
We are extremely grateful for the helpful comments of the referees, which we have used to 
improve the manuscript as described below. 
 
Reply to Anonymous Referee 
 
1) Are the footprints calculated on a grid, and the gridded footprints used for the inversion, or 
are they averaged for a whole basin, and the basin footprint used for the inversions? The 
authors comment on sub-basin spatial pattern differences between EDGAR and VULCAN later 
in the paper, suggesting the latter, but it isn’t stated anywhere that I can find. If it is, please point 
me to the right place. 
Footprints were calculated on a grid (the resolution of gridded footprints are discussed in 
Section 2.3). When coupled with gridded emissions the resulting concentration is summed over 
each air basin, and emissions are scaled by air basin in the inversion. We have included more 
specific language in Section 2.3. 
 
2) The temporal patterns in the prior uncertainty (i.e. are there any, or do the experiments 
assume a constant prior uncertainty for the entire year), as well as the spatial patterns in the 
prior uncertainty (is it fixed for the whole basin, or is it gridded within the basin?). 
Prior uncertainty is specified relative to prior emissions, hence it differs in absolute magnitude 
for monthly differences in emissions. Over the state this variation is ~15% when comparing 
May/Oct-Nov to Jan-Feb (see Fig. 1d). Prior uncertainty is specified for the whole air basin. This 
is now clarified in Sections 2.2 and 2.5.3. 
 
One assumption that is critical to the applicability of this paper to other studies with real data is 
an assessment of the interaction between the different types of uncertainties. In particular, 
spatial and temporal uncertainties in the prior are not independent from each other due to the 
effects of transport (though the signals here are diminished by the shorter run times). This is 
even more important for the experiments involving transport error, as the differences in 
footprints will interact with the differences in the temporal and spatial patterns. A limited set of 
experiments should be able to address whether these effects are significant, prior to having to 
do the full suite for multiple more cases. 
 
The purpose of this paper was to quantify individual contributions that could potentially bias 
regional fossil fuel CO2 inversions. The reviewer makes an interesting suggestion to include 
experiments where the different sources of uncertainty are included to see how they interact. 
When we tried this the different sources of uncertainty interacted in various ways that were 
difficult to interpret and did not enable us to make general conclusions. The interactions can 
improve or worsen the results in different cases. Therefore, we prefer not to include these 
results in the paper. However, we have added to the discussion some comments on the 
individual nature of our experiments and how, in reality, multiple sources of uncertainty will 
interact.  
 
“We note that while we have assessed individual contributions to uncertainty in the experiments 
formulated here, these contributions can also interact with each other. These interactions could 



act to increase the resulting biases, or partly cancel them, depending on the combination used. 
The possibility for interacting effects implies that multiple prior emissions estimates and 
transport models should be used in inversions of real data.” 
 
Specific Comments: 
What is the period of simulation? 
The period of simulation is three 1 month long campaigns in May 2014, October-November 
2014 and January-February 2015, analogous to the observations presented in Graven et al. 
2018. We have added some clarification in lines 117-121. The transport model simulations were 
run 7 days back in time from time of observation (see lines 189, 197, 220-221). 
 
211-213: The scaling of 0.5 is definitely a free parameter that deserves some sensitivity analysis 
as it could strongly affect your results. You could look at the covariance between the three 
transport models as a first guess. How does this covariance compare to the factor of 0.5*mean 
signal that you assume? 
We use the factor of 0.5 to recreate the previous inversion setup of, for example, Fischer et al., 
2017, Graven et al., 2018, to examine the posterior bias under these assumed initial conditions. 
We have added text to the methods and two results sections on the effect of varying the free 
parameter (or as I call it the uncertainty parameter) to 0.3, 0.5 and 0.8. The differences are only 
a few percent and they do not change our conclusions.  
 
229-231: Correlation in the transport uncertainties assumed in your experimental setup should 
at least be examined before assuming your uncertainty covariance is diagonal. Again, you could 
use the 3-model ensemble to test this assumption. 
Here we follow the commonly used practice of assuming the uncertainty covariance is diagonal 
(e.g. Gerbig et al. 2003; Zhao et al. 2009; Göckede et al. 2010; Jeong et al. 2012a; 2012b; 2013; 
Fischer et al., 2017; Graven et al., 2018). Although interesting, to test for non-diagonal 
covariance was deemed to be out of the scope of this study. However, we note that an 
experiment on the use of correlation in the model-measurement mismatch uncertainty matrix 
was carried out in Jeong et al., 2016. The study compared statewide posterior emissions of 
CH4in California estimated using a full (i.e. diagonal and non-diagonal) uncertainty matrix to a 
diagonal uncertainty matrix, and found that mean statewide emissions differed by ~6%. 
However this difference was not significant relative to the uncertainty (see Text 3 from the 
Supplemental of Jeong et al., 2016). 
 
I have included in lines 591-596 the following: 
“Here, we have assumed the model-measurement mismatch uncertainty matrix is diagonal, 
following previous work (e.g. Gerbig et al. 2003; Fischer et al., 2017), however the 
consideration of correlated errors in the uncertainty matrix has also been found to affect 
posterior emissions for methane in California and reduce their uncertainty at the level of 
several percent (Jeong et al. 2016).” 
 
Additional references: 



Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and 
M. L. Fischer (2009), Atmospheric inverse estimates of methane emissions from Central 
California, J. Geophys. Res., 114, D16302, doi:10.1029/2008JD011671. 
 
Jeong, S., C. Zhao, A. E. Andrews, L. Bianco, J. M. Wilczak, and M. L. Fischer (2012a), 
Seasonal variation of CH4 emissions from central California, J. Geophys. Res., 117, D11306, 
doi:10.1029/2011JD016896. 
 
Jeong, S., C. Zhao, A. E. Andrews, E. J. Dlugokencky, C. Sweeney, L. Bianco, J. M. Wilczak, 
and M. L. Fischer (2012b), Seasonal variations in N2O emissions from central California. 
Geophys. Res. Lett., 39, L16805, doi:10.1029/2012GL052307. 
 
Jeong, S., Newman, S., Zhang, J., Andrews, A. E., Bianco, L., Bagley, J., ... & LaFranchi, B. W. 
(2016). Estimating methane emissions in California's urban and rural regions using multitower 
observations. Journal of Geophysical Research: Atmospheres, 121(21). 
 
Section 2.5.4: what is the prior flux estimate in this experiment? 
Annually averaged Vulcan, see lines 334-335. 
 
390 - 392: isn’t this easy to test by looking at footprints? 
Removed these lines.  
 
393-401: I’m not sure I see the connection here. Why does being more concentrated in urban 
regions change the total? (this also applies to the conclusion in lines 530-533) It also appears 
that there might be a temporal offset happening, where the fluxes are biased low in summer and 
high in fall/winter. Is there a pattern in the prior uncertainty causing this? There isn’t any way to 
tell given the lack of temporal information in the flux results images. Another cause is the 
seasonality in sensitivity of the observations to the fluxes, which can again be tested by looking 
at footprints. 
It is due to the fact that EDGAR places more emissions in built up areas. Therefore simulating 
concentrations at observation sites in built up areas using EDGAR emissions will, on average, 
have higher simulated concentrations compared to Vulcan, while total emissions are the same 
over the whole air basin. This leads to a scaling down of the fluxes when observation sites are 
primarily in built-up areas when EDGAR is used as the prior. For example, the fluxes are 
consistently biased low in the South Coast (14.SC) in Fig 4b. 
 
There is no temporal offset as emissions are temporally constant in all spatial error experiments. 
Likewise the prior uncertainty stays constant throughout spatial error experiments.  
 
3.2.4: A nice conclusion of this section is that the removal of outliers improves the results from 
transport errors alone. That could be a strong recommendation to the community for working at 
these scales, which is done by many modelers, but not all. - this is mentioned in the discussion, 
but could be more strongly highlighted here. 
Added highlight - thank you. 



 
I would suggest that a more direct analysis of the impact of transport errors by season could be 
accomplished by looking at basin-wide sensitivity for each observation location by season, and 
how that varies by transport model. This would explain a lot of the inter-model differences you 
are seeing in many of the other experiments as well. That would support your PBLH analysis, 
which gets to the heart of why the footprints would be different, but doesn’t quantify the 
differences between the flux sensitivities directly. 
We show in Fig 2 the air basin sensitivity for each observation location by season and how that 
varies by transport model.  
 
537-540: This conclusion needs to be tested by altering the estimate of transport error assumed 
in the inversions themselves. My guess is that the answers might be sensitive to this parameter, 
but that needs to be tested. 
See previous answer for testing the free parameter for transport error. 
 
Fig 2: What is “signal”? Is it just the emissions run forward through the transport 
Yes - see definition in brackets on lines 225-228. 
 
