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Abstract.  

The atmospheric methane (CH4) growth rate has varied considerably in recent decades. Unexplained renewed growth after 15 

2006 followed seven years of stagnation and coincided with an isotopic trend toward CH4 more depleted in 13C, suggesting 

changes in sources and/or sinks. Using surface observations of both CH4 and the relative change of isotopologue ratio (δ13CH4) 

to constrain a global 3-D chemical transport model (CTM), we have performed a synthesis inversion for source and sink 

attribution. Our method extends on previous studies by providing monthly and regional attribution of emissions from 6 

different sectors and changes in atmospheric sinks for the extended 2003-2015 period. Regional evaluation of the model CH4 20 

tracer with independent column observations from the Greenhouse gases Observing SATellite (GOSAT) shows improved 

performance when using posterior fluxes (R = 0.94-0.96, RMSE = 8.3-16.5 ppb), relative to prior fluxes (R = 0.60-0.92, RMSE 

= 48.6-64.6 ppb). Further independent validation with data from the Total Carbon Column Observing Network (TCCON) 

shows a similar improvement in the posterior fluxes (R = 0.87, RMSE = 18.8 ppb) compared to the prior (R = 0.69, RMSE = 

55.9 ppb). Based on these improved posterior fluxes, the inversion results suggest the most likely cause of the renewed methane 25 

growth is a post-2007 1.8±0.4% decrease in mean OH, a 12.9±2.7% increase in energy sector emissions, mainly from 

Africa/Middle East and Southern Asia/Oceania, and a 2.6±1.8% increase in wetland emissions, mainly from Northern Eurasia. 

The posterior wetland flux increases are in general agreement with bottom-up estimates, but the energy sector growth is greater 

than estimated by bottom-up methods. The model results are consistent across a range of sensitivity analyses. When forced to 

assume a constant (annually repeating) OH distribution, the inversion requires a greater increase in energy sector (13.6±2.7%) 30 

and wetland (3.6±1.8%) emissions and an 11.5±3.8% decrease in biomass burning emissions. Assuming no prior trend in 

sources and sinks slightly reduces the posterior growth rate in energy sector and wetland emissions, and further increases the 

magnitude of the negative OH trend. We find that possible tropospheric Cl variations do not to influence δ13CH4 and CH4 

trends, although we suggest further work on Cl variability is required to fully diagnose this contribution. While the study 
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provides quantitative insight into possible emissions variations which may explain the observed trends, uncertainty in prior 

source and sink estimates and a paucity of δ13CH4 observations limit the robustness of the posterior estimates. 

1 Introduction 

The atmospheric concentration of methane (CH4) has been increasing globally since 2007, following a slowdown in growth 

from 1999 to 2006 (Dlugokencky et al., 2017). The onset of the observed increase in CH4 coincides with an isotopic trend to 5 

lighter CH4, more depleted in 13C (Nisbet et al., 2014). The 13CH4:12CH4 ratio (denoted by the δ13CH4 value) is controlled by 

both the isotopic signatures of the sources and the isotopic fractionation associated with atmospheric CH4 sinks. Broadly 

speaking, the emission types can be categorised into the relatively light biogenics (~-62‰), heavier fossil fuels (~-44‰) and 

the even heavier biomass burning emissions (~-22‰) (Schwietzke et al., 2016), resulting in a total isotopic source signature 

of between -51‰ and -53‰. Isotopic fractionation in the atmosphere by the reaction with the hydroxyl (OH) radical and 10 

chlorine (Cl) atoms enriches 13CH4, causing a background atmospheric δ13CH4 of ~-47‰. 

 

Previous studies have used simple global box-models for source and sink attribution of recent atmospheric CH4 trends, with 

contradictory findings. Nisbet et al. (2014; 2016) and Schaefer et al. (2016) suggested that either increased wetland or 

agricultural emissions were the likely cause while Rigby et al. (2017) and Turner et al. (2017) found the most likely explanation 15 

to be a decreased global mean OH concentration. The latter two studies emphasised that the problem is not very well 

constrained by existing data and as a result could not discard the hypothesis that OH is not changing. These approaches are 

able to isolate the three emission categories noted above, and sometimes sink terms. Specific attribution, for example between 

wetlands and agricultural emission changes, requires spatial representation of both CH4 and δ13CH4. The box-model approach 

provides little or no information of spatial variation in posterior emission estimates, preventing regional attribution. Rice et al. 20 

(2016) performed a 3-D chemical transport model (CTM) inversion using CH4 and isotopologue measurements over the period 

1984 to 2009. They found a 24 Tg yr-1 increase in fugitive fossil fuel emissions between 1984 and 2009, most of which occurred 

after 2000. The time trend in their inversion appeared similar to their prior emission estimates. Although they used a 3-D CTM 

the posterior emissions were calculated globally and not regionally. Furthermore, their study did not focus on the possible role 

of OH variations and did not consider inversions after 2009, so only captured two years of the continued post-2007 growth. 25 

 

Here we perform a synthesis inversion using the TOMCAT 3-D CTM, building on previous work (Bousquet et al., 2006; 

Bousquet et al., 2011; Rigby et al., 2012; Schwietzke et al., 2016; Rice et al., 2016) and using surface measurements of both 

CH4 (Dlugokencky et al., 2017) and δ13CH4 (White et al., 2017). The synthesis inversion technique uses the forward 3-D CTM 

to optimise monthly CH4 emissions over relatively large regions and for multiple source sectors. This spatial resolution is not 30 

present in existing box model inversions. We investigate regional source contributions and the roles of tropospheric OH and 
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Cl in the recent growth of CH4. From this we derive possible source and sink changes between 2003 and 2015 which best fit 

the observations. 

2 Models and Observations 

2.1 Chemical Transport Model 

2.1.1 Forward model 5 

The TOMCAT global CTM (Chipperfield et al., 2006) has previously been widely used to simulate CH4 trends and has been 

evaluated against observations (e.g. Patra et al., 2011; Wilson et al., 2016; Parker et al., 2018). Here we base our synthesis 

inversions on TOMCAT simulations at 2.8° × 2.8° resolution with 60 vertical levels from the surface to 60 km for 2003-2015. 

The simulations used meteorological forcing data from the 6-hourly European Centre for Medium-Range Weather Forecasts 

ERA-Interim reanalyses (Dee et al., 2011). The model was spun up from a 1977 initialisation field before the mean global CH4 10 

and δ13CH4 were rescaled to match NOAA observations in January 2002. A one-year inversion spin-up was then performed 

for 2002, to optimise the 3-D CH4 and δ13CH4 concentration fields relative to observations and the results shown here begin in 

January 2003.  

 

Monthly varying methane emissions from McNorton et al. (2016a) were updated using revisions based on Schwietzke et al. 15 

(2016), which increased fossil fuel emissions and decreased biogenic emissions compared to the estimates in Saunois et al. 

(2016). OH and stratospheric CH4 loss fields were taken from McNorton et al. (2016b) and a TOMCAT-derived tropospheric 

Cl loss field (Hossaini et al., 2016) was applied for the first time in our model. 

