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Abstract 

Serious haze can cause contaminant diseases that trigger productive labour time by raising 
mortality and morbidity rates in cardiovascular and respiratory diseases. Health studies rarely 10 
consider macroeconomic impacts of industrial interlinkages while disaster studies seldom involve 
air pollution and its health consequences. This study adopts a supply-driven input-output model 
to estimate the economic loss resulting from disease-induced working time reduction across 30 
Chinese provinces in 2012 using the most updated Chinese Multiregional Input-Output Table. 
Results show total economic loss of 398.23 billion Yuan (~1% of China’s GDP in 2012) with the 15 
majority comes from Eastern China and Mid-South. Total number of affected labourers amounts 
at 82.19 million. Cross-regional economic impact analysis indicates that Mid-South, North China 
and Eastern China entail the majority of regional indirect loss. Indeed, most indirect loss in North 
China, Northwest and Southwest can be attributed to Manufacturing and Energy in other regions 
while loss in Eastern China, Mid-South and Northeast largely originate from Coal and Mining in 20 
other regions. At the sub-industrial level, most inner-regional loss in North China and Northwest 
originate from Coal and Mining, in Eastern China and Southwest from Equipment and Energy, and 
in Mid-South from Metal and Non-metal. These findings highlight the potential role of 
geographical distance in regional interlinkages and regional heterogeneity in inner- and outer-
regional loss due to distinctive regional economic structures and dependences between the 25 
North and South. 
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1.Introduction 
Millions of people in China are currently breathing a toxic cocktail of chemicals, which has 
become one of the most serious topics in environmental issues in China by resulting in 35 
widespread environmental and health problems (Meng et al., 2015, 2016b), including increasing 
risks for heart and respiratory diseases, stroke and lung cancer (LC) (Greenpeace, 2017). As air 
pollution has long-term health impacts that evolves gradually over time, understanding the 
health and socioeconomic impacts of China’s air pollution requires continuous efforts. 
 40 
Serious air pollution in China has largely inspired epidemic studies that examine specific health 
outcomes from air pollution, as well as health costs assessments that translate health outcomes 
into monetary loss (Xu et al, 2000; Venners et al, 2003; Kan and Chen, 2004). Existing epidemic 
studies simulate a exposure-response relationships between Particulate Matter (PM) 
concentration levels and relative risks (RRs) for a particular disease (see Wong et al, 1999; Xu et 45 
al, 2000; Wong et al, 2002; Venners et al, 2003) while health costs assessments frequently stem 
from patients’ perspective at microeconomic level, by evaluating either their willingness-to-pay 
(WTP) for avoiding disease risk (see Wang and Mullahy, 2006; Wang et al, 2006; Zeng and Jiang, 
2010) or the potentially productive years of life loss (PPYLL) (see Wan et al, 2005; Miraglia et al, 
2005; Mcghee et al, 2006; Bradley et al, 2007). However, when perceiving unhealthy laborers as 50 
degradation in labor input, macroeconomic implications for production supply chains lack 
investigation. While traditional approaches for health costs estimates are able to provide more 
information on economic loss from a standpoint of individual patients, we suggest that they are 
likely to lose sights on the cascading effects due to labour time loss across interrelating 
industries. Meanwhile, as the health effects of air pollution are built up slowly over time which 55 
implies the lasting nature of air pollution, it has been rarely studied in current disaster risk 
literature. Differing from rapid-onset disaster analysis (flood, hurricane, earthquake, etc) that 
normally reply on quantifying damages to physical capital, air pollution affects more human 
capital than physical capital and the resulting health impacts are relatively invisible and 
unmeasurable. As a result, linking PM concentrations with health endpoints and further with 60 
macroeconomic impacts require an interdisciplinary approach that integrates all the three 
elements into one. Inspired by our previous work on the socioeconomic impacts of China’s air 
pollution in 2007 (Xia et al, 2016), this paper applies the similar approach to China’s air pollution 
in 2012 and also examines the cross-regional economic impacts in order to underline the 
important role of indirect economic loss for the year 2012. In other words, it aims to investigate 65 
the overall economic loss resulting from health-induced labour time reduction among all Chinese 
labourers for a year of 2012. Given that the majority of economic loss originate from secondary 
industry, this paper also specifically analyzes the key sectors in secondary industry that account 
for the greatest proportions in both direct and indirect economic loss in each great region in 
China. By doing so, future policymakers and researchers could obtain an alternative 70 
macroeconomic tool to better conduct cost-benefit analysis in any environmental or climate 
change related policy design, and to comprehend health costs studies in its macroeconomic side.  

