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Abstract 17 

Atmospheric inverse modelling has become an increasingly useful tool for evaluating emissions 18 

of greenhouse gases including methane, nitrous oxide and synthetic gases such as 19 

hydrofluorocarbons (HFCs). Atmospheric inversions for emissions of CO2 from fossil fuel 20 

combustion (ffCO2) are currently being developed. The aim of this paper is to investigate 21 

potential errors and uncertainties related to the spatial and temporal prior representation of 22 

emissions and modelled atmospheric transport for the inversion of ffCO2 emissions in the U.S. 23 

state of California. We perform simulation experiments based on a network of ground-based 24 

observations of CO2 concentration and radiocarbon in CO2 (a tracer of ffCO2), combining prior 25 

(bottom-up) emission models and transport models currently used in many atmospheric studies. 26 

The potential effect of errors in the spatial and temporal distribution of prior emission estimates 27 

is investigated in experiments by using perturbed versions of the emissions estimates used to 28 
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create the pseudo data. The potential effect of transport error was investigated by using three 29 

different atmospheric transport models for the prior and pseudo data simulations.  We find that 30 

the magnitude of biases in posterior state-total emissions arising from errors in the spatial and 31 

temporal distribution in prior emissions in these experiments are 1-15% of posterior state-total 32 

emissions, and generally smaller than the 2-σ uncertainty in posterior emissions. Transport error 33 

in these experiments introduces biases of -10% to +6% in posterior state-total emissions. Our 34 

results indicate that uncertainties in posterior state-total ffCO2 estimates arising from the choice 35 

of prior emissions or atmospheric transport model are on the order of 15% or less for the ground-36 

based network in California we consider.  We highlight the need for temporal variations to be 37 

included in prior emissions, and for continuing efforts to evaluate and improve the representation 38 

of atmospheric transport for regional ffCO2 inversions. 39 

1. Introduction 40 

The U.S. state of California currently emits roughly 100 Tg C of fossil fuel CO2 (ffCO2) each 41 

year (CARB, 2017), or approximately 1% of global emissions (Boden et al., 2016). The passing 42 

of California’s “Global Warming Solutions Act” (AB-32) in 2006 requires that overall 43 

greenhouse gas emissions in California be reduced to their 1990 levels by 2020 (a 15% reduction 44 

compared to business as usual emissions) with further reductions of 40% below 1990 levels 45 

planned for 2030, and 80% below by 2050. The California Air Resources Board (CARB) is 46 

responsible for developing and maintaining a “bottom-up” inventory of greenhouse gas 47 

emissions to verify these reduction targets. However, previous studies have shown such 48 

inventories may have errors or incomplete knowledge of sources (e.g. Marland et al, 1999; 49 

Andres et al., 2012). Uncertainties in inventories of annual ffCO2 emissions from most 50 

developed countries (i.e. UNFCCC Annex I and Annex II) have been estimated to be between 5-51 
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10% (Andres et al., 2012), and uncertainties can become much larger at subnational levels 52 

(Hogue et al., 2016). In a recent study Fischer et al., (2017) found discrepancies between bottom-53 

up gridded inventories of ffCO2 emissions were 11% of California’s state total emissions. 54 

Previous research has shown that inferring ffCO2 emissions from atmospheric measurements, 55 

including measurements of ffCO2 tracers, could provide independent emissions estimates on 56 

urban to continental scales (e.g. Basu et al., 2016; Fischer et al., 2017; Graven et al. 2018; 57 

INFLUX ref). Such estimates are derived from observations through the use of an atmospheric 58 

chemical transport model and a suitable inverse method in a process often referred to as “inverse 59 

modelling” or an “inversion”. Distinguishing enhancements of CO2 due to anthropogenic or 60 

biogenic sources can be done using measurements of radiocarbon in CO2 (Δ
14CO2), since CO2 61 

emitted from fossil fuel combustion is devoid of 14CO2 due to radioactive decay (Levin et al., 62 

2003).  63 

Recent studies have shown that both simulated (Fischer et al. 2017) and observed (Graven et al. 64 

2018) measurements of Δ14CO2 at a network of sites could be used to estimate monthly mean 65 

California ffCO2 emissions in a regional inversion with posterior uncertainties of ~5-8%, levels 66 

that are useful for the evaluation of bottom-up ffCO2 emissions estimates. Furthermore, Graven 67 

et al., 2018 found their posterior emissions estimates were not significantly different from the 68 

California Air Resources Board’s reported ffCO2 emissions, providing tentative validation of 69 

California’s reported ffCO2 emissions in 2014-15. In another study using aircraft-based Δ14CO2 70 

measurements, Turnbull et al. (2011) found ffCO2 emissions from Sacramento County in 71 

February 2009 were broadly consistent (mean difference of -17%, range: -43% to +133%) with 72 

the Vulcan emissions estimate  (Gurney et al., 2009). 73 
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Although atmospheric inversions may provide a method for estimating emissions that is useful 74 

for evaluating emissions reduction policies, such as AB-32, systematic errors can arise from the 75 

atmospheric transport and prior emission models (e.g., Nassar et al., 2014; Liu et al., 2014; 76 

Hungershoefer et al., 2010; Chevallier et al., 2009, Gerbig et al., 2003). Comparisons of CO2 77 

simulated by different transport models have been conducted globally (e.g. Gurney et al., 2003, 78 

Peylin et al. 2013), and on the European continental scale (Peylin et al., 2011). The latter found 79 

that transport model error resulted in differences in modelled ffCO2 concentrations that were 2-3 80 

times larger than using the same transport model but different prior emissions, depending on the 81 

location and time of year. However, comparisons of ffCO2 simulated by different high resolution 82 

models (25 km or less) at regional scales are still lacking.  83 

The objective of this paper is to examine the sensitivity of a regional inversion for Californian 84 

ffCO2 emissions to errors in the prior emissions estimate and transport model.  We build on 85 

previous work by Fischer et al. (2017) that developed an Observation System Simulation 86 

Experiment to estimate the uncertainties in both California statewide ffCO2 emissions and 87 

biospheric fluxes that might be obtained using an atmospheric inversion. Their inversion was 88 

driven by a combination of in situ tower measurements, satellite column measurements from 89 

OCO-2, prior flux estimates, a regional atmospheric transport modelling system, and estimated 90 

uncertainties in prior CO2 flux models, ffCO2 measurements using radiocarbon, OCO-2 91 

measurements, and in atmospheric transport. In contrast to Fischer et al., 2017 we focus only on 92 

ffCO2 emissions and use a network of flask samples without incorporating satellite 93 

measurements.  94 

Our approach is to use simulation experiments to quantify representation and transport error 95 

using the inversion setup and the observation network from Graven et al. (2018) as a test case. 96 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-473
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 23 May 2018
c© Author(s) 2018. CC BY 4.0 License.