 

Emissions were grouped into individual tracers for agriculture (excluding rice), biomass burning, energy, rice, waste, wetlands 20 

and ‘supplementary’, made up of the remaining sources (geological, hydrates, oceans and termites). Each source type, 

excluding ‘supplementary’, was then sub-divided into five geographic regions; North America (NA), Northern Eurasia (EA), 

South America (SA), Africa and Middle East (AM), and South Asia and Oceania (AO) (see Figure 7). These regions were 

chosen by grouping existing Transcom regions (DeFries et al., 1994) and considering both socio-economic and biome 

similarities. The aggregation of regions by combining both socio-economic and biome considerations is somewhat subjective 25 

and differing aggregations may influence synthesis inversion results (Kaminski et al., 2001), which represents a limitation of 

the inversion method used in this study. For example, there are socio-economic differences within the EA region, which may 

result in differing trends in anthropogenic emissions that cannot be resolved using the chosen aggregation; however, biome 

similarities inside the region mean that the aggregation is appropriate for natural fluxes. We split the Asian regions to derive 

suitable posterior estimates for e.g. boreal and temperate wetlands (EO) and tropical wetlands (AO), although this may affect 30 

the posterior energy sector emissions for these regions. Increasing the number of regions would decrease the influence of the 
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aggregation method; however, the computational cost of simulating the tracers required for the synthesis inversion for different 

sectors and for 12 months effectively limits the number of possible regions that we could use to five. 

 

To assess monthly emission variability, individual tracers were simulated for each month of the year, excluding 

‘supplementary’ emissions, which were simulated annually. Emissions were further split into separate 12CH4 and 13CH4 tracers 5 

using isotopic source signatures taken from Schwietzke et al., (2016) (Table 1), resulting in 6 source types over 5 regions for 

12 months and 2 isotopologues, with an additional 5 regions for ‘supplementary’ sources (a total of 730 tracers). Kinetic 

fractionation (Table 1) was accounted for in the atmospheric loss of 13CH4. The simulated tracers were then used to calculate 

CH4 concentration and δ13CH4 values. To investigate sensitivity to OH and Cl variations, three additional simulations were 

performed, a control, an OH-enhanced simulation (1% increase) and a tropospheric Cl-enhanced simulation (1% increase). 10 

Any feedback, on the CH4 term within the loss rate, from the small adjustments made (1%) is assumed to be negligible. 

2.1.2 Synthesis inversion 

Our global synthesis inversions build on techniques used in Bousquet et al., (2006), Bergamaschi et al., (2007) and Rigby et 

al., (2012). Prior estimates of sources and sinks, uncertainty estimates, and observations of both CH4 and δ13CH4 were used to 

quantify posterior estimates of sources and sinks. Posterior estimates were then used in a second forward simulation for the 15 

same year, which provided an initialisation field for the subsequent year. The inversion method is limited by the assumption 

that isotopic source signatures are known. 

 

For the inversion including OH concentrations in the state vector we consider the total simulated CH4 mixing ratio (φ) and the 

δ13CH4 value (𝜓) at time, t, at each measurement location, l. These are described as a linear combination of contributions from 20 

nreg emission regions separated into nmonth months and nsource emission sectors, loss due to OH, fractionation due to OH, the 

initial mixing ratio at the location, φini, and the initial δ13CH4 value at the location, 𝜓𝑖𝑛𝑖: 

 

𝜑(𝒙, 𝑙, 𝑡) = ∑ ∑ ∑ 𝑥𝑖,𝑚,𝑠
𝜑

𝑥𝑖,𝑚,𝑠
(𝑙, 𝑡) + 𝑥𝑂𝐻

𝜑

𝑥𝑂𝐻
(𝑙, 𝑡)𝑛𝑚𝑜𝑛𝑡ℎ

𝑚=1 + 𝑥𝑖𝑛𝑖𝜑𝑖𝑛𝑖(𝑙)
𝑛𝑟𝑒𝑔

𝑖=1
𝑛𝑠𝑜𝑢𝑟𝑐𝑒
𝑠=1  (1) 

 25 

𝜓(𝒙, 𝑙, 𝑡) = ∑ ∑ ∑ 𝑥𝑖,𝑚,𝑠
𝜓

𝑥𝑖,𝑚,𝑠
(𝑙, 𝑡) + 𝑥𝑂𝐻

𝜓

𝑥𝑂𝐻
(𝑙, 𝑡)

𝑛𝑚𝑜𝑛𝑡ℎ
𝑚=1 + 𝜓𝑖𝑛𝑖(𝑙)

𝑛𝑟𝑒𝑔

𝑖=1
𝑛𝑠𝑜𝑢𝑟𝑐𝑒
𝑠=1   (2) 

 

Note that we use  here to represent change, to avoid confusion with the isotopologue δ13CH4. Basis functions 
𝜑

𝑥𝑖,𝑚,𝑠
 and 

𝜓

𝑥𝑖,𝑚,𝑠
 

are sensitivities of atmospheric CH4 and δ13CH4 at a particular time and location to an emission of 1 Tg of CH4 from a region 

i during a particular month m, for an emission sector s. Each 𝑥𝑖,𝑚,𝑠 is a scaling factor applied to the contribution from each 30 
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basis function, and is initially set equal to the prior value of the emission. Similarly, 
𝜑

𝑥𝑂𝐻
 and 

𝜓

𝑥𝑂𝐻
 are the sensitivities of the 

mixing ratio and δ13CH4 at a measurement location to a change in the global OH concentration, linearised around the prior, 

and 𝑥𝑂𝐻  is initially set to be the prior OH concentration. 𝑥𝑖𝑛𝑖  is a dimensionless scaling factor initially set to be 1. Although 

the emissions in each region and source type are split into 12CH4 and 13CH4, the relative emissions of each isotopologue from 

each region for each source type are not included as separate basis functions. The ‘state vector’ 𝒙 comprises of the individual 5 

emission scaling factors 𝑥𝑖,𝑚,𝑠, for all i, m and s, along with 𝑥𝑂𝐻  and 𝑥𝑖𝑛𝑖 . Sensitivity experiments performed for tropospheric 

Cl follow the same formulation with Cl terms replacing OH terms. 

 

Varying atmospheric CH4 concentrations in the inversions should in principle result in a non-linear feedback on OH 

concentration. This feedback is not accounted for in the offline OH field used in our inversion. To resolve this, an online OH 10 

field could be used with an iterative minimization of the cost function. However, Bousquet et al. (2011) found that the small 

variation in CH4 concentration between the prior and posterior had a negligible influence on OH concentration. 

 

The model OH is constrained by CH4 and δ13CH4 but not by other species, such as methyl-chloroform (MCF). MCF was 

excluded because of uncertainty in emissions and a diminishing concentration (<5 ppt), particularly during the later period of 15 

the study (Liang et al., 2017). Due to the large uncertainty relative to the observed MCF concentrations in this period, including 

the extra species within the inversion would not add any extra constraint on the global OH concentration. 

 

Independent inversions (INV-FULL) were performed for each year from 2003 to 2015. Initial conditions for each year are 

provided by a forward simulation for the previous year driven by derived posterior emissions and loss rates, with 2003 initial 20 

conditions taken from a 2002 spin-up inversion. To quantify the optimisation of the flux terms in each region and the sink 

term, we calculate the cost function, J: 

 

𝐽(𝒙) =
1

2
(𝒙 − 𝒙𝑏)𝑇𝑩−1(𝒙 − 𝒙𝑏) +

1

2
(𝒚 − 𝑮𝒙)𝑇𝑹−1(𝒚 − 𝑮𝒙) (3) 

 25 

The value of this ‘cost function’ is dependent on the value of the state vector x. The vector y contains the observations. xb is 

the a priori estimate of x, and B is the error covariance matrix containing the uncertainties placed on the prior estimates, and 

the covariances between these uncertainties. G is the sensitivity matrix, which maps x onto the observations, and contains an 

array made up of the basis functions, 
Δ𝜒

Δ𝒙
 and 

Δ𝜓

Δ𝒙
 used in Eq. (1) and (2). R is the diagonal error covariance matrix for the 

observations and model error. 30 

 

The minimum of the cost function, which indicates the optimal source/sink scaling, is found using (Tarantola and Valette, 

1982): 
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𝒙𝑎 = 𝒙𝑏 + [𝑮𝑇𝑹−1𝑮 + 𝑩−1]−1𝑮𝑇𝑹−1[𝒚 − 𝑮𝒙𝑏]  (4) 

 

where 𝒙𝑎 is the optimised set of scaling factors which minimise the value of J. 