2.Methods 

2.1. Methodological Framework 
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Figure1. Methodological framework 
 
Figure 1 illustrates the overall methodological framework developed by this study. It involves four 
main parts that are distinguished with four colours. Detailed methods that connect each part in 85 
the flow chart were shown near the arrows.  
 
PM2.5 concentration levels for 30 provinces of China were first identified from emission inventory 
using air quality simulation model. The relative risks (RRs) for PM2.5-induced mortality (IHD, 
Stroke, COPD and LC), hospital admissions (cardiovascular and respiratory diseases) and 90 
outpatient visits (all causes) were estimated using an Integrated Exposure-Response (IER) model, 
based on which population attributable fraction (PAF) can be calculated to estimate counts of 
PM2.5-induced deaths, admissions and outpatient visits. Additionally, counts of mortality, hospital 
admissions and outpatient visits were further translated into productive working time loss that 
was compared with the industrial original working time without any PM2.5-induced health effects 95 
(full employment and full productivity) to derive the percentage reduction in industrial value 
added. Moreover, reductions in industrial value added served as an input in the supply-driven IO 
model to measure the total indirect economic loss incurred along the production supply chain, 
which is measured as the total loss in output level. Finally, macroeconomic implications regarding 
industrial and provincial economic loss can be obtained from our model results while cross-100 
regional economic impacts can be investigated through multi-regional economic analysis.  
 
The following sections present many mathematical symbols, formulas and equations. For clarity, 
matrices are indicated by bold, upright capital letters (e.g., X); vectors by bold, upright lower case 
letters (e.g., x); and scalars by italicised lower case letters (e.g., x). Vectors are columns by 105 
definition, so that row vectors are obtained by transposition and are indicated by a prime (e.g.

). A diagonal matrix with the elements of vector x on its main diagonal and all other entries 

equal to zero are indicated by a circumflex (e.g. ). 
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2.2 Provincial PM2.5 Concentration Levels 

We referred to Chinese provincial PM2.5 concentration levels estimated by Geng et al (2015), 110 
where the authors improved the method for estimating long-term surface PM2.5 concentrations 
using satellite remote sensing and a chemical transport model to assess the provincial PM2.5 
concentration levels in China during 2006-2012. The model domain includes a map of surface 
PM2.5 concentrations at 0.1° × 0.1° over China using the nested-grid GEOS-Chem model with the 
most updated bottom-up emission inventory and satellite observations from MODIS and MISR 115 
instruments (Geng et al., 2015).  

2.3 Health Impacts from PM2.5 Concentration Levels 

Epidemic studies on PM2.5-induced health outcomes have linked PM2.5 air pollution with 
various health endpoints by using exposure-response coefficients. This paper focuses on the 
impacts of PM2.5 pollution on mortality, hospital admissions and outpatient visits. We 120 
referred to an integrated exposure-response (IER) model developed by Burnett et al (2014) 
to estimate the relative risks (RRs) for PM2.5-induced mortality (IHD, Stroke, COPD, LC), 
hospital admissions (cardiovascular and respiratory diseases) and outpatient visits (all 
causes).   
 125 
An IER model captures concentration-response relationships with a specific focus on 
ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD) and lung 
cancer (LC). The relative risk (RRs) for the mortality estimation function for the four diseases 
were shown in Eq.(1). 
 130 

For z<zcf RRIER(z) = 1                  (Eq.1) 

For z≥zcf RRIER(z) = 1+α｛1-exp[-ɤ(z-zcf)δ]｝   

 

 
z: PM2.5 exposure in micrograms per meter cubed 
zcf : counter-factual concentration level below which no additional health risk is assumed 
δ: the strength of PM2.5 and ɤ is the ratio of RR at low-to-high exposures 135 
 
Then, the calculated RR was converted into an attributable fraction (AF) in Eq.(2). 
 

 

(Eq.2) 

 
 140 
Additionally, excess counts of PM2.5 disease-induced mortality were estimated in Eq.(3). 
 

E = AF×B×P (Eq.3) 

 
 
E: PM2.5-induced mortality counts, B is the national level incidence of a given health effect, 145 
which was applied for all provinces because of limited data 
P: the size of the exposed populations 

 
For morbidity, we calculated cardiovascular and respiratory hospital admissions and 
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outpatient visits for all causes using a log-linear response function and the RRs for each 150 
category of morbidity was calculated using Eq.(4) (Jiang et al, 2015). 
 