---------------------------------------------------------------------------------------------------------------------------- 
 
Reply to Sourish Basu 
 
1. Line 58, “INFLUX ref” is missing. 
Corrected. 

 
2. Lines 64-65, the phrasing “simulated and observed measurements” sounds awkward to me. I 

understand the authors phrased it this way because the Fischer et al (2017) study is an OSSE 

study. I suggest rephrasing this as “Recent studies with both real atmospheric measurements of 

∆14CO2 and ∆14CO2 simulated in observing system simulation experiments (OSSEs) at a 

network of sites have shown that atmospheric ∆14CO2 can be used to estimate monthly mean 
Californian ffCO2 emissions with posterior uncertainties of 5-8%”, or something along these 
lines. 
Revised this sentence.  
 
3. Lines 72-73, I would omit the qualifier “broadly consistent”, since the range (-43% to +133%) 
is rather large. I would suggest just stating the result of Turnbull et al (2011) as “were found to 
be within +X/-Y% of Vulcan”. 
Revised this sentence.  
 
4. The β of equation (1) is not discussed in the text other than to say that it includes the 
influence of other terms like the biospheric disequilibrium flux. Is it assumed that β is perfectly 



known? If so, that is fine, but that should be explicitly stated. Or, one could also given an 
estimate of β and say why it is unlikely to be a big factor for the estimates derived in the paper. 
Revised later sentence to state that uncertainty in β is included in total uncertainty.  
 
5. Likewise, ∆bg is not discussed after equation (1). I notice that the authors estimate a total 

emission outside of California in their inversion. Is this equivalent to estimating ∆bg? 
Clarified that terms in Eq 1 are not calculated explicitly and Revised later sentence to state that 
background uncertainty is included in total uncertainty. 
 
 
6. Lines 143-144, the four inventories mentioned cover different time periods. Are they 
normalized to the same California total before calculating the spread? If yes, then what 
determines the prior uncertainty of the California total ffCO2? If no, then isn’t the spread 
artificially large because the inventories span different years? 
They are from different time periods but the differences between inventories are much larger 
than the differences between years (end of that paragraph). As there are differing trends in 
emissions between different emissions estimates for those available for individual years, it is not 
clear that normalizing to one year would reduce the spread.   
 
 
7. Lines 146-147, was the standard deviation calculated across the four inventories, or was the 
spread (max to min) across four inventories assumed to be the 1-σuncertainty? 
The standard deviation was calculated across the four inventories, see updated lines 161-162 
and Fischer et al., 2017. 
 
8. Lines 184 and 205, the footprints are aggregated over six days, beyond day 1. Does this 
mean that the flux adjustments, beyond the first 24 hours, are all coherent across six days? Is 
that realistic? I’m curious why this was done, since I would assume the transport model would 
be able to distinguish between signals coming from flux 2 days ago vs 6 days ago (say). 
We simply mean that the impact of including diurnal emissions more than 24 hours before 
observation on the resulting concentration is not significant compared to invariant fluxes - these 
are findings by co-author Emily White from the University of Bristol. Added a statement to clarify 
“This approach captures the influence of temporally varying emissions that can be significant in 
the first 24 hours but we assume to be negligible for the period longer than 24 hours back in 
time.” 
 
9. Lines 272-273, saying “where there are regional errors in the magnitude of prior emissions” is 
not quite exact, I think. I suggest rephrasing this as “... in the simplest case where the only 
errors in prior regional flux estimates are biases in their magnitudes”. 
Revised.  
 
10. Lines 287-288, it’s common practice in OSSE studies to use the more realistic scenario as 
the truth (nature run) and the simpler scenario as the prior. However, here the authors use 



annually averaged Vulcan (less realistic) as the truth and temporally varying Vulcan (more 
realistic) as the prior. Why? 
Revised to clarify in lines 318-323: 
 
“It may seem counter intuitive to choose the simpler scenario (i.e. time invariant) as true 
emissions, however this was unfortunately due to the simulations available; we did not have 
simulated ffCO2 concentrations from each air basin for temporally invariant emissions coupled 
with W-S-LBL footprints, only the total ffCO2 concentrations. We do not expect that switching the 
prior and true emissions would significantly affect our conclusions.” 
 
11. Lines 289-290, I would have thought that annually averaged Vulcan would have the same 
total as temporally varying Vulcan, since averaging conserves the total. So why was scaling 
necessary? Was it because the inversions only covered a few months and not an entire year? 
The inversion only covers periods in May 2014, October-November 2014 and January-February 
2015 (see lines 122-124). May and October-November are troughs in the annual emission 
cycle, whilst January-February are peaks (see figure 1b). 
 
12. Lines 298-299, similar question as before. The authors used annually averaged Vulcan 
(simpler scenario) as truth and prior instead of the more realistic temporally varying Vulcan. 
Why? 
Please refer to the answer for point 10. 
 
13. Lines 458-459. While I certainly understand the value of more observations, and am all for 

increasing the observations coverage of the ∆14CO2 network, I do not think that having more 
observations will necessarily reduce the impact of transport model uncertainty. As the authors 
have themselves noted, the impact of transport model uncertainty is higher for smaller regions, 
while for larger regions (entire California) there is some cancellation. This is because the 
difference between transport models is typically more prominent at smaller scales (e.g., in the 
CO2 inversion world, the global total flux is the easiest thing to estimate). So having more 
observations from a denser network could also sample these model differences even more and 
increase the impact of transport uncertainty on posterior flux estimates. 
We think the word dense caused some confusion here and so we have revised this sentence to 
delete “dense” and to add the phrase “with multiple sites in a variety of settings” for clarification.  
 
 
 
14. Lines around 490, and figures 3-6. The posterior bias is typically lower than the posterior 
uncertainty, barring a few exceptions. This could either be because the posterior biases are low 
(good outcome), or because the posterior uncertainties are large (less desirable outcome). Let’s 
say that in an ideal world, we commit to making more ∆14CO2 measurements of higher 
precision, which will reduce posterior uncertainty. Will that also decrease the biases in figures 3-
6? Or will it increase some of the biases (see earlier point about transport uncertainty), and may 



decrease others? Basically, what I’m trying to get at here is whether the good outcome for most 
of the flux estimates (bias < 2σ) is a happy accident of the specific 2018 network and 
measurement precision, or whether there is a more fundamental reason we can expect biases 
to be lower than posterior uncertainties under different (possibly increased) coverage scenarios. 
If you reduce uncertainty in observations, this will allow the inversion to scale emissions more 
(presuming prior uncertainty remains constant), hence transport bias could increase whilst 
posterior uncertainty decreases. Hypothetically this could drive the inversion to have a posterior 
bias that is larger than the associated 2σ posterior uncertainty. However we did conduct 
experiments (see response to Anonymous Referee) whereby we varied the transport error 
uncertainty parameter to 0.3 and 0.8 (hence changing the balance of prior - 
observation/transport uncertainty), with no significant differences in the result and all results 
were within 2σ of the truth. 
 
15. Line 515, the Bagley et al (2017) reference is missing from the bibliography. 
Fixed. 

 
16. Line 534, suggest changing “much larger uncertainties” to “much larger percent- age 
uncertainties”. 
Corrected. 
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Abstract 17 

Atmospheric inverse modelling has become an increasingly useful tool for evaluating emissions 18 

of greenhouse gases including methane, nitrous oxide and synthetic gases such as 19 

hydrofluorocarbons (HFCs). Atmospheric inversions for emissions of CO2 from fossil fuel 20 

combustion (ffCO2) are currently being developed. The aim of this paper is to investigate 21 

potential errors and uncertainties related to the spatial and temporal prior representation of 22 

emissions and modelled atmospheric transport for the inversion of ffCO2 emissions in the U.S. 23 

state of California. We perform simulation experiments based on a network of ground-based 24 

observations of CO2 concentration and radiocarbon in CO2 (a tracer of ffCO2), combining prior 25 

(bottom-up) emission models and transport models currently used in many atmospheric studies. 26 

The potential effect of errors in the spatial and temporal distribution of prior emission estimates 27 

is investigated in experiments by using perturbed versions of the emissions estimates used to 28 



2 
 

create the pseudo data. The potential effect of transport error was investigated by using three 29 

different atmospheric transport models for the prior and pseudo data simulations.  We find that 30 

the magnitude of biases in posterior state-total emissions arising from errors in the spatial and 31 

temporal distribution in prior emissions in these experiments are 1-15% of posterior state-total 32 

emissions, and generally smaller than the 2-σ uncertainty in posterior emissions. Transport error 33 

in these experiments introduces biases of -10% to +6% in posterior state-total emissions. Our 34 

results indicate that uncertainties in posterior state-total ffCO2 estimates arising from the choice 35 

of prior emissions or atmospheric transport model are on the order of 15% or less for the ground-36 

based network in California we consider.  We highlight the need for temporal variations to be 37 

included in prior emissions, and for continuing efforts to evaluate and improve the representation 38 

of atmospheric transport for regional ffCO2 inversions. 39 

1. Introduction 40 

The U.S. state of California currently emits roughly 100 Tg C of fossil fuel CO2 (ffCO2) each 41 

year (CARB, 2017), or approximately 1% of global emissions (Boden et al., 2016). The passing 42 

of California’s “Global Warming Solutions Act” (AB-32) in 2006 requires that overall 43 

greenhouse gas emissions in California be reduced to their 1990 levels by 2020 (a 15% reduction 44 

compared to business as usual emissions) with further reductions of 40% below 1990 levels 45 

planned for 2030, and 80% below by 2050. The California Air Resources Board (CARB) is 46 

responsible for developing and maintaining a “bottom-up” inventory of greenhouse gas 47 

emissions to verify these reduction targets. However, previous studies have shown such 48 

inventories may have errors or incomplete knowledge of sources (e.g. Marland et al, 1999; 49 

