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Dear Prof. Veli-Matti Kerminen, 

Thank you very much for the efficient handling of the reviewing process for our manuscript. We have 

carefully addressed all of the referees' comments. The corresponding changes in the manuscript are de-

scribed below in our point-by-point responses to the referees' comments. We have also corrected some 

misprints and stylistic inaccuracies which were not indicated by the referees. All the changes and cor-5 

rections are highlighted in the revised manuscript and in the Supplementary material which are also 

provided below. We hope that you will find the revisions satisfactory and sufficient. 

Respectfully, 

Igor Konovalov 

on behalf of all the authors 10 
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Authors' response to the comments of the Anonymous Referee # 1 
 

We are very grateful to the Referee for the positive evaluation of our manuscript and for the useful comments and 
suggestions. Below we describe our point-by-point responses to the Referee's comments.   

Referee's comment: Sensitivity to SOA: Authors discuss this subject as a potential uncertainty, although they 5 
write that it is not represented in CHIMERE (pp11, line 10). Also authors write that uncertainties in SOA could 
affect the optimal estimates of F^OC (pp 20, l16), they suggest it does not affect BC as long as ‘simulated AOD 
values are fitted to the AOD observations’. Finally, on pp 27 l14 the authors suggest that this uncertainty could 
explain some of their differences in OC emissions compared to GFED. I am still not fully satisfied about uncer-
tainties due to this aspect. It is well known that (biomass burning) SOA budgets are poorly constrained (e.g. 10 
Spracklen et al., ACP 2011). By not adequately representing them in CHIMERE there is at least uncertainty in 
dependency of the EC/OC ratio depending on the lifetime of the plume, with fresh plumes, with comparatively 
little SOA contribution to OC. Can authors please expand on this aspect a bit more? It would be very interesting 
if the authors are able to test this uncertainty through an actual sensitivity experiment where SOA contribution to 
aged [OC] would be enhanced.  15 

Indeed, the uncertainty in the SOA budget affects the EC/OC ratio and its dependence on the BB aerosol age. 
However, the corresponding errors in our BC emission estimates are mostly compensated by similar errors in the 
simulated AOD values. The discussion of this point is expanded in the revised manuscript.  

In particular, the compensation of possible errors in the EC/OC ratio and AOD is demonstrated (see Sect. 2.2.4 
and Eq. 11) by simplifying the original empirical relationship (given by Eq.  6) between the BC and OC column, 20 
AOD and AAOD. Furthermore, as suggested by the Referee, we performed a sensitivity experiment, in which the 
yields of all of the SOA species from oxidation of the major volatile SOA precursors (such as toluene, xylenes, 
isoprene and terpenes) were enhanced by a factor of 7 with respect to the base case, whereas the reaction list and 
the reaction rates (as well as all other simulation settings) were kept the same. As a result of this model modifica-
tion, the relative enhancement of the averaged (over the whole period and region considered) particulate organic 25 
matter (POM) column amounts due to SOA formation increased from only 2.6 % (in the base case simulation 
with the optimized emissions) up to 27 % (in the test case). The increased SOA contribution to POM in our test 
case simulation corresponds to the upper bound of the wide range of the BB POM enhancements observed in ag-
ing BB plumes in several field studies in North America. This numerical experiment is discussed in Sect. 3.6 of 
the revised manuscript as the test case No. 2. We found that the optimal BC emission estimate changed rather 30 
insignificantly, having increased only by ~ 5 %. It is not surprising, however, that our estimates of the OC emis-
sions turned out to be much more sensitive to the SOA formation; specifically, the top-down estimate of the total 
OC emissions dropped by ~15 % in the test case as a result of an increase in the BB aerosol abundances and a 
slight decrease in the mass extinction efficiency. We would like to note that, to the best of our knowledge, any 
aerosol modeling scheme which could ensure quite adequate simulations of the evolution of the organic fraction 35 
of BB aerosol in Siberia or elsewhere is still not available: presently, the elaboration of such a scheme is an active 
research problem.             

Referee's comment: Optimization: The authors compute a single monthly mean optimization factors F for the 
complete region. They find rather different values per month (Table 2). In part this appears to be associated to 
different type of fires, particularly for grass land compared to boreal forest fires (Fig. 14). I wonder if the method 40 
couldn’t easily be expanded to optimize these scaling factors but for two sub-regions (e.g. below/above 57N), 
such that they can better be associated to particular fire types. It would be interesting to see if the scaling factors 
would then show a more homogeneous value for different months.  
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Unfortunately, the optimization method employed in this paper could not be easily expanded to optimize the scal-
ing factors for two (or more) sub-regions: we would need to use a different cost function, a different optimization 
procedure and perform more model runs. However, if a sub-region is sufficiently large, aerosol transport between 
the sub-regions can be disregarded, and the correction factors for the BB emissions in a given sub-region can be 5 
evaluated by using the same optimization method.  