 (Eq.4) 

 

β: the parameter that describes the depth of the curve (Table SI-1 in Supplementary 
Information). They are the exposure-response coefficients to quantify the relationship 155 
between different levels of PM2.5 exposures and the resulting health outcomes.  
 

Counts of PM2.5-induced hospital admissions and outpatient visits were analogously 
estimated using Eq.(2) and Eq.(3). 

2.4 Industrial Labor Time Loss 160 

Each laborer is assumed to work 8 hours every day and 250 days during 2012. For PM2.5-induced 
mortality, each death will result in a total 250 working days lost regardless different disease 
types. For PM2.5-induced morbidity, each cardiovascular admission will result in 11.9 working 
days lost while each respiratory admission causes 8.4 working days lost (Xia et al, 2016). 
Meanwhile, we provided a range for labor time loss estimation of outpatient visits due to data 165 
unavailability, which ranges from 2 to 4 hours per outpatient visit (Xia et al, 2018). We assumed 
each outpatient visits clinic once during the year. Then, provincial mortality, hospital admissions 
and outpatient visits counts were scaled down to counts among labor according to labor-
population ratios across all the 30 provinces (National Statistical Yearbook, 2013). We further 
distributed provincial mortality, admissions and outpatient counts into 30 industries according to 170 
industrial-total provincial labor ratio. We used industrial-total provincial output ratio instead 
where certain industries’ labor data is missing. Additionally, labor time loss for each case of 
mortality, admission and outpatient visit were multiplied by industrial counts of mortality, 
admission and outpatient in each province respectively, where the results were summed up to 
derive the industrial total labor time loss due to PM2.5-induced mortality and morbidity. 175 
Moreover, we compared the industrial total labor time loss with the original labor time with full 
employment and labor productivity under no PM2.5-induced health impacts. The results show the 
percentage reductions in industrial working time, which were used as an indicator for percentage 
reductions in industrial value added in a supply-driven IO model as we considered labor as the 
major component for industrial value added. We need to clarify that the industries can express 180 
very different levels of dependencies on capital and labour in reality. However, percentage 
reductions in labour time were used as a direct indicator for percentage reduction in industrial 
value added due to the assumption of production expansion path underlying input-output 
model. An input-output model assumes that proportional increase in industrial output can be 
only achieved by simultaneous increases in both capital and labour, indicating that any reduction 185 
in an input can directly constrain the output growth in all industries.  
 

2.5 Indirect Economic Loss on Production Supply Chain 

We employed a supply-driven IO model to evaluate the indirect economic loss due to PM2.5-
induced mortality and morbidity along production supply chain. A supply-driven IO model was 190 
developed based on a traditional Leontief IO model with the spirit of a ‘circular economy’. A 
supply-driven IO model was derived from a traditional Leontief IO model. Input-output analysis 
have been widely applied to studies on energy usage (Guan et al, 2016), environmental pollution 
(Meng et al, 2015 & 2016), climate change mitigation (Feng et al, 2013; Wiedmann et al, 2006) 
and adaptation and economic perturbations (Steenge and Bočkarjova, 2007; Cho et al, 2001; 195 
Santos, 2006; Crowther and Haimes, 2005) as well as to different scales, ranging from national to 
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regional level. For a basic Leontief IO model, the total output of sector i in an n-sector economy 
can be illustrated in Eq.(5) or Eq.(6). 

xi = zi1+....+zij+....+zin+fi =   

 (Eq.5)  

x = Zi + f (Eq.6) 

 
 200 

: the total output of sector i 

: the monetary value of sector i’s output in all other sectors 

: sector i’s final demand that includes household final consumption, government consumption, 
capital formation and exports.  
 205 
The basic Leontief IO model (Meng et al., 2018) can be therefore derived in matrix notation 
(Eq.(7a) and Eq.(7b)). 
 

x = Ax + f (Eq.7a) 

x = (I-A)-1f, L=(I-A)-1 (Eq.7b) 

 
 210 
A: matrix of technical coefficients, aij, where aij = zij / xj 
L: the Leontief inverse matrix that measures the impact of value change in the final demand of a 
sector on the total output value on the economy (Miller and Blair, 2009).  
 