 5 

The posteriori error covariance matrix A is calculated from: 

 

𝑨 = [𝑮𝑇𝑹−1𝑮 + 𝑩−1]−1  (5) 

 

The initial prior uncertainty of each source within each region was set to 50%, based on uncertainties given by Kirschke et al., 10 

(2013). We assume that increased uncertainty in sources with large interannual variability is offset by those sources having 

top-down (biomass burning) or process based (wetlands) interannually varying emissions in our simulations. We assumed 

small variability in energy sector emissions so assigned a 1-month offset correlation of 0.5, we have not assigned correlations 

between regions or months in the other prior emissions due to a lack of information. Global annual OH and Cl are assumed to 

have an uncertainty of 2%; for OH this is based on estimated interannual variability (Montzka et al., 2011). The impact of 15 

varying these uncertainties was investigated. Observational uncertainties were set at 10 ppb for CH4 and 0.1‰ for δ13CH4; the 

increase from the documented uncertainties is to represent model transport uncertainty that would otherwise only be resolved 

by emission changes. The magnitude of model transport will vary between different sites; however, as an estimate here we 

assume all uncertainties to be equal. By separating the inversion into 12 month intervals the emissions from the previous year 

are not considered in the inversion for the current year. As a result, December emissions are constrained by fewer observations 20 

than January emissions. The influence of this on the posterior error is investigated in section 3.6. 

 

To investigate the effect of including δ13CH4 observations we performed a separate inversion (INV-CH4) using only CH4 

observations. The difference between the inversions indicates the additional information supplied by the inclusion of δ13CH4. 

Additional sensitivity experiments were also performed, 9 with varying prior uncertainties and an additional one with no prior 25 

trend in annual emissions, to investigate the robustness of the identified trends from the main inversion.   

2.2 CH4 and δ13CH4 observations 

Monthly mean measurements of CH4 were taken from 21 National Oceanographic and Atmospheric Administration/Earth 

System Research Laboratory (NOAA/ESRL) air sampling sites (Dlugokencky et al., 2017) from 2003 to 2015, where available. 

Measurements of δ13CH4 were taken from 11 NOAA sampling sites and analysed by the Institute of Arctic and Alpine Research 30 

(INSTAAR) (White et al., 2017) for the same period (see Table 2). An equal weighting is applied to each monthly mean 

measurement and potential cross correlations from neighbouring time steps and spatially nearby sites are not considered.  
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Column-averaged CH4 (XCH4) GOSAT satellite data provided by the University of Leicester were not included in the inversion 

but retained for independent validation of the inversion results (Parker et al., 2015). GOSAT was omitted because 

measurements were only available from 2009, 6 years after the inversion began. The Total Carbon Column Observing Network 

(TCCON) XCH4 data were used as validation but were considered too intermittent for use in the inversion (Wunch et al., 

2011). Finally, two surface observation sites, The High Altitude Global Climate Observation Center (HAGCOC) in Mexico 5 

and Cape Grim in Australia were also used for independent validation.    

3 Results 

3.1 Synthesis Inversion 

Inversion results constrained by CH4 and δ13CH4 observations (INV-FULL) show, as expected, improved seasonal and 

interannual monthly averaged posterior CH4 and δ13CH4 estimates when compared with assimilated surface observations 10 

(Figure 1). The correlation with observations (R) for CH4 increases from an all-site average of 0.72 in the prior to 0.94 in the 

posterior, and for δ13CH4 increases from 0.52 to 0.87. Similarly, the root-mean-square error (RMSE) decreases from 38.2 ppb 

to 9.7 ppb for CH4 and from 0.25‰ to 0.09‰ for δ13CH4. The prior model captures some of the initial 2007 CH4 growth but 

fails to capture the sustained growth (Figure 1a). The bias in the prior, relative to both the posterior and observations, grows 

throughout the simulation period. This results in a large bias at the end of the time period, which is evident in the large RMSE 15 

values (Figures 1 to 4). The prior also shows a slight decrease in δ13CH4 since 2007, but the magnitude of this is smaller than 

observed (Figure 1b). The renewed growth of CH4 and corresponding decrease in δ13CH4 in 2007 are well captured in the 

inversion.  

 

Inversion results constrained by CH4 (INV-CH4), and not δ13CH4, also accurately reproduce assimilated CH4 observations (R 20 

= 0.93). INV-CH4 also shows some improved agreement with δ13CH4 observations relative to the prior (R = 0.60), although 

values are overestimated in earlier years (2003-2008) (Figure 1b). 

 

Validation of the model inversion using the independent, non-assimilated GOSAT data shows improved seasonal and 

interannual representation of XCH4 (Figure 2). The RMSE is reduced in all 5 regions with values ranging from 48.6 to 64.6 25 

ppb in the prior to 8.3 to 16.5 ppb in the posterior, with values typically originating from a negative bias in the model. The 

correlation is increased in the inversion with R values ranging from 0.60 to 0.92 in the prior to 0.94 to 0.96 in the posterior. 

The trend is also better captured in the posterior in all 5 regions, although still underestimated in all regions, more so in EA (-

1.3 ppb yr-1) and AO (-1.1 ppb yr-1). Both the prior and posterior biases are larger in the southern hemisphere, possibly as a 

result of slow inter-hemispheric transport within the model, previously noted in Patra et al. (2011). Also contributing to this 30 

offset is an underestimation of southern hemisphere simulated atmospheric CH4 growth rates in the prior model simulation 

(Figure 3). 
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We performed further validation using measurements from 9 non-assimilated TCCON sites with data available from at least 

2009 (see Table 3). The results show improved model-data correlation at all 9 sites, with an increase in the all-site mean R 

value from 0.69 in the prior to 0.87 in the posterior (Figure 4). The RMSE is reduced at sites, with an all-site mean decrease 

from 55.9 ppb in the prior to 18.8 ppb in the posterior, further reductions would be expected if column observations were used 5 

in the inversion. Overall the inversions are found to improve model-data agreement when validated against the independent 

measurements from both GOSAT and TCCON. The resulting southern hemisphere offset in the posterior relative to GOSAT 

and TCCON suggests the posterior estimates represent a reasonable but not conclusive scenario for source/sink attribution. As 

only surface sites are assimilated, some inaccuracy in the representation of the total column is not surprising. 

 10 

Two surface sites were omitted from the inversion and retained for independent validation, HAGCOC and Cape Grim. Cape 

Grim is a baseline station, ideal for comparing the background signal. Results at Cape Grim show improved model performance 

for both CH4 and δ13CH4, with respective RMSE decreases from 52.0 ppb and 0.2‰ in the prior to 12.3 ppb and 0.1‰ in the 

posterior and R value increases from 0.70 and 0.74 in the prior to 0.95 and 0.76 in the posterior. HAGCOC measurements are 

taken at high altitude (4464m), which potentially provides insight into the vertical profile of measured species. As with Cape 15 

Grim, HAGCOC shows posterior improvements in both CH4 and δ13CH4, with respective RMSE decreases from 70.5 ppb and 

0.2‰ in the prior to 27.1 ppb and 0.08‰ in the posterior and R value increases from 0.41 and 0.46 in the prior to 0.62 and 

0.74 in the posterior. 