Andres et al., 2012). Uncertainties in inventories of annual ffCO2 emissions from most 50 

developed countries (i.e. UNFCCC Annex I and Annex II) have been estimated to be between 5-51 



3 
 

10% (Andres et al., 2012), and uncertainties can become much larger at subnational levels 52 

(Hogue et al., 2016). In a recent study Fischer et al., (2017) found discrepancies between bottom-53 

up gridded inventories of ffCO2 emissions were 11% of California’s state total emissions. 54 

Previous research has shown that inferring ffCO2 emissions from atmospheric measurements, 55 

including measurements of ffCO2 tracers, could provide independent emissions estimates on 56 

urban to continental scales (e.g. Basu et al., 2016; Lauvaux et al., 2016; Fischer et al., 2017; 57 

Graven et al. 2018). Such estimates are derived from observations through the use of an 58 

atmospheric chemical transport model and a suitable inverse method in a process often referred 59 

to as “inverse modelling” or an “inversion”. Distinguishing enhancements of CO2 due to 60 

anthropogenic or biogenic sources can be done using measurements of radiocarbon in CO2 61 

(Δ14CO2), since CO2 emitted from fossil fuel combustion is devoid of 14CO2 due to radioactive 62 

decay (Levin et al., 2003).  63 

Recent studies with both real atmospheric measurements of ∆14CO2 and with observing system 64 

simulation experiments (OSSEs) at a network of sites have shown that atmospheric ∆14CO2 can 65 

be used to estimate monthly mean Californian ffCO2 emissions with posterior uncertainties of 5-66 

8%, levels that are useful for the evaluation of bottom-up ffCO2 emissions estimates. 67 

Furthermore, Graven et al., 2018 found their posterior emissions estimates were not significantly 68 

different from the California Air Resources Board’s reported ffCO2 emissions, providing 69 

tentative validation of California’s reported ffCO2 emissions in 2014-15. In another study using 70 

aircraft-based Δ14CO2 measurements, Turnbull et al. (2011) found ffCO2 emissions from 71 

Sacramento County in February 2009 had a mean difference of -17%, range: -43% to +133% 72 

with the Vulcan emissions estimate (Gurney et al., 2009). 73 

Deleted: ; INFLUX ref74 

Deleted: were broadly consistent (75 
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Although atmospheric inversions may provide a method for estimating emissions that is useful 76 

for evaluating emissions reduction policies, such as AB-32, systematic errors can arise from the 77 

atmospheric transport and prior emission models (e.g., Nassar et al., 2014; Liu et al., 2014; 78 

Hungershoefer et al., 2010; Chevallier et al., 2009, Gerbig et al., 2003). Comparisons of CO2 79 

simulated by different transport models have been conducted globally (e.g. Gurney et al., 2003, 80 

Peylin et al. 2013), and on the European continental scale (Peylin et al., 2011). The latter found 81 

that transport model error resulted in differences in modelled ffCO2 concentrations that were 2-3 82 

times larger than using the same transport model but different prior emissions, depending on the 83 

location and time of year. However, comparisons of ffCO2 simulated by different high resolution 84 

models (25 km or less) at regional scales are still lacking.  85 

The objective of this paper is to examine the sensitivity of a regional inversion for Californian 86 

ffCO2 emissions to errors in the prior emissions estimate and transport model.  We build on 87 

previous work by Fischer et al. (2017) that developed an Observation System Simulation 88 

Experiment to estimate the uncertainties in both California statewide ffCO2 emissions and 89 

biospheric fluxes that might be obtained using an atmospheric inversion. Their inversion was 90 

driven by a combination of in situ tower measurements, satellite column measurements from 91 

OCO-2, prior flux estimates, a regional atmospheric transport modelling system, and estimated 92 

uncertainties in prior CO2 flux models, ffCO2 measurements using radiocarbon, OCO-2 93 

measurements, and in atmospheric transport. In contrast to Fischer et al., 2017 we focus only on 94 

ffCO2 emissions and use a network of flask samples without incorporating satellite 95 

measurements.  96 

Our approach is to use simulation experiments to quantify representation and transport error 97 

using the inversion setup and the observation network from Graven et al. (2018) as a test case. 98 
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Specifically we test whether the inversion can estimate the “true” emissions that were used to 99 

produce the pseudo data, within the uncertainties, when the prior emissions estimate includes 100 

spatial and temporal representation errors within the scope of current emissions estimates 101 

(Vulcan v2.2 and EDGAR v4.2 FT2010). We further test whether the inversion can estimate 102 

“true” emissions, within the uncertainties, when the transport model used for the prior simulation 103 

is different from the transport model used to produce the pseudo data, emulating transport error.  104 

2. Data and Methods 105 

The analysis approach applies a Bayesian inversion developed from previous work that combines 106 

atmospheric observations, atmospheric transport modelling, prior flux models, and an 107 

uncertainty specification (Jeong et al., 2013; Fischer et al., 2017). Here, the inversion scales prior 108 

emission estimates in 15 regions (Figure 1a, Table 1) termed “air basins”, classified by the 109 

California Air Resources Board for air quality control 110 

(https://www.arb.ca.gov/desig/adm/basincnty.htm). 111 

2.1 Observation Network  112 

As a test case to explore uncertainties in ffCO2 inversions, we use the observation network of 9 113 

tower sites in California that was used to collect flask samples for measurements of CO2 and 114 

radiocarbon in CO2 in 2014-15 and simulate the same campaign periods (Figure 1a) (Graven et 115 

al. 2018). Three, month-long, campaigns were conducted: 1st – 29th May 2014; 15th October – 116 

14th November 2014; and 26th January – 15th February 2015, with flasks sampled approximately 117 

every 2-3 days at 22:30 GMT (14:30 local standard time). We replicate the sample availability in 118 

Graven et al. (2018), including the reduction in observation sites used in Jan-Feb 2015. The time 119 

of observation was chosen as the planetary boundary layer is usually deepest in the afternoon so 120 
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that errors in the modelled boundary layer concentration are considered smaller (Jeong et al., 121 

2013), and afternoon concentrations are more representative of large regions.  122 

The observed ffCO2 concentration at a given site can be calculated by (Levin et al., 2003; 123 

Turnbull et al. 2009): 124 

𝑓𝑓𝐶𝑂$ = 𝐶&'( )
∆+,-∆.+/
∆+,-	∆11

2 + 	𝛽  (1) 125 

Where Cobs is the total observed CO2 concentration at a given site. Δ refers to Δ14C, the ratio of 126 

14C/C reported in part per thousand deviation from a standard ratio, including corrections for 127 

mass-dependent isotopic fractionation and sample age (Stuiver and Polach, 1977). Δbg, Δobs and 128 

Δff are the Δ14CO2 of background, observed and fossil fuel CO2, respectively, where Δff is -129 

1000‰ since ffCO2 is devoid of 14CO2. The term β is a correction for the effect of other 130 

influences on Δ14CO2, principally heterotrophic respiration (Turnbull et al. 2009). In the 131 

experiments we present here, we do not explicitly calculate Δ14CO2 or the other terms in 132 

Equation 1, rather we simulate ffCO2 and specify its uncertainty to be the same as the uncertainty 133 

in radiocarbon-based estimates of ffCO2. Following Fischer et al. (2017), total observational 134 

uncertainty for ffCO2 was assumed to be 1.5 ppm (1-σ), encapsulating measurement uncertainty, 135 

background uncertainty and uncertainty in β. This is consistent with Graven et al. (2018), who 136 

estimated total uncertainty in ffCO2 for individual samples of 1.0 to 1.9 ppm. 137 

2.2 Prior Emissions Estimates and Prior Uncertainty 138 

The two prior emissions estimates used here are gridded products produced by EDGAR (version 139 

FT2010) (EDGAR, 2011) for the year 2008 and Vulcan (version 2.2) for 2002 (Gurney et al., 140 

