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Abstract 18 

Health effects of exposure to fine particulate matter (PM2.5) in India were estimated in this study 19 

based on a source-oriented version of the Community Multi-scale Air Quality (CMAQ) model. 20 

Contributions of different sources to premature mortality and years of life lost (YLL) were 21 

quantified in 2015. Premature mortality due to cerebrovascular disease (CEV) was the highest in 22 

India (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million), chronic obstructive 23 

pulmonary disease (COPD, 0.18 million) and lung cancer (LC, 0.01 million), with a total of 1.04 24 

million deaths. The states with highest premature mortality were Uttar Pradesh (0.23 million), 25 

Bihar (0.12 million) and West Bengal (0.10 million). The highest total YLL was two years in Delhi, 26 

and the Indo-Gangetic plains and east India had higher YLL (~ 1 years) than other regions. The 27 

residential sector was the largest contributor to PM2.5 concentrations (~ 40 µg/m3), total premature 28 

mortality (0.58 million), and YLL (~ 0.2 years). Other important sources included industry (~ 20 29 

µg/m3), agriculture (~ 10 µg/m3), and energy (~ 5 µg/m3) with their national averaged contributions 30 

of 0.21, 0.12, and 0.07 million to premature mortality, and 0.12, 0.1, and 0.05 years to YLL. 31 

Reducing PM2.5 concentrations would lead to a significant reduction of premature mortality and 32 

YLL. For example, premature mortality in Uttar Pradesh (including Delhi) due to PM2.5 exposures 33 

would be reduced by 79% and YLL would be reduced by 83% when reducing PM2.5 concentrations 34 

to 10 µg/m3.  35 
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1. Introduction 37 

Due to insufficient control of emissions from a rapid increase in population, industries, 38 

urbanization and energy consumption, health effects associated with air pollution in developing 39 

countries in Asia are severe (Cohen et al., 2005). India, the second most populous country in the 40 

world, has been experiencing extremely high concentrations of fine particulate matter (PM2.5) in 41 

recent decades. In 2015, PM2.5 concentrations in south, east, north and west Indian cities were 6.4, 42 

14.8, 13.2 and 9.2 times of the World Health Organization (WHO) annual guideline value of 10 43 

µg/m3 (Garaga et al., 2018). In the Global Burden of Disease Study 2016 (GBD, 2017), India 44 

accounted for 1.034 million of 4.093 million global premature mortalities from ambient PM2.5 45 

exposure, and ambient PM2.5 exposure was the second largest risk for health in India. It is estimated 46 

that India accounted for 0.65 million out of the 3.3 million deaths resulted from air pollution caused 47 

by PM2.5 globally in 2010 (Lelieveld et al., 2015). .  48 

Efforts have been made to estimate the premature deaths associated with PM2.5 in India. For 49 

example, Sahu and Kota (2017) estimated that 41 out of 100 thousand lives in Delhi could be saved 50 

by meeting the World Health Organization (WHO) suggested annual PM2.5 guideline based on 51 

time series analysis. Such studies require extensive data, which is not available in all Indian cities. 52 

Several studies have estimated the health effects using regional and global models, and satellite 53 

data. Lelieveld et al. (2015) estimated the global premature mortality of chronic obstructive 54 

pulmonary disease (COPD), cerebrovascular disease (CEV), ischaemic heart disease (IHD) and 55 

lung cancer (LC) using predicted PM2.5 concentrations from a global atmospheric model and 56 

exposure-response equations from Burnett et al. (2014). The impacts of different sources on 57 

ambient PM2.5 concentrations and the associated disease burden in global scale were also studied 58 

in Silva et al. (2016) and Lelieveld (2017). Giannadaki et al. (2016) and Conibear et al. (2018) 59 

studied the health impacts from applying different air quality standards and explored the non-linear 60 

response of health impacts to PM2.5 in India. The GBD MAPS Working Group (2018) and 61 

Venkataraman et al. (2018) focused on source contributions and potential reductions of PM2.5 in 62 

India in the present day and the future using the brute force method by removing certain sources. 63 

In addition to premature mortality, years of life lost (YLL), which accounts for the ages of those 64 

who die and age distribution of population, is also informative and meaningful for estimation of 65 

the burden of air pollution on health and environmental policy decision. Ghude et al. (2016) 66 



predicted 0.57 million premature deaths and 3.4 ±1.1 years of YLL associated with PM2.5 in India 67 

for 2011. 68 

To effectively design pollution control strategies, the contributions of different emission sources 69 

to PM2.5 concentrations are crucial. Source-oriented chemical transport models (CTM) based on 70 

tagged tracer technique have been developed and used for source apportionment of gases (Kota et 71 

al., 2014) and PM (Ying et al., 2015;Kota et al., 2015;Zhang and Ying, 2010) in the past. Guo et 72 

al. (2017), which was the first study to use the source-oriented Community Multi-scale Air Quality 73 