 

3.2 Prior and Posterior Comparison 20 

The synthesis inversions, INV-FULL and INV-CH4, provide posterior regional changes in sources and global changes in OH 

(Figure 6). Relative to the prior, INV-FULL and INV-CH4 show an average OH decrease of 5% and 4%, respectively (Table 

1). Results from INV-FULL show that globally agricultural (-13%), energy (-8%) and biomass burning (+7%) emissions 

undergo the largest relative average 2003-2015 posterior change compared to the prior (Table 1). Relative changes in rice, 

waste and wetlands are smaller (<3%). The posterior emission errors are between 5%-13% compared with the 50% prior error. 25 

Regionally (Figure 7), 2003-2015 average posterior energy sector emissions are increased, relative to the prior, by 9-33% in 

four regions (NA, SA, AM and AO), which is offset by a 37% decrease in EA. Notable posterior agricultural emission 

decreases occur in EA (-36%) and AO (-14%). Wetland emissions are increased beyond the posterior error range in NA (+24%) 

and EA (+44%) and decreased within the error range in SA (-7%), AM (-7%) and AO (-6%). In all regions posterior emission 

estimates for biomass burning, waste and rice are within, or close to, the error range compared with prior estimates (Table 4). 30 

 

Globally, for the 2003-2015 period, derived posterior and prior emission estimates had average growth rates of 4.1±0.6 Tg yr-

2 and 4.0±0.2 Tg yr-2, respectively. When considering only the renewed growth (2007-2015) the posterior growth rate of 

5.7±0.8 Tg yr-2 becomes noticeably larger than the prior (3.7±0.4 Tg yr-2).  
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The seasonal range of the prior global wetland emissions (5.7 Tg month-1) is underestimated compared to the posterior (13.8 

Tg month-1). The seasonal cycle in biomass burning emissions is largely unchanged between the prior and posterior. The 

seasonal amplitude in rice emissions also remains largely unchanged, although the seasonal peak occurs in August in the prior 

and July in the posterior (Figure 6). 5 

 

3.3 Time Trends in Sources and Sinks 

Average energy, waste and wetland emissions are increased post-2007 by 12.9±2.7% (19.0 Tg yr-1), 5.7±1.6% (3.8 Tg yr-1) 

and 2.6±1.8% (4.0 Tg yr-1), respectively, relative to their 2003-2006 posterior values (Table 6). Regionally, the shift in post-

2007 energy sector emissions mainly occurs in AM (+8.4 Tg yr-1) and AO (+11.1 Tg yr-1). Four out of five of the regions show 10 

a positive post-2007 shift in waste emissions of 0.4-1.4 Tg yr-1, SA is the only region with a slight decrease (-0.03 Tg yr-1). 

The small increase in wetland emissions since 2007 derived from the inversion, mainly from EA (3.4 Tg yr-1), agrees well 

bottom-up estimates for wetland emission trends, for example the 3% increase found by McNorton et al. (2016a). The posterior 

shows a negative shift in posterior biomass burning emissions 11.8±6.4% (-2.9 Tg yr-1) for the 2007-2015 period relative to 

2003-2006, which is in partial agreement with the 3.7 Tg CH4 yr-1 decrease derived by Worden et al. (2017) for the 2008-2014 15 

period relative to 2001-2007. This shift occurs in all five regions, with the largest decrease in AO (-1.2 Tg yr-1). Overall the 

derived increase in energy sector, waste and wetland emissions coupled with the decrease in biomass burning emissions agree 

well with a recent budget review (Saunois et al. 2017). 

 

The post-2007 posterior emission growth occurs mainly in the energy (3.4±1.0 Tg yr-2) and wetland (1.4±1.0 Tg yr-2) sectors. 20 

For the entire period most of the posterior energy sector growth occurred in AM (1.2 Tg yr-2) and AO (1.5 Tg yr-2), with a 

smaller proportion from NA (0.6 Tg yr-2) and SA (0.2 Tg yr-2) (Figure 7 and Table 5). The recent EDGAR v4.3.2 inventory 

(Janssens-Maenhout et al., 2017) for energy sector emissions shows AM and AO growth of 1.0 Tg yr-2 and 2.4 Tg yr-2, 

respectively, for 2003-2012. These are, smaller than the 2.2 Tg yr-2 and 3.1 Tg yr-2 shown by our inversion for the same period. 

A majority of prior AM energy sector emissions originate from energy for buildings in Nigeria and Eastern Africa, fuel 25 

exploitation from the Middle East, the Niger Delta and South Africa, and pipelines in Western Africa, Algeria and The Middle 

East. The regional aggregation of fluxes in our inversion system prevents sub-regional attribution, as a result we are unable to 

diagnose more specific posterior spatial patterns, but our results suggest on a regional scale, emissions are underestimated in 

both magnitude and growth rate in the prior. For the AO energy sector, a majority of prior emissions, and therefore the posterior 

increases, originate from energy for buildings in India, China and South-East Asia, fuel exploitation in Eastern China, Japan, 30 

India, South East Asia and Eastern Australia, refineries in Northern India, Eastern China, Japan and Indonesia, and pipelines 

in India Eastern China, Eastern Australia and New Zealand. The growth in emissions in EA in EDGAR v4.3.2 for 2003-2012 

(1.4 Tg yr-2) is not seen in our inversion for the same region and period (-2.2 Tg yr-2). 
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During the 2008-2012 period NA energy sector emissions were found to be 11.4 Tg yr-1 (+66%) higher than the 2003-2015 

(excluding 2008-2012) average, resulting in uncertainty in the NA growth rate (Figure 6). These findings are also present in 

INV-CH4, which shows an 11.8 Tg yr-1 increase over the same period. This period of anomalously high emissions is not 

present in the prior and therefore, is due to the assimilated observations. These high emissions may be associated with oil or 

natural gas extraction (Helmig et al., 2016). During periods of high NA energy sector emissions, the EA energy sector 5 

emissions are reduced and vice-versa, suggesting a possible dipole caused by the inversion. This suggests increased uncertainty 

in the derived EA and NA energy sector emissions, possibly due to a paucity of observations over these regions.  

 

Posterior wetland emission estimates show a growth of 0.8 Tg yr-2 for the 2003-2015 period, which increases to 1.4 Tg yr-2 for 

the 2007-2015 period. A majority of this growth occurs in EA (+0.5 Tg yr-2). The four remaining emission sectors all have a 10 

global annual change less than ±0.5 Tg yr-2. 

 

For the posterior time series, OH concentrations in INV-FULL and INV-CH4 are relatively constant throughout the period 

2007-2015 (Figure 6) but relative to their 2003-2006 concentrations these values are smaller by 1.8±0.4% and 0.3±0.5%, 

respectively. The larger drop post-2007 in INV-FULL OH concentration, relative to INV-CH4, highlights the importance of 15 

including δ13CH4 in the inversion. A decrease in OH as a contributor to the renewed growth agrees well with previous simple 

global box models (Rigby et al., 2017; Turner et al., 2017). The OH shift found here is smaller in magnitude than the -8% shift 

between 2004 and 2014 derived by Rigby et al., (2017) and the -7% shift between 2003 and 2016 derived by Turner et al., 

(2017). The posterior OH error is reduced from the prior estimate of 2% to 1.8%, which, although a reduction, is similar to the 

modelled post-2007 OH decrease. The decrease in OH contributes to a decrease in δ13CH4 and an increase in global CH4. 20 

Section 3.5 details analysis of OH sensitivity. 