At the same time, a supply-driven IO model takes a rotated view of Leontief IO model that shows 215 
an opposite influencing direction between sectors. It suggests that production in a sector can 
affect sectors purchasing its outputs as inputs during their production processes and it has a 
supply-side focus. A supply-driven IO model is used to calculate the impact of changes in primary 
inputs on sectoral gross production. For a supply-driven IO model, the basic structure is shown in 
Eq.(8a) and Eq.(8b).  220 

 

x’ = v’ (I-B)-1 (Eq.8a) 

x’ = v’ G, G = (I-B)-1 (Eq.8b) 

 
                   
B: the allocation coefficient (direct-output coefficient), where bij = zij / xi. It refers to the 
distribution of sector i’s outputs in sector j 225 
v: matrix of industrial value added, including capital and labour input 
G: the Ghosh inverse matrix, which measures the economic impacts of changes in a sector’s value 
added on other sectors’ output level 

3.Results 

3.1 Total Number of Affected Labor and Total Economic Loss 230 

Firstly, regarding the total number of affected labour and total economic loss, the total economic 
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loss resulting from PM2.5-induced health outcomes in China 2012 is 398.23 billion Yuan, which 
corresponds to almost 1% of national GDP in 2012. The total number of affected labour in China 
is 0.80 million for PM2.5-induced mortality, 2.22 million for PM2.5-induced hospital admissions and 
79.17 million for PM2.5-induced outpatient visits (Fig.2). Figure 2 presents the provincial counts of 235 
PM2.5-induced mortality, hospital admissions, outpatient visits and economic loss with least 
severe and most severe situation shown from green to red. For total populations of PM2.5-
induced mortality and morbidity, among 30 provinces, Henan and Shangdong province have the 
largest total counts of PM2.5-induced mortality and morbidity, which is consistent with the 
findings in 2007 study (Xia et al, 2016). Guangdong province has the greatest counts of PM2.5-240 
induced hospital admissions at 291 thousands, where a substantial increase can be observed at 
175 thousand compared with results in 2007. It almost doubles its provincial count of outpatient 
visits and triples its mortality counts. Meanwhile, increase can be observed in both counts for 
Northwest region, including Shanxi, Gansu, Qinghai, Ningxia and Xinjiang provinces. Specifically, 
the count of hospital admissions in Shanxi province in 2012, 100 thousands, also doubles that of 245 
2007, which was at 50 thousands. Even sharper increase of admission counts can be seen in 
Xinjiang province, where the number is almost 7 times of that from 2007. 
 

 
Figure 2. Provincial counts of PM2.5-induced mortality, hospital Admissions, outpatient visits and 250 
economic loss in China, 2012. Provincial counts of PM2.5-induced mortality (a), hospital 
admissions (b), outpatient visits (c) and economic loss (d) are displayed in four panels above, with 
least severe and most severe situation shown from green to red. We did not consider Tibet due to 
the lack of data.  

3.2 Economic Loss by Provinces, Regions and Industries 255 

Secondly, concerning economic loss by provinces, regions and industries, at the provincial level 
(Fig.2), economic loss of Henan province exceeds that of Jiangsu province in 2007 (55.90 billion 
Yuan) and becomes the province suffering the greatest economic loss at 56.37 billion, accounting 
for 14% of the total economic loss in China. This is followed by Jiangsu province at 45.32 billion 
Yuan and Shangdong province at 43.23 billion Yuan. This is because all the three provinces have 260 
the largest counts of PM2.5-induced mortality and morbidity, which result in substantial provincial 
labour time loss. We also calculated the economic loss in six China’s great regions. Eastern China 
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and Mid-South appear to be the two regions suffering the greatest economic loss that amount at 
153.39 and 119.21 billion Yuan and account for 39% and 30% of total economic loss in China, 
2012. It is in line with the findings from 2007 study (Xia et al, 2016), where the economic loss of 265 
these two regions are 115.33 and 80.88 billion Yuan respectively. Therefore, there has been a 
remarkable rise in economic loss for Mid-South region. Primary industry including agriculture and 
fishing entailed the economic loss at 19.12 billion Yuan. Secondary industry includes all 
manufacturing sectors, energy and construction and it entails the greatest proportion of 
economic loss at 320.06 billion Yuan (80% of total economic loss). Tertiary industry accounts for 270 
the remaining 15% of total economic loss at 59.05 billion Yuan. 