(CMAQ) model in India, showed residential sector contributed the most (~ 80 µg/m3) to total PM2.5, 74 

followed by industry sector (~ 70 µg/m3) in 2015. Recently, Hu et al. (2017) estimated the 75 

premature mortality caused by different sources of PM2.5 in China and showed that industrial and 76 

residential sources contributed to 0.40 (30.5%) and 0.28 (21.7%) million premature deaths, 77 

respectively. Although previous studies have addressed different aspects of health impact of PM2.5 78 

in India, a comprehensive understanding on source contributions and potential reductions to both 79 

premature mortality and YLL using a tagged tracer method with updates to better predict PM2.5 in 80 

India is missing.  81 

The objective of this study is to estimate contributions of each emission sectors to PM2.5 related 82 

mortality and YLL in India using a tagged tracer method after improving the model performance 83 

on PM2.5 in companion papers. The potential health benefits of reducing PM2.5 concentrations in 84 

different Indian states are also explored. Such study would be of tremendous value for the 85 

government to channel their resources in reducing pollution in India.  86 

2. Method 87 

2.1 Model application for PM2.5 prediction and source apportionment 88 

The models used in this study were based on CMAQ 5.0.1 with a modified SAPRC11 89 

photochemical mechanism and aerosol module version 6 (AERO6). Heterogeneous formation of 90 

SO4, NO3, and SOA formation from surface uptakes was incorporated to improve model 91 

performance (Ying et al., 2015;Hu et al., 2016). Source contributions of primary PM (PPM) and 92 

its chemical components were estimated using tagged non-reactive tracers. The tracers from each 93 

source sector go through all atmospheric processes similar to other species. Detailed information 94 

on this source apportionment method could be found in Guo et al. (2017) and the references therein. 95 

The source contributions to secondary inorganic aerosol (SIA) were determined by tracking SO2, 96 



NOx, and NH3 through atmospheric processing using tagged reactive tracers. Both the 97 

photochemical mechanism and aerosol module were expanded so that SO4, NO3, and NH4 and 98 

their precursors from different sources are tracked separately throughout the model calculations 99 

(Zhang et al., 2012;Qiao et al., 2015;Zhang et al., 2014).  100 

The default vertical distributions of concentrations that represented clean continental conditions 101 

provided by the CMAQ model were used for the 36-km domain covering the whole India (Figure 102 

S1). Figure S2 shows the states and main cities referred in this study. The Weather Research & 103 

Forecasting model (WRF) v3.7.1 was utilized to generate meteorology inputs for CMAQ, and 104 

Emissions Database for Global Atmospheric Research (EDGAR) version 4.3 105 

(http://edgar.jrc.ec.europa.eu/overview.php?v=431) were used for six anthropogenic emissions: 106 

energy, industry, residential, on-road, off-road and agriculture. The biogenic emissions were 107 

generated by Model for Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther 108 

et al., 2012) and wildfire emissions, which is assigned as open-burning sector, were from the Fire 109 

Inventory from NCAR (FINN), which was based on satellite observations (Wiedinmyer et al., 110 

2011). Dust and sea salt emissions were generated in line during simulations. Model performance 111 

was validated against available observations from ground based national ambient air quality 112 

monitoring stations in major cities. Model performance of O3 and PM2.5 meets the criteria 113 

suggested by the US Environmental Protection Agency (EPA). The performance of model was 114 

especially good on days with high O3 and PM2.5 levels. Details of the model application and the 115 

performance in 2015 can be found in Kota et al. (2018). Also, the source apportionment results are 116 

comparable with Sharma et al., (2016) using positive matrix factorization (PMF) as Guo et al. 117 

(2017) introduced. 118 

2.2 Estimation of premature mortality 119 

The relative risk (RR) due to COPD, CEV, IHD and LC related mortality associated with long-120 

term exposure of PM2.5 concentrations is calculated using integrated exposure-response function 121 

estimated by Burnett et al. (2014) as described in Eq. (1) and Eq. (2). 122 

𝑅𝑅 = 1,    𝑓𝑜𝑟 𝑐 < 𝑐𝑐𝑓                                                                                                                           (1) 123 