 

3.4 Source and Sink Attribution 

Analysis performed on our inversion results using the box model approach described by McNorton et al. (2016b) suggests that 

~30% of the sustained CH4 growth post-2007 can be explained by decreased OH, while ~60% and ~10% is attributed to 25 

increased energy sector and wetland emissions (Table 5). The shift in emissions between 2003-2006 and 2007-2015 is broadly 

consistent for each sector for three different inversions, INV_FULL, INV_CH4 and INV_FIXED (fixed annual emissions, see 

below) (Table 6). We investigated source and sink contribution to the negative δ13CH4 trend using simple one box model 

analysis, outlined in the appendix of McNorton et al. (2016b), and posterior estimates from INV-FULL. Results show that 

post-2007 changes in energy sector (+0.15‰), biomass burning (-0.08‰), wetland (-0.05‰), waste sector (-0.03‰) and 30 

agricultural (-0.01‰) emissions, as well as OH (-0.12‰), contributed to the observed trend.  
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3.5 Sensitivity Tests 

To test the robustness of the inversion to changes in prior error estimates we performed nine perturbation experiments (S1-

S9). Monthly source errors were perturbed between 10% and 100%, and yearly OH errors from 0% to 10% (Figure 8 and Table 

7). For small error perturbations, the inversion results do not change much relative to INV-FULL (Figure 8 and Table 8). 

However, when the emission errors are reduced from 50% to 10% (S4) the posterior energy emissions estimates deviate from 5 

the control (INV-FULL) inversion, with a mean bias of 60.5 Tg yr-1. We consider these large ranges in posterior estimates to 

be an unrealistic representation of interannual variability in energy sector emissions (Figure 8), which suggests the model fails 

to provide reasonable posterior estimates when the prior emission error is set too low. For most cases of increased emission 

errors the OH change is similar to the control. However, for 100% emission errors (S6) the agricultural emissions are further 

reduced, from 82.8 Tg yr-1 in the prior and 72.1 Tg yr-1 in INV-FULL, to 64.1 Tg yr-1. In this case OH is only reduced by 0.5% 10 

post-2007, relative to 2003-2006, compared to 1.8% in INV-FULL. This results in a smaller OH contribution to the post-2007 

CH4 growth.  

 

For large or small OH errors (S3: 10%, S1: 1%) the posterior OH is decreased by 18% or 2%, respectively, compared to the 

prior OH. Assuming no change in OH (S9) post-2007 shifts in biomass burning, energy sector and wetland emissions relative 15 

to 2003-2006 are required to fit observations in the inversion. In this scenario biomass burning emissions decrease globally by 

-11.5±3.8% (-2.9 Tg yr-1) and in AO by -16.1±17.9% (-1.2 Tg yr-1). Energy sector emissions increase globally by 13.6±2.7% 

(+20.6 Tg yr-1), in NA by 42.9±12.9% (+7.7 Tg yr-1) and in AO by 36.7±5.1% (+12 Tg yr-1). Wetland emissions increase 

globally by 3.6±1.8% (+5.8 Tg yr-1). The sign and spatial distribution of these changes are similar to those seen in INV-FULL 

although the magnitude in post-2007 changes is typically increased in S9 (see Section 3.2), which is expected as the necessary 20 

increased growth rate is allocated more to emission changes when OH is assumed constant. 

 

The sensitivity analyses highlight that the prior uncertainty can have a noticeable influence on the posterior estimates. In 

particular, the posterior OH is found to be sensitive to the prior error estimate, highlighting the importance of prior knowledge 

for future studies. This limits the accuracy of the magnitude of the posterior estimates. However, the spatial, temporal and 25 

sector specific relative post-2007 changes, compared to 2003-2006, remain broadly consistent between experiments. This 

shows a limitation in the comparison between prior and posterior sources/sinks but does not discount the importance of the 

results for trend detection between 2003 and 2015. 

 

We performed a synthesis inversion with no prior trend in emissions or OH (INV-FIXED), using fixed 2003 emissions, to 30 

investigate the sensitivity of the inversion to prescribed prior trend information (Figure 9). The results show an annual average 

CH4 emission growth of 2.8±0.6 Tg yr-2, a majority of which comes from the energy sector (1.8±0.6 Tg yr-2) and wetlands 

(0.7±0.5 Tg yr-2). On a global scale the sector attribution agrees well with INV-FULL but with a smaller magnitude in emission 
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trends. The reduced growth in INV-FIXED is offset by a higher negative trend in OH concentration (-0.23%yr-1), relative to 

INV_FULL (-0.14%yr-1).  

 

In absolute terms OH concentrations are 0.8% lower in INV-FIXED compared to INV-FULL, which acts to offset the lower 

emissions. OH concentrations for INV-FIXED are 1.8% lower for the 2007-2015 period, relative to the 2003-2006 period, 5 

matching the relative change from INV-FULL. Regionally, the largest trends are observed over NA (1.2±0.9 Tg yr-2), AM 

(0.9±0.3 Tg yr-2) and AO (0.7±0.4 Tg yr-2), with over half of the growth in each of those regions originating from the energy 

sector. Overall INV-FIXED shows good spatial agreement with INV-FULL when considering sector attribution but the 

magnitude of emission increases is slightly smaller. 

 10 

Tropospheric Cl only accounts for a small fraction of the total CH4 sink (~5% or less) (Kirschke et al., 2013; Hossaini et al., 

2016) but, as the kinetic fractionation of Cl reacting with CH4 is more than an order of magnitude greater than that of OH, it 

is plausible that changes in Cl could contribute to the post-2007 trend in δ13CH4. Results from an experiment that inverts for 

CL, INV-CL, (Figure 10) and the sensitivity setup with fixed OH show similar posterior fluxes. This suggests that Cl trends 

and their effect on δ13CH4 are unlikely to be an important contributor to the post-2007 CH4 trends, although it is important to 15 

note that whilst variability was applied to prior emissions and the OH field, for some years, no variability is applied to the 

prior Cl field. 

 

3.6 Posterior Error 

The robustness of the experimental setup is further investigated using the posterior error covariance matrix calculated using 20 

equation 5. By splitting the inversion into 12 month intervals emissions later in the year are constrained by fewer observations, 

possibly only by observations close to the source. The influence of this was investigated and the posterior error was found to 

be on average 12% higher for December emissions relative to the January emissions, which was broadly consistent between 

regions and sectors.  

 25 

Relatively small time independent off-diagonal error correlations are found between different regions and sectors (Figure 11). 

The posterior covariances produced using equation 5 have been normalised using the corresponding posterior standard 

deviations to provide posterior correlation values. The largest negative correlation is between EA and NA energy sector 

emissions, which suggest an artificial trade-off of our results with the increasing NA emissions over 2008-2012 being offset 

by a decrease in EA emissions over the same period. Overall the results are well constrained by the inversion. Typically, the 30 

temporal error correlation is also found to be relatively small, with the exception being the energy sector emissions. Both 

positive and negative off-diagonal error correlations are found in posterior energy estimates at a monthly resolution, possibly 

relating to the prior temporal correlation applied, as a result we typically report annual values. 
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4 Conclusions 

We have performed a synthesis inversion using a 3-D CTM to investigate the post-2007 renewed growth in atmospheric CH4 

and decline in δ13CH4. This work adds to the results from other studies, which were based on a box-model approach for source 

and sink attribution based on CH4 and δ13CH4 observations (e.g. Rigby et al., 2017). By using a 3-D CTM we have been able 

to provide detailed monthly regional attribution of 6 different emission sectors and global OH changes, evaluating both the 5 

trends over the full 2003-2015 period and shifts that occurred around 2007. We have also been able to validate these results 

using independent surface sites and recent XCH4 data available from GOSAT and TCCON. The sensitivity of the inversion 

has been tested for different prior assumptions and uncertainties. 

