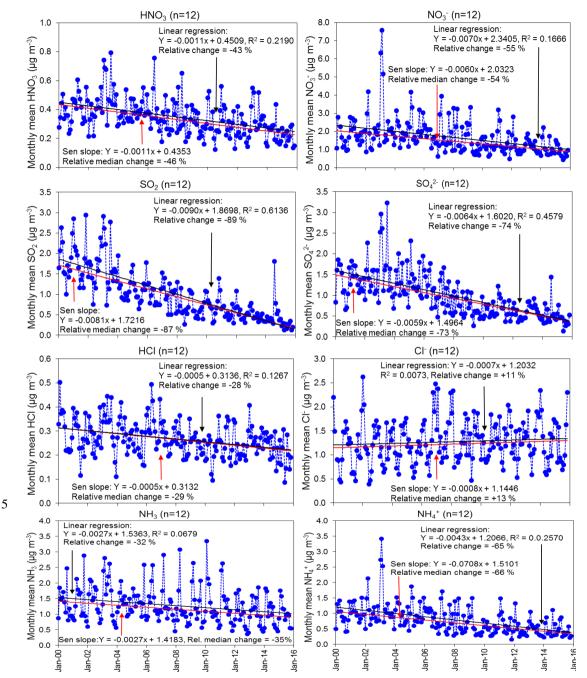
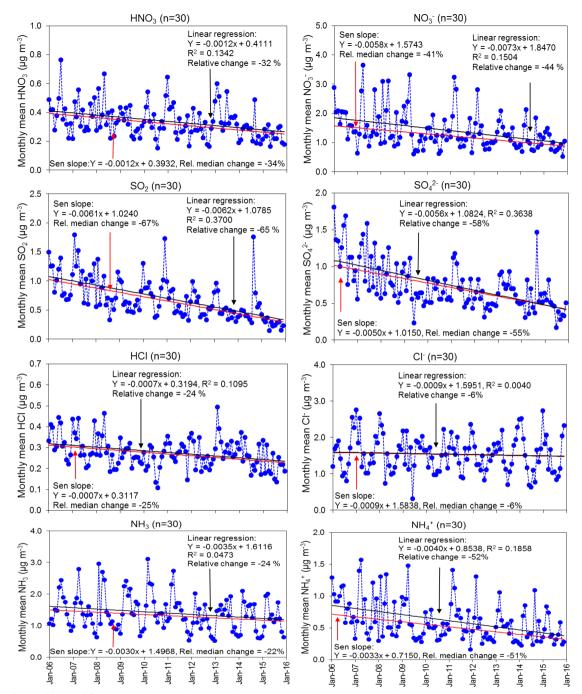
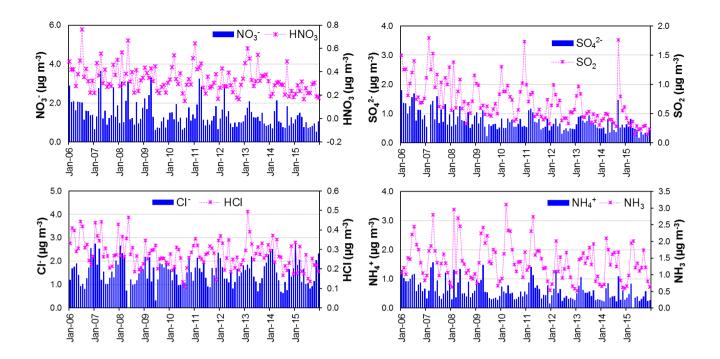

Supplementary material


Supp. Figure S1: Left: DEnuder for Long-Term Atmospheric sampling (DELTA) as applied for the monthly measurements of reactive gases and particulate matter composition in the UK Acid Gases and Aerosol Network (AGANet), with sampling train *in situ*. Right: sampling train consisting of 2 x 15 cm long K₂CO₃ + glycerol coated denuders (determination of HNO₃, SO₂, HCl), 2 x 10 cm long acid coated denuders (determination of NH₃), carbonate coated filter (determination of NO₃-, SO₄²-, Cl⁻, Na⁺, Ca²⁺, Mg²⁺) and acid coated filter (determination of evolved NH₄+).