2009). EDGAR is produced at an annual resolution whilst Vulcan has an hourly resolution.  The 141 
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two models use different emissions data and different methods to spatially allocate emissions 142 

with annually averaged statewide emissions differing by 17.8 TgC (~19% of mean emissions), 143 

and up to 11.6 TgC for individual air basins of California (Table 1). Although our campaigns 144 

took place in 2014-2015, we use emissions estimates from Vulcan for the year 2002 and EDGAR 145 

for 2008 as emissions estimates are not available from Vulcan and EDGAR for 2014-15. The 146 

difference in state total emissions between 2002, 2008 and 2014-15 is 3-6 TgC (CARB, 2017), 147 

much less than the EDGAR-Vulcan difference of 17.8 TgC.  148 

We estimate prior uncertainty in the same way as in Fischer et al. (2017), using a comparison of 149 

four gridded emissions estimates in California (Vulcan v2.2, EDGAR FT2010, ODIAC v2013 150 

and FFDAS v2) as well as a comparison across an ensemble of emissions estimates for one 151 

model (FFDAS v2, Asefi-Najafabady et al.,2014). Prior uncertainty is specified for the whole air 152 

basin. The relative 1-σ standard deviation across the four inventories is between 8% and 100% 153 

for individual air basins (Table 1), and this is what we use to specify the 1-σ uncertainty in the 154 

prior emissions from each air basin. This estimate of prior uncertainty is referred to as “SD prior 155 

uncertainty”. We also conduct tests with an alternative prior uncertainty of 70% for each air 156 

basin (referred to as “70% prior uncertainty”). This was done to test the sensitivity of our results 157 

to the choice of prior uncertainty. Emissions occurring outside California were assumed to have 158 

an uncertainty of 100% for both cases. 159 

2.3 Atmospheric Transport Models 160 

We simulate ffCO2 using three different atmospheric transport models outlined in Table 2. These 161 

models are commonly used in regional atmospheric transport modelling and greenhouse gas 162 

inversion studies but to date have not been compared in California. Two of the transport models 163 
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use different versions and parameterizations of the Weather Research and Forecast (WRF) model 164 

combined with the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The third 165 

transport model uses meteorology from the UK Met Office’s Unified Model (UM) combined 166 

with the Numerical Atmospheric dispersion Modelling Environment (NAME).  167 

The first WRF-STILT model is run at Lawrence Berkeley National Laboratory (WS-LBL, 168 

Fischer et al. 2017; Jeong et al. 2016; Bagley et al. 2017) and uses WRF version 3.5.1 (Lin, 169 

2003; Nehrkorn et al., 2010). Estimates for Planetary Boundary Layer Height (PBLH) are based 170 

on the Mellor–Yamada–Nakanishi–Niino version 2 (MYNN2) parameterization (Nakanishi and 171 

Niino 2004, 2006). As in Jeong et al. (2016), Fischer et al. (2017) and Bagley et al. (2017), two 172 

land surface models (LSMs) are used depending on the location of the observation site. A 5-layer 173 

thermal diffusion land surface model is used in the Central Valley for the May campaign whilst 174 

the Noah LSM (Chen et al., 2001) is used in the remaining campaigns and regions of California. 175 

We implement multiple nested domains, with the outermost domain spanning 16-59°N and 154-176 

137°W with a 36km resolution, a second domain of 12km resolution over western North 177 

America, and a third domain of 4km resolution over California. Two urban domains of 1.3 km 178 

resolution are used in the San Francisco Bay area and the metropolitan area of Los Angeles. 179 

Footprints describing the sensitivity of an observation to surface emissions are calculated by 180 

simulating 500 model particles and tracking them backward for 7 days. The footprint of a given 181 

site and observation time is produced hourly for particles below 0.5 times the PBLH. 182 

The second WRF-STILT model is from CarbonTracker-Lagrange (WS-CTL), an effort led at 183 

NOAA to produce standard footprints for greenhouse gas observation sites in North America 184 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange). WS-CTL uses WRF version 185 

2.1.2 and the Yonsei University (YSU) (Hong et al., 2006) PBLH scheme coupled with the Noah 186 
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land surface model and the MM5 (fifth generation Pennsylvania State University-National 187 

Center for Atmospheric Research Mesoscale Model, Grell et al., 1994) similarity theory-based 188 

surface layer scheme. As with WS-LBL, simulations are run for 7 days and particles below 0.5 189 

times the PBLH are used in the calculation of the footprint. Footprints have a spatial resolution 190 

of 0.1° for the first 24 hours and 1° for the remaining 6 days. Footprints are hourly dis-191 

aggregated for the first 24 hours and then aggregated for the remaining 6 days. This approach 192 

captures the influence of temporally varying emissions that can be significant in the first 24 193 

hours but we assume to be negligible for the period longer than 24 hours back in time.  The 0.1° 194 

spatial resolution domain is 31° longitude by 21° latitude with the domain centered on the release 195 

location. The 1° resolution has a domain of 170°E to 50°E longitude and 10° N to 80° N latitude. 196 

The WRF domain covers most of continental North America (Fig. 1 in Nehrkorn et al., 2010) 197 

with 30 km resolution and has a finer nest with 10 km spatial resolution over the continental 198 

United States. WS-CTL simulates footprints for 500 particles released over a 2-hour period 199 

between 21:00 and 23:00 GMT (13:00 and 15:00 PST). An exception is Sutro Tower (STR), 200 

where footprints are only available for an instantaneous release of 500 particles at 22:10 GMT. 201 

Walnut Grove (WGC) footprints are available only for a release height of 30m a.g.l, which is 202 

lower than the sampling height of 91m a.g.l. used in the observation campaign (Graven et al. 203 

2018) and used in the other two transport models. Footprints were available for 2014 but not for 204 

2015, so the WS-CTL model is used for simulations of the May and Oct-Nov 2014 campaigns 205 

but not for the Jan-Feb 2015 campaign.  206 

The third model, UM-NAME, is the UK Met Office’s NAME model, Version 3.6.5 (Jones et al., 207 

2007), driven by meteorology from the Met Office’s global numerical weather prediction model, 208 

the Unified Model (UM) (Cullen et al., 1993). The UM model has a horizontal resolution of ~25 209 
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km up to July 2014, covering the period of the May 2014 campaign. The horizontal resolution 210 

was then increased to ~17 km covering both the October-November 2014 and January-February 211 

2015 campaigns. The temporal resolution of the UM meteorology is every 3 hours for all 212 

campaigns. Following a similar approach as for the WRF-STILT models, 500 particles were 213 

released instantaneously at 22:30 GMT and simulated for hourly dis-aggregated footprints for the 214 

first 24 hours and aggregated for the remaining 6 days. The footprints are calculated for the same 215 

horizontal resolution as the UM meteorology (25 or 17km), where the particles present in the 216 

layer between 0 and 100 m above ground level are used to calculate the footprint. The 217 

computational domain covers 175.0°W to 75°W longitude and 6.0°N to 74°N latitude. 218 

Simulated ffCO2 signals (the enhancement of CO2 concentration due to ffCO2 emissions within 219 

the model domain) are calculated by taking the product of the footprint and an emissions 220 

estimate, both with the spatial resolution of the footprint at the native footprint resolution. 221 

The resulting concentration is summed for individual air basins.  Following previous work, 222 

we assume a transport model uncertainty of 0.5 times the mean monthly signal in the pseudo-223 

observations at each site (referred to as the ‘uncertainty parameter’) (Jeong et al., 2013; Fischer 224 

et al 2017). We also test the effect of changing the uncertainty parameter to 0.3 and 0.8.  225 

Ten ensembles were run for UM-NAME to test the effect of random errors on the calculation of 226 

the footprint. The RMSE was within 10% of the mean monthly signal for most observation sites. 227 

This is similar to the findings of Jeong et al. (2012), which the transport model uncertainty is 228 

based on. Two observation sites (THD and VTR) had slightly higher RMSE, but both were 229 

within 20% of the mean monthly signal.  230 

2.4 Inversion Method 231 
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Our inversion method is a Bayesian synthesis inversion to scale emissions in separate regions of 232 

California. We follow the same approach as Fischer et al. (2017) to solve for a vector of scaling 233 

factors, λ, for 15 air basins and a 16th region representing the area outside of California. Unlike 234 

Fischer et al. (2017), we do not split the San Joaquin Valley into two regions. The inversion uses 235 

the set of observations, c, and the matrix of predicted ffCO2 signals from each air basin, K, to 236 

optimize the cost function J: 237 

𝐽6 = (𝑐 − 𝑲𝜆)=𝑹-?(𝑐 − 𝑲𝜆) + (𝜆 − 𝜆@AB&A)=𝑸6-?(𝜆 − 𝜆@AB&A) (2) 238 

λprior is the prior estimate of the scaling factors (a vector of ones with length equal to the number 239 

of regions) and R and Qλ are the error covariance matrices relating to observational and model 240 

transport errors, and prior emissions estimate errors respectively. The non-diagonal elements of 241 

R and Qλ are zero, assuming uncorrelated errors in the prior emissions in each air basin and in 242 

the model and observations. This assumption for R is robust as we only generate one pseudo 243 

observation every 2-3 days. Included in R are observational errors and transport model errors, 244 

added in quadrature. Therefore if the average signal at an observation site is very small, then 245 

observational uncertainty (1.5 ppm) will dominate R. Minimizing J using the standard least 246 

squares formulation under the assumption of Gaussian distributed uncertainties gives the 247 

posterior estimate for λ following:  248 

 (3) 249 

With the posterior error covariance given as: 250 

 (4) 251 

λpost and Vpost are computed separately for each of the three campaigns outlined in section 2.1. 252 

Posterior emissions estimates are the product of λpost and the prior emissions estimate from each 253 

air basin. State total emissions are then calculated by summing the emissions in each air basin. 254 