 

A CH4-only inversion underconstrains the solution with respect to 13CH4 observations, resulting in reduced correlation with 10 

δ13CH4 observations (R = 0.60). The agreement of the simulations with observations improved when additional 13CH4 

observations were used to constrain CH4 fluxes, with the correlation increasing to R = 0.87. The prior model based on published 

emissions does not capture the CH4 and δ13CH4 trend both at the assimilated surface site observations and in the non-assimilated 

GOSAT and TCCON data. In contrast, our derived posterior emission inventories capture both the renewed growth in CH4 

and the reduction in δ13CH4 observed from the assimilated NOAA surface sites from 2007-2015, and compare well with 15 

independent surface CH4 and δ13CH4 observations as well as with GOSAT and TCCON-derived XCH4. The independent 

validation suggests that, although the CH4 growth rate is better represented in the posterior, it is still underestimated. The 

posterior model agreement with assimilated surface data and slight bias with validation column data (TCCON and GOSAT) 

highlights a potential a posteriori model error in total column CH4 concentrations; however, this bias is small. The magnitude 

of the contribution of model transport error to this underestimation is unknown. Both prior and posterior simulations 20 

underestimate southern hemisphere CH4 concentrations, highlighting possible issues with interhemispheric transport within 

the model. The lack of independent data around the end of the CH4 ‘hiatus’ means it is difficult to evaluate model performance 

over this period (2007). 

 

Our inversion results suggest that the 2007-2015 growth in CH4 can be best explained by a 1.8±0.4% reduction in mean OH, 25 

a 12.9±2.7% increase in energy sector emissions, mainly from AM and AO, and a 2.6±1.8% increase in wetland emissions, 

mainly from EA. The expected increase in atmospheric δ13CH4 caused by increased energy sector emissions (+0.15‰) is offset 

mainly by the decrease in OH (-0.12‰), small decrease in biomass burning emissions (-0.08‰) and small increase in wetland 

emissions (-0.05‰). 

 30 

When δ13CH4 is not assimilated the trend in posterior emissions is slightly increased post-2007 and the OH decrease is smaller 

(-0.3%). By including the δ13CH4 observations a larger post-2007 OH decrease is required (-1.8%), highlighting the importance 

of including δ13CH4 within the inversion. 
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An alternative scenario, where OH is assumed constant post-2007, requires a -11.5±3.8% decrease in biomass burning 

emissions, and 13.6±2.7% and 3.6±1.8% increases in energy sector and wetland emissions. These results agree with previous 

studies, which also assumed constant OH (Nisbet et al., 2016; Schaefer et al., 2016; Worden et al., 2017). Whilst a reduction 

in OH is found to be, in part, the most likely explanation for the renewed CH4 growth, this alternative scenario with no change 5 

in OH provides an alternative explanation for the cause of the post-2007 CH4 growth. 

 

The inversion results suggest Eurasian energy sector emissions are typically overestimated by inventories and previous top-

down studies, such as the Global Carbon Budget (Saunois et al., 2016). The reduced EA emissions are found to be offset by 

an underestimate in all other regions. We find prior annual estimates of biomass burning, waste and rice to be relatively 10 

accurate, whilst agricultural estimates are overestimated. Small changes occur in the seasonal cycle of rice emissions and the 

seasonal range is underestimated in wetland emissions.  

 

Our inversion is found to be robust when small changes are made to uncertainty errors; however, large uncertainty remains 

around the accuracy of prior emissions. Assuming no prior trend in emissions reduces the required growth rate in both wetland 15 

and energy sector emissions, although they remain the main source contribution to the renewed growth post-2007. The 

reduction in the emission trend is offset by an increased negative trend in OH concentration. Overall the magnitude of the 

trends inferred varies between experiments but there is consistent agreement that both OH decrease and, wetland and energy 

sector emission increase contributed to the post-2007 growth. 

 20 

Our inversion results represent plausible scenarios for variations in CH4 sources and sinks, though several caveats exist. The 

uncertainties in the sources and sinks are somewhat subjective and we have not considered source signature and kinetic 

fractionation uncertainty. We have assumed that all uncertainties are independent of each other (excluding energy emissions). 

We have also not considered variation in other sinks (e.g. O(1D), soil). The synthesis inversions are performed over coarse 

spatial regions and only attribute emissions at the monthly scale, future studies should utilise increased observations to provide 25 

finer spatial and temporal resolution. The assumption that emissions within a region are correlated limits more specific spatial 

attribution of sources. Within a region it is likely that some posterior emissions are too high, offset by emissions being too low 

elsewhere within the domain. The choice of regional aggregation is likely to influence the synthesis inversion, which may 

result in aggregation errors causing biases in the posterior fluxes (Kaminski et al., 2001). Finally, an important question is 

whether tropospheric OH has varied in the way suggested by CH4 inversions studies. The processes causing variations in OH 30 

are complex and remain poorly quantified. Possible explanations include changes in tropospheric O3 and trends in tropospheric 

UV radiation related to global stratospheric O3 recovery. If the reduction in available OH due to increased reactive carbon 

gases is no longer being sufficiently offset by increased emissions of OH-forming nitrogen oxides, then OH concentrations 

might be in decline (Lelieveld et al., 2004). For example, Itahashi et al. (2014) showed a reduction in column NO2 growth 
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associated with the economic downturn over East Asia between 2008 and 2009, this approximately coincides with the increased 

CH4 growth. 
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Figure 1. (a) Observed surface CH4 (ppb, black line) from 2003 to 2015 at 6 selected NOAA sites and global mean. Also shown are 

results from TOMCAT simulations using prior emission estimates (blue line), posterior estimates based on a CH4 synthesis inversion 

(INV-CH4, green line) and posterior estimates based on a combined CH4 and δ13CH4 synthesis inversion (INV-FULL, red line). (b) 

Same as (a) but for observed and modelled δ13CH4. Global averages are based on site interpolations onto 180 1°-latitude bins, which 5 
are weighted by surface area. 
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Figure 2. Monthly mean XCH4 volume mixing ratio (ppb) from GOSAT between April 2009 and December 2015 (black line) for 5 

emission regions. Also shown are results from TOMCAT simulations with prior (blue) and posterior (green) emission estimates, 

both with GOSAT averaging kernels applied. Correlation coefficients, RMSE and growth rates of the model simulations and GOSAT 

in each region are shown in the panels. 5 
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Figure 3. (a) Zonally averaged monthly mean XCH4 volume mixing ratio (ppb) from GOSAT between April 2009 and December 

2015 plotted against the sine of latitude, where black denotes missing values. (b and c) Same as (a) but for TOMCAT simulations 

with prior and posterior emission estimates, respectively. GOSAT averaging kernels are applied to model simulations. 



24 

 

Figure 4. Observed monthly mean XCH4 volume mixing ratio (ppb) (blackline) at 9 TCCON sites. Also shown are results from 

TOMCAT simulations with prior (blue) and posterior (green) emission estimates, both with TCCON averaging kernels applied. 

