 59, 85, 233, 277,
	O, -1.105, -0.966, 0.0	1.171	381, 521, 668, 821,
	O, 1.128, -0.954, -0.005		1041, 1323, 1462
	O, 0.022, -2.851, 0.007		
	C, 0.015, -1.560, -0.002		
	O, -0.010, 3.084, -0.698		
TS to	Ca, 0.0, 0.0, 0.0	5.342, 1.856,	722 <i>i</i> , 65, 118, 184, 211,
products	O, 0.0, 0.0, 2.229	1.378	332, 407, 416, 577,
$CaO_2 + CO_2$	O, 2.035, 0.0, 0.431		701, 1182, 1937
	O, 1.939, 0.003, 3.467		
	C, 1.219, 0.002, 2.530		
	O, 1.814, -0.002, -1.161		

Text S2. The reaction between CaCO₃ and O₂

The rate coefficient for the recombination reaction

$$CaCO_3 + O_2 (+M) \rightarrow O_2 CaCO_3 \qquad \Delta H^\circ = -89 \text{ kJ mol}^{-1}$$

was calculated using Rice-Ramsperger-Kassel-Marcus Theory – see *Gómez-Martín and Plane* [2017] for further details. Using the molecular parameters in Table S2, the rate coefficient is estimated to be:

$$k_0(200 \text{ K}) = 4.0 \times 10^{-26} (T/200)^{-3.85} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$$

 $k_{\infty}(200 \text{ K}) = 5.9 \times 10^{-10} \exp(-46/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
 $F_c = 0.33$

where these three parameters required to calculate the recombination rate in the fall-off region are described in *Gómez-Martín and Plane* [2017]. The recombination rate constant at 200 K and $[M] = 1 \times 10^{14} \text{ cm}^{-3}$ (i.e. around 84 km), is $5.9 \times 10^{-12} \text{ cm}^{3}$ molecule⁻¹ s⁻¹.

Table S2. Molecular properties of the stationary points on the potential energy surface for $CaCO_3 + O_2$ (see Figure 2a for geometries of $CaCO_3$ and O_2CaCO_3), calculated at the B3LYP/6-311+g(2d,p) level of theory with the Gaussian suite of programs [*Frisch et al.*, 2009].

Molecule	Geometry (Cartesian co-	Rotational	Vibrational frequencies
	ordinates in Å)	constants (GHz)	(cm^{-1})
CaCO ₃	Ca, 0.0, 0.0, 0.0	12.621. 2.806,	120, 363, 453,
	O, 0.0, 0.0, 2.052	2.296	656, 762, 828,
	O, 1.876, 0.0, 0.832		951, 1084, 1752
	O, 2.016, 0.0, 3.100		
	C, 1.357, 0.0, 2.087		
O ₂ CaCO ₃	Ca, -0.737, -0.0, 0.020	9.321, 0.905,	41, 45, 48, 90, 236,
	O, 1.251, 1.222, 0.088	0.865	250, 374, 408, 470,
	O, -2.846, -0.146, 0.679		674, 820, 1038, 1183,
	O, -2.843, -0.084, -0.658		1341, 1472
	O, 3.199, 0.210, 0.048		
	O, 1.370, -1.005, -0.019		
	C, 1.908, 0.1405, 0.0390		

Text S3. The reaction between O₂CaCO₃ and O

The reactants O_2CaCO_3 and O are both triplets, so this reaction can take place on singlet, triplet and quintet surfaces. However, electronic structure calculations show that the quintet surface is unreactive. The potential energy surface (Figure 2b) shows the pathways on the singlet and triplet surfaces. The molecular parameters of the stationary points are listed in Table S3.

Table S3. Molecular properties of the stationary points on the potential energy surface for $O_2CaCO_3 + O_2$ (see Figure 2b), calculated at the B3LYP/6-311+g(2d,p) level of theory with the Gaussian suite of programs [*Frisch et al.*, 2009].