Supp. Figure S2: Comparison of HNO₃, HONO, sum (HNO₃+HONO), SO₂, HCl and aerosol NO₃-, SO₄²-, Cl², Na⁴, Ca²⁺, Mg²⁺ concentrations by the Acid Gases and Aerosol Network (AGANet) DELTA method with available measurements from the co-located ChemSpec Daily Annular Denuder system (ADS) at Barcombe Mills (UKA00069). Mean concentrations were derived from the average of daily ADS data for the corresponding DELTA sampling periods (monthly). HNO₃ concentrations from both the DELTA and ADS are calculated from the amount of nitrate collected on the denuders and are shown here without any adjustment by the bias correction factor (see Sect. **Error! Reference source not found.**).


Supplement Figure S3: Scatter plots between concentrations of (a) non-sea salt sulphate (nss_SO4) vs NH_4^+ , and (b) non-sea salt chloride (nss_Cl) vs Na^+ from mean monthly measurements (1999-2015) for the 12 sites in the UK Acid Gas and Aerosol Monitoring Network (AGANet) that were operational over the whole period. NH_3 and NH_4^+ data are from the UK National Ammonia Monitoring Network (NAMN, Tang et al., 2018) made at the same time.

Supp. Figure S4: Time series trend analysis by non-parametric Mann-Kendall Sen slope and by parametric linear regression on monthly mean gas and aerosol concentration data from the UK Acid Gases and Aerosol Monitoring Network (AGANet) for the 12 sites that were operational over the period 2000 to 2015. NH₃ and NH₄⁺ concentrations data measured at the same time in the UK National Ammonia Monitoring Network (NAMN, Tang et al., 2018) are also included for comparison. Individual data points are monthly mean concentrations across 12 sites.

Supp. Figure S5: Time series trend analysis by non-parametric Mann-Kendall Sen slope and by parametric linear regression on monthly mean gas and aerosol concentration data from the UK Acid Gases and Aerosol Monitoring Network (AGANet) for the 30 sites that were operational over the period 2006 to 2015. NH₃ and NH₄⁺ concentrations data measured at the same time in the UK National Ammonia Monitoring Network (NAMN, Tang et al., 2018) are also included for comparison. Individual data points are monthly mean concentrations across 30 sites.

Supp. Figure S6: Monthly mean concentrations in gaseous HNO₃, SO₂, HCl and aerosol NO₃-, SO₄²⁻, Cl⁻ from the UK Acid Gases and Aerosol Monitoring Network (AGANet) over the period 2006 - 2016. Monthly mean concentrations of NH₃ and NH₄⁺ that were measured at the same time in the UK National Ammonia Monitoring Network (NAMN, Tang et al., 2018) are also shown for comparison. Each data point in the graphs represents the mean of monthly measurements of 30 sites operational in the network over the period 2006 to 2015.

Supp. Table S1: Major ions measured in DELTA extracts and typical limits of detection (LOD).

Analytes (denuder aqueous extracts)	Harwell Laboratory (Sep99 – Jun09)		CEH Lancaster (from Jul09)		
	Analytical Method	Typical LOD (µg m ⁻³)	Analytical Method	Typical LOD (µg m ⁻³)	
NO ₃ -	IC	0.05 (HNO ₃)	IC	0.05 (HNO ₃)	
NO ₂ -	Colorimetry	0.05 (HONO)	IC	0.05 (HONO)	
SO ₄ ²⁻	IC	0.05 (SO ₂)	IC	0.05 (SO ₂)	
Cl ⁻	IC	0.05 (HCI)	IC	0.05 (HCI)	

Supp. Table S2: Major ions measured in aerosol filter extracts and typical limits of detection (LOD).