Correlation coefficients and RMSE of the model simulations compared with TCCON are shown for each site. 
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Figure 5. Observed surface CH4 (top) and δ13CH4 (bottom) from 2003 to 2015 at 2 independent NOAA sites (black line). Also shown 

are results from TOMCAT simulations using prior emission estimates (blue line), and posterior estimates based on a combined CH4 

and δ13CH4 synthesis inversion (INV-FULL, green line). RMSE and correlation coefficients of the model simulations compared with 

observations are shown for each site. 5 
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Figure 6. (a-f) Annual CH4 emissions (Tg CH4 year-1) from different sectors for global prior (black solid line), INV-CH4 (black 

dashed line) and INV-FULL posterior (black dotted line) estimates. Regional estimates are also displayed for North America (blue), 

Eurasia (green), South America (orange), Africa and Middle East (red) and South Asia and Oceania (purple). (g) Prior and posterior 

global OH estimates for the same period. Shaded region denotes posterior error A for INV-FULL (see Eq. (5) in text). 5 
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Figure 7. Map showing regional annual mean CH4 emissions (Tg CH4 year-1) and yearly change in emissions (Tg CH4 year-2) 

calculated as a linear regression between 2003 and 2015 for INV-FULL (thin coloured bars) and prior (thick grey bars) estimates. 

Error bars represent one standard deviation of the mean posterior emissions and posterior regression errors. Note that the black 5 
borders indicate the 5 regions used for the flux partitioning.  
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Figure 8. (a-f) Annual mean CH4 emissions (Tg CH4 year-1) from different sectors for global prior (black solid line) and INV-FULL 

(black dotted line) estimates. (g) Same as (a-f) but for global mean OH (molecules cm-3). Additional lines in each panel show 

sensitivity inversions with different emission and OH uncertainties (coloured lines), and an inversion assuming no change in OH 5 
(black dashed line). 
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Figure 9. (a-f) Annual CH4 emissions (Tg CH4 year-1) from different sectors for INV-FIXED (black solid line) and INV-FULL 

posterior (black dotted line) estimates. Regional estimates are also displayed for North America (blue), Eurasia (green), South 

America (orange), Africa and Middle East (red) and South Asia and Oceania (purple). (g) Prior and posterior global OH estimates 

(molecules cm-3) for the same period. Shaded region denotes posterior error A (see Eq. (5) in text). 5 
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Figure 10. (a-f) Annual CH4 emissions (Tg CH4 year-1) from different sectors for global prior (black solid line) and INV-CL (black 

dotted line) estimates. Regional estimates are also displayed for North America (blue), Eurasia (green), South America (orange), 

Africa and Middle East (red) and South Asia and Oceania (purple). (g) Prior and posterior global tropospheric Cl estimates for the 

same period. Shaded region denotes posterior error A (see Eq. (5) in text). 5 
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Figure 11. Posterior error correlation matrix for all regions and sectors for January (top-left) and July (top-right) 2015. Posterior 

error correlation matrix for 12 months of 2015 for the Eurasian energy sector (bottom-left) and South American wetlands (bottom-

right). The plots show a subset of the total posterior error correlation matrix as an example. Values are calculated by normalising 

the posterior covariances using the corresponding posterior standard deviations.  5 
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Source Interannual 

variability 

δ13CH4 (‰) Emissions for 2003-2015 (Tg CH4 yr-1) 

   Prior Posterior 

Agriculture 

(excluding rice) 

Yes -61.3 82.8 72.1±5.4 

Biomass Burning Yes -22.2 21.1 22.5±2.2 

Energy Yes -42.6 173.5 160.1±8.9 

Rice No -62.0 33.0 33.3±4.4 

Waste Yes -55.6 69.8 68.9±5.1 

Wetlands Yes -61.0 153.8 157.2±10.2 

Soil Methantrophy 

(negative emission) 

No 22.0 -27.2 - 

Sink  Kinetic isotope 

effect 

(12CH4/
13CH4) 

Average concentration for 2003-2015 

(molecules cm-3) 

  Prior Posterior 

OH Yes  (2003-2007) 1.0039 0.98×106 0.93×106 

Cl No 1.06 1.3×103 1.3×103 

O(1D) No 1.013 - - 

Table 1. Source and sink isotope signatures used in the TOMCAT 3-D CTM. Values for prior emissions (Kirschke et al., 2013 

McNorton et al., 2016a, Schwietzke et al., 2016) and isotope signatures (Saueressig et al., 2001; Mikaloff-Fletcher et al., 2004; Feilberg 

et al., 2005; Whiticar et al., 2007; Schwietzke et al., 2016) are based on previous studies. Note that the soil sink is not optimised and 

modelled as a negative emission. Posterior emission estimates are shown with posterior error estimates. 

5 
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Site 

Code 

Site Name Latitude 

(◦N) 

Longitude 

(◦E) 

Altitude 

(m) 

Measurements 

ALT Alert, Canada 82.5 -62.5 190.0 CH4, δ13CH4 

ASC Ascension Island, UK -8.0 -14.4 85.0 CH4, δ13CH4 

AZR Terceira Island, Portugal 38.8 -27.4 19.0 CH4, δ13CH4 

BRW Barrow, USA 71.3 -156.6 11.0 CH4, δ13CH4 

CBA Cold Bay, USA 55.2 -162.7 21.3 CH4 

HBA Halley Station, UK -75.6 -26.2 30.0 CH4 

ICE Storhofdi, Iceland 63.4 -20.3 118.0 CH4 

KUM Cape Kumukahi, USA 19.5 -154.8 3.0 CH4, δ13CH4 

MHD Mace Head, Ireland 53.3 -9.9 5.0 CH4, δ13CH4 

MLO Mauna Loa, USA 19.5 -155.6 3397.0 CH4, δ13CH4 

NWR Niwot Ridge, USA 40.1 -105.6 3523.0 CH4, δ13CH4 

PAL Pallas-Sammaltunturi, 

Finland 

68.0 24.1 565.0 CH4 

PSA Palmer Station, USA -64.9 -64.0 10.0 CH4 

RPB Ragged Point, Barbados 13.2 -59.4 15.0 CH4 

SMO Tutuila, American Samoa -14.2 -170.6 42.0 CH4, δ13CH4 

SPO South Pole, USA -90.0 -24.8 2810.0 CH4, δ13CH4 

STM Ocean Station M, Norway 66.0 2.0 0.0 CH4 

SUM Summit, Greenland 72.6 -38.4 3209.5 CH4 

THD Trinidad Head, USA 41.1 -124.2 107.0 CH4 

WLG Mt. Waliguan, China 36.3 100.9 3810.0 CH4, δ13CH4 

ZEP Ny-Alesund, 

Norway/Sweden 

78.9 11.9 474.0 CH4 

Table 2. NOAA measurements from 2003 to 2015 used in the synthesis inversions of CH4 (Dlugokencky et al., 2017) and δ13CH4 

(White et al., 2017). 
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Site Name Latitude 

(◦N) 

Longitude 

(◦E) 

Altitude 

(km) 

Reference 

Ny-Alesund, Norway 78.9 11.9 0.02 Notholt et al. 2017a 

Sodankyla, Finland 67.4 26.6 0.19 Kivi et al. 2017 

Bremen, Germany 53.1 8.9 0.03 Notholt et al. 2017b 

Garmisch, Germany 47.5 11.1 0.74 Sussmann et al. 2017 

Park Falls, USA 45.9 -90.3 0.44 Wennberg et al. 2017a 

Lamont, USA 36.6 -97.5 0.32 Wennberg et al. 2017b 

Izana, Spain 28.3 -16.5 2.37 Blumenstock et al. 2017 

Darwin, Australia -12.5 130.9 0.04 Griffith et al. 2017a 

Wollongong, Australia -34.4 150.9 0.03 Griffith et al. 2017b 

Table 3. TCCON sites (Wunch et al. 2011) used for evaluation of the TOMCAT simulations. 
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Region Prior Annual Emissions by Sector (Tg CH4 year-1) 