5 

 

Specifically we test whether the inversion can estimate the “true” emissions that were used to 97 

produce the pseudo data, within the uncertainties, when the prior emissions estimate includes 98 

spatial and temporal representation errors within the scope of current emissions estimates 99 

(Vulcan v2.2 and EDGAR v4.2 FT2010). We further test whether the inversion can estimate 100 

“true” emissions, within the uncertainties, when the transport model used for the prior simulation 101 

is different from the transport model used to produce the pseudo data, emulating transport error.  102 

2. Data and Methods 103 

The analysis approach applies a Bayesian inversion developed from previous work that combines 104 

atmospheric observations, atmospheric transport modelling, prior flux models, and an 105 

uncertainty specification (Jeong et al., 2013; Fischer et al., 2017). Here, the inversion scales prior 106 

emission estimates in 15 regions (Figure 1a, Table 1) termed “air basins”, classified by the 107 

California Air Resources Board for air quality control 108 

(https://www.arb.ca.gov/desig/adm/basincnty.htm). 109 

2.1 Observation Network  110 

As a test case to explore uncertainties in ffCO2 inversions, we use the observation network of 9 111 

tower sites in California that was used to collect flask samples for measurements of CO2 and 112 

radiocarbon in CO2 in 2014-15 (Figure 1a) (Graven et al. 2018). Three month-long campaigns 113 

were conducted in May 2014, October-November 2014 and January-February 2015, with flasks 114 

sampled approximately every 2-3 days at 22:30 GMT (14:30 local standard time). The time of 115 

observation was chosen as the planetary boundary layer is usually deepest in the afternoon so 116 

that errors in the modelled boundary layer concentration are considered smaller (Jeong et al., 117 

2013), and afternoon concentrations are more representative of large regions.  118 
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The observed ffCO2 concentration at a given site can be calculated by (Levin et al., 2003; 119 

Turnbull et al. 2009): 120 

𝑓𝑓𝐶𝑂2 = 𝐶𝑜𝑏𝑠 (
∆𝑏𝑔−∆𝑜𝑏𝑠

∆𝑏𝑔− ∆𝑓𝑓
) +  𝛽  (1) 121 

Where Cobs is the total observed CO2 concentration at a given site. Δ refers to Δ14C, the ratio of 122 

14C/C reported in part per thousand deviation from a standard ratio, including corrections for 123 

mass-dependent isotopic fractionation and sample age (Stuiver and Polach, 1977). Δbg, Δobs and 124 

Δff are the Δ14CO2 of background, observed and fossil fuel CO2, respectively, where Δff is -125 

1000‰ since ffCO2 is devoid of 14CO2. The term β is a correction for the effect of other 126 

influences on Δ14CO2, principally heterotrophic respiration (Turnbull et al. 2009). Following 127 

Fischer et al. (2017), total observational uncertainty for ffCO2 was assumed to be 1.5 ppm (1-σ). 128 

This is consistent with Graven et al. (2018), who estimated total uncertainty in ffCO2 for 129 

individual samples of 1.0 to 1.9 ppm. 130 

2.2 Prior Emissions Estimates and Prior Uncertainty 131 

The two prior emissions estimates used here are gridded products produced by EDGAR (version 132 

FT2010) (EDGAR, 2011) for the year 2008 and Vulcan (version 2.2) for 2002 (Gurney et al., 133 

2009). EDGAR is produced at an annual resolution whilst Vulcan has an hourly resolution.  The 134 

two models use different emissions data and different methods to spatially allocate emissions 135 

with annually averaged statewide emissions differing by 17.8 TgC (~19% of mean emissions), 136 

and up to 11.6 TgC for individual air basins of California (Table 1). Although our campaigns 137 

took place in 2014-2015, we use emissions estimates from Vulcan for the year 2002 and EDGAR 138 

for 2008 as emissions estimates are not available from Vulcan and EDGAR for 2014-15. The 139 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-473
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 23 May 2018
c© Author(s) 2018. CC BY 4.0 License.



7 

 

difference in state total emissions between 2002, 2008 and 2014-15 is 3-6 TgC (CARB, 2017), 140 

much less than the EDGAR-Vulcan difference of 17.8 TgC. 141 

We estimate prior uncertainty in the same way as in Fischer et al. (2017), using a comparison of 142 

four gridded emissions estimates in California (Vulcan v2.2, EDGAR FT2010, ODIAC v2013 143 

and FFDAS v2) as well as a comparison across an ensemble of emissions estimates for one 144 

model (FFDAS v2, Asefi-Najafabady et al.,2014). The relative 1-σ standard deviation is between 145 

8% and 100% for individual air basins (Table 1), and this is what we use to specify the 1-σ 146 

uncertainty in the prior emissions from each air basin. This estimate of prior uncertainty is 147 

referred to as “SD prior uncertainty”. We also conduct tests with an alternative prior uncertainty 148 

of 70% for each air basin (referred to as “70% prior uncertainty”). This was done to test the 149 

sensitivity of our results to the choice of prior uncertainty. Emissions occurring outside 150 

California were assumed to have an uncertainty of 100% for both cases. 151 

2.3 Atmospheric Transport Models 152 

We simulate ffCO2 using three different atmospheric transport models outlined in Table 2. These 153 

models are commonly used in regional atmospheric transport modelling and greenhouse gas 154 

inversion studies but to date have not been compared in California. Two of the transport models 155 

use different versions and parameterizations of the Weather Research and Forecast (WRF) model 156 

combined with the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The third 157 

transport model uses meteorology from the UK Met Office’s Unified Model (UM) combined 158 

with the Numerical Atmospheric dispersion Modelling Environment (NAME).  159 

The first WRF-STILT model is run at Lawrence Berkeley National Laboratory (WS-LBL, 160 

Fischer et al. 2017; Jeong et al. 2016; Bagley et al. 2017) and uses WRF version 3.5.1 (Lin, 161 
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2003; Nehrkorn et al., 2010). Estimates for Planetary Boundary Layer Height (PBLH) are based 162 

on the Mellor–Yamada–Nakanishi–Niino version 2 (MYNN2) parameterization (Nakanishi and 163 

Niino 2004, 2006). As in Jeong et al. (2016), Fischer et al. (2017) and Bagley et al. (2017), two 164 

land surface models (LSMs) are used depending on the location of the observation site. A 5-layer 165 

thermal diffusion land surface model is used in the Central Valley for the May campaign whilst 166 

the Noah LSM (Chen et al., 2001) is used in the remaining campaigns and regions of California. 167 