𝑅𝑅 = 1 +  𝛼 {1 − exp [−𝛾(𝑐 − 𝑐𝑐𝑓)
𝛿

]} ,     𝑓𝑜𝑟 𝑐 ≥ 𝑐𝑐𝑓                                                                    (2) 124 



where Ccf is the threshold concentration below which there is no additional risk. A total of 1000 125 

sets of α, γ, δ and Ccf values generated using Monte Carlo simulations for each disease were 126 

obtained from the Global Health Data Exchange website 127 

(http://ghdx.healthdata.org/sites/default/files/record-attached-128 

files/IHME_CRCurve_parameters.csv). C is the predicted PM2.5 concentration. RR values are 129 

calculated for each set of α, γ, δ and Ccf for all people above the age of 25 and for each grid cell in 130 

the domain. Then, the premature mortality is calculated as Eq. (3). 131 

∆𝑀𝑜𝑟𝑡 =  𝑦𝑜[(𝑅𝑅 − 1)/𝑅𝑅]𝑃𝑜𝑝……………………………………………………………………… (3) 132 

where yo refers to baseline mortality rate for a particular disease in India as listed in Table S1, 133 

obtained from based on the WHO Mortality Database and Pop is the population in a certain grid 134 

cell as listed in Table S2. The mean, lower (2.5%) and upper (97.5%) limits of premature mortality 135 

associated with each disease in a grid are estimated using the 1000 RR values. Total premature 136 

mortality is calculated by adding premature mortality for each disease in a grid. Total average 137 

premature mortality in a state is obtained by adding all average premature mortalities of all grids 138 

in the state multiplied by the fraction of the grid inside the state. A similar approach is used for 139 

calculating the upper and lower limits of premature mortality.  140 

2.3 Estimation of years of life lost 141 

Years of life lost (YLL) is another important index to reflect the health impact of PM2.5 142 

concentrations (Yim and Barrett, 2012;Guo et al., 2013;Pope III et al., 2009;Romeder and 143 

McWhinnie, 1977). It is a measure of the average years a person would have lived if he or she had 144 

not died prematurely due to some specific reason. YLL is usually calculated as a summation of the 145 

number of deaths at each age group multiplied by the number of years remaining as shown in Eq. 146 

(4). 147 

𝑌𝐿𝐿 =  ∑ 𝑎𝑖
𝑛−1
𝑖=1 𝑑𝑖 =  ∑ (𝑛 − y(𝑖) − 0.5)𝑛−1

𝑖=1 ∆𝑀𝑜𝑟𝑡𝑖……………………………………... (4) 148 

Where ∆𝑀𝑜𝑟𝑡i is the number of deaths in age group i (i = 1, 7) as shown in Table S2. ai is the 149 

remaining years of life left when death occurs in age group i. n is the life expectancy of India 150 

(male= 66.2 and female= 69.1 in 2013) and y(i) is the mean age of age group i. In this study, the 151 

overall YLL was divided by population in a certain grid cell to get life expectancy loss per person 152 

(Pope III et al., 2009). 153 

http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_CRCurve_parameters.csv
http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_CRCurve_parameters.csv


3. Results 154 

3.1 Predicted premature mortality and YLL  155 

Figure 1 shows the predicted annual PM2.5 concentrations in India for 2015, with the highest 156 

concentration of ~120 µg/m3 in Delhi and some states in east India. The spatial distribution of 157 

PM2.5 concentration shows that the Indo-Gangetic plains have a higher concentration than other 158 

regions. East and parts of central India also have high PM2.5 concentrations, while west and south 159 

India are less polluted. The population-weighted concentration (PWC) throughout the country is 160 

32.8 µg/m3 (Table 1). This value is lower compared to 57.2 µg/m3 in Conibear et al. (2018) and 161 

74.3 µg/m3 in GBD MAPS Working Group (2018) due to differences in model and configurations 162 

(Table 2). East India is the most polluted with 47.8 µg/m3, closely followed by north India 43.1 163 

µg/m3. PWC values are 31.2 µg/m3 in south, 25.4 µg/m3 in the northeast, 23.9 µg/m3 in the west 164 

and 23.5 µg/m3 in central India. Delhi is the state with the highest PWC of 66.3 µg/m3. The states 165 

apart from Delhi, where PWC is higher than the national average, are Sikkim 54.7 µg/m3, West 166 

Bengal 54.1 µg/m3, Bihar 53.1 µg/m3, Haryana 47.3 µg/m3, Uttar Pradesh 47.3 µg/m3, Jharkhand 167 

39.2 µg/m3 and Punjab 35.5 µg/m3.  168 

The total premature mortality for adults (≥ 25 years old) and those due to COPD, LC, IHD, and 169 