3.3 Cross-regional Economic Loss 

Additionally, this case study also examined the cross-regional economic losses between six Great 
Regions in China. As one significant advantage for input-output model is to capture the industrial 
and regional interdependencies, it is effective to measure the propagating disaster-induced 275 
indirect economic loss along production supply chain. We traced the cross-regional economic loss 
due to their interlinkages, such as interregional trade, as shown in Fig.3. The diagram 
demonstrates the interregional economic impacts due to their interdependencies. The 
proportion of regional indirect loss among regional total economic loss is displayed next to each 
region’s name on the left-hand side. Although the majority of regional economic loss come from 280 
the direct economic loss occurred within the region across almost all the six regions, Northeast, 
Eastern China and Northwest still entail great indirect economic loss from other regions, which 
occupies 31%, 21% and 30% of the total regional economic loss, respectively. In Northeast, a 
totality of 18% of its total regional economic loss is originated from North China and Mid-South, 
including 1.84 billion Yuan from North China and 1.85 billion Yuan from Mid-South. Similarly, 285 
Mid-South is responsible for 9% of the economic loss in Eastern China at 13.36 billion Yuan. It 
accounts for even larger proportion of regional economic loss in Northwest at 13%. Meanwhile, 
Eastern China also accounts for another 8% of the total regional economic loss in Northeast, 
which amounts at 1.66 billion Yuan. Overall, Mid-South accounts for the largest amount of 
indirect economic loss in other Chinese regions at 24.65 billion Yuan, which is followed by North 290 
China and Eastern China at 16.99 and 12.17 billion Yuan, respectively. This finding highlights the 
increasing significance in capturing the industrial and regional interdependencies and indirect 
economic loss in disaster risk analysis because such interdependencies can largely raise the 
overall economic loss far beyond the direct economic loss and constitute a noticeable component 
of total economic loss. 295 
 
 
 

 
Figure 3. Cross-regional economic loss analysis 300 
 
The diagram demonstrates the interregional economic impacts due to their interdependencies. 
The left-hand side shows the regional indirect economic loss while the right-hand side denotes the 
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sources for these indirect economic losses. The proportion of regional indirect loss among 
regional total economic loss is displayed next to each region’s name on the left-hand side. 305 

3.4 Regional Direct and Indirect Loss from Secondary Sector 

As secondary sector plays a vital role in Chinese economy and entails greatest economic loss 
among the three industries, we specifically analyzed the regional economic loss that are directly 
and indirectly resulting from secondary sectors both inside and outside a region. Focusing on 
secondary sector, Figure 4 illustrates both direct and indirect economic loss originating from each 310 
region and outside the region. As can be seen from the diagram, despite that the majority of 
economic loss resulting from secondary sector are originated from inside the region for all the six 
great regions in China, in Northwest and Northeast, economic loss attributed to secondary 
sectors outside the region still constitute a considerable share due to industrial and regional 
interdependencies. Secondary sectors in the Mid-South, Eastern China and North China become 315 
three major sources for indirect economic loss across all the six regions. For instances, in 
Northwest, economic loss from secondary sectors in Mid-South, Eastern China and North China 
account for 14%, 6% and 6% of total regional indirect loss from secondary sectors outside the 
region, at 2.20, 0.99 and 0.90 billion Yuan, respectively. Similarly, in Northeast, economic loss 
from secondary sectors in these three regions occupy 10%, 8% and 9% of total regional indirect 320 
loss from secondary sectors outside the region, at 1.66, 1.33 and 1.46 billion Yuan, respectively. 
This is resulting from their geographical distance to Mid-South, Eastern China and North China, as 
well as close trade relationships with these three regions. The significant roles of Mid-South and 
Eastern China in interregional trade have been early confirmed by Sun and Peng (2011), where 
they pointed out the export-oriented nature for trades in Eastern China and Mid-South, and their 325 
close trade relations with Northwest regions with respects to imports of raw materials. Likewise, 
it is noticeable that indirect economic loss is more likely to come from neighbour-regions, which 
highlights the possibility that short geographical distance might accelerate interregional trade 
and strengthen regional interlinkages.  

 330 
Figure 4. Regional direct and indirect economic loss from secondary sectors 
 
The inner ring denotes the direct economic loss originating from secondary sector inside the 
region while the outer ring stands for the indirect economic loss from secondary sectors in other 
regions. Percentage shown on the inner ring shows the proportion of direct economic loss 335 
regarding total regional economic loss and percentages shown on the outer ring are the 
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proportions of indirect loss from other regions relative to total regional indirect economic loss. 