We implement multiple nested domains, with the outermost domain spanning 16-59°N and 154-168 

137°W with a 36km resolution, a second domain of 12km resolution over western North 169 

America, and a third domain of 4km resolution over California. Two urban domains of 1.3 km 170 

resolution are used in the San Francisco Bay area and the metropolitan area of Los Angeles. 171 

Footprints describing the sensitivity of an observation to surface emissions are calculated by 172 

simulating 500 model particles and tracking them backward for 7 days. The footprint of a given 173 

site and observation time is produced hourly for particles below 0.5 times the PBLH. 174 

The second WRF-STILT model is from CarbonTracker-Lagrange (WS-CTL), an effort led at 175 

NOAA to produce standard footprints for greenhouse gas observation sites in North America 176 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange). WS-CTL uses WRF version 177 

2.1.2 and the Yonsei University (YSU) (Hong et al., 2006) PBLH scheme coupled with the Noah 178 

land surface model and the MM5 (fifth generation Pennsylvania State University-National 179 

Center for Atmospheric Research Mesoscale Model, Grell et al., 1994) similarity theory-based 180 

surface layer scheme. As with WS-LBL, simulations are run for 7 days and particles below 0.5 181 

times the PBLH are used in the calculation of the footprint. Footprints have a spatial resolution 182 

of 0.1° for the first 24 hours and 1° for the remaining 6 days. Footprints are hourly dis-183 

aggregated for the first 24 hours and then aggregated for the remaining 6 days. The 0.1° spatial 184 
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resolution domain is 31° longitude by 21° latitude with the domain centered on the release 185 

location. The 1° resolution has a domain of 170°E to 50°E longitude and 10° N to 80° N latitude. 186 

The WRF domain covers most of continental North America (Fig. 1 in Nehrkorn et al., 2010) 187 

with 30 km resolution and has a finer nest with 10 km spatial resolution over the continental 188 

United States. WS-CTL simulates footprints for 500 particles released over a 2-hour period 189 

between 21:00 and 23:00 GMT (13:00 and 15:00 PST). An exception is Sutro Tower (STR), 190 

where footprints are only available for an instantaneous release of 500 particles at 22:10 GMT. 191 

Walnut Grove (WGC) footprints are available only for a release height of 30m a.g.l, which is 192 

lower than the sampling height of 91m a.g.l. used in the observation campaign (Graven et al. 193 

2018) and used in the other two transport models. Footprints were available for 2014 but not for 194 

2015, so the WS-CTL model is used for simulations of the May and Oct-Nov 2014 campaigns 195 

but not for the Jan-Feb 2015 campaign.  196 

The third model, UM-NAME, is the UK Met Office’s NAME  model, Version 3.6.5 (Jones et al., 197 

2007), driven by meteorology from the Met Office’s global numerical weather prediction model, 198 

the Unified Model (UM) (Cullen et al., 1993). The UM model has a horizontal resolution of ~25 199 

km up to July 2014, covering the period of the May 2014 campaign. The horizontal resolution 200 

was then increased to ~17 km covering both the October-November 2014 and January-February 201 

2015 campaigns. The temporal resolution of the UM meteorology is every 3 hours for all 202 

campaigns. Following a similar approach as for the WRF-STILT models, 500 particles were 203 

released instantaneously at 22:30 GMT and simulated for hourly dis-aggregated footprints for the 204 

first 24 hours and aggregated for the remaining 6 days. The footprints are calculated for the same 205 

horizontal resolution as the UM meteorology (25 or 17km), where the particles present in the 206 
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layer between 0 and 100 m above ground level are used to calculate the footprint. The 207 

computational domain covers 175.0°W to 75°W longitude and 6.0°N to 74°N latitude. 208 

Simulated ffCO2 signals (the enhancement of CO2 concentration due to ffCO2 emissions within 209 

the model domain) are calculated by taking the product of the footprint and an emissions 210 

estimate.  Following previous work, we assume a transport model uncertainty of 0.5 times the 211 

mean monthly signal in the pseudo-observations at each site (Jeong et al., 2013; Fischer et al 212 

2017).  213 

Ten ensembles were run for UM-NAME to test the effect of random errors on the calculation of 214 

the footprint. The RMSE was within 10% of the mean monthly signal for most observation sites. 215 

This is similar to the findings of Jeong et al. (2012), which the transport model uncertainty is 216 

based on. Two observation sites (THD and VTR) had slightly higher RMSE, but both were 217 

within 20% of the mean monthly signal.  218 

2.4 Inversion Method 219 

Our inversion method is a Bayesian synthesis inversion to scale emissions in separate regions of 220 

California. We follow the same approach as Fischer et al. (2017) to solve for a vector of scaling 221 

factors, λ, for 15 air basins and a 16th region representing the area outside of California. Unlike 222 

Fischer et al. (2017), we do not split the San Joaquin Valley into two regions. The inversion uses 223 

the set of observations, c, and the matrix of predicted ffCO2 signals from each air basin, K, to 224 

optimize the cost function J: 225 

𝐽𝜆 = (𝑐 − 𝑲𝜆)𝑇𝑹−1(𝑐 − 𝑲𝜆) + (𝜆 − 𝜆𝑝𝑟𝑖𝑜𝑟)𝑇𝑸𝜆
−1(𝜆 − 𝜆𝑝𝑟𝑖𝑜𝑟) (2) 226 

λprior is the prior estimate of the scaling factors (a vector of ones with length equal to the number 227 

of regions) and R and Qλ are the error covariance matrices relating to observational and model 228 
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transport errors, and prior emissions estimate errors respectively. The non-diagonal elements of 229 

R and Qλ are zero, assuming uncorrelated errors in the prior emissions in each air basin and in 230 

the model and observations. This assumption for R is robust as we only generate one pseudo 231 

observation every 2-3 days. Included in R are observational errors and transport model errors, 232 

added in quadrature. Therefore if the average signal at an observation site is very small, then 233 

observational uncertainty (1.5 ppm) will dominate R. Minimizing J using the standard least 234 

squares formulation under the assumption of Gaussian distributed uncertainties gives the 235 

posterior estimate for λ following:  236 

 (3) 237 

With the posterior error covariance given as: 238 

 (4) 239 

λpost and Vpost are computed separately for each of the three campaigns outlined in section 2.1. 240 

Posterior emissions estimates are the product of λpost and the prior emissions estimate from each 241 

air basin. State total emissions are then calculated by summing the emissions in each air basin. 242 