Analytes (aerosol filter aqueous extracts)	Harwell Laboratory (Sep99 – Jun09)		CEH Lancaster (from Jul09)		
	Method	Typical LOD (µg m ⁻³)	Method	Typical LOD (µg m ⁻³)	
NO ₃ -	IC	0.05 (NO ₃ -)	IC	0.06 (NO ₃ -)	
NO ₂ -	Colorimetry	0.05 (NO ₂ -)	IC	0.05 (NO ₂ -)	
SO ₄ ²⁻	IC	0.06 (SO ₄ ²⁻)	IC	0.06 (SO ₄ ²⁻)	
Cl ⁻	IC	0.08 (Cl ⁻)	IC	0.16 (Cl ⁻)	
Ca ²⁺	IC (Sep99-Jun08)	0.05	ICP-OES	0.09	
Mg ²⁺	IC (Sep99-Jun08)	0.05	ICP-OES	0.05	
Na ⁺	IC (Sep99-Jun08)	0.1	ICP-OES	0.16	
Ca ²⁺	ICP-AES (Jul08-Jun09)	0.05			
Mg ²⁺	ICP-AES (Jul08-Jun09)	0.05			
Na ⁺	ICP-AES (Jul08-Jun09)	0.1			

Supp. Table S3: Calculated lengths of chemically impregnated denuders (borosilicate glass tubes, 10 mm o.d, 0.65 mm i.d) to capture 95 % of gas of interest at a flow rate of 0.4 LPM under laminar flow.

Reactive gas	HNO ₃	SO_2	HCl	NH ₃
Diffusion coefficient @ 10°C	1.15 x 10 ⁻⁵ m ² s ⁻¹ (Massmana 1998)	1.22 x 10 ⁻⁵ m ² s ⁻¹ (Durham & Stockburger 1986)	5.25 x 10 ⁻⁵ m ² s ⁻¹ (Mumallah 1986)	2.01 x 10 ⁻⁵ m ² s ⁻¹ (Hargreaves & Atkins, 1986)
L (cm): for 95 % capture efficiency at flow rate of 0.4 LPM	14	13	3	8

Note: 10 cm and 15 cm long denuders are used in the UK National Ammonia Monitoring Network (NAMN) and UK Acid Gases and Aerosol network (AGANet) to sample NH₃ and acid gases (HNO₃, SO₂, HCl), respectively.

Denuder theory:

5

The length of denuder required to obtain near complete capture of a reactive gas is a function of the diffusion rate of the reactive gas and the air sampling rate. For cylindrical tubes, with laminar flow and where the tube wall is a perfect sink for the

gas of interest, Gormley & Kennedy (1949) and Ferm (1979) showed that the collection efficiency of a simple denuder for a reactive gas may be calculated using Equation 1.

$$\eta = 1 - \frac{\beta_1}{\beta_0} = 1 - 0.819 \cdot e^{-14.6272\delta} + 0.0976 \cdot e^{-89.22\delta_r} + 0.01896 \cdot e^{-212\delta_r}$$
 (1)

5 where

 η is the collection efficiency of the denuder;

 β_1 is the mass concentration of gas at the denuder outlet

 β_0 is the mass concentration of gas at the denuder inlet

10 δ is described by Equation 2:

$$\delta = \frac{\pi DL}{4\phi} \tag{2}$$

where

D is the molecular diffusion coefficient of reactive gas, in cm²/s

L is effective length of the denuder, in cm

15 ϕ is the air flow rate through the denuder, in cm³/s.

For collection efficiencies \geq 95%, contributions from terms 2 and 3 in Equation 1 are insignificant (< 0.3 %) and only the first term is significant. Equation 1 may then be simplified to Equations 3 and 4:

$$\eta = 1 - \frac{\beta_1}{\beta_0} = 1 - 0.819 \cdot e^{-14.6272 \left(\frac{\pi \, \text{DL}}{4\phi}\right)} \tag{3}$$

$$\frac{\beta_1}{\beta_0} = 0.819 \,\mathrm{e}^{-14.6272 \,(\frac{\pi DL}{4\phi})}$$
, $\frac{\beta_1}{\beta_0} = 0.05 \,\mathrm{for} \,95 \,\%$ capture efficiency (4)