Molecule	Geometry (Cartesian co-ordinates	Rotational constants	Vibrational
	in Å)	(GHz)	frequencies
			(cm^{-1})
O ₂ CaCO ₃	Ca, -0.737, -0.0, 0.020	9.321, 0.905, 0.865	41, 45, 48, 90,
	O, 1.251, 1.222, 0.088		236, 250, 374,
	O, -2.846, -0.146, 0.679		408, 470, 674,
	O, -2.843, -0.084, -0.658		820, 1038,
	O, 3.199, 0.210, 0.048		1183, 1341,
	O, 1.370, -1.005, -0.019		1472
	C, 1.908, 0.1405, 0.0390		
O ₃ CaCO ₃	Ca, -0.372, 0.143, -0.071	6.274, 0.690, 0.689	37, 43, 45, 93,
triplet	O, 1.700, -0.905, 0.039		153, 218, 238,
	O, 1.632, 1.320, -0.130		304, 375, 386,
	O, 3.558, 0.267, -0.021		661, 678, 819,
	C, 2.266, 0.226, -0.038		877, 1039,
	O, -3.111, 0.059, -0.105		1083, 1347,
	O, -2.379, 0.164, 1.029		1473
	O, -2.346, 0.001, -1.221		
O ₃ CaCO ₃	Ca, -0.281, -0.812, 0.301	4.158, 0.868, 0.809	22, 36, 60, 98,
singlet	O, 1.849, -1.023, -0.063		199, 238, 258,
	O, 0.998, 1.021, 0.019		307, 339, 558,
	O, 3.191, 0.752, -0.196		660, 712, 831,
	C, 2.057, 0.271, -0.090		1011, 1037,
	O, -2.702, 0.580, -0.251		1106, 1255,
	O, -2.092, 0.644, 0.907		1519
	O, -2.072, -0.157, -1.142		
TS1	Ca, -0.722, 0.445, -0.147	2.611, 0.776, 0.661	94 <i>i</i> , 25, 26, 36,
	O, 1.319, -0.189, -1.104		63, 76, 86,
	O, 1.271, 0.306, 1.074		156, 232, 279,
	O, 3.140, -0.330, 0.114		359, 516, 672,
	C, 1.878, -0.063, 0.026		820, 1038,
	0, -3.334, -1.705, 0.284		1338, 1469,
	O, -2.127, -1.781, 0.327		1572

	O, -2.383, 1.711, -0.471		
TS2	Ca, -0.148, -0.138, -0.005	9.983, 0.512, 0.498	27 <i>i</i> , 20, 35, 77,
	O, 1.726, -0.221, -1.075		114, 149, 213,
	O, 1.649, 0.457, 1.034		331, 371, 594,
	O, 3.607, 0.402, -0.042		676, 702, 834,
	C, 2.389, 0.221, -0.0281		980, 1029,
	O, -3.683, -0.439, -0.047		1222, 1222,
	O, -4.136, -1.562, 0.297		1542
	O, -2.362, -0.3262, -0.0312		
TS3	Ca, -0.592, -1.342, -0.049	3.329, 1.276, 0.983	161 <i>i</i> , 66, 100,
	O, 1.610, -1.030, -0.680		146, 230, 267,
	O, 0.368, 0.501,0.781		315, 396, 433,
	O, 2.779, 0.729, 0.225		494, 534, 625,
	C, 1.925, -0.012, -0.072		678, 716, 819,
	O, -1.853, 1.044, 0.142		917, 1251,
	O, -2.422, -0.266, 0.0581		2089
	O, -0.511, 0.987, -0.336		
O_2CaO_2	Ca, 0.094, 1.075, -0.005	17.670, 1.686, 1.686	42, 42, 151,
singlet	O, -1.710, -0.186, -0.260		347, 386, 414,
	O, 1.734, 2.427, -0.635		414, 1084,
	O, 1.1713, 2.954, 0.457		1174
	O, -0.850, -0.863, 0.508		
OCaCO ₃	Ca, 0.001, 1.094, 0.001	11.626, 1.278, 1.171	26, 59, 85,
triplet	O, -1.105, -0.966, -0.004		233, 277, 381,
	O, 1.128, -0.954, -0.005		521, 668, 821,
	O, 0.022, -2.851, 0.007		1041, 1323,
	C, 0.015, -1.560, -0.002		1462
	O, -0.010, 3.084, -0.698		

Figure S1. Potential energy surface for the reaction between $CaCO_3$ and O, calculated at the B3LYP/6-311+g(2d,p) level of theory [*Frisch et al.*, 2009]. Colour scheme: Ca (yellow); C (grey); O (red).

Figure S2. Vertically integrated Na and Ca meteoric input fluxes (units: atom $cm^{-2} s^{-1}$) used in WACCM-Na and WACCM-Ca, plotted as a function of latitude and month.

Figure S3. Monthly mean RMS width and centroid height (units: km) of the Ca layer from WACCM-Ca, plotted as a function of latitude and month.