CEV are also shown in Figure 1. The total premature mortality peaks at populous megacities at 170 

coastal area, Indo-Gangetic plains, and west India. For example, in Indo-Gangetic plains, where 171 

the population density is more than 1 million per gird (i.e., 36 km×36 km), premature mortality 172 

can be as high as 3000 deaths per 100,000 persons. Premature mortalities of COPD, LC, IHD, and 173 

CEV show a similar spatial distribution with the total. CEV is the largest contributor and has peak 174 

values at Indo-Gangetic plains. COPD and IHD are also important with a peak of ~ 1400 deaths 175 

per 100,000 persons at Indo-Gangetic plains. LC contributes the least to total premature mortality.  176 

Table 1 also shows that the total premature mortality for adults in India for 2015 is approximately 177 

1.04 million with CI95 of 0.53-1.54 million. High premature mortality is in the populous states 178 

such as Uttar Pradesh (0.23 million), Bihar (0.12 million) and West Bengal (0.10 million) as shown 179 

in Figure S3. In addition, states such as Maharashtra (0.09 million) and Andhra Pradesh (0.06 180 

million) also have high premature mortality. Generally, the states in Indo-Gangetic plains and east 181 

India have a higher premature mortality than other states. South states have lower premature 182 

mortality. Premature mortality due to CEV is highest in India (0.44 million), followed by IHD 183 



(0.43 million), COPD (0.18 million) and LC (0.01 million) (Table 1). States with high PWC have 184 

slightly higher CEV premature mortality compared to IHD. IHD and CEV constitute about 81 % 185 

of the total premature mortality over the country in 2015. 186 

Table 2 shows the comparison of the results with other studies. This study predicted higher total 187 

premature mortality (1.04 million) compared to Lelieveld et al. (2015) (0.65 million), Ghude et al. 188 

(2016) (0.57 million) and Giannadaki et al. (2016) (0.58 million), and comparable results 189 

compared to and GBD MAPS Working Group (2018) (1.09 million) and Conibear et al. (2018) 190 

(0.99 million). Considering the uncertainty range (0.53 - 1.54 million), this study is consistent with 191 

these studies. The difference may be caused by different models (updated CMAQ in this study vs. 192 

EMAC, GEOS-Chem and WRF-Chem), different resolutions, and different simulation episodes. 193 

The ratios of COPD and CEV are close for all studies except GBD MAPS Working Group (2018) 194 

and Conibear et al. (2018) predicted higher ratios for COPD but lower ratios for CEV. Giannadaki 195 

et al. (2016) predicts higher LC ratio (5.1%) than other studies (0.5-2.1%), while IHD ratios are 196 

similar for all studies.  197 

Figure 2 shows the total YLL and to the contributions of COPD, LC, IHD, and CEV. The YLL for 198 

entire India is the highest for CEV (0.8 years) and closely followed by IHD (0.7 years). LC has 199 

the least YLL (0.03 years), while COPD has the YLL of 0.45 years. YLL for states in north, east, 200 

south and west India are 1.2, 1.0, 0.2 and 0.4 years, respectively. The highest total YLL is ~ 2 201 

years in Delhi, indicating PM2.5 concentrations strongly threaten the health of people living in the 202 

capital of India. Indo-Gangetic plains and east India have higher YLL (~ 1 years) compared to 203 

other regions. Another study conducted in India for 2011 showed that PM2.5 concentration 204 

associated lost life expectancy is 3.4 ± 1.1 years (Ghude et al., 2016). The difference is due to the 205 

different episodes and methods in calculating YLL. In Ghude et al (2016), YLL was calculated 206 

based on the linear relationship assumption that an increase of 1 µg/m3 in PM2.5 exposure decreases 207 

mean life expectancy by about 0.061 ± 0.02 years (Pope III et al., 2009).The linearity assumption 208 

between YLL and PM2.5 concentration may introduce additional uncertainties to their result. 209 

3.2 Source apportionment of premature mortality and YLL 210 

Figure 3 shows the annual contributions of different sources to total PM2.5 concentration. 211 

Residential sector contributes highest to total PM2.5 with ~ 40 µg/m3 maximum, followed by 212 

industry sector (~20 µg/m3). Energy sectors and agriculture sector contribute to ~5 µg/m3 and ~8 213 



µg/m3 maximum. In north India, residential sector (~ 40 µg/m3) have the maximum contributions 214 

to total PM2.5. Open burning has significant high contributions (~ 1 µg/m3) in northeast India. 215 

Energy PM2.5 concentrations have significant high concentration point at north (~ 30 µg/m3) and 216 

east (~ 15 µg/m3) India compared to other parts of the country as several coal-based power plants 217 

are located there (Guttikunda and Jawahar, 2014). On the contrary, industry, residential and 218 

agriculture sector distribute evenly at Indo-Gangetic plain. Residential source peaks in north 219 