( ) ( )prior
TT

post λQcRKQKRKλ 11111 ----- ++= ll

( ) 111 --- += lQKRKT
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Uncertainty in the state-wide Californian posterior flux, including error correlations, is calculated 255 

as: 256 

sE2 =   (5) 257 

Where Eprior is a vector of ffCO2 emissions from each air basin.  258 

2.5 Simulation Experiments  259 

We conduct a series of experiments to test the performance of the inversion in estimating the true 260 

emissions when the emissions estimates or transport models used to produce pseudo-261 

observations are different to those used to produce the prior simulations. The tests explore the 262 

effect differences in the magnitude, spatial distribution, and temporal variation of prior emissions 263 

have on posterior emissions. We also examine the effect of using different transport models to 264 

simulate pseudo observations and to simulate prior concentrations. 265 

As part of these experiments, we evaluate the impact of outlier removal on the simulation 266 

experiments. Outlier removal is generally used in atmospheric inversions when there is an issue 267 

with the ability of the model to simulate a particular observation. We use the outlier removal 268 

method outlined in Graven et al. (2018) and compare with inversion results where no outliers are 269 

removed. In this outlier removal method, an observation (here, a pseudo-observation) is 270 

designated as an outlier if (1) the absolute difference between the ffCO2 signals in the 271 

observation and the prior simulation is greater than the average of the observed and simulated 272 

ffCO2, and (2) either the observed or simulated ffCO2 is greater than 5 ppm.  273 

2.5.1 Difference in magnitude of emissions  274 

First we test how well the inversion estimates the true emissions if the prior emissions have a 275 

systematic error in magnitude, but no error in the spatial or temporal distribution of emissions 276 

EpriorVpostEprior
T
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and no error in atmospheric transport. In this experiment, the prior emissions estimate is given by 277 

EDGAR and the true ffCO2 signals were generated by scaling the EDGAR emissions in each air 278 

basin to match the annually averaged Vulcan emissions in that air basin. These differences range 279 

from 0.1 TgC in San Diego to 11.6 TgC in the San Joaquin Valley (Table 1). The EDGAR state 280 

total emissions are 12% higher than Vulcan, so the bias in the prior estimate in the state total 281 

ffCO2 emissions is +12%. The experiment is run for all the transport models with no temporal 282 

variation in emissions. This experiment assesses the performance of the inversion and the 283 

strength of the data constraint provided by the observation network in the simplest case where 284 

the only errors in prior regional flux estimates are biases in their magnitudes. Prior uncertainty 285 

is fixed per air basin for all experiments. 286 

2.5.2 Difference in spatial distribution of emissions 287 

To investigate the bias in the posterior emissions estimate that could result from errors in the 288 

spatial distribution of prior emissions within each air basin, we now use annually averaged 289 

Vulcan emissions as the true emissions and EDGAR emissions scaled in each air basin to match 290 

the annually averaged Vulcan emissions in that region as the prior estimate of emissions. In this 291 

experiment, the prior estimate of the total emissions in each air basin is unbiased, and we assess 292 

how differences in the spatial distribution of emissions between Vulcan and EDGAR in each air 293 

basin may lead to a bias in the posterior emissions estimate. As shown in Figure 1c, the most 294 

significant discrepancies in spatial distribution are in the major urban areas of Los Angeles and 295 

the San Francisco Bay. This experiment is also run for all the transport models using the same 296 

transport model for both the true and prior simulation and including no temporal variation in 297 

emissions.  298 
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2.5.3 Difference in temporal variation of emissions 299 

To assess the impact of temporally-varying emissions on the inversion result, we generated true 300 

ffCO2 signals with temporally-invariant annually-averaged Vulcan emissions and prior ffCO2 301 

signals with temporally-varying Vulcan emissions. It may seem counter intuitive to choose the 302 

simpler scenario (i.e. time invariant) as true emissions, however this was dictated by the 303 

simulations available; we did not have simulated ffCO2 concentrations from each air basin for 304 

temporally invariant emissions coupled with W-S-LBL footprints, only the total ffCO2 305 

concentrations. We do not expect that switching the prior and true emissions would significantly 306 

affect our conclusions. We scaled the temporally-varying Vulcan emissions in each air basin so 307 

that the total ffCO2 emissions were the same magnitude as the total ffCO2 emissions in the 308 

annually averaged Vulcan emissions for each field campaign. As shown in Figure 1d, scaling 309 

was less than 10% of annual mean emissions with campaigns occurring during maxima and 310 

minima of the annual emissions cycle. Here the prior estimate is again unbiased, and we assess 311 

how differences in the diurnal variation of emissions (see Fig 1b) may lead to a bias in the 312 

posterior emissions estimate. This experiment is also run for all the transport models using the 313 

same transport model for both the true and prior simulation. Prior uncertainty is specified relative 314 

to prior emissions, hence it differs in absolute magnitude for monthly differences in emissions. 315 

Over the state this variation is ~15% when comparing May/Oct-Nov to Jan-Feb (see Fig. 1d).  316 

2.5.4 Difference in Atmospheric Transport  317 

To test the effect of differences in the simulated atmospheric transport of emissions, the same 318 

emissions estimate (annually-averaged Vulcan) is coupled with two different transport models to 319 

generate prior and true ffCO2 signals. This experiment investigates potential effects of transport 320 
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errors, within the variations in transport across the three models we use. WS-LBL is considered 321 

the “true” atmospheric transport while UM-NAME and WS-CTL are used for the prior 322 

simulation in individual experiments. Here the prior estimate is again unbiased, and we assess 323 

how differences in the modeled atmospheric transport may lead to a bias in the posterior 324 

emissions estimate. 325 

3 Results 326 

3.1 Simulated ffCO2 Observations 327 

Before presenting the results of the inversion experiments, we first examine simulated ffCO2 328 

contributions different regions at each of the 9 observation sites. This allows us to quantify 329 

which air basins have the largest influence on simulated concentrations at observation sites and 330 

better interpret the results of the experiments. Figure 2 shows simulated concentrations at 331 

observation sites resulting from emissions in the 6 highest-emitting air basins in California, and 332 

from outside California. The highest signals (> 10 ppm) are simulated at urban sites (e.g. CIT 333 

and SBC) for emissions from urban air basins (e.g., South Coast, 14.SC). The 9 air basins not 334 

shown in Fig. 2 contributed signals below 0.1 ppm due to the small size or low emissions of the 335 

air basin (e.g. Lake County and Lake Tahoe), or distance from the observation network (e.g. 336 

Northeast Plateau, Great Basin Valleys and Salton Sea). In general, the northern sites (THD to 337 

SLT in Fig 2) are sensitive to northern air basins (Sacramento and San Joaquin Valleys and SF 338 

Bay), and the southern sites (VTR to SIO) are sensitive to emissions from southern air basins 339 

(Mojave Desert, South Coast and San Diego). All transport models show the observation sites 340 

are sensitive to more air basins in the Oct-Nov and Jan-Feb campaigns, compared to the May 341 



16 
 

campaign (Fig. 2).  Signals simulated by WS-CTL come from fewer air basins than UM-NAME 342 

or WS-LBL, particularly in May. 343 

In our simulation experiments, signals from outside California are generally small compared to 344 

the total signal for most sites (<10% on average), although they can average 20-50% for STB, 345 

STR, SLT and SIO for individual campaigns. For THD, located near the northern border of the 346 

state, a larger influence from outside California is found, 10-90%, due to a combination of 347 

relatively low local emissions and northerly winds transporting emissions from the northwestern 348 

United States and Canada. 349 

3.2.1 Difference in magnitude of emissions  350 

Figure 3 (a) shows the statewide inversion result for the experiment testing the effect of a bias in 351 

magnitude in regional emissions in the prior simulation. In this figure, and similar figures that 352 

follow for the other experiments, prior estimates are represented by black markers and posterior 353 

estimates are represented by colored markers, with the 2-σ uncertainty on the x-axis and the bias 354 

relative to the truth on the y-axis. The diagonal lines show 1:1 and 1:-1 lines, so that a marker 355 

lying to the right of these lines indicate the posterior bias is smaller than the posterior 356 

uncertainty, whereas a marker to the left of these lines indicate the posterior bias is larger than 357 

the posterior uncertainty. Filled markers show results using SD prior uncertainty and empty 358 

markers show results using 70% prior uncertainty. Prior and posterior uncertainties are expressed 359 

as 2-σ.  360 

For all transport models and campaigns, the inversion is able to reduce prior bias and scale 361 

posterior emissions towards the truth. The +12% bias in the statewide emissions in the prior was 362 

reduced to a posterior bias of between 0 and +9% (mean bias = +5%) for SD prior uncertainty. 363 
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Using 70% prior uncertainty reduced prior bias to between -3 and +6 (mean = +1%). Statewide 364 

posterior uncertainty was 10-14% (mean 12%) and 14-32% (mean = 21%) for SD and 70% prior 365 

uncertainty respectively, where uncertainty is expressed as 2-σ, lower than the statewide prior 366 

uncertainties of 16% for SD and 69% for 70% prior uncertainty. There were no outliers 367 

identified in this experiment. 368 

To determine what is driving the statewide results, we examine the individual air basin inversion 369 

results. Figure 3 (b) shows the inversion results for the six main emission regions of California, 370 

with San Joaquin Valley (8.SJV) and South Coast (14.SC) having the largest prior biases. For the 371 