Figure S4. Latitudinal and seasonal variability of observed (symbols) and modelled (solid lines) Na⁺ and Ca⁺ density profiles (top and bottom panel rows respectively). The datasets are grouped in panel columns by the latitude of where the rocket-borne mass spectrometric measurements took place (from left to right 68° N, 51° N and 38°N). The ion density profiles are averaged by month or season (summer: black; fall/winter: blue).

Figure S5. Diurnally averaged column abundance of the mesospheric Na layer, plotted as a function of latitude and month: (a) from a Na climatology [*Dawkins et al.*, 2015]; (b) calculated by the WACCM-Na model with revised rate coefficients and the new Na meteoric input function.

Latitude	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
-90.00	0.64	1.51	2.43	3.35	4.95	5.15	4.91	3.73	1.83	1.15	0.72	0.52
-88.11	0.64	1.52	2.43	3.32	4.92	5.14	4.89	3.69	1.83	1.15	0.72	0.52
-86.21	0.64	1.53	2.46	3.26	4.86	5.11	4.87	3.61	1.85	1.15	0.72	0.52
-84.32	0.65	1.56	2.5	3.18	4.78	5.07	4.82	3.5	1.89	1.15	0.74	0.53
-82.42	0.65	1.58	2.54	3.09	4.68	5.02	4.74	3.37	1.94	1.16	0.75	0.53
-80.53	0.66	1.61	2.6	3	4.58	4.96	4.64	3.24	1.99	1.18	0.77	0.54
-78.63	0.67	1.64	2.65	2.95	4.43	4.89	4.52	3.11	2.04	1.21	0.79	0.55
-76.74	0.69	1.69	2.7	2.9	4.26	4.8	4.38	2.99	2.06	1.26	0.82	0.56
-74.84	0.71	1.76	2.73	2.85	4.05	4.69	4.2	2.89	2.08	1.3	0.85	0.58
-72.95	0.73	1.85	2.74	2.82	3.84	4.54	4	2.82	2.08	1.36	0.9	0.61
-71.05	0.76	1.94	2.75	2.8	3.67	4.34	3.79	2.78	2.08	1.41	0.95	0.64
-69.16	0.8	2.03	2.74	2.79	3.55	4.13	3.6	2.76	2.08	1.47	1.01	0.68
-67.26	0.85	2.12	2.72	2.78	3.47	3.95	3.47	2.72	2.08	1.52	1.09	0.72
-65.37	0.91	2.2	2.71	2.76	3.4	3.83	3.39	2.69	2.08	1.57	1.18	0.78
-63.47	1	2.27	2.7	2.75	3.35	3.76	3.33	2.66	2.08	1.62	1.28	0.86
-61.58	1.11	2.34	2.69	2.73	3.31	3.69	3.26	2.63	2.08	1.66	1.38	0.95
-59.68	1.23	2.41	2.67	2.71	3.26	3.63	3.2	2.6	2.08	1.7	1.47	1.06
-57.79	1.34	2.47	2.65	2.69	3.23	3.57	3.13	2.56	2.07	1.73	1.55	1.17
-55.89	1.46	2.52	2.63	2.66	3.19	3.5	3.05	2.51	2.06	1.75	1.62	1.29
-54.00	1.57	2.55	2.6	2.64	3.15	3.43	2.97	2.47	2.04	1.75	1.68	1.41
-52.11	1.68	2.59	2.58	2.61	3.1	3.35	2.89	2.43	2.02	1.75	1.73	1.52
-50.21	1.79	2.61	2.56	2.58	3.05	3.27	2.81	2.38	2	1.75	1.76	1.63
-48.32	1.89	2.64	2.54	2.55	2.99	3.18	2.73	2.33	1.98	1.74	1.78	1.72
-46.42	1.98	2.67	2.51	2.52	2.93	3.1	2.65	2.27	1.95	1.72	1.79	1.8
-44.53	2.05	2.68	2.49	2.49	2.86	3.03	2.58	2.22	1.93	1.71	1.8	1.87
-42.63	2.11	2.67	2.46	2.46	2.79	2.96	2.51	2.17	1.91	1.7	1.8	1.93
-40.74	2.16	2.65	2.44	2.43	2.72	2.88	2.45	2.13	1.89	1.69	1.8	1.98
-38.84	2.2	2.61	2.42	2.39	2.66	2.81	2.39	2.08	1.88	1.69	1.81	2.03
-36.95	2.21	2.57	2.39	2.36	2.59	2.74	2.33	2.04	1.86	1.69	1.82	2.06
-35.05	2.22	2.53	2.37	2.33	2.53	2.67	2.28	2.01	1.86	1.69	1.83	2.08
-33.16	2.21	2.48	2.34	2.31	2.47	2.6	2.24	1.98	1.85	1.69	1.84	2.1
-31.26	2.19	2.44	2.32	2.29	2.42	2.53	2.2	1.95	1.85	1.7	1.85	2.1
-29.37	2.17	2.39	2.3	2.26	2.37	2.46	2.16	1.93	1.85	1.71	1.86	2.11
-27.47	2.15	2.34	2.28	2.24	2.31	2.4	2.13	1.92	1.85	1.73	1.87	2.11
-25.58	2.13	2.3	2.25	2.22	2.26	2.35	2.11	1.9	1.86	1.75	1.88	2.1
-23.68	2.1	2.25	2.23	2.2	2.22	2.3	2.09	1.9	1.88	1.78	1.89	2.09
-21.79	2.08	2.21	2.2	2.18	2.18	2.26	2.07	1.9	1.9	1.8	1.9	2.08
-19.89	2.06	2.17	2.16	2.16	2.15	2.23	2.06	1.9	1.91	1.82	1.91	2.06
-18.00	2.03	2.13	2.13	2.14	2.11	2.2	2.06	1.91	1.93	1.84	1.92	2.05
-16.11	2	2.09	2.09	2.11	2.08	2.17	2.05	1.91	1.95	1.86	1.92	2.04
-14.21	1.97	2.06	2.06	2.09	2.05	2.15	2.05	1.92	1.96	1.88	1.93	2.02
-12.32	1.95	2.02	2.03	2.06	2.02	2.13	2.05	1.93	1.97	1.9	1.94	2.01
-10.42	1.92	1.99	2	2.04	1.99	2.11	2.05	1.93	1.99	1.92	1.95	1.99