Pakistan and dust source peaks in desert areas in other countries. In most states, residential is the 220 

largest contributor because residential heating during October to December are the main sources 221 

of PM2.5 (Vadrevu et al., 2011). As shown in Figure S4, biogenic related species such as isoprene 222 

(ISOP) and monoterpenes (TERP) are the major components of SOA. 223 

The total premature mortality due the eight source sectors and SOA is shown in Figure 4 and 224 

portions of the contribution of each source type of each state in India is listed in Table S3. 225 

Residential (55.45%), Industry (19.66%), Agriculture (11.90%), and Energy (6.80%) are the major 226 

sources contributing to premature mortality due to PM2.5 concentrations. Contributions of 227 

residential, industry, agriculture and energy sectors are maximum in Bihar (62.01%), Delhi (40%), 228 

Assam (24.37%) and Chhattisgarh (22.63%), respectively. Overall premature mortality in more 229 

than 90% of the states is dominated by residential source. The uses of primitive methods of cooking 230 

instead of cooking gas and electric heaters could be a top factor. Burning of solid fuels for cooking 231 

and other purposes could be another important factor. Highest contributions to premature mortality 232 

from residential sources are in states at Indo-Gangetic plains and east India. Premature mortality 233 

of residential sector in south Indian states is lower compared with other parts of India, while 234 

premature mortality of industry sector is more important in western states. Delhi is affected the 235 

most among all states by industrial source, and premature mortality due to the energy sector is 236 

higher in mineral-rich states such as Chhattisgarh. Agriculture PM2.5 contributes highest to 237 

premature mortality in Assam. Premature mortality in other northeast states such as Meghalaya, 238 

Mizoram, Tripura, Manipur, Nagaland, and Sikkim are also contributed significantly by 239 

agriculture PM2.5. Table 2 shows the comparison of this study with previous studies. In comparison 240 

with Lelieveld et al. (2015), this study predicts higher contributions from industry and agriculture 241 

sectors but lower from traffic and dust sectors due to the differences in emissions. The GBD MAPS 242 

Working Group (2018) shows similar results in energy and traffic sectors but predicts lower in 243 



residential sector. Conibear et al. (2018) is consistent with this study in residential sector but 244 

predicts higher contribution in energy and traffic sectors. 245 

Figure 5 showed YLL attributed to different source types and SOA. Similar to the pattern of 246 

premature mortality in Figure 4, residential is the top factor, which reduces ~ 0.6 years in severe 247 

polluted and populous area like Delhi, followed by industry, energy, and SOA. A significant peak 248 

of industry YLL is at west India and high YLL occurs at Indo-Gangetic plains. Unlike the spatial 249 

distribution of industry contributions to YLL, YLL for energy sector shows some point sources of 250 

energy emission in central India. For SOA, YLL is ~ 0.1 years for majority parts of India with a 251 

high YLL (~ 0.35 year) in southeast India. YLL for agriculture sector distributes evenly at Indo-252 

Gangetic plains and peaks at west India (~ 0.12 year). 253 

3.3 Potential reduction of premature mortality with reduced PM2.5 concentrations 254 

The reduction of PM2.5 was calculated by multiplying the original PM2.5 concentration with 255 

reduction fraction. The mortality was then calculated using the reduced PM2.5 concentration. 256 

Figure 6 shows the normalized premature mortality with a fractional reduction in PM2.5 257 

concentrations (relative to 2015 concentrations) for the whole of India and top PM2.5 polluted states, 258 

Bihar, Maharashtra, Uttar Pradesh (including Delhi), West Bengal. It shows that the decrease of 259 

premature mortality is slower in the beginning when PM2.5 concentrations are higher, and the 260 

marginal benefit of PM2.5 reduction to premature mortality increases as PM concentrations 261 

decrease. A 30% of reduction in PM2.5 in whole India only lead to a 25% reduction in mortality 262 

from the 2015 level without considering population increases, but 90% reduction in mortality 263 

could be achieved with an 80% decreasing in PM2.5. PM2.5 concentrations need to be reduced by 264 

65%, 50%, 60% and 65%, respectively, for Bihar, Maharashtra, Uttar Pradesh (including Delhi) 265 

and West Bengal to achieve a 50% reduction in PM2.5-related premature mortality. 266 

Figure 7 evaluates the premature mortality and YLL benefit when PM2.5 concentrations in the 267 

whole of India and top PM2.5 polluted states, Bihar, Maharashtra, Uttar Pradesh (including Delhi) 268 

and West Bengal are reduced to four different standards, i.e., Indian National Ambient Air Quality 269 