San Joaquin Valley (8.SJV) and South Coast (14.SC) regions with the largest prior bias, the 372 

biases are reduced in most cases, however, only the posterior estimates from the 70% prior 373 

uncertainty experiment overlap the true emissions. The posterior estimates for SD prior 374 

uncertainty do not overlap with the truth, indicating that the 2-σ prior uncertainty of 24% in 375 

South Coast (14.SC), for example, restricts the inversion from eliminating biases of 30% in these 376 

regions (Table 1), given the observations available. The 9 air basins omitted from Fig. 3(b) are 377 

generally not being scaled by the inversion due to a lack of constraint from the observation 378 

network, low emissions, or small prior uncertainty (Figure S1). 379 

The bias in the posterior estimate of statewide emissions is larger in May than in Oct-Nov and 380 

Jan-Feb (Fig 3a, triangles). This poorer performance of the inversion in May can be largely 381 

attributed to the San Joaquin Valley (8.SJV), where the posterior emissions are largely 382 

unchanged from the prior in May. There is no observation site in the San Joaquin Valley, and as 383 

shown in Fig. 2, emissions in the San Joaquin Valley do not reach observation sites in 384 

neighboring air basins in May, but they do reach these sites in Oct-Nov and Jan-Feb. In contrast, 385 

the South Coast (14.SC) influences the two observation sites, CIT and SBC, located in the region 386 
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as well as several other sites (Fig. 2). Both CIT and SBC show prior signals are too high 387 

compared to true signals for all campaigns and models (Fig. 3c), reflecting the positive bias in 388 

prior emissions in the South Coast region, which is reduced in the posterior. Changing the 389 

uncertainty parameter from 0.5 to 0.3 or 0.8 had the result of decreasing the ability of the 390 

inversion to scale state-wide emissions towards true emissions by 1-4%, with an increase in 391 

posterior uncertainty by a similar percentage.   392 

3.2.2 Difference in spatial distribution of emissions 393 

The statewide inversion results for the experiment including errors in the spatial distribution of 394 

emissions are shown in Figure 4 (a). In this case the magnitude of prior emissions in each air 395 

basin is equal to true emissions and we aim to quantify how errors in the spatial distribution of 396 

emissions (EDGAR as prior and Vulcan as true distribution) lead to bias in posterior emissions 397 

estimates. Posterior emissions are negatively biased, apart from WS-LBL in January-February. 398 

Posterior bias was between -10% and +1% (mean -4%) for SD prior uncertainty and between -399 

10% and +4% (mean = -4%) for 70% prior uncertainty across transport models and campaigns. 400 

As might be expected from the experimental setup with an unbiased prior, posterior emissions 401 

estimates generated using SD prior uncertainty have a smaller mean bias and smaller range of 402 

posterior estimates compared to those generated using 70% prior uncertainty. Statewide 403 

uncertainty was reduced from 16% to 10-14% (mean = 12%) for SD prior uncertainty and from 404 

58% to 14-21% (mean = 18%) for 70% air basin prior uncertainty. Biases induced are smaller 405 

than the 2-σ posterior uncertainty across all transport models, campaigns and choice of prior 406 

uncertainty.  407 
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Posterior emissions results in the two largest emitting air basins (the San Francisco Bay and 408 

South Coast) are also negatively biased in most cases (Fig 4b). In several cases, posterior biases 409 

are larger than the associated posterior uncertainties, for example in the South Coast for WS-410 

LBL in all cases. Considering Figure 4 (c), prior ffCO2 signals are being overestimated more 411 

often than underestimated, particularly for the relatively more urban sites CIT and SLT. 412 

Since the prior emissions from EDGAR have been scaled to have the same total as Vulcan (the 413 

true emissions) in each region, the pattern of more negative posterior emissions is only caused by 414 

the sub-regional spatial distribution of emissions. Comparing Vulcan and EDGAR native grid 415 

cell emissions in Figures 1c and S2, EDGAR tends to have greater emissions in high-emission 416 

grid cells. In other words, the emissions are more concentrated in EDGAR and more dispersed in 417 

Vulcan. This pattern explains the negative bias in posterior emissions for the urban South Coast 418 

air basin. The opposite effect does not appear to hold for rural observation sites and regions, 419 

perhaps because rural emissions are already rather dispersed and have less of an influence on the 420 

observations.     421 

In these experiments, 0-3% of observations were identified as outliers, but excluding outliers did 422 

not change the statewide result significantly (<1% change in mean bias).  423 

3.2.3 Difference in temporal variation of emissions 424 

Figure 5 (a) shows the statewide inversion result for the experiment where the emissions are 425 

Vulcan temporally-varying in the prior simulation (see Fig. 1b) but Vulcan temporally-invariant 426 

in the true simulation. Posterior bias was between -13 and +5% (mean = -3%) for SD uncertainty 427 

and between -15% and +6% (mean = -3%) for 70% prior uncertainty. Posterior uncertainty was 428 

11-15% (mean = 12%) for SD prior uncertainty and 15-24% (mean = 18%) in posterior 429 

Deleted:  Sacramento Valley (3.SV) and the San Joaquin Valley 430 
(8.SJV) have higher posterior emissions in WS-LBL in most cases, 431 
possibly due to the inversion compensating for reduced posterior 432 
emissions in the San Francisco Bay (13.SFB) and South Coast 433 
(14.SC). 434 
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emissions for SD (70%) prior uncertainty. Outlier removal resulted in 0-1% (mean = 0%) of data 435 

points being removed, which did not change the statewide results. 436 

The posterior estimate for WS-LBL in May with SD prior uncertainty has a significant negative 437 

bias of -13%, approximately the same magnitude as the associated 2-σ posterior uncertainty. As 438 

can be seen by the air basin results of Figure 5 (b), the statewide bias for WS-LBL in May is 439 

being driven by a large regional bias in the South Coast, but also in the San Francisco Bay and 440 

San Diego air basins. These regional biases are larger than their associated posterior 441 

uncertainties. Figure 5 (c) shows the prior ffCO2 signals at CIT average ~7ppm too high in May 442 

for WS-LBL. In contrast, prior ffCO2 signals at CIT and SBC are too low in Oct-Nov for WS-443 

CTL, leading to a high bias in posterior emissions from the South Coast. San Diego also 444 

exhibited both high and low biases in the posterior emissions. Overall, temporal variations in 445 

emissions led to posterior biases generally within ±6%, but as large as 15%; however, a 446 

consistent pattern in the posterior bias due to the temporal representation in emissions was not 447 

found. 448 

3.2.4 Difference in Atmospheric Transport  449 

The statewide inversion results for the experiment where the atmospheric transport in the prior 450 

simulation uses WS-CTL or UM-NAME but the atmospheric transport in the true simulation 451 

uses WS-LBL are shown in Figure 6 (a). Outliers were identified in these experiments and we 452 

present results for inversions including all data and for inversions where outliers were removed.  453 

When all data are included, differences in atmospheric transport model introduces a bias in 454 

statewide posterior emissions of between -42% and -3% (mean = -12%) for SD prior uncertainty 455 

and between -32% and 0% (mean = -15%) for 70% prior uncertainty. For one case, using WS-456 
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CTL to generate prior signals in October-November, the bias in the posterior emissions estimate 457 

was larger than the 2-σ uncertainty for both SD and 70% prior uncertainty. Changing the 458 

uncertainty parameter from 0.5 to 0.3 or 0.8 resulted in posterior emissions remaining closer 459 

to true emissions by 0-4% and increasing the posterior uncertainty by 1-5%. 460 

Removing outliers significantly improved the inversion results (Figure 6 b): the mean bias was 461 

between -10% and 0% (mean = -3%) for SD prior uncertainty and between -9% and +6% (mean 462 

= -5%) for 70% prior uncertainty when outliers were removed. Posterior uncertainty was 9-15% 463 

(mean = 12%) and 15-24% (mean = 18%) for SD and 70% prior uncertainty respectively, with 464 

all posterior estimates within 2-σ of the true statewide emissions. The reduction in posterior bias 465 

when outliers are removed is mostly due to the removal of a few large positive outliers in prior 466 

simulated signals by WS-CTL (Figure 7). Figure 7 illustrates the time series of simulated ffCO2 467 

in each model with outliers shown as an x. Outliers removed were between 6.9% and 20.6% of 468 

all observations (mean = 10.5%). This is similar to the fraction of outliers identified in Graven et 469 

al. 2018 using the same method with real data (~8%). It is also similar to that of Jeong et al., 470 

2012a and b (0-27%) for monthly inversions of CH4 in California using a different method of 471 

identifying outliers where model-data residuals are larger than 3-σ of model-data uncertainty. 472 