Uncertainty in the state-wide Californian posterior flux, including error correlations, is calculated 243 

as: 244 

E
2 =   (5) 245 

Where Eprior is a vector of ffCO2 emissions from each air basin.  246 

2.5 Simulation Experiments  247 

We conduct a series of experiments to test the performance of the inversion in estimating the true 248 

emissions when the emissions estimates or transport models used to produce pseudo-249 

observations are different to those used to produce the prior simulations. The tests explore the 250 

   prior

TT

post λQcRKQKRKλ
11111   

  111   QKRK
T

postV
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T
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effect differences in the magnitude, spatial distribution, and temporal variation of prior emissions 251 

have on posterior emissions. We also examine the effect of using different transport models to 252 

simulate pseudo observations and to simulate prior concentrations. 253 

As part of these experiments, we evaluate the impact of outlier removal on the simulation 254 

experiments. Outlier removal is generally used in atmospheric inversions when there is an issue 255 

with the ability of the model to simulate a particular observation. We use the outlier removal 256 

method outlined in Graven et al. (2018) and compare with inversion results where no outliers are 257 

removed. In this outlier removal method, an observation (here, a pseudo-observation) is 258 

designated as an outlier if (1) the absolute difference between the ffCO2 signals in the 259 

observation and the prior simulation is greater than the average of the observed and simulated 260 

ffCO2, and (2) either the observed or simulated ffCO2 is greater than 5 ppm.  261 

2.5.1 Difference in magnitude of emissions  262 

First we test how well the inversion estimates the true emissions if the prior emissions have a 263 

systematic error in magnitude, but no error in the spatial or temporal distribution of emissions 264 

and no error in atmospheric transport. In this experiment, the prior emissions estimate is given by 265 

EDGAR and the true ffCO2 signals were generated by scaling the EDGAR emissions in each air 266 

basin to match the annually averaged Vulcan emissions in that air basin. These differences range 267 

from 0.1 TgC in San Diego to 11.6 TgC in the San Joaquin Valley (Table 1). The EDGAR state 268 

total emissions are 12% higher than Vulcan, so the bias in the prior estimate in the state total 269 

ffCO2 emissions is +12%. The experiment is run for all the transport models with no temporal 270 

variation in emissions. This experiment assesses the performance of the inversion and the 271 
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strength of the data constraint provided by the observation network in the simplest case where 272 

there are regional errors in the magnitude of prior emissions. 273 

2.5.2 Difference in spatial distribution of emissions 274 

To investigate the bias in the posterior emissions estimate that could result from errors in the 275 

spatial distribution of prior emissions within each air basin, we now use annually averaged 276 

Vulcan emissions as the true emissions and EDGAR emissions scaled in each air basin to match 277 

the annually averaged Vulcan emissions in that region as the prior estimate of emissions. In this 278 

experiment, the prior estimate of the total emissions in each air basin is unbiased, and we assess 279 

how differences in the spatial distribution of emissions between Vulcan and EDGAR in each air 280 

basin may lead to a bias in the posterior emissions estimate. As shown in Figure 1c, the most 281 

significant discrepancies in spatial distribution are in the major urban areas of Los Angeles and 282 

the San Francisco Bay. This experiment is also run for all the transport models using the same 283 

transport model for both the true and prior simulation and including no temporal variation in 284 

emissions.  285 

2.5.3 Difference in temporal variation of emissions 286 

To assess the impact of temporally-varying emissions on the inversion result, we generated true 287 

ffCO2 signals with temporally-invariant annually-averaged Vulcan emissions and prior ffCO2 288 

signals with temporally-varying Vulcan emissions. We scaled the temporally-varying Vulcan 289 

emissions in each air basin so that the total ffCO2 emissions were the same magnitude as the total 290 

ffCO2 emissions in the annually averaged Vulcan emissions for each field campaign. As shown 291 

in Figure 1d, scaling was less than 10% of annual mean emissions with campaigns occurring 292 

during maxima and minima of the annual emissions cycle. Here the prior estimate is again 293 
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unbiased, and we assess how differences in the diurnal variation of emissions (see Fig 1b) may 294 

lead to a bias in the posterior emissions estimate. This experiment is also run for all the transport 295 

models using the same transport model for both the true and prior simulation.  296 

2.5.4 Difference in Atmospheric Transport  297 

To test the effect of differences in the simulated atmospheric transport of emissions, the same 298 

emissions estimate (annually-averaged Vulcan) is coupled with two different transport models to 299 

generate prior and true ffCO2 signals. This experiment investigates potential effects of transport 300 

errors, within the variations in transport across the three models we use. WS-LBL is considered 301 

the “true” atmospheric transport while UM-NAME and WS-CTL are used for the prior 302 

simulation in individual experiments. Here the prior estimate is again unbiased, and we assess 303 

how differences in the modeled atmospheric transport may lead to a bias in the posterior 304 

emissions estimate. 305 

3 Results 306 

3.1 Simulated ffCO2 Observations 307 

Before presenting the results of the inversion experiments, we first examine simulated ffCO2 308 

contributions from different regions at each of the 9 observation sites. This allows us to quantify 309 

which air basins have the largest influence on simulated concentrations at observation sites and 310 

better interpret the results of the experiments. Figure 2 shows simulated concentrations at 311 

observation sites resulting from emissions in the 6 highest-emitting air basins in California, and 312 

from outside California. The highest signals (> 10 ppm) are simulated at urban sites (e.g. CIT 313 

and SBC) for emissions from urban air basins (e.g., South Coast, 14.SC). The 9 air basins not 314 

shown in Fig. 2 contributed signals below 0.1 ppm due to the small size or low emissions of the 315 
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air basin (e.g. Lake County and Lake Tahoe), or distance from the observation network (e.g. 316 

Northeast Plateau, Great Basin Valleys and Salton Sea). In general, the northern sites (THD to 317 

SLT in Fig 2) are sensitive to northern air basins (Sacramento and San Joaquin Valleys and SF 318 

Bay), and the southern sites (VTR to SIO) are sensitive to emissions from southern air basins 319 

(Mojave Desert, South Coast and San Diego). All transport models show the observation sites 320 

are sensitive to more air basins in the Oct-Nov and Jan-Feb campaigns, compared to the May 321 

campaign (Fig. 2).  Signals simulated by WS-CTL come from fewer air basins than UM-NAME 322 

or WS-LBL, particularly in May. 323 

In our simulation experiments, signals from outside California are generally small compared to 324 

the total signal for most sites (<10% on average), although they can average 20-50% for STB, 325 