Standard (INAAQS) of 40 µg/m3, WHO interim target 3 (WHO IT3) of 15 µg/m3, the United 270 

States (U.S.) Ambient Air Quality Standards (NAAQS) annual standard of 12 µg/m3, and the WHO 271 

guideline level of 10 µg/m3. The reductions of the premature mortality when PM2.5 concentrations 272 

in the highly polluted regions (annual average concentration ≥ 40µg/m3) are shown in Table S4. 273 



For example, the premature mortality in Uttar Pradesh (including Delhi) due to PM2.5 exposure 274 

will be reduced by 79% from 0.25 million to approximately 0.06 million and the YLL will be 275 

reduced by 83% from 1.27 year to 0.22 year when PM2.5 concentrations drop to 10 µg/m3. The 276 

reductions of premature mortality are also more significant in most populous states such as Uttar 277 

Pradesh (79%) and West Bengal (80%). However, the decrease is not significant when PM2.5 278 

concentrations drop to current INAAQS standards of 40 µg/m3 as it only reduces premature 279 

mortality by 13.10% and YLL by 9.85% for the whole India. When PM2.5 concentrations drop to 280 

15 µg/m3, premature morality for India will reduce to 0.37 million and YLL will decrease to 0.56 281 

year. In 12 µg/m3 case, premature mortality and YLL will be reduced to 0.17 million and 0.39 year 282 

respectively. This indicates that the current INAAQS standards are not sufficient to reduce health 283 

impacts of air pollution in India. 284 

4. Conclusion 285 

A source-oriented CMAQ modeling system with meteorological inputs from the WRF model was 286 

used to quantify source contributions to concentrations and health effects of PM2.5 in India for 287 

2015. The predicted annual PM2.5 concentrations in India for 2015 could reach 120 µg/m3 in Delhi 288 

and some states in east India has a total mortality greater than 3000 deaths per 100,000 persons. 289 

The total premature mortality in India for adult ≥ 25 years old in 2015 was approximately 1.04 290 

million. Uttar Pradesh (0.23 million), Bihar (0.12 million) and West Bengal (0.10 million) had 291 

higher premature mortality compared to other states. YLL peaks at Delhi with ~ 2 years and Indo-292 

Gangetic plains and east India have high YLL (~ 1 years) compared to other regions in India. The 293 

residential sector is the top contributor (55.45%) to total premature mortality and contributes to ~ 294 

0.2 years to YLL with source contribution of ~ 40 µg/m3 maximum to total PM2.5. Reducing the 295 

PM2.5 concentrations to the WHO guideline value of 10 µg/m3 would result in a 79% reduction of 296 

premature mortality and 83% reduction of YLL in Uttar Pradesh (including Delhi) due to PM2.5 297 

exposures. The total mortality and YLL of whole India would also be significantly reduced by 298 

decreasing current PM2.5 level to 10 µg/m3.  299 
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Table 1. Population (×106), population-weighted concentration (PWC, μg/m3) and premature 

mortality (×104 deaths) due to COPD, LC, IHD, and CEV in each state or union territory in India. 

State Population PWC COPD LC IHD CEV Total 

Andhra Pradesh 85.3 22.45 0.96 (0.37, 1.63) 0.07 (0.01, 0.11) 2.48 (1.73, 3.54) 2.18 (0.83, 3.42) 5.69 (2.94, 8.70) 

Arunachal Pradesh 2.2 10.08 0.01 (0.00, 0.02) 0.00 (0.00, 0.00) 0.03 (0.02, 0.05) 0.01 (0.01, 0.03) 0.05 (0.03,  0.09) 

Assam 28.5 23.86 0.34(0.13, 0.57) 0.02 (0.01, 0.04) 0.86 (0.61, 1.23) 0.80 (0.30, 1.25) 2.03 (1.04, 3.09) 

Bihar 103.2 53.06 2.25 (1.08, 3.33) 0.17 (0.05, 0.24) 4.10 (3.14, 7.05) 5.63 (1.79, 6.90) 12.15 (6.07, 17.52) 

Chandigarh 0.2 30.51 0.00 (0.00, 0.01) 0.00 (0.00, 0.00) 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 0.02 (0.01, 0.03) 

Chhattisgarh 25.8 25.75 0.33 (0.13, 0.55) 0.02 (0.01, 0.04) 0.81 (0.58, 1.17) 0.80 (0.29, 1.26) 1.97 (1.01, 3.01) 