Laminar flow is achieved a short distance from the inlet. The minimum length of tube at inlet not coated with sorbent, L_{\min} to fully develop laminar flow is given by Equation 5.

$$L_{\min} = 0.05.\text{Re.}d\tag{5}$$

where

30

Re is the Reynolds number

25 d internal diameter of tube

An inlet length of 2.8 cm (uncoated Teflon tube: 10 mm o.d, 6.5 mm i.d) is used in the AGANet sampling train to develop laminar flow. Reynolds number must be <2000 for laminar flow. The Reynolds number for this is calculated to be 86 (at flow rate = 0.4 LPM and internal tube diameter = 6.5 mm).

Supp. Table S4: Summary of Mann-Kendall (MK) and Linear Regression (LR) time series trend analysis on monthly mean gas and aerosol concentration data from the UK Acid Gases and Aerosol Monitoring Network (AGANet) for the 12 sites that were operational over the period 2000 to 2015. NH₃ and NH₄⁺ concentrations measured at the same time in the UK National Ammonia Monitoring Network (NAMN, Tang et al., 2018) are also included for comparison. For the MK tests, the 95% confidence interval (CI) for the median trend and relative change are also estimated.

2000 - 2015 (12 sites: monthly data)	Mann-Kendall (MK)		Linear Regression (LR)		
	^a Median annual trend & [95% CI] (µg NH₃ y ⁻ ¹)	^b Relative median change 2000-2015 & [95% CI] (%)	^c Annual Trend (μg NH₃ y ⁻¹)	^d Relative change 2000-2015 [%]	R²
HNO ₃	-0.0132 [-0.0096, -0.0156]	-46*** [-36, -52]	-0.0128	-43***	0.219
SO ₂	-0.0972 [-0.0864, -0.1080]	-87*** [-82, -90]	-0.1078	-89***	0.614
HCI	-0.0060 [-0.0036, -0.0084]	-29*** [-19, -40]	-0.0058	-28***	0.127
NH ₃	-0.0324 [-0.0168, -0.0468]	-35*** [-20, -46]	-0.0325	-32***	0.068
NO ₃ -	-0.0720 [-0.0528, -0.0900]	-54*** [-44, -63]	-0.0839	-55***	0.167
SO ₄ ² -	-0.0708 [-0.0600, -0.0804]	-73*** [-66, -77]	-0.0770	-74***	0.458
Cl-	0.0096 [-0.0048, 0.0252]	+13 ^{ns} [-5.7, +36]	+0.0085	+11 ^{ns}	0.007
NH ₄ +	-0.0456 [-0.0360, -0.0552]	-66*** [-57, -74]	-0.0516	-65***	0.257

Significance level: * p < 0.05, ** p < 0.01, *** p < 0.001, ** non-significant (p > 0.05)

^aMedian annual trend = fitted Sen's slope of Mann-Kendall linear trend (unit = µg y⁻¹)

^bRelative median change calculated based on the estimated annual concentration at the start (y_0) and at the end (y_i) of time series computed from the Sen's slope and intercept $(=100*[(yi-y_0)/y_0])$

^cAnnual trend = fitted slope of linear regression (unit = µg NH₃ y⁻¹)

^dRelative change calculated based on the estimated annual concentration at the start (y_0) and at the end (y_i) of time series computed from the slope and intercept $(=100*[(yi-y_0)/y_0])$

Supp. Table S5: Summary of Mann-Kendall (MK) and Linear Regression (LR) time series trend analysis on monthly mean gas and aerosol concentration data from the UK Acid Gases and Aerosol Monitoring Network (AGANet) for the 30 sites that were operational over the period 2006 to 2015. NH₃ and NH₄⁺ concentrations measured at the same time in the UK National Ammonia Monitoring Network (NAMN, Tang et al., 2018) are also included for comparison. For the MK tests, the 95% confidence interval (CI) for the median trend and relative change are also estimated.