STR, SLT and SIO for individual campaigns. For THD, located near the northern border of the 326 

state, a larger influence from outside California is found, 10-90%, due to a combination of 327 

relatively low local emissions and northerly winds transporting emissions from the northwestern 328 

United States and Canada . 329 

3.2.1 Difference in magnitude of emissions  330 

Figure 3 (a) shows the statewide inversion result for the experiment testing the effect of a bias in 331 

magnitude in regional emissions in the prior simulation. In this figure, and similar figures that 332 

follow for the other experiments, prior estimates are represented by black markers and posterior 333 

estimates are represented by colored markers, with the 2-σ uncertainty on the x-axis and the bias 334 

relative to the truth on the y-axis. The diagonal lines show 1:1 and 1:-1 lines, so that a marker 335 

lying to the right of these lines indicate the posterior bias is smaller than the posterior 336 

uncertainty, whereas a marker to the left of these lines indicate the posterior bias is larger than 337 
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the posterior uncertainty. Filled markers show results using SD prior uncertainty and empty 338 

markers show results using 70% prior uncertainty. Prior and posterior uncertainties are expressed 339 

as 2-σ.  340 

For all transport models and campaigns, the inversion is able to reduce prior bias and scale 341 

posterior emissions towards the truth. The +12% bias in the statewide emissions in the prior was 342 

reduced to a posterior bias of between 0 and +9% (mean bias = +5%) for SD prior uncertainty. 343 

Using 70% prior uncertainty reduced prior bias to between -3 and +6 (mean = +1%). Statewide 344 

posterior uncertainty was 10-14% (mean 12%) and 14-32% (mean = 21%) for SD and 70% prior 345 

uncertainty respectively, where uncertainty is expressed as 2-σ, lower than the statewide prior 346 

uncertainties of 16% for SD and 69% for 70% prior uncertainty. There were no outliers 347 

identified in this experiment. 348 

To determine what is driving the statewide results, we examine the individual air basin inversion 349 

results. Figure 3 (b) shows the inversion results for the six main emission regions of California, 350 

with San Joaquin Valley (8.SJV) and South Coast (14.SC) having the largest prior biases. For the 351 

San Joaquin Valley (8.SJV) and South Coast (14.SC) regions with the largest prior bias, the 352 

biases are reduced in most cases, however, only the posterior estimates from the 70% prior 353 

uncertainty experiment overlap the true emissions. The posterior estimates for SD prior 354 

uncertainty do not overlap with the truth, indicating that the 2-σ prior uncertainty of 24% in 355 

South Coast (14.SC), for example, restricts the inversion from eliminating biases of 30% in these 356 

regions (Table 1), given the observations available. The 9 air basins omitted from Fig. 3(b) are 357 

generally not being scaled by the inversion due to a lack of constraint from the observation 358 

network, low emissions, or small prior uncertainty (Figure S1). 359 
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The bias in the posterior estimate of statewide emissions is larger in May than in Oct-Nov and 360 

Jan-Feb (Fig 3a, triangles). This poorer performance of the inversion in May can be largely 361 

attributed to the San Joaquin Valley (8.SJV), where the posterior emissions are largely 362 

unchanged from the prior in May. There is no observation site in the San Joaquin Valley, and as 363 

shown in Fig. 2, emissions in the San Joaquin Valley do not reach observation sites in 364 

neighboring air basins in May, but they do reach these sites in Oct-Nov and Jan-Feb. In contrast, 365 

the South Coast (14.SC) influences the two observation sites, CIT and SBC, located in the region 366 

as well as several other sites (Fig. 2). Both CIT and SBC show prior signals are too high 367 

compared to true signals for all campaigns and models (Fig. 3c), reflecting the positive bias in 368 

prior emissions in the South Coast region, which is reduced in the posterior.  369 

3.2.2 Difference in spatial distribution of emissions 370 

The statewide inversion results for the experiment including errors in the spatial distribution of 371 

emissions are shown in Figure 4 (a). In this case the magnitude of prior emissions in each air 372 

basin is equal to true emissions and we aim to quantify how errors in the spatial distribution of 373 

emissions (EDGAR as prior and Vulcan as true distribution) lead to bias in posterior emissions 374 

estimates. Posterior emissions are negatively biased, apart from WS-LBL in January-February. 375 

Posterior bias was between -10% and +1% (mean -4%) for SD prior uncertainty and between -376 

10% and +4% (mean = -4%) for 70% prior uncertainty across transport models and campaigns. 377 

As might be expected from the experimental setup with an unbiased prior, posterior emissions 378 

estimates generated using SD prior uncertainty have a smaller mean bias and smaller range of 379 

posterior estimates compared to those generated using 70% prior uncertainty. Statewide 380 

uncertainty was reduced from 16% to 10-14% (mean = 12%) for SD prior uncertainty and from 381 

58% to 14-21% (mean = 18%) for 70% air basin prior uncertainty. Biases induced are smaller 382 
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than the 2-σ posterior uncertainty across all transport models, campaigns and choice of prior 383 

uncertainty.  384 

Posterior emissions results in the two largest emitting air basins (the San Francisco Bay and 385 

South Coast) are also negatively biased in most cases (Fig 4b). In several cases, posterior biases 386 

are larger than the associated posterior uncertainties, for example in the South Coast for WS-387 

LBL in all cases. Considering Figure 4 (c), prior ffCO2 signals are being overestimated more 388 

often than underestimated, particularly for the relatively more urban sites CIT and SLT. 389 

Sacramento Valley (3.SV) and the San Joaquin Valley (8.SJV) have higher posterior emissions 390 

in WS-LBL in most cases, possibly due to the inversion compensating for reduced posterior 391 

emissions in the San Francisco Bay (13.SFB) and South Coast (14.SC).  392 

Since the prior emissions from EDGAR have been scaled to have the same total as Vulcan (the 393 

true emissions) in each region, the pattern of more negative posterior emissions is only caused by 394 

the sub-regional spatial distribution of emissions. Comparing Vulcan and EDGAR native grid 395 

cell emissions in Figures 1c and S2, EDGAR tends to have greater emissions in high-emission 396 

grid cells. In other words, the emissions are more concentrated in EDGAR and more dispersed in 397 

Vulcan. This pattern explains the negative bias in posterior emissions for the urban South Coast 398 

air basin. The opposite effect does not appear to hold for rural observation sites and regions, 399 

perhaps because rural emissions are already rather dispersed and have less of an influence on the 400 

observations.     401 

In these experiments, 0-3% of observations were identified as outliers, but excluding outliers did 402 

not change the statewide result significantly (<1% change in mean bias). 403 

3.2.3 Difference in temporal variation of emissions 404 
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Figure 5 (a) shows the statewide inversion result for the experiment where the emissions are 405 