Accordingly, we performed an additional analysis using the AAOD and AOD observations only over a selected 
sub-region (50-57N, 60-115E) where the relative contribution of agricultural and grass fires to FRP was much 
larger and more uniformly distributed across the different months than in the whole region. The estimates the 
FBC/FOC ratio obtained for this sub-region show much smaller variations between different months, as compared 10 
to the corresponding estimates for the whole region, whereas monthly variations of the FBC and FOC factors them-
selves even increased (which may be due to monthly variations of the conversion factor). Therefore, our addi-
tional analysis supports (although does not prove) the possibility that the monthly variations of the FBC/FOC ratio 

are associated with different fire types and, therefore, indicates that that the emission factors specified in the 
GFED4 inventory and in our simulation for either BC or OC or both are biased in case of at least one fire type. 15 
The analysis is described in Sect. 3.1 of the revised manuscript and in a new section (Sect. S3) of the Supplemen-
tary material. 

Following the Referee’s suggestion, we also performed a similar analysis for a sub-region above 57N. However, 
we found that a contribution of agricultural and grass fires to the integral FRP in May in this sub-region (32 %) 
was not much smaller than that in the entire study region (41 %). For this reason, the analysis of the second sub-20 
region could not provide any conclusive results in regard to the question raised by the Referee and thus is not pre-
sented in the revised manuscript. 

Referee's comments:  Technical comments:  

-pp11, l2: “Usually”-> “As usual”  
- Konovalov et al. (2017a): Please check and complete reference details  25 
-pp21, l17: “Figure 4”-> “Figure 5”  
-pp22, l18: “an artifact of”: suggest to change into “enhanced due to”  
-pp24, l18 “also” (remove)  
-pp26, l 29 “their”: to what does this refer to? GFED?  
-pp29, l24: “predicated”->”predicted”  30 
-pp30, l26 “the mean AAOD”: consider to change to “the mean observed AAOD”  
-pp32, l1 “are” (remove) 

We thank the Referee for these technical comments. All the suggested changes and corrections are introduced in 
the revised manuscript. 

  35 
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Authors' response to the comments of the Anonymous Referee # 2 

We thank the Referee for the overall positive evaluation of our manuscript and for the thoughtful comments. We 
have carefully revised the manuscript according to the Referee's suggestions. Our point-to-point responses to the 
Referee's specific comments are provided below.   

Referee's comment: 5.7: I’m not sure that not making use of a priori information is touted as being a feature, nor 5 
that this statement is strictly correct. Bayesian inference is superior for a reason, in that the use of prior know-
ledge is essential to the solution of inverse problems. Further, there are plenty of sources of a priori information 
used in the methods described here. CHIMERE uses a prior anthropogenic inventory (HTAP) which helps define 
background values that contribute to the inversion. In another sense, the FRP data serves as a source of prior 
information to build a BB emission inventory following Konovalov 2014. Further, one could think of the land 10 
cover information used therein as being counted as prior information, etc. 

We are very sorry if one of our introductory remarks looked like "touting": our goal was simply to provide a 
reader with some tentative idea about our method. Certainly, using the Bayesian inference has, in a general case, 
serious advantages. However, not using it in the particular case addressed in our study allowed us to avoid any 
subjective quantitative assumptions regarding the model and observation errors and the uncertainties in a priori 15 
emission data. Such assumptions could otherwise affect our a posteriori BC emission estimates and their confi-
dence intervals. We agree also that our study uses many sources of a priori information, even though they were 
not used in a Bayesian sense (as was mentioned in the reviewed manuscript). To avoid possible misunderstand-
ing, the statements criticized by Referee are removed from the introduction of the revised manuscript. Our me-
thod is described in detail in Sect. 2.2.4.             20 

Referee's comment: 11.10: So BC aging not included in CHIMERE? I can understand neglecting SOA, but BC 
aging affects its lifetime and transport, particularly to the arctic, as shown in previous studies. Accounting for 
aging should go beyond keeping track of particle age, as a threshold, as aging changes the particle properties 
and susceptibility to scavenging and removal. Comment on how this assumption biases the results shown here. 