Table S4. Monthly mean Ca column abundance (70-110 km) predicted by WACCM-Ca (units: 10^7 atom cm⁻²)

-8.53	1.9	1.96	1.98	2.01	1.96	2.09	2.05	1.94	2	1.94	1.95	1.98
-6.63	1.87	1.93	1.95	1.98	1.94	2.08	2.05	1.95	2.01	1.95	1.96	1.97
-4.74	1.85	1.89	1.92	1.95	1.92	2.07	2.05	1.96	2.02	1.97	1.97	1.95
-2.84	1.83	1.86	1.9	1.91	1.9	2.06	2.05	1.97	2.04	1.99	1.97	1.94
-0.95	1.81	1.84	1.88	1.88	1.89	2.05	2.06	1.98	2.05	2.01	1.98	1.93
0.95	1.8	1.82	1.86	1.85	1.87	2.04	2.06	1.99	2.06	2.02	1.98	1.91
2.84	1.79	1.8	1.84	1.83	1.85	2.03	2.06	2	2.06	2.02	1.99	1.9
4.74	1.78	1.78	1.82	1.8	1.83	2.02	2.07	2.01	2.07	2.02	1.99	1.9
6.63	1.78	1.77	1.8	1.78	1.82	2.01	2.08	2.01	2.07	2.02	2	1.9
8.53	1.78	1.77	1.78	1.76	1.8	2.02	2.09	2.02	2.07	2.02	2.01	1.91
10.42	1.79	1.76	1.76	1.74	1.79	2.02	2.11	2.04	2.08	2.04	2.03	1.92
12.32	1.81	1.76	1.74	1.72	1.78	2.03	2.14	2.07	2.1	2.07	2.06	1.94
14.21	1.82	1.76	1.72	1.7	1.76	2.03	2.16	2.11	2.12	2.1	2.08	1.96
16.11	1.84	1.76	1.7	1.68	1.74	2.03	2.19	2.15	2.15	2.12	2.11	1.98
18.00	1.86	1.76	1.68	1.66	1.73	2.03	2.22	2.19	2.17	2.15	2.14	2.01
19.89	1.88	1.75	1.66	1.63	1.71	2.02	2.24	2.22	2.19	2.17	2.16	2.03
21.79	1.9	1.75	1.64	1.61	1.69	2.01	2.26	2.25	2.2	2.19	2.19	2.06
23.68	1.93	1.75	1.62	1.59	1.67	2	2.28	2.28	2.21	2.2	2.22	2.09
25.58	1.95	1.75	1.59	1.56	1.65	1.98	2.3	2.31	2.22	2.21	2.24	2.12
27.47	1.98	1.75	1.57	1.54	1.63	1.96	2.31	2.34	2.22	2.22	2.26	2.16
29.37	2.02	1.75	1.56	1.52	1.61	1.94	2.32	2.37	2.23	2.22	2.28	2.21
31.26	2.05	1.75	1.54	1.49	1.59	1.92	2.31	2.4	2.24	2.22	2.3	2.25
33.16	2.1	1.76	1.52	1.47	1.58	1.89	2.3	2.43	2.23	2.22	2.31	2.3
35.05	2.15	1.77	1.51	1.45	1.56	1.85	2.27	2.46	2.23	2.21	2.33	2.35
36.95	2.19	1.78	1.49	1.43	1.55	1.81	2.23	2.48	2.22	2.21	2.34	2.4
38.84	2.25	1.8	1.48	1.41	1.54	1.77	2.17	2.5	2.22	2.21	2.37	2.46