Dadra & Nagar 

Haveli 
0.5 20.91 0.00 (0.00, 0.01) 0.00 (0.00, 0.00) 0.01 (0.01, 0.02) 0.01 (0.00, 0.02) 0.03 (0.02, 0.04) 

Daman & Diu 0.1 19.6 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01) 0.01 (0.00, 0.01) 

Goa 1.9 18.11 0.02 (0.01, 0.03) 0.00 (0.00, 0.00) 0.05 (0.04, 0.07) 0.04 (0.02, 0.06) 0.11 (0.06, 0.16) 

Gujrat 62.4 18.53 0.57 (0.21, 1.01) 0.04 (0.01, 0.07) 1.61 (1.07, 2.27) 1.19 (0.48, 1.95) 3.42 (1.77, 5.30) 

Haryana 37.4 47.32 0.75 (0.35, 1.13) 0.06 (0.02, 0.08) 1.43 (1.08, 2.39) 1.88 (0.61, 2.38) 4.12 (2.06, 5.98) 

Himachal Pradesh 8.8 15.08 0.06 (0.02, 0.11) 0.00 (0.00, 0.01) 0.18 (0.12, 0.26) 0.12 (0.05, 0.20) 0.37 (0.19, 0.58) 

Jammu & Kashmir 12.4 9.80 0.04 (0.01, 0.09) 0.00 (0.00, 0.01) 0.16 (0.08, 0.26) 0.06 (0.02, 0.14) 0.27 (0.11, 0.50) 

Jharkhand 36.4 39.25 0.65 (0.29, 1.00) 0.05 (0.01, 0.07) 1.33 (0.99, 2.14) 1.66 (0.54, 2.20) 3.68 (1.82, 5.41) 

Karnataka 63.0 16.23 0.51 (0.18, 0.94) 0.04 (0.01, 0.06) 1.56 (1.04, 2.12) 0.97 (0.45, 1.55) 3.08 (1.67, 4.67) 

Kerala 35.3 19.44 0.34 (0.12, 0.59) 0.02 (0.00, 0.04) 0.93 (0.63, 1.33) 0.73 (0.29, 1.18) 2.03 (1.05, 3.14) 

Madhya Pradesh 77.9 22.62 0.89 (0.34, 1.51) 0.06 (0.01, 0.11) 2.32 (1.65, 3.22) 2.06 (0.82, 3.26) 5.35 (2.81, 8.10) 

Maharashtra 117.1 28.61 1.58 (0.65, 2.57) 0.11 (0.03, 0.18) 3.72 (2.68, 5.44) 3.73 (1.38, 5.52) 9.14 (4.74, 13.70) 

Manipur 2.7 21.13 0.03 (0.01, 0.05) 0.00 (0.00, 0.00) 0.08 (0.05, 0.11) 0.06 (0.03, 0.10) 0.17 (0.09, 0.26) 

Meghalaya 4.3 22.07 0.05 (0.02, 0.08) 0.00 (0.00, 0.01) 0.13 (0.09, 0.17) 0.11 (0.04, 0.17) 0.29 (0.15, 0.43) 

Mizoram 1.5 19.72 0.02 (0.01, 0.03) 0.00 (0.00, 0.00) 0.04 (0.03, 0.06) 0.03 (0.01, 0.05) 0.09 (0.05, 0.14) 

Nagaland 3.2 19.51 0.03 (0.01, 0.06) 0.00 (0.00, 0.00) 0.09 (0.06, 0.12) 0.07 (0.03, 0.11) 0.19 (0.10, 0.29) 

Delhi 8.1 66.28 0.21 (0.10, 0.29) 0.02 (0.01, 0.02) 0.34 (0.27, 0.61) 0.49 (0.16, 0.57) 1.06 (0.54, 1.50) 

Odisha 43.4 29.59 0.63 (0.26, 1.01) 0.05 (0.01, 0.07) 1.44 (1.05, 2.17) 1.57 (0.54, 2.32) 3.69 (1.86, 5.57) 

Puducherry 1.2 15.40 0.01 (0.00, 0.02) 0.00 (0.00, 0.00) 0.03 (0.02, 0.04) 0.02 (0.01, 0.03) 0.05 (0.03, 0.08) 

Punjab 28.9 35.46 0.48 (0.21, 0.75) 0.04 (0.01, 0.05) 1.02 (0.75, 1.61) 1.22 (0.40, 1.66) 2.75 (1.37, 4.07) 

Rajasthan 71.4 20.86 0.74 (0.28, 1.28) 0.05 (0.01, 0.09) 2.00 (1.39, 2.80) 1.64 (0.67, 2.54) 4.44 (2.35, 6.71) 