 Biomass 

Burning 

Energy Waste Rice Wetlands Agricultu

re 

Total 

N. America 1.9 20.7 10.9 0.5 17.7 10.6 71.3 

Eurasia 2.9 87.0 21.7 2.1 15.6 17.8 165.9 

S. America 3.2 7.2 5.1 0.5 47.2 17.2 82.3 

Africa & Middle E. 7.2 26.6 7.2 0.8 33.2 10.4 85.4 

S. Asia & Oceania 5.8 32.0 24.9 29.0 40.1 26.8 177.8 

Global 21.1 173.5 69.8 33.0 153.8 82.8 571.0 

Region Posterior Annual Emissions by Sector (Tg CH4 year-1) 

 Biomass 

Burning 

Energy Waste Rice Wetlands Agricultu

re 

Total 

N. America 1.2±0.6 22.8±4.0 11.2±2.4 0.5±0.1 22.0±4.0 11.0±2.2 68.7±7.3 

Eurasia 2.3±1.0 54.4±11.8 21.7±4.8 2.5±0.6 22.5±3.7 11.2±3.1 114.6±13.9 

S. America 3.8±1.1 8.7±1.7 5.1±1.2 0.5±0.1 44.0±10.6 16.6±3.8 78.7±15.1 

Africa & Middle E. 8.6±1.9 35.4±6.3 7.2±1.6 0.8±0.2 30.8±7.4 10.2±2.3 93.1±12.5 

S. Asia & Oceania 6.6±1.6 38.9±7.2 23.6±5.4 29.0±6.7 37.9±8.6 23.1±5.6 159.1±16.7 

Global 22.5±2.9 160.1±15.8 68.9±7.8 33.3±6.8 157.2±16.5 72.1±8.1 537.5±26.5 

Table 4. Regional CH4 emissions based on prior (top) and synthesis inversion estimates (bottom) between 2003 and 2015. Note the 

total global emission, but not the total regional emissions, include the supplementary emissions (geological, hydrates, oceans and 

termites). Uncertainties are also shown for posterior emissions, all prior emissions have a 50% uncertainty. 
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Region Annual Emission Growth by Sector (Tg CH4 year-2) 

 Biomass 

Burning 

Energy Waste Rice Wetlands Agriculture Total 

N. America -0.06 +0.59 +0.03 +0.00 +0.28 +0.11 +0.95 

Eurasia -0.12 -0.58 +0.13 +0.00 +0.48 -0.08 -0.17 

S. America -0.22 +0.20 +0.01 +0.00 -0.15 +0.09 -0.06 

Africa & Middle E. -0.05 +1.18 +0.06 +0.00 +0.06 +0.07 +1.33 

S. Asia & Oceania +0.25 +1.51 +0.23 -0.10 +0.14 +0.00 +2.03 

Global -0.20 +2.91 +0.46 -0.10 +0.81 +0.20 +4.08 

Table 5. Regional CH4 emission growth trends based on synthesis inversion estimates between 2003 and 2015. 
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Simulation Annual Emission by Sector for the 2003-2006 Period (Tg CH4 year-1) 

 Biomass Burning Energy Waste Rice Wetlands Agriculture Total 

INV_FULL 24.5 146.9 66.3 34.6 154.4 71.6 518.9 

INV_CH4 24.4 156.0 66.3 31.1 160.7 75.9 529.8 

INV_FIXED 21.8 143.8 66.1 34.6 155.4 71.1 514.6 

 Annual Emission by Sector for the 2007-2015 Period (Tg CH4 year-1) 

 Biomass Burning Energy Waste Rice Wetlands Agriculture Total 

INV_FULL 21.6 165.9 70.1 32.7 158.4 72.3 545.8 

INV_CH4 20.9 169.9 69.6 30.0 171.9 78.7 557.7 

INV_FIXED 21.8 154.5 68.7 34.0 158.1 70.9 536.1 

                          Difference in Annual Emission Between 2007-2015 and 2003-2006 (Tg CH4 year-1) 

 Biomass Burning Energy Waste Rice Wetlands Agriculture Total 

INV_FULL -2.9 +19.0 +3.8 -1.9 +4.0 +0.7 +26.9 

INV_CH4 -3.5 +13.9 +3.3 -1.1 +11.2 +2.8 +27.9 

INV_FIXED 0.0 +10.7 +2.6 -0.6 +2.7 -0.2 +21.5 

Table 6. Posterior annual CH4 emission for the period of near-zero atmospheric growth (2003-2006) and the renewed growth (2007-

2015) based on three different inversion simulations. Note the total emissions, include the supplementary emissions (geological, 

hydrates, oceans and termites). 
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Source/sink Sensitivity Test Error 

 Control S1 S2 S3 S4 S5 S6 S7 S8 S9 

Wetlands 50% 50% 50% 50% 10% 20% 100% 100% 100% 50% 

Rice 50% 50% 50% 50% 10% 20% 100% 100% 100% 50% 

Agriculture 

(excluding rice) 

50% 50% 50% 50% 10% 20% 100% 50% 50% 50% 

Waste 50% 50% 50% 50% 10% 20% 100% 50% 50% 50% 

Energy 50% 50% 50% 50% 10% 20% 100% 50% 50% 50% 

Biomass Burning 50% 50% 50% 50% 10% 20% 100% 50% 50% 50% 

OH 2% 1% 3% 10% 2% 2% 2% 2% 3% 0% 

Table 7. Suite of inversion sensitivity experiments with varying errors on source and sink estimates. 
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Simulation Annual Emission by Sector for the 2003-2006 Period (Tg CH4 year-1) 

 Biomass 

Burning 

Energy Waste Rice Wetlands Agriculture Total 

Control 24.5 146.9 66.3 34.6 154.4 71.6 518.9 

S1 24.9 150.4 66.8 35.0 158.7 72.3 530.4 

S2 24.1 143.5 65.9 34.3 150.2 70.9 507.3 

S3 23.2 135.2 64.7 33.4 139.9 69.2 479.6 

S4 23.7 146.7 67.8 33.3 150.7 80.3 515.2 

S5 23.9 146.5 67.3 33.7 152.1 78.5 515.9 

S6 25.0 146.6 68.2 36.3 155.2 63.4 524.3 

S7 24.7 147.7 66.2 34.7 152.1 72.1 518.5 

S8 24.2 143.8 66.0 34.4 145.4 71.9 504.9 

S9 25.1 152.0 67.0 35.2 160.7 72.6 535.8 

 Annual Emission by Sector for the 2007-2015 Period (Tg CH4 year-1) 

 Biomass 

Burning 

Energy Waste Rice Wetlands Agriculture Total 

Control 21.6 165.9 70.1 32.7 158.4 72.3 545.8 

S1 22.0 170.5 70.7 33.2 164.0 73.2 560.6 

S2 21.2 161.3 69.4 32.3 152.8 71.5 530.9 

S3 20.2 149.7 67.8 31.3 138.8 69.3 493.7 

S4 19.9 250.3 70.5 33.3 156.9 82.7 626.5 

S5 20.4 174.0 70.1 33.6 157.7 80.3 550.7 

S6 22.5 169.8 73.5 32.4 158.8 64.3 560.2 

S7 21.7 167.0 70.3 30.7 156.1 74.0 545.4 

S8 21.1 161.7 69.9 30.3 147.1 73.8 527.4 

S9 22.2 172.6 71.0 33.3 166.5 73.6 567.2 

Table 8. Posterior annual CH4 emission for the period of near-zero atmospheric growth (2003-2006) and the renewed growth (2007-

2015) based on suite of inversion sensitivity experiments with varying errors on source and sink estimates. Note the total emissions, 

include the supplementary emissions (geological, hydrates, oceans and termites). 