40.74	2.31	1.82	1.47	1.4	1.53	1.72	2.09	2.52	2.22	2.21	2.39	2.51
42.63	2.36	1.84	1.46	1.38	1.52	1.66	2.01	2.52	2.22	2.22	2.41	2.57
44.53	2.42	1.87	1.46	1.36	1.51	1.59	1.92	2.51	2.23	2.22	2.43	2.63
46.42	2.46	1.89	1.46	1.35	1.5	1.52	1.81	2.49	2.23	2.23	2.45	2.69
48.32	2.5	1.92	1.46	1.33	1.49	1.45	1.71	2.47	2.25	2.24	2.48	2.75
50.21	2.54	1.94	1.46	1.32	1.47	1.38	1.62	2.43	2.26	2.24	2.5	2.8
52.11	2.57	1.96	1.46	1.3	1.45	1.31	1.53	2.38	2.27	2.24	2.53	2.85
54.00	2.6	1.98	1.46	1.28	1.44	1.25	1.45	2.34	2.29	2.24	2.55	2.9
55.89	2.63	1.99	1.47	1.26	1.41	1.19	1.37	2.28	2.3	2.24	2.57	2.94
57.79	2.64	2	1.47	1.25	1.39	1.13	1.29	2.22	2.3	2.23	2.58	2.97
59.68	2.66	2.01	1.48	1.22	1.37	1.07	1.21	2.16	2.31	2.23	2.6	2.99
61.58	2.67	2.02	1.48	1.2	1.34	1.01	1.13	2.1	2.31	2.23	2.62	3.02
63.47	2.7	2.03	1.48	1.18	1.31	0.96	1.07	2.03	2.31	2.22	2.64	3.04
65.37	2.72	2.04	1.48	1.15	1.27	0.93	1.01	1.95	2.31	2.21	2.66	3.07
67.26	2.75	2.05	1.48	1.13	1.24	0.9	0.97	1.88	2.31	2.2	2.69	3.11
69.16	2.82	2.07	1.47	1.1	1.22	0.88	0.95	1.8	2.3	2.2	2.72	3.19
71.05	2.91	2.07	1.46	1.07	1.2	0.86	0.92	1.74	2.3	2.2	2.77	3.28
72.95	3.03	2.08	1.45	1.05	1.19	0.84	0.9	1.69	2.29	2.2	2.83	3.36
74.84	3.15	2.09	1.43	1.02	1.18	0.82	0.89	1.66	2.28	2.21	2.92	3.42
76.74	3.26	2.1	1.41	1.01	1.17	0.81	0.88	1.63	2.25	2.23	3.03	3.47

78.63	3.35	2.14	1.4	1	1.15	0.79	0.87	1.62	2.22	2.25	3.14	3.51
80.53	3.43	2.19	1.38	0.99	1.14	0.78	0.86	1.62	2.19	2.29	3.25	3.55
82.42	3.5	2.27	1.35	0.99	1.13	0.78	0.85	1.61	2.16	2.33	3.35	3.58
84.32	3.57	2.34	1.33	0.99	1.12	0.77	0.84	1.6	2.14	2.39	3.43	3.62
86.21	3.62	2.39	1.31	0.99	1.11	0.77	0.83	1.59	2.12	2.44	3.49	3.66
88.11	3.66	2.43	1.29	0.99	1.11	0.76	0.83	1.58	2.1	2.48	3.52	3.7
90.00	3.69	2.44	1.29	0.99	1.11	0.76	0.83	1.57	2.1	2.51	3.54	3.72