2006 - 2015 (30 sites: monthly data)	Mann-Kendall (MK)		Linear Regression (LR)		
	^a Median annual trend & [95% CI] (µg NH ₃ y ⁻	^b Relative median change 2006-2015 & [95% CI] (%)	^c Annual Trend (μg NH₃ y ⁻¹)	^d Relative change 2006-2015 [%]	R ²
HNO ₃	-0.0144 [-0.0072, -0.0204]	-34*** [-18, -44]	-0.0146	-32***	0.134
SO ₂	-0.0732 [-0.0564, -0.0924]	-67*** [-59, -74]	-0.0749	-65***	0.370
HCI	-0.0084 [-0.0036, -0.0120]	-25** [-11, -33]	-0.0084	-24***	0.109
NH ₃	-0.0360 [-0.0036, -0.0696]	-22* [-26, -39]	-0.0425	-24*	0.047
NO ₃ -	-0.0696 [-0.0408, -0.0101]	-41*** [-26, -54]	-0.0875	-44***	0.150
SO ₄ ² -	-0.0600 [-0.0432, -0.0768]	-55*** [-44, -64]	-0.0674	-58***	0.364
Cl-	-0.0108 [-0.0228, -0.0432]	-6 ^{ns} [-14, +23]	-0.0111	-6 ^{ns}	0.004
NH ₄ +	-0.0396 [-0.0024, -0.0588]	-51*** [-35, -64]	-0.0480	-52***	0.186

Significance level: * p < 0.05, ** p < 0.01, *** p < 0.001, ** non-significant (p > 0.05)

^aMedian annual trend = fitted Sen's slope of Mann-Kendall linear trend (unit = µg y⁻¹)

^bRelative median change calculated based on the estimated annual concentration at the start (y_0) and at the end (y_i) of time series computed from the Sen's slope and intercept $(=100*[(y_i-y_0)/y_0])$

^cAnnual trend = fitted slope of linear regression (unit = µg NH₃ y⁻¹)

^dRelative change calculated based on the estimated annual concentration at the start (y_0) and at the end (y_i) of time series computed from the slope and intercept $(=100*[(yi-y_0)/y_0])$

References:

- Durham, J.L., and Stockburger, L.: Nitric acid-air diffusion coefficient: Experimental determination. Atmospheric Environment, 20(3), 559-563, https://doi.org/10.1016/0004-6981(86)90098-3, 1986.
- Ferm, M.: Method for determination of atmospheric ammonia. Atmospheric Environment, 13, 1385-1393, https://doi.org/10.1016/0004-6981(79)90107-0, 1979.
 - Gormley. P, and Kennedy, M.: Diffusion from a stream flowing through a cylindrical tube. Proc. Royal Irish Acad., 52, 163-169, 1949.
 - Hargreaves, K. J., and Atkins, D.H.F.: The measurement of ammonia in the outdoor environment using passive diffusion tube samplers. Report AERE-R-12568. Harwell Laboratory, Didcot, OXON, UK, 1987.
- Massman, W.J.: A review of the molecular diffusivities of H₂O, CO₂, CH₄, CO, O₃, SO₂, NH₃, N₂O, NO, and NO₂ in air, O₂ and N₂ near STP. Atmospheric Environment 32(6), 1111-1127, https://doi.org/10.1016/S1352-2310(97)00391-9, 1998.
 - Mumallah, M.A.: Hydrochloric acid diffusion coefficients at acid-fracturing conditions, Journal of Petroleum Science and Engineering. 15. 361-374. https://doi.org/10.1016/0920-4105(95)00086-0, 1986.
- Tang, Y. S., Braban, C. F., Dragosits, U., Dore, A. J., Simmons, I., van Dijk, N., Poskitt, J., Pereira, M. G., Keenan, P. O.,
 Conolly, C., Vincent, K., Smith, R. I., Heal, M. R. and Sutton, M. A.: Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK, Atmospheric Chemistry and Physics, 18, 705-733, https://doi.org/10.5194/acp-18-705-2018, 2018.