Vulcan temporally-varying in the prior simulation (see Fig. 1b) but Vulcan temporally-invariant 406 

in the true simulation. Posterior bias was between -13 and +5% (mean = -3%) for SD uncertainty 407 

and between -15% and +6% (mean = -3%) for 70% prior uncertainty. Posterior uncertainty was 408 

11-15% (mean = 12%) for SD prior uncertainty and 15-24% (mean = 18%) in posterior 409 

emissions for SD (70%) prior uncertainty. Outlier removal resulted in 0-1% (mean = 0%) of data 410 

points being removed, which did not change the statewide results. 411 

The posterior estimate for WS-LBL in May with SD prior uncertainty has a significant negative 412 

bias of -13%, approximately the same magnitude as the associated 2-σ posterior uncertainty. As 413 

can be seen by the air basin results of Figure 5 (b), the statewide bias for WS-LBL in May is 414 

being driven by a large regional bias in the South Coast, but also in the San Francisco Bay and 415 

San Diego air basins. These regional biases are larger than their associated posterior 416 

uncertainties. Figure 5 (c) shows the prior ffCO2 signals at CIT average ~7ppm too high in May 417 

for WS-LBL. In contrast, prior ffCO2 signals at CIT and SBC are too low in Oct-Nov for WS-418 

CTL, leading to a high bias in posterior emissions from the South Coast. San Diego also 419 

exhibited both high and low biases in the posterior emissions. Overall, temporal variations in 420 

emissions led to posterior biases generally within ±6%, but as large as 15%; however, a 421 

consistent pattern in the posterior bias due to the temporal representation in emissions was not 422 

found. 423 

3.2.4 Difference in Atmospheric Transport  424 

The statewide inversion results for the experiment where the atmospheric transport in the prior 425 

simulation uses WS-CTL or UM-NAME but the atmospheric transport in the true simulation 426 
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uses WS-LBL are shown in Figure 6 (a). Outliers were identified in these experiments and we 427 

present results for inversions including all data and for inversions where outliers were removed.  428 

When all data are included, differences in atmospheric transport model introduces a bias in 429 

statewide posterior emissions of between -42% and -3% (mean = -12%) for SD prior uncertainty 430 

and between -32% and 0% (mean = -15%) for 70% prior uncertainty. For one case, using WS-431 

CTL to generate prior signals in October-November, the bias in the posterior emissions estimate 432 

was larger than the 2-σ uncertainty for both SD and 70% prior uncertainty.  433 

Removing outliers significantly improved the inversion results (Figure 6 b): the mean bias was 434 

between -10% and 0% (mean = -3%) for SD prior uncertainty and between -9% and +6% (mean 435 

= -5%) for 70% prior uncertainty when outliers were removed. Posterior uncertainty was 9-15% 436 

(mean = 12%) and 15-24% (mean = 18%) for SD and 70% prior uncertainty respectively, with 437 

all posterior estimates within 2-σ of the true statewide emissions. The reduction in posterior bias 438 

when outliers are removed is mostly due to the removal of a few large positive outliers in prior 439 

simulated signals by WS-CTL (Figure 7). Figure 7 illustrates the time series of simulated ffCO2 440 

in each model with outliers shown as an x. Outliers removed were between 6.9% and 20.6% of 441 

all observations (mean = 10.5%). This is similar to the fraction of outliers identified in Graven et 442 

al. 2018 using the same method with real data (~8%). It is also similar to that of Jeong et al., 443 

2012a and b (0-27%) for monthly inversions of CH4 in California using a different method of 444 

identifying outliers where model-data residuals are larger than 3-σ of model-data uncertainty.  445 

While the statewide posterior emissions estimate is significantly biased in only one case (WS-446 

CTL in Oct-Nov) when outliers are not removed, the posterior emissions estimates for the main 447 

emissions regions are significantly biased in several cases (Fig 6c). The largest bias is in the 448 
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South Coast region where posterior estimates are biased by more than -75% (with 1% posterior 449 

uncertainty) in Oct-Nov when using WS-CTL to generate prior signals. This large posterior 450 

emissions bias in the South Coast and the statewide total can be attributed to overestimates in 451 

prior ffCO2 signal of more than 6ppm on average at CIT and SBC and more than 2ppm at WGC 452 

and STR (Fig. 6e) due to some high outliers in the WS-CTL simulations (Fig. 7). Posterior 453 

estimates for San Francisco Bay, South Coast and San Diego were also significantly biased in 454 

some other cases, particularly for 70% prior uncertainty but also for SD prior uncertainty. This 455 

indicates that regional biases caused by differences in atmospheric transport appear to 456 

compensate over the statewide scale, and that results for individual regions are less robust than 457 

aggregate results for the statewide network. It also suggests that a dense observation network is 458 

beneficial to reducing the impact of uncertainty in atmospheric transport. 459 

To investigate the differences in simulated ffCO2 and assess whether these could be attributed to 460 

specific aspects of modelled meteorology, we compared PBLH and wind speed in WS-LBL and 461 

the UM for 5 of the 9 observation sites where PBLH output was available. PBLH was not 462 

available for WS-CTL. Estimates for PBLH in WS-LBL are based on the Mellor–Yamada–463 

Nakanishi–Niino version 2 (MYNN2) parameterization scheme that estimates PBLH using 464 

localized turbulence kinetic energy closure parameterization (Nakanishi and Niino 2004, 2006). 465 

Estimates of PBLH are calculated internally within the UM. PBLH and wind speed were 466 

averaged over 6 hours from 12 to 6pm Pacific Standard Time to compare the afternoon means 467 

(Seibert et al., 2000). We found no consistent correlation between differences in PBLH or wind 468 

speed and differences in simulated ffCO2 between models across sites and campaigns (Figure 469 

S3). Absolute values of wind direction and ffCO2 did not show consistent correlations either. The 470 
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lack of correlation suggests we cannot attribute differences in simulated ffCO2 to any single 471 

meteorological variable estimated at any individual station in the transport models.   472 

We also examined if differences in simulated ffCO2 signals across transport models could be 473 

explained by the differences in spatial resolution of the models. WS-CTL footprints were re-474 

gridded from a 0.1° native grid to the coarser UM-NAME grid of 17 or 25km and then used to 475 

simulate ffCO2. For this comparison, we simulated ffCO2 every day over the campaign period. 476 