(unite	5. 10 ut	om em	,									
Latitude	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
-90.00	15.3	37.2	35.3	26.8	32.3	33.7	33.4	27.5	22.5	17.6	16.3	11.9
-88.11	15.3	37.2	35.2	26.8	32.2	33.6	33.3	27.4	22.4	17.6	16.3	11.9
-86.21	15.4	37.3	34.9	26.7	32.0	33.5	33.2	27.2	22.3	17.6	16.5	12.0
-84.32	15.5	37.5	34.6	26.6	31.6	33.2	33.0	27.0	22.2	17.6	16.6	12.1
-82.42	15.7	37.7	34.2	26.4	31.2	33.0	32.6	26.7	22.0	17.7	16.9	12.4
-80.53	16.1	38.0	33.7	26.2	30.8	32.7	32.2	26.5	21.8	17.9	17.3	12.7
-78.63	16.5	38.3	33.1	26.0	30.5	32.5	31.8	26.2	21.7	18.0	17.7	13.1
-76.74	17.0	38.6	32.4	25.7	30.2	32.2	31.4	26.0	21.6	18.2	18.3	13.6
-74.84	17.6	39.0	31.6	25.4	29.9	32.0	31.0	25.7	21.5	18.4	18.9	14.2
-72.95	18.3	39.2	30.9	25.0	29.5	31.9	30.7	25.4	21.4	18.6	19.6	14.9
-71.05	19.0	39.5	30.2	24.8	29.1	31.8	30.3	25.1	21.3	18.8	20.4	15.8
-69.16	19.9	39.7	29.5	24.5	28.7	31.8	29.9	24.8	21.3	19.0	21.3	16.8
-67.26	21.0	39.9	28.8	24.3	28.3	31.6	29.4	24.5	21.2	19.3	22.2	18.0
-65.37	22.3	40.1	28.3	24.2	28.0	31.3	28.9	24.3	21.2	19.5	23.1	19.4
-63.47	23.8	40.3	27.9	24.0	27.7	31.0	28.4	24.1	21.2	19.7	24.0	20.9
-61.58	25.3	40.4	27.6	23.7	27.4	30.6	28.1	23.9	21.1	19.8	24.7	22.6
-59.68	26.9	40.6	27.2	23.6	27.2	30.3	27.7	23.7	21.0	19.9	25.3	24.3
-57.79	28.5	40.7	26.8	23.4	27.0	30.1	27.4	23.4	20.9	19.9	25.7	26.0
-55.89	30.0	40.7	26.5	23.2	26.9	29.9	27.0	23.2	20.8	19.8	26.0	27.6
-54.00	31.4	40.7	26.2	23.1	26.7	29.7	26.6	22.9	20.7	19.7	26.0	29.0
-52.11	32.7	40.5	25.9	23.0	26.6	29.5	26.2	22.6	20.5	19.5	25.9	30.2
-50.21	33.7	40.1	25.8	22.9	26.5	29.3	25.8	22.3	20.4	19.3	25.7	31.0
-48.32	34.5	39.6	25.6	22.8	26.3	29.0	25.3	22.0	20.3	19.1	25.3	31.6
-46.42	34.9	39.1	25.4	22.8	26.1	28.8	24.9	21.7	20.1	19.0	25.0	32.0
-44.53	35.1	38.4	25.2	22.7	25.8	28.5	24.4	21.4	20.0	18.8	24.7	32.2
-42.63	35.1	37.5	25.0	22.6	25.5	28.3	24.0	21.0	19.9	18.7	24.4	32.2
-40.74	34.8	36.4	24.9	22.6	25.2	28.0	23.6	20.7	19.8	18.6	24.1	32.2
-38.84	34.3	35.2	24.8	22.5	24.9	27.7	23.2	20.4	19.7	18.6	23.9	32.0
-36.95	33.7	34.0	24.7	22.5	24.7	27.4	22.8	20.1	19.6	18.6	23.8	31.7
-35.05	33.0	32.9	24.6	22.5	24.4	27.0	22.4	19.9	19.6	18.6	23.7	31.4
-33.16	32.3	31.7	24.6	22.4	24.2	26.5	22.2	19.8	19.6	18.6	23.6	30.9
-31.26	31.5	30.7	24.5	22.4	24.0	26.1	21.9	19.7	19.7	18.8	23.6	30.3
-29.37	30.6	29.7	24.5	22.4	23.7	25.7	21.7	19.6	19.8	19.0	23.6	29.7
-27.47	29.8	28.7	24.4	22.5	23.5	25.4	21.5	19.5	20.0	19.2	23.6	29.1
-25.58	29.0	27.8	24.4	22.5	23.3	25.0	21.4	19.6	20.2	19.6	23.6	28.4
-23.68	28.2	27.0	24.3	22.6	23.1	24.7	21.4	19.7	20.5	19.9	23.5	27.7
-21.79	27.5	26.3	24.1	22.7	23.0	24.5	21.4	19.9	20.8	20.3	23.5	27.1
-19.89	26.8	25.7	24.0	22.8	22.9	24.4	21.5	20.1	21.2	20.7	23.5	26.4
-18.00	26.1	25.1	23.8	22.9	22.8	24.2	21.7	20.3	21.6	21.1	23.5	25.8
-16.11	25.4	24.6	23.6	22.9	22.7	24.1	21.8	20.5	21.9	21.4	23.4	25.3
-14.21	24.8	24.1	23.4	22.9	22.6	24.1	22.0	20.8	22.2	21.7	23.3	24.8
-12.32	24.2	23.6	23.2	22.9	22.6	24.0	22.2	21.0	22.5	22.0	23.3	24.3
-10.42	23.6	23.1	23.1	22.8	22.5	24.0	22.4	21.3	22.9	22.3	23.2	23.8