We thank the Referee for this insightful comment. We recognize that the discussion of this point was not suffi-25 
cient in the reviewed manuscript. Indeed, any aging changes in susceptibility of aerosol particles for scavenging 
and removal were not taken into account in our simulations. Presently, the susceptibility of particles for in-cloud 
scavenging (and for subsequent wet deposition) is described in CHIMERE by the constant empirical uptake coef-
ficient, which was set to be zero in our simulations of the BB aerosol and was set to be unity in the simulation of 
the background aerosol fraction. That is, BB aerosol was assumed in our simulations to be hydrophobic in regard 30 
to in-cloud scavenging. This assumption could result in some underestimation of our BB BC emission estimates, 
as aerosol aging processes are known to increase hygroscopicity of BC-containing aerosol particles and to accele-
rate their removal from the atmosphere by precipitation through scavenging. 

 To address this comment of the Referee, we performed an additional sensitivity test (presented in Sect. 3.6 of the 
revised manuscript as the test case No. 3), in which the empirical uptake coefficient was set to be unity. The use 35 
of this simulation instead of the base case simulation with the optimized emissions in our estimation procedure 
resulted only in a minor increase (~6 %) in our optimal estimate of the total BB BC emissions; the changes in the 
monthly BC emission estimates were found to be similarly small. Such a result is hardly surprising, because the 
major fires considered in our analysis occurred mostly during dry periods with low precipitation. The same test 
simulation was used to assess the effect of aerosol scavenging on our computations of BC amounts transported 40 
into the Arctic. We found (as indicated in Sect. 3.7 of the revised manuscript) that the overall transport efficiency 
evaluated under the assumption that BB aerosol particles are composed of hydrophilic material turned out to be 
only slightly smaller (25.2 %) than the corresponding base case estimate (27.6 %). Note that taking into account 
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that BC constitutes typically a very minor fraction of BB aerosol particles in Siberia and that BB BC is usually 
covered by organic material, we preferred to avoid using the notion "BC aging", which is usually used to charac-
terize changes in properties of BC-containing aerosol from fossil fuel burning. Instead, we used a more general 
notion "BB aerosol aging".     

Referee's comment: Eq 4: I wonder why the authors took this approach rather than relating AAOD/AOD to SSA 5 
(which seems a bit more direct, given that SSA is measured, whereas EC/(OC+EC) is estimated from Eq 3 and 
they have the problem of random errors in the independent variable so have to use ODR instead of least 
squares). Then they could use Eq 3 to substitute SSA for the ratio of EC/(EC+OC), and derive an equation simi-
lar to Eq 6 that allows for estimation of AAOD without using a model-calculated SSA for BB organic aerosol. 

Indeed, SSA is retrieved from the OMI measurements but the SSA retrievals are much less abundant than the 10 
AAOD retrievals. This was explained in Sect. 2.1.1 of the reviewed manuscript ("However, compared to AOD 
and SSA retrievals, AAOD is less affected by cloud contamination due to the partial cancellation of errors in 
AOD and SSA. OMAERUV reports AOD/SSA/AAOD with the associated quality flags '0' and '1'. While all 
three retrievals are reliable with the quality flag '0', only AAOD is reliable with either quality flag. Accordingly, 
the number of reliable AAOD retrievals is greater than the number of those of AOD and SSA."). Therefore, we 15 
opted for using the OMI AAOD retrievals in combination with the MODIS AOD retrievals, instead of using the 
direct retrievals of SSA. An additional explanatory remark is introduced in Sect.2.2.3 of the revised manuscript. 
Note that even if we used directly the satellite observations of SSA, we would still have a problem of random 
errors in the independent variable when relating the AERONET SSA measurements at two different wavelengths.  

Referee's comment: 16.4: This is starting to sound a bit circular. Use of CHIMERE here to separate the back-20 
ground AAOD and AOD would imply that CHIMERE has the correct BB emissions. How much do these esti-
mates change if the authors were to run CHIMERE using their posterior BB emissions estimates? Does this en-
tire procedure need to be iterated? Or, by “background”, do the authors mean non-BB AOD and AAOD? This 
would make a little more sense, being as they stated earlier that they don’t use CHIMERE for computing AOD 
and AAOD of BB aerosol given uncertainties in refractive index of BB OC. Still.. It took me several times reading 25 
this section and section 2.1 to piece together the process being used. It could benefit significantly from a more 
clear explanation, that more clearly maps to the schematic in Fig 1. At present, Fig 1 is misleading, as only part 
(the non BB part) of the AOD and AAOD estimated from CHIMERE are used for calculation of the AAOD value 
that ultimately is used within the estimation procedure in red. So this part of the figure needs more detail. The 
source of the non-BB aerosols (HTAP) is another input to the modeling that should be indicated. 30 

Yes, the “background” AAOD and AOD values are meant to represent the conditions without BB aerosol sources 
in the study region (as was stated three lines below in the same page). To simplify understanding of this point, we 
additionally explained in the revised manuscript (directly in the former line 4 of page 16) that the background 
AAOD and AOD values were predicted in the CHIMERE simulation without BB emissions. Furthermore, we re-
composed Figure 1 as suggested by the Referee; the revised figure indicates the HTAP inventory and the 35 
simulations for the "background" conditions among the input data for our analysis.  