We found no consistent reduction in mean ffCO2 bias between sites over the 2 campaigns, 477 

however there is a reduction in spread of bias at 4 sites for both campaigns (WGC, SLT, SBC 478 

and SIO), suggesting model resolution could potentially have an impact for these sites. In general 479 

however, we cannot say that transport model resolution error in atmospheric transport is a key 480 

driver of ffCO2 signal bias across observation sites (Figure S4).  481 

4 Discussion 482 

Our results show that atmospheric inversions can reduce a hypothetical bias in the magnitude of 483 

prior ffCO2 emissions estimates for the U.S. state of California using the ground-based 484 

observation network from Graven et al. (2018), under the idealized assumptions of perfect 485 

atmospheric transport and perfect spatio-temporal distribution of emissions in the prior estimate. 486 

By exploring differences in model transport and spatio-temporal distribution of prior emissions, 487 

we found that biases of magnitude 1-15% in monthly posterior estimates of statewide emissions 488 

can result from differences in the temporal variation, spatial distribution and modelled transport 489 

of the prior simulation. However, these biases were less than the 2-σ posterior uncertainty in 490 

state-total emissions, when outliers were removed. In some cases, the biases in posterior 491 

emissions for individual air basins were significant, compared to the posterior uncertainties, 492 
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suggesting that estimates for individual regions are less reliable than the aggregate estimates of 493 

the state-wide total.  494 

The largest bias in statewide posterior estimates was found to be caused by errors in the temporal 495 

variation in emissions. This highlights the necessity for temporally-varying emissions to be 496 

estimated and included in prior emissions estimates, particularly for urban regions. Similar 497 

results have been found in other regions including Indianapolis (Turnbull et al. 2015) and Europe 498 

(Peylin et al. 2011), and more generally, for high-emission regions around the globe (Zhang et al. 499 

2016). Although the afternoon sampling is near to the diurnal maximum in emissions in 500 

California (Fig. 1c, Gurney et al. 2009), which might be expected to lead to higher simulated 501 

ffCO2 in temporally-varying vs temporally-invariant emissions, we did not find consistently 502 

positive biases in ffCO2 but rather both positive and negative biases. This suggests the overall 503 

impact of temporally-varying emissions depends on the model transport and the characteristics of 504 

the observation site. Furthermore, uncertainties in the temporal distribution of emissions at an 505 

hourly resolution have not yet been fully quantified (Nassar et al., 2013).  506 

Errors in model transport, as represented in our experiments by using different transport models, 507 

were shown to bias posterior ffCO2 emissions by 10% or less, when outliers were removed. 508 

These biases related to transport error are somewhat lower than estimated by similar simulation 509 

experiments for ffCO2 emissions estimates for the U.S. by Basu et al. (2016) using different 510 

transport models (>10%), although their spatial scale was larger and the alternate model they 511 

used was intentionally biased. In contrast, the three models we use are all actively applied in 512 

regional greenhouse gas inversions. Our results are comparable to the estimate of ±15% 513 

uncertainty in atmospheric transport in WS-LBL using comparisons with atmospheric 514 

observations of CO in California (Bagley et al. 2017).  515 
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The fraction of pseudo-observations we identified as outliers in these transport error experiments 516 

(10.5%, range 6.9-20.6%), was similar to Graven et al., 2018, where 8% of all observations were 517 

removed as outliers using the same method. The outliers in our experiments were primarily high 518 

ffCO2 signals simulated by WS-CTL in Oct-Nov. When included in the inversion, these did lead 519 

to significant biases in the posterior estimates for the experiment on model transport. This 520 

highlights the need for careful examination of simulated ffCO2 and consideration of outliers in 521 

atmospheric ffCO2 inversions.  522 

Attributing differences in simulated ffCO2 between the different transport models to specific 523 

meteorological variables proved inconclusive, and model resolution error did not appear to 524 

explain the differences in simulated signals, although we were not able to investigate aggregation 525 

error in comparison to the high-resolution WS-LBL model. Wang et al. (2017) found 526 

aggregation error to be only a minor contributor to errors in simulated ffCO2 in Europe, while 527 

Feng et al., (2016) found that high-resolution gridded emissions estimates could be more 528 

important than high resolution transport models for simulations of greenhouse gases in Greater 529 

Los Angeles. We found that differences in the spatial representation of prior emissions in 530 

EDGAR compared to Vulcan led to consistently lower, although not significantly different, 531 

posterior state-wide estimates due to the emissions in EDGAR being more concentrated in urban 532 

regions. The spatial allocation of emissions between urban and rural regions in gridded emissions 533 

estimates have much larger uncertainties than national totals (Hogue et al. 2016), suggesting that 534 

several different gridded emissions estimates should be used in regional ffCO2 inversions to 535 

capture this source of uncertainty.     536 

The results of these experiments suggest that the choice of prior emissions estimate and transport 537 

model (among those considered here and currently used in the community) used in our ffCO2 538 
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inversion would result in differences of 15% or less in posterior state-wide ffCO2 emissions in 539 

California, using the observation network from Graven et al. (2018). These differences are 540 

generally not significant, compared to the posterior 2-σ uncertainties of 10 to 15%. In 541 

comparison, Graven et al. (2018) found that posterior state-wide ffCO2 emissions were not 542 

statistically different when using temporally-varying emissions from Vulcan, as compared to 543 

annual mean emissions from Vulcan or EDGAR, with posterior uncertainties of ±15 to ±17%. 544 

Our results may be specific to the California region, observation network and inversion setup we 545 

consider here, but we expect that similar differences of 1-15% are likely to be found elsewhere in 546 

similar inversions at comparable regional scales.  547 

In our results, emissions from many small or rural air basins did not have a significant 548 

contribution to the local enhancement of ffCO2 at the observation sites and were not adjusted by 549 

the inversion in most cases (Figure 2, Figure S1). Combined with our experimental setup 550 

specifying the magnitude of prior emissions to be equal to true emissions, it might be expected 551 

that our results could underestimate the predicted biases in posterior emissions. However, these 552 

experiments were designed specifically to quantify representation and transport error using the 553 

inversion setup and the observation network from Graven et al. (2018) as a test case. Fischer et 554 

al. (2017), showed in individual simulation experiments that using either EDGAR or a spatially 555 

uniform flux of 1 µ mol m-2 s-1 as a biased prior produced posterior emissions that are 556 

substantially closer to true emissions, but only if the prior uncertainties are set large enough to 557 

encompass biases in prior emissions. Further experiments using a different experimental setup 558 

such as choice of mismatch error or specification of inversion regions (e.g. to change the 559 