 Table S5. Monthly mean Ca⁺ column abundance (70-110 km) predicted by WACCM-Ca (units: 10⁷ atom cm⁻²)

-8.53	23.1	22.7	22.9	22.8	22.4	23.9	22.6	21.5	23.2	22.6	23.2	23.4
-6.63	22.6	22.2	22.8	22.6	22.4	23.9	22.7	21.7	23.4	22.9	23.2	23.0
-4.74	22.1	21.8	22.6	22.4	22.3	24.0	22.9	21.9	23.6	23.1	23.1	22.7
-2.84	21.7	21.3	22.4	22.2	22.3	24.0	23.0	22.1	23.9	23.4	23.0	22.3
-0.95	21.3	20.9	22.2	21.9	22.3	24.0	23.2	22.2	24.0	23.5	22.9	22.0
0.95	20.9	20.5	21.9	21.6	22.2	24.1	23.3	22.4	24.0	23.6	22.8	21.6
2.84	20.6	20.2	21.6	21.2	22.2	24.2	23.5	22.5	23.9	23.5	22.6	21.3
4.74	20.4	19.9	21.2	20.9	22.1	24.2	23.7	22.5	23.8	23.3	22.4	21.1
6.63	20.2	19.6	20.9	20.5	22.1	24.4	23.9	22.5	23.6	23.0	22.3	20.9
8.53	20.1	19.3	20.5	20.2	22.0	24.6	24.2	22.6	23.3	22.8	22.1	20.8
10.42	20.0	19.1	20.1	19.8	22.0	24.9	24.5	22.8	23.2	22.7	22.1	20.8
12.32	19.9	18.8	19.6	19.4	21.9	25.3	25.0	23.2	23.2	22.7	22.1	20.8
14.21	19.8	18.6	19.1	19.0	21.7	25.6	25.6	23.7	23.2	22.7	22.2	20.8
16.11	19.8	18.3	18.6	18.5	21.5	25.8	26.1	24.1	23.2	22.7	22.2	20.8
18.00	19.7	18.0	18.1	18.1	21.3	26.0	26.7	24.6	23.2	22.7	22.1	20.8
19.89	19.7	17.7	17.6	17.6	21.0	26.2	27.3	25.1	23.2	22.6	22.1	20.8
21.79	19.6	17.4	17.0	17.1	20.7	26.3	28.0	25.6	23.2	22.4	22.0	20.8
23.68	19.6	17.1	16.5	16.7	20.4	26.4	28.6	26.2	23.0	22.1	21.9	20.9
25.58	19.6	16.8	16.1	16.3	20.0	26.5	29.3	26.7	22.9	21.8	21.8	20.9
27.47	19.6	16.5	15.6	15.8	19.7	26.5	29.9	27.3	22.7	21.5	21.6	21.0
29.37	19.6	16.2	15.2	15.4	19.4	26.6	30.6	28.0	22.5	21.1	21.5	21.2
31.26	19.7	16.0	14.8	15.1	19.1	26.5	31.2	28.8	22.3	20.7	21.3	21.3
33.16	19.8	15.8	14.4	14.7	18.8	26.4	31.6	29.6	22.1	20.3	21.1	21.5
35.05	19.9	15.7	14.1	14.4	18.6	26.2	31.9	30.4	21.8	20.0	20.9	21.7
36.95	20.1	15.6	13.8	14.1	18.4	25.9	32.0	31.1	21.5	19.6	20.7	21.9
38.84	20.3	15.6	13.5	13.8	18.2	25.5	31.8	31.8	21.3	19.3	20.5	22.1
40.74	20.5	15.7	13.3	13.6	18.1	25.0	31.4	32.4	21.1	19.0	20.4	22.3
42.63	20.8	15.7	13.1	13.3	18.0	24.4	30.6	33.0	21.0	18.9	20.2	22.5
44.53	20.9	15.8	13.0	13.1	18.0	23.8	29.6	33.3	20.9	18.7	20.1	22.7
46.42	21.0	15.9	12.9	12.9	18.0	23.1	28.5	33.6	20.9	18.5	19.9	22.8
48.32	21.1	16.0	12.8	12.8	18.0	22.4	27.3	33.8	21.1	18.3	19.8	23.0
50.21	21.1	16.1	12.7	12.7	18.0	21.7	26.1	33.9	21.2	18.2	19.8	23.1
52.11	21.1	16.2	12.7	12.5	18.0	21.0	25.0	34.0	21.4	18.0	19.7	23.2
54.00	21.1	16.2	12.7	12.4	18.0	20.4	23.9	34.0	21.7	17.9	19.7	23.2
55.89	21.0	16.2	12.7	12.2	18.0	19.8	22.9	33.9	21.9	17.8	19.6	23.2
57.79	21.0	16.3	12.8	12.1	18.1	19.3	22.0	33.8	22.1	17.6	19.6	23.2
59.68	20.9	16.4	12.9	12.0	18.2	18.9	21.2	33.7	22.3	17.5	19.5	23.2
61.58	20.9	16.5	12.9	11.9	18.3	18.5	20.4	33.4	22.6	17.5	19.5	23.2
63.47	21.1	16.6	13.0	11.8	18.5	18.1	19.8	33.1	22.8	17.5	19.5	23.3
65.37	21.2	16.7	13.0	11.8	18.7	17.8	19.3	32.9	23.1	17.4	19.6	23.3
67.26	21.4	16.9	13.1	11.8	18.9	17.5	18.8	32.6	23.4	17.4	19.7	23.4
69.16	21.7	17.0	13.2	11.9	19.1	17.3	18.4	32.4	23.8	17.5	19.8	23.2
71.05	21.8	17.2	13.3	12.0	19.2	17.1	18.0	32.2	24.3	17.6	20.0	23.1
72.95	22.0	17.4	13.4	12.1	19.3	16.9	17.7	32.2	24.9	17.9	20.1	23.0
74.84	22.2	17.6	13.5	12.3	19.3	16.7	17.5	32.2	25.5	18.1	20.2	22.9
76.74	22.5	17.7	13.6	12.4	19.3	16.5	17.3	32.2	26.1	18.5	20.3	22.8