This is an important result for the atmospheric inversion community working at such spatial 473 

scales, as it highlights the benefits of removing outliers. 474 

While the statewide posterior emissions estimate is significantly biased in only one case (WS-475 

CTL in Oct-Nov) when outliers are not removed, the posterior emissions estimates for the main 476 

emissions regions are significantly biased in several cases (Fig 6c). The largest bias is in the 477 

South Coast region where posterior estimates are biased by more than -75% (with 1% posterior 478 

uncertainty) in Oct-Nov when using WS-CTL to generate prior signals. This large posterior 479 



22 
 

emissions bias in the South Coast and the statewide total can be attributed to overestimates in 480 

prior ffCO2 signal of more than 6ppm on average at CIT and SBC and more than 2ppm at WGC 481 

and STR (Fig. 6e) due to some high outliers in the WS-CTL simulations (Fig. 7). Posterior 482 

estimates for San Francisco Bay, South Coast and San Diego were also significantly biased in 483 

some other cases, particularly for 70% prior uncertainty but also for SD prior uncertainty. This 484 

indicates that regional biases caused by differences in atmospheric transport appear to 485 

compensate over the statewide scale, and that results for individual regions are less robust than 486 

aggregate results for the statewide network. It also suggests that an observation network with 487 

multiple sites in a variety of settings is beneficial to reducing the impact of uncertainty in 488 

atmospheric transport.  489 

To investigate the differences in simulated ffCO2 and assess whether these could be attributed to 490 

specific aspects of modelled meteorology, we compared PBLH and wind speed in WS-LBL and 491 

the UM for 5 of the 9 observation sites where PBLH output was available. PBLH was not 492 

available for WS-CTL. Estimates for PBLH in WS-LBL are based on the Mellor–Yamada–493 

Nakanishi–Niino version 2 (MYNN2) parameterization scheme that estimates PBLH using 494 

localized turbulence kinetic energy closure parameterization (Nakanishi and Niino 2004, 2006). 495 

Estimates of PBLH are calculated internally within the UM. PBLH and wind speed were 496 

averaged over 6 hours from 12 to 6pm Pacific Standard Time to compare the afternoon means 497 

(Seibert et al., 2000). We found no consistent correlation between differences in PBLH or wind 498 

speed and differences in simulated ffCO2 between models across sites and campaigns (Figure 499 

S3). Absolute values of wind direction and ffCO2 did not show consistent correlations either. The 500 

lack of correlation suggests we cannot attribute differences in simulated ffCO2 to any single 501 

meteorological variable estimated at any individual station in the transport models.   502 
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We also examined if differences in simulated ffCO2 signals across transport models could be 503 

explained by the differences in spatial resolution of the models. WS-CTL footprints were re-504 

gridded from a 0.1° native grid to the coarser UM-NAME grid of 17 or 25km and then used to 505 

simulate ffCO2. For this comparison, we simulated ffCO2 every day over the campaign period. 506 

We found no consistent reduction in mean ffCO2 bias between sites over the 2 campaigns, 507 

however there is a reduction in spread of bias at 4 sites for both campaigns (WGC, SLT, SBC 508 

and SIO), suggesting model resolution could potentially have an impact for these sites. In general 509 

however, we cannot say that transport model resolution error in atmospheric transport is a key 510 

driver of ffCO2 signal bias across observation sites (Figure S4).  511 

4 Discussion 512 

Our results show that atmospheric inversions can reduce a hypothetical bias in the magnitude of 513 

prior ffCO2 emissions estimates for the U.S. state of California using the ground-based 514 

observation network from Graven et al. (2018), under the idealized assumptions of perfect 515 

atmospheric transport and perfect spatio-temporal distribution of emissions in the prior estimate. 516 

By exploring differences in model transport and spatio-temporal distribution of prior emissions, 517 

we found that biases of magnitude 1-15% in monthly posterior estimates of statewide emissions 518 

can result from differences in the temporal variation, spatial distribution and modelled transport 519 

of the prior simulation. However, these biases were less than the 2-σ posterior uncertainty in 520 

state-total emissions, when outliers were removed. In some cases, the biases in posterior 521 

emissions for individual air basins were significant, compared to the posterior uncertainties, 522 

suggesting that estimates for individual regions are less reliable than the aggregate estimates of 523 

the state-wide total.  524 
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The largest bias in statewide posterior estimates was found to be caused by errors in the temporal 525 

variation in emissions. This highlights the necessity for temporally-varying emissions to be 526 

estimated and included in prior emissions estimates, particularly for urban regions. Similar 527 

results have been found in other regions including Indianapolis (Turnbull et al. 2015) and Europe 528 

(Peylin et al. 2011), and more generally, for high-emission regions around the globe (Zhang et al. 529 

2016). Although the afternoon sampling is near to the diurnal maximum in emissions in 530 

California (Fig. 1c, Gurney et al. 2009), which might be expected to lead to higher simulated 531 

ffCO2 in temporally-varying vs temporally-invariant emissions, we did not find consistently 532 

positive biases in ffCO2 but rather both positive and negative biases. This suggests the overall 533 

impact of temporally-varying emissions depends on the model transport and the characteristics of 534 

the observation site. Furthermore, uncertainties in the temporal distribution of emissions at an 535 

hourly resolution have not yet been fully quantified (Nassar et al., 2013).  536 

Errors in model transport, as represented in our experiments by using different transport models, 537 

were shown to bias posterior ffCO2 emissions by 10% or less, when outliers were removed. 538 

These biases related to transport error are somewhat lower than estimated by similar simulation 539 

experiments for ffCO2 emissions estimates for the U.S. by Basu et al. (2016) using different 540 

transport models (>10%), although their spatial scale was larger and the alternate model they 541 

used was intentionally biased. In contrast, the three models we use are all actively applied in 542 

regional greenhouse gas inversions. Our results are comparable to the estimate of ±15% 543 

uncertainty in atmospheric transport in WS-LBL using comparisons with atmospheric 544 

observations of CO in California (Bagley et al. 2017).  545 

The fraction of pseudo-observations we identified as outliers in these transport error experiments 546 

(10.5%, range 6.9-20.6%), was similar to Graven et al., 2018, where 8% of all observations were 547 
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removed as outliers using the same method. The outliers in our experiments were primarily high 548 

ffCO2 signals simulated by WS-CTL in Oct-Nov. When included in the inversion, these did lead 549 

to significant biases in the posterior estimates for the experiment on model transport. This 550 

highlights the need for careful examination of simulated ffCO2 and consideration of outliers in 551 

atmospheric ffCO2 inversions.  552 

Attributing differences in simulated ffCO2 between the different transport models to specific 553 

meteorological variables proved inconclusive, and model resolution error did not appear to 554 

explain the differences in simulated signals, although we were not able to investigate aggregation 555 

error in comparison to the high-resolution WS-LBL model. Wang et al. (2017) found 556 

aggregation error to be only a minor contributor to errors in simulated ffCO2 in Europe, while 557 

Feng et al., (2016) found that high-resolution gridded emissions estimates could be more 558 

important than high resolution transport models for simulations of greenhouse gases in Greater 559 

Los Angeles. We found that differences in the spatial representation of prior emissions in 560 

EDGAR compared to Vulcan led to consistently lower, although not significantly different, 561 

posterior state-wide estimates due to the emissions in EDGAR being more concentrated in urban 562 

regions. The spatial allocation of emissions between urban and rural regions in gridded emissions 563 

estimates have much larger percentage uncertainties than national totals (Hogue et al. 2016), 564 

suggesting that several different gridded emissions estimates should be used in regional ffCO2 565 

inversions to capture this source of uncertainty.     566 

The results of these experiments suggest that the choice of prior emissions estimate and transport 567 

model (among those considered here and currently used in the community) used in our ffCO2 568 

inversion would result in differences of 15% or less in posterior state-wide ffCO2 emissions in 569 

California, using the observation network from Graven et al. (2018). These differences are 570 
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generally not significant, compared to the posterior 2-σ uncertainties of 10 to 15%. In 571 

comparison, Graven et al. (2018) found that posterior state-wide ffCO2 emissions were not 572 

statistically different when using temporally-varying emissions from Vulcan, as compared to 573 

annual mean emissions from Vulcan or EDGAR, with posterior uncertainties of ±15 to ±17%. 574 

Our results may be specific to the California region, observation network and inversion setup we 575 

consider here, but we expect that similar differences of 1-15% are likely to be found elsewhere in 576 

similar inversions at comparable regional scales. We note that while we have assessed individual 577 

contributions to uncertainty in the experiments formulated here, these contributions can also 578 

interact with each other. These interactions could act to increase the resulting biases, or partly 579 

cancel them, depending on the combination used. The possibility for interacting effects implies 580 

that multiple prior emissions estimates and transport models should be used in inversions of real 581 

data.  582 

In our results, emissions from many small or rural air basins did not have a significant 583 

contribution to the local enhancement of ffCO2 at the observation sites and were not adjusted by 584 

the inversion in most cases (Figure 2, Figure S1). Combined with our experimental setup 585 

specifying the magnitude of prior emissions to be equal to true emissions, it might be expected 586 

that our results could underestimate the predicted biases in posterior emissions. However, these 587 

experiments were designed specifically to quantify representation and transport error using the 588 

inversion setup and the observation network from Graven et al. (2018) as a test case. Here, we 589 

have assumed the model-measurement mismatch uncertainty matrix is diagonal, following 590 

previous work (e.g. Gerbig et al. 2003; Fischer et al., 2017), however the consideration of 591 

correlated errors in the uncertainty matrix has also been found to affect posterior emissions for 592 

methane in California and reduce their uncertainty at the level of several percent (Jeong et al. 593 
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2016). Fischer et al. (2017), showed in individual simulation experiments that using either 594 