Sikkim 4.5 54.72 0.09 (0.05, 0.13) 0.01 (0.00, 0.01) 0.16 (0.12, 0.29) 0.22 (0.07, 0.26) 0.48 (0.24, 0.69) 

Tamil Nadu 70.2 13.82 0.45 (0.15, 0.87) 0.03 (0.00, 0.06) 1.47 (0.88, 2.13) 0.77 (0.33, 1.38) 2.72 (1.36, 4.44) 

Tripura 3.7 26.04 0.05 (0.02, 0.08) 0.00 (0.00, 0.01) 0.12 (0.08, 0.17) 0.12 (0.04, 0.19) 0.29 (0.15, 0.44) 

Uttar Pradesh 211.2 47.19 4.26 (1.98, 6.41) 0.32 (0.09, 0.45) 8.10 (6.14, 13.63) 10.80 (3.45, 13.59) 23.48 (11.66, 34.09) 

Uttarakhand 11.9 15.04 0.08 (0.03, 0.14) 0.01 (0.00, 0.01) 0.23 (0.14, 0.33) 0.16 (0.06, 0.26) 0.47 (0.24, 0.74) 

West Bengal 88.9 54.13 1.93 (0.94, 2.86) 0.14 (0.04, 0.20) 3.51 (2.68, 6.00) 4.75 (1.53, 5.81) 10.34 (5.20, 14.87) 

India 1254.0 32.78 18.36 (7.94, 29.14) 1.34 (0.35, 2.05) 40.36 (29.22, 62.78) 43.94 (15.27, 60.36) 103.99 (52.78, 154.34) 

  



Table 2. Comparison of methods and excess mortality by diseases and sources from this study with 

other studies in India. 

  
This study 

Lelieveld (2017) and 

Lelieveld et al. (2015) 

GBD MAPS Working 

Group (2018) 

Conibear et 

al. (2018) 

Ghude et al. 

(2016) 

Giannad

aki et al. 

(2016) 

Models application 
Source-oriented 

CMAQ 
EMAC GEOS-Chem WRF-Chem WRF-Chem EMAC 

Source apportionment  Tagged tracer  Zero-out  Zero-out  Zero-out    

Emission inventory EDGAR EDGAR Own inventories EDGAR EDGAR EDGAR 

Resolution 36km ~110km 56×74 km 30km 36km ~110km 

PWC (μg/m3)  32.8  74.3 57.2   

Mortality estimation  IER IER IER IER  IER IER 

Excess mortality 

(million) 
1.04 (0.53,1.54) 0.65 1.09 0.99 0.57 0.58 

COPD (%) 17.7 17.3 ~30 31.2 20.5 11.9 

LC (%) 1.3 2.1 ~2 2.6 0.5 5.1 

IHD (%) 38.8 45.7 ~40 34.8 43.9 34.3 

CEV (%) 42.4 34.9 ~18 11.6 35.1 41.6 

Source contributions 

(%)       

Energy 6.8 14 7.6 21   

Industry 19.7 7 7.5 16   

Residential 55.5 50 24.6 52   

Agriculture 11.9 6  0   

Traffic 1.9 5 2.1 10   

Dust 4 11 28.7 0     

  



 

Figure 1. Predicted annual PM2.5 concentrations (μg/m3), total premature mortality (death per grid 

of 36 × 36 km2) and premature mortality due to COPD, LC, IHD and CEV in India for 2015. 

  



 

Figure 2. Year of life lost (YLL) based on population (years) due to COPD, LC, IHD, and CEV. 

  



 

Figure 3. Source contributions to total PM2.5 concentration (Units are in μg/m3). 

 



 

Figure 4. Source contributions to total premature mortality (deaths per grid 36 × 36 km) due to 

COPD, LC, IHD, and CEV. 

  



 

Figure 5. Contributions of different sources to years of life lost (YLL) based on population 

(years). 

  



 

Figure 6. Premature mortality (normalized to 2015 deaths) as a function of the fractional 

reduction in PM2.5 concentrations (relative to 2015 concentrations) for the whole of India and top 

PM2.5 polluted states, Bihar, Maharashtra, Uttar Pradesh (including Delhi), West Bengal. 
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Figure 7. Number of premature deaths (a) and YLL (b) in the whole of India and top PM2.5 

polluted states, Bihar, Maharashtra, Uttar Pradesh (including Delhi) and West Bengal 

corresponding to the cases when PM2.5 reduced to 40μg/m3, 15 μg/m3, 12μg/m3 and 10/μg m3 

(WHO guideline level). “Base” refers to PM2.5 in 2015. 