78.63	22.7	17.8	13.8	12.5	19.3	16.3	17.1	32.2	26.6	18.8	20.4	22.8
80.53	23.1	17.8	14.0	12.6	19.3	16.2	17.0	32.2	27.1	19.1	20.5	22.8
82.42	23.4	17.8	14.3	12.6	19.3	16.1	16.9	32.2	27.5	19.4	20.7	22.9
84.32	23.6	17.9	14.5	12.7	19.3	16.1	16.8	32.1	27.9	19.6	20.9	23.1
86.21	23.8	18.0	14.6	12.7	19.3	16.1	16.7	32.0	28.1	19.7	21.1	23.3
88.11	24.0	18.1	14.8	12.8	19.4	16.1	16.7	31.9	28.1	19.8	21.2	23.4
 90.00	24.1	18.1	14.9	12.8	19.4	16.1	16.6	31.8	28.2	19.9	21.3	23.5

References

Dawkins, E. C. M., J. M. C. Plane, M. P. Chipperfield, and W. Feng (2015), The nearglobal mesospheric potassium layer: Observations and modeling, *J. Geophys. Res. Atmos.*, 120, 7975-7987.

Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. (2009), Gaussian 09, edited, Gaussian, Inc., Wallingford, CT, USA.

Gómez-Martín, J. C., and J. M. C. Plane (2017), Reaction Kinetics of CaOH with H and O₂ and O₂CaOH with O: Implications for the Atmospheric Chemistry of Meteoric Calcium, *ACS Earth Space Chem.*, *1*, 431-441.