EDGAR, or a spatially uniform flux of 1 µ mol m-2 s-1 as a biased prior, produced posterior 595 

emissions that are substantially closer to true emissions, but only if the prior uncertainties are set 596 

large enough to encompass biases in prior emissions. Therefore, further experiments using a 597 

different experimental setup such as choice of mismatch error or specification of inversion 598 

regions (e.g. to change the inversion region size based on proximity to the observation network, 599 

Manning et al., 2011), would help to characterize uncertainties in regional ffCO2 inversions and 600 

the robustness of posterior estimates to the choices made in the inversion setup. 601 

Conclusion 602 

We have shown that atmospheric inversions for the U.S. state of California can reduce a 603 

hypothetical bias in the magnitude of prior emissions estimates of ffCO2 in California using the 604 

ground-based observation network from Graven et al. (2018). Experiments to characterize the 605 

effect of differences in the spatial and temporal distribution in prior emissions resulted in biases 606 

in posterior state-total emissions with magnitudes of 1-15%, similar to monthly posterior 607 

estimates of Basu et al., 2016 for the western United States. Our results highlight the need for (1) 608 

temporal variation to be included in prior emissions, (2) different estimates of the spatial 609 

distribution of emissions between urban and rural regions to be considered, and 3) representation 610 

of atmospheric transport in regional ffCO2 inversions to be further evaluated. 611 
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Air Basin Name Code
Vulcan EDGAR SD Prior Unc. Vulcan - EDGAR

(TgC/yr) (TgC/yr) 1-sv (%) (TgC/yr)
1 North Coast 1.NC 1.0 1.6 59 -0.6
2 Northeast Plateau 2.NP 0.4 1.3 96 -1.0
3 Sacramento Valley 3.SV 6.8 7.4 8 -0.7
4 Mountain Counties 4.MC 2.2 2.0 51 0.1
5 Lake County 5.LC 0.1 0.2 65 -0.2
6 Lake Tahoe 6.LT 0.1 0.1 42 0
7 Great Basin Valleys 7.GBV 0.2 0.6 100 -0.4
8 San Joaquin Valley 8.SJV 8.6 20.2 35 -11.6
9 North Central Coast 9.NCC 6.0 2.2 71 3.8
10 Mojave Desert 10.MD 6.1 4.3 17 1.8
11 South Central Coast 11.SCC 4.4 3.4 21 1.0
12 Salton Sea 12.SS 1.4 1.7 55 -0.3
13 San Francisco Bay 13.SFB 16.4 17.5 22 -1.2
14 South Coast 14.SC 26.9 35.5 12 -8.6
15 San Diego 15.SD 6.6 6.5 10 0.1

Total California 89.6 104.7 8 -17.8

Table 1: The 15 air basins of California with respective emissions as estimated by Vulcan and
EDGAR. Also shown are the SD prior uncertainty estimate (Fischer et al., 2017), and difference
in magnitude between Vulcan and EDGAR for each air basin. Air basin numbers correspond to
those marked in Figure 1.
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Figure 1: a. The location of the 9 tower sites in the observation network (marked with black
circles): Trinidad Head (THD), Sutter Buttes (STB), Walnut Grove (WGC), Sutro (STR), Sandia-
Livermore (LVR), Victorville (VTR), San Bernardino (SBC), Caltech (CIT) and Scripps Institute
of Oceanography (SIO). The 15 air basins are marked out with black lines with region 16 repre-
senting emission from outside California within the model domain. Underlayed is a map of annual
mean ffCO2 emissions from the Vulcan v2.2 emission map within the United States and EDGAR
v4.2 (FT2010) for emission from outside the U.S. b. Vulcan diurnal emissions normalized to cam-
paign averaged emissions for the 3 campaigns, c. Scaled EDGAR subtracted from Vulcan emissions
map, where EDGAR has been scaled to have the same air basin total emissions. The inset shows
an enlarged view of southwestern California. d. Average monthly emissions normalized to Vulcan
annual emissions. Shown in both b and d is EDGAR annual invariant emissions (grey).
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Figure 2: The average ffCO2 signal (ppm) simulated by each atmospheric transport model as a
result of emissions from the 6 largest emitting air basins and one outside California region at
each observation site over the three measurement campaigns. Signals were simulated based on the
EDGAR emission map.
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Figure 3: (a) Statewide and (b) individual air basin inversion results for an error in the magnitude
of prior emissions. Prior emissions are given by EDGAR and true emissions are given by EDGAR
scaled to Vulcan total in each air basin. Air basin results are shown for Sacramento Valley (3.SV),
San Francisco Bay (13.SFB), San Joaquin Valley (8.SJV), Mojave Desert (10.MD), South Coast
(14.SC) and San Diego (15.SD). Prior results are presented by black markers and posterior results
are represented by colored markers. Filled markers show results using SD prior uncertainty and
empty markers show results using 70% prior uncertainty. The prior bias in each air basin is given
by the dashed lines in (b) with SD prior uncertainty (dark grey) and 70% prior uncertainty (light
grey). Prior and posterior uncertainties are expressed as 2-sv. The bottom plot (c) shows the
mean signal error in simulated average ffCO2 concentration. Mean signal error is calculated by
subtracting the average true signal from the average prior signal. Error lines are drawn between
the maximum and minimum signal bias per campaign.
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Figure 4: (a) Statewide and (b) individual air basin inversion results for an error in the spatial
distribution of prior emissions. Prior emissions are given by EDGAR scaled to Vulcan emissions
totals in each air basin and true emissions are given by Vulcan. The bottom plot (c) shows the
mean signal error in simulated average ffCO2 concentration.
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Figure 5: (a) Statewide and (b) individual air basin inversion results for an error in the temporal
distribution of prior emissions. Prior emissions are given by temporally varying Vulcan and true
emissions are given by annually averaged Vulcan. Prior emissions were scaled to be the equal in
magnitude to annually averaged Vulcan emissions. The bottom plot (c) shows the mean signal
error in simulated average ffCO2 concentration.
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Figure 6: Inversion results for the experiment where the atmospheric transport in the prior sim-
ulation uses WS-CTL or UM-NAME but the atmospheric transport in the true simulation uses
WS-LBL. Posterior statewide emissions (a, b), individual air basin emissions (c, d), and percent-
age error in simulated average ffCO2 concentration (e, f) are shown with no outlier removal (first
column) and outliers removed (second column). Prior and true emissions are given by annually
averaged Vulcan.
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Figure 7: All simulated ffCO2 from May (first column), October-November (second column), and
January-February (third column). Simulated ffCO2 using W-S-LBL are shown in black markers
(triangles for May, squares for Oct-Nov and diamonds for Jan-Feb) whilst prior W-S-CTL signals
are shown in blue and UM-NAME signals in magenta. All simulated signals are generated using
the Vulcan gridded emissions map. The fourth column shows true vs prior ffCO2 signals, with
colors corresponding to models and markers corresponding to campaigns. Outliers omitted from
the standard inversion are shown by an x.
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Figure 1: Posterior air basin emissions for an error in the magnitude of emission. Filled markers show posterior
results using SD prior uncertainty and clear markers represent 70% prior uncertainty. The prior bias in each air
basin is given by the dashed lines with SD prior uncertainty (dark grey) and 70% prior uncertainty (light grey).
Prior and posterior uncertainties are expressed as 2-σv.
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Figure 2: EDGAR grid cells compared to Vulcan (regridded to EDGAR native 0.1° resolution). Mean emissions
are in units of gCO2 m2 yr-1.
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Figure 3: PBLH error versus ffCO2 error (top) and wind speed versus ffCO2 error (bottom). Error in PBLH/wind
speed was calculated by subtracting UM from WRF estimates. ffCO2 signal error was calculated by subtracting
UM-NAME from WS-LBL signals.
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Figure 4: ffCO2 signal bias for aggregation error (black) and no aggregation error (red) in modelled atmospheric
transport. For each box the central mark indicates the median, and the left and right edges indicate the 25th and
75th percentiles, respectively. Dashed lines extend to the most extreme data points not considered outliers. Error
was calculated by subtracting WS-CTL signals (generated using native 0.1° resolution and UM-NAME resolution
footprints respectively) from UM-NAME signals.
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Figure 5: PBLH versus ffCO2 (top) and wind speed versus ffCO2 (bottom) using MYNN2 PBLH, Noah/LSU wind
speed, and WS-LBL ffCO2 signal estimates.
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