3.5 Direct, Indirect Loss from Subindustries in Secondary 

Sector 

Secondary sector was further broken down into seven industries in order to examine the major 340 
economic loss sources among subindustries of secondary sectors inside and outside the region. 
They include Coal and Mining, Manufacturing, Fuel processing and Chemicals, Metal and Non-
metal, Equipments, Energy and Constructions as displayed in Fig.5. In North China, Northwest 
and Southwest, most of their indirect economic loss from secondary sectors outside the region 
comes from Manufacturing with 27.0%, 26.7% and 22.2%, respectively. The second largest source 345 
in these three regions that accounts for economic loss from secondary sectors in other regions is 
Energy, with the greatest amount occurs in North China at 2.32 billion Yuan, followed by 
Northwest at 1.29 billion Yuan and Southwest at 1.26 billion Yuan. In contrast, Coal and Mining 
accounts for the majority of indirect loss from secondary sectors outside the region for Eastern 
China, Mid-South and Northeast at 37.4% (10.83 billion Yuan), 33.4% (3.65 billion Yuan) and 350 
24.4% (1.30 billion Yuan), respectively. One possible underlying reason is that economies in 
Northwest, North China and Southwest are mainly dominated by Coal and Mining but relying on 
imports of Manufacturing products from other regions, whereas Eastern China, Mid-South and 
Northeast have more prosperous Manufacturing industries but tend to heavily depend on 
imports of raw materials from Coal and Mining industries in Northwest, North China or 355 
Southwest. With regards to the economic loss from secondary sector inside each region, it shows 
diversified patterns across six great regions. Coal and Mining accounts for the largest part of 
inner-regional economic loss in North China and Northwest at 42.4% and 43.8%, respectively, 
Equipments and Energy appear to be two major sources for inner-regional economic loss Eastern 
China and Southwest, while Metal and Non-metal and Manufacturing constitute considerable 360 
proportions in inner-regional economic loss from secondary sectors in Mid-South, which reach 
21.86 billion Yuan and 21.61 billion Yuan, occupying 27.4% and 27.1%, respectively.  
 
 

 365 
Figure 5. Economic loss from seven industries in secondary sector inside and outside the region 
 
The inner circle shows the economic loss from secondary sector inside the region. The size of circle 
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stands for the different proportions of inner-regional economic loss relative to total regional 
economic loss. Colors demonstrate economic loss from seven sectors in secondary sector inside 370 
the region. Meanwhile, the outer circle indicates the economic loss from secondary sectors 
outside the region. Economic loss resulting from seven sectors are shown in black and white. 
Percentages shown on the outer circle are the proportions of indirect loss from other regions 
relative to total regional indirect economic loss. 

4.Discussions 375 

PM2.5 has seriously undermined human health by inducing contaminant diseases, including IHD, 
Stroke, COPD and LC. These diseases have resulted in substantial numbers of mortality and 
morbidity that further cause labor degradation in terms of productive working time loss along 
production supply chain. Therefore, there is a growing need to explore the macroeconomic 
implications of PM2.5-induced health effects that can also capture industrial and regional 380 
interdependencies. However, existing health costs studies assess the health costs at 
microeconomic level without an investigation over these linkages on the production supply-side. 
Meanwhile, disaster risk studies rarely involve PM2.5 pollution as a disaster that harm human 
capital more than physical capital. Thus, methods to quantify the direct damages to infrastructure 
seem to be inefficacious when measuring the ‘damages’ to human health. Inspired by the 385 
previous study on China’s air pollution in 2007 (Xia et al, 2016), the current study applies the 
interdisciplinary approach to assess the macroeconomic impacts of PM2.5-induced health effects 
in China 2012 by perceiving reducing labor time as an indicator for reducing value added so that 
it can be fed back into a supply-driven IO model and health studies can be integrated into impact 
evaluation and interdependency analysis. The current case study applies the interdisciplinary 390 
approach by combining environmental, epidemiological and macroeconomic studies to assess 
the macroeconomic impacts of PM2.5-induced health effects in China during 2012. In the model, 
environmental phenomenon was related with health endpoints using an integrated exposure-
response model, reduction in labour time were estimated based on the pollution-induced 
mortality and morbidity counts, and industrial reducing labour time was perceived as an 395 
indicator for industrial reducing value added, which was further fed back into a supply-driven 
input-output model. By doing so, health studies can be integrated into impact evaluation and 
interdependency analysis.  
 