inversion region size based on proximity to the observation network, Manning et al., 2011), 560 
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would help to characterize uncertainties in regional ffCO2 inversions and the robustness of 561 

posterior estimates to the choices made in the inversion setup. 562 

Conclusion 563 

We have shown that atmospheric inversions for the U.S. state of California can reduce a 564 

hypothetical bias in the magnitude of prior emissions estimates of ffCO2 in California using the 565 

ground-based observation network from Graven et al. (2018). Experiments to characterize the 566 

effect of differences in the spatial and temporal distribution in prior emissions resulted in biases 567 

in posterior state-total emissions with magnitudes of 1-15%, similar to monthly posterior 568 

estimates of Basu et al., 2016 for the western United States. Our results highlight the need for (1) 569 

temporal variation to be included in prior emissions, (2) different estimates of the spatial 570 

distribution of emissions between urban and rural regions to be considered, and (3) 571 

representation of atmospheric transport in regional ffCO2 inversions to be further evaluated. 572 
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Air Basin Name Code
Vulcan EDGAR SD Prior Unc. Vulcan - EDGAR

(TgC/yr) (TgC/yr) 1-sv (%) (TgC/yr)
1 North Coast 1.NC 1.0 1.6 59 -0.6
2 Northeast Plateau 2.NP 0.4 1.3 96 -1.0
3 Sacramento Valley 3.SV 6.8 7.4 8 -0.7
4 Mountain Counties 4.MC 2.2 2.0 51 0.1
5 Lake County 5.LC 0.1 0.2 65 -0.2
6 Lake Tahoe 6.LT 0.1 0.1 42 0
7 Great Basin Valleys 7.GBV 0.2 0.6 100 -0.4
8 San Joaquin Valley 8.SJV 8.6 20.2 35 -11.6
9 North Central Coast 9.NCC 6.0 2.2 71 3.8
10 Mojave Desert 10.MD 6.1 4.3 17 1.8
11 South Central Coast 11.SCC 4.4 3.4 21 1.0
12 Salton Sea 12.SS 1.4 1.7 55 -0.3
13 San Francisco Bay 13.SFB 16.4 17.5 22 -1.2
14 South Coast 14.SC 26.9 35.5 12 -8.6
15 San Diego 15.SD 6.6 6.5 10 0.1

Total California 89.6 104.7 8 -17.8

Table 1: The 15 air basins of California with respective emissions as estimated by Vulcan and
EDGAR. Also shown are the SD prior uncertainty estimate (Fischer et al., 2017), and difference
in magnitude between Vulcan and EDGAR for each air basin. Air basin numbers correspond to
those marked in Figure 1.
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Figure 1: a. The location of the 9 tower sites in the observation network (marked with black
circles): Trinidad Head (THD), Sutter Buttes (STB), Walnut Grove (WGC), Sutro (STR), Sandia-
Livermore (LVR), Victorville (VTR), San Bernardino (SBC), Caltech (CIT) and Scripps Institute
of Oceanography (SIO). The 15 air basins are marked out with black lines with region 16 repre-
senting emission from outside California within the model domain. Underlayed is a map of annual
mean ffCO2 emissions from the Vulcan v2.2 emission map within the United States and EDGAR
v4.2 (FT2010) for emission from outside the U.S. b. Vulcan diurnal emissions normalized to cam-
paign averaged emissions for the 3 campaigns, c. Scaled EDGAR subtracted from Vulcan emissions
map, where EDGAR has been scaled to have the same air basin total emissions. The inset shows
an enlarged view of southwestern California. d. Average monthly emissions normalized to Vulcan
annual emissions. Shown in both b and d is EDGAR annual invariant emissions (grey).
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Figure 2: The average ffCO2 signal (ppm) simulated by each atmospheric transport model as a
result of emissions from the 6 largest emitting air basins and one outside California region at
each observation site over the three measurement campaigns. Signals were simulated based on the
EDGAR emission map.
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Figure 3: (a) Statewide and (b) individual air basin inversion results for an error in the magnitude
of prior emissions. Prior emissions are given by EDGAR and true emissions are given by EDGAR
scaled to Vulcan total in each air basin. Air basin results are shown for Sacramento Valley (3.SV),
San Francisco Bay (13.SFB), San Joaquin Valley (8.SJV), Mojave Desert (10.MD), South Coast
(14.SC) and San Diego (15.SD). Prior results are presented by black markers and posterior results
are represented by colored markers. Filled markers show results using SD prior uncertainty and
empty markers show results using 70% prior uncertainty. The prior bias in each air basin is given
by the dashed lines in (b) with SD prior uncertainty (dark grey) and 70% prior uncertainty (light
grey). Prior and posterior uncertainties are expressed as 2-sv. The bottom plot (c) shows the
mean signal error in simulated average ffCO2 concentration. Mean signal error is calculated by
subtracting the average true signal from the average prior signal. Error lines are drawn between
the maximum and minimum signal bias per campaign.
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Figure 4: (a) Statewide and (b) individual air basin inversion results for an error in the spatial
distribution of prior emissions. Prior emissions are given by EDGAR scaled to Vulcan emissions
totals in each air basin and true emissions are given by Vulcan. The bottom plot (c) shows the
mean signal error in simulated average ffCO2 concentration.
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Figure 5: (a) Statewide and (b) individual air basin inversion results for an error in the temporal
distribution of prior emissions. Prior emissions are given by temporally varying Vulcan and true
emissions are given by annually averaged Vulcan. Prior emissions were scaled to be the equal in
magnitude to annually averaged Vulcan emissions. The bottom plot (c) shows the mean signal
error in simulated average ffCO2 concentration.
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Figure 6: Inversion results for the experiment where the atmospheric transport in the prior sim-
ulation uses WS-CTL or UM-NAME but the atmospheric transport in the true simulation uses
WS-LBL. Posterior statewide emissions (a, b), individual air basin emissions (c, d), and percent-
age error in simulated average ffCO2 concentration (e, f) are shown with no outlier removal (first
column) and outliers removed (second column). Prior and true emissions are given by annually
averaged Vulcan.
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Figure 7: All simulated ffCO2 from May (first column), October-November (second column), and
January-February (third column). Simulated ffCO2 using W-S-LBL are shown in black markers
(triangles for May, squares for Oct-Nov and diamonds for Jan-Feb) whilst prior W-S-CTL signals
are shown in blue and UM-NAME signals in magenta. All simulated signals are generated using
the Vulcan gridded emissions map. The fourth column shows true vs prior ffCO2 signals, with
colors corresponding to models and markers corresponding to campaigns. Outliers omitted from
the standard inversion are shown by an x.
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