The results are threefold. Firstly, the total economic loss from China’s air pollution during 2012 400 

amount at 398.23 billion Yuan with the majority comes from Eastern China (39%) and Mid-South 

(30%). The total economic loss is equivalent with 1.0% of China’s GDP in 2012 and the total 

number of affected labourers rises to 82.19 million. Compared with study in 2007 (Xia et al, 

2016), although secondary industry remains the industry encountering the most economic loss 

(80%), changes can be noticed for economic loss at provincial level. Henan and Jiangsu become 405 

two provinces that suffering the greatest economic loss at 56.37 and 45.32 billion Yuan 

respectively, followed by Shangdong province with total economic loss at 43.23 billion Yuan. 

Henan and Shangdong provinces also have the largest numbers of PM2.5-induced mortality, 

hospital admissions and outpatient visits. Secondly, the study highlights the cascading indirect 

economic loss triggered by industrial and regional interdependencies in health costs assessment. 410 

In 2012, indirect economic loss constitutes a significant part of total regional economic loss in 

Northeast, Eastern China and Northwest, which occupies 31%, 21% and 30% of the total regional 

economic loss, respectively. Overall, Mid-South accounts for the largest amount of indirect 

economic loss in other Chinese regions at 24.65 billion Yuan, which is followed by North China 

and Eastern China at 16.99 and 12.17 billion Yuan, respectively. Additionally, the study 415 

specifically focuses on 7 sectors in secondary industry and differentiates economic loss from 
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these sectors inside the region from those outside the region. In Northwest and Northeast, 

economic loss attributed to secondary industries outside the region still constitute a 

considerable share due to industrial and regional interdependencies at 31% and 34% of total 

regional economic loss, respectively. Secondary industries in the Mid-South, Eastern China and 420 

North China become three major sources for indirect economic loss across all the six regions. 

Indeed, I also suggest that indirect economic loss is more likely to come from neighbour-regions, 

which highlights the possibility that short geographical distance might accelerate interregional 

trade and strengthen regional interlinkages. In North China, Northwest and Southwest, most of 

their indirect economic loss are originated from Manufacturing industries outside the region with 425 

27.0%, 26.7% and 22.2%, respectively. The second largest source in these three regions that 

accounts for economic loss from secondary industries in other regions is Energy, with the 

greatest amount occurs in North China at 2.32 billion Yuan. In contrast, Coal and Mining accounts 

for the majority of indirect loss from secondary industries outside the region for Eastern China, 

Mid-South and Northeast at 37.4% (10.83 billion Yuan), 33.4% (3.65 billion Yuan) and 24.4% (1.30 430 

billion Yuan), respectively. Such distinctive compositions of outer-regional economic loss might 

be due to the different economic structures and dependences between North China, Northwest, 

Southwest and Eastern China, Mid-South, Northeast. Turning to the economic loss from 

secondary industry inside the region, Regions show heterogeneity. Coal and Mining accounts for 

the largest part of inner-regional economic loss in North China and Northwest at 42.4% and 435 

43.8%, respectively, Equipments and Energy are two major sources for inner-regional economic 

loss Eastern China and Southwest, while Metal and Non-metal and Manufacturing constitute 

considerable proportions in inner-regional economic loss from secondary industries in Mid-

South. 

There are some final remarks for policymakers and researchers here from this typical air 440 

pollution issue. On the one hand, given that the prosperous interregional trade, policymakers are 

required to conscientiously consider these increasingly strengthened industrial and regional 

linkages in climate change mitigation and adaptation policy design based on a better 

understanding of implications resulting from any climate change-induced health issues at both 

micro and macroeconomic levels. Meanwhile, sufficient adaptation measures are required to be 445 

implemented along with the climate change mitigation strategies in operation. The purpose of 

this is to expand the economy beyond the regional geography and natural endowment, and to 

release the current reliance of economy on labour-intensive sectors (Mauricio Mesquita, 2007). 

On the other hand, researchers on epidemic studies should actively integrate these 

interdependencies into future health costs evaluation while researchers on disaster risk analysis 450 

should not lose sights on ‘persistent’ disasters as described in this study, which affect more 

human capital and may imply degradation in production factor inputs.  
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