Referee's comment: Eq 7: Minimization of the least absolute value of the model error corresponds (in a Bayesian 
sense) to assuming that the observation errors follow a Laplacian distribution. This the of L1 minimization is best 
applied when the data is suspected of having outliers. The authors state on p 18 that they suspect multiplicative 
errors. This would most likely result in a log-normal distribution, if the errors being multiplied are Gaussian, 40 
rather than a Laplacian distribution. Thus it would make more sense to perhaps optimize the log of the model 
error. This is, in some sense, what the authors have done by dividing the model error by the observations so that 
they consider only the relative model error. But the form is not quite the same. Instead, the authors should nor-
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malize by the observation error covariance. Not all of the observed AAOD and AOD measurements have the 
same errors, and thus shouldn’t be considered equally in the objective function being minimized here. 

We thank the Referee especially for this thoughtful comment. A correct choice of the objective (cost) function is 
of a paramount importance for any atmospheric inverse modeling study, but this point, unfortunately, rarely rece-
ives significant attention in corresponding publications. Due to the usually complex nature of observational and 5 
model errors and the fact that the statistical properties of these errors are often poorly known, it is commonly as-
sumed that the errors are additive and Gaussian. This assumption leads to a least-squares problem (and its regula-
rized versions) and usually results in sufficiently adequate a posteriori emission estimates. However, as men-
tioned in Sect. 2.2.4, a multiplicative component of the model errors associated with simulations of the BB com-
ponents in the atmosphere is expected to cause some underestimation of BB emission estimates. On the other 10 
hand, we could not assume that the errors in BB fractions of AAOD were truly multiplicative, since we found 
that whereas the BB fraction of AAOD in the simulations is always positive, its observational matchups obtained 
by subtracting the background AAOD fraction from the observed AAOD values might occasionally be negative 
(due to uncertainties in the background aerosol simulations and errors in the observational matchups of the BB 
AAOD simulations). Therefore, we, unfortunately, could not follow the Referee's suggestion to optimize the 15 
emissions by assuming a log-normal distribution for the errors. We would like to note further that we did not ac-
tually perform the standard L1 minimization as apparently presumed by the Referee. Instead, as explained in 
Sect. 2.2.4 of the reviewed manuscript, we minimized "relative differences between the mean values of both 
AOD and AAOD simulated with optimized BB emissions and their pre-selected matchups derived from satellite 
measurements" in accordance to Eq. (7) (where the absolute values are computed after the summation of the dif-20 
ferences between the observations and simulations but not before it as in the standard L1 minimization). We ex-
plained also that "the optimization of FBC and FOC in accordance with Eq. (7) is equivalent to establishing a sim-
ple balance between spatially- and temporally-averaged AAOD (or AOD) retrievals and their simulated matchups 
on a monthly basis". By dividing the absolute difference between the mean values of AAOD (or AOD) from the 
simulations and observations to the mean observed value, we establish a criterion for the numerical precision of 25 
our emission estimates. We agree that not all of the observed AAOD and AOD measurements have the same er-
rors. However, we do not truly know how the errors depend on the corresponding AAOD or AOD values from 
observations and simulations, and thus we preferred to avoid making any specific assumptions about these de-
pendencies. 

To address the Referee's comment, we have substantially simplified Equations (7), (9) and (10), so that a reader 30 
could more easily follow the idea of our simple method. We also have expanded the discussion of our optimiza-
tion criterion by providing an additional section (S2) in the Supplementary material, where we analyze the effect 
of unknown observation and model errors on our top-down BC emission estimates. We argue, in particular, that 
given the unlimited number of unbiased simulations and observations representative of an entire (sufficiently 
large) region, the estimation error can be expected to approach zero (irrespectively of the statistical distributions 35 
of the errors). Since the amount of the data is always limited, the overall estimation error depends on the mean 
values of the observation and model errors; it also includes an aggregation error.  

Referee's comment: 18.12: I agree the satellite observations help indicate the location of the fires. But there is 
still considerable uncertainty in the variability of emissions factors from one fire location to another, especially 
given the crude representation of land cover types (considering only 5 classes). This sort of uncertainty could 40 
lead to large errors in the spatial distribution of the magnitude of BC emissions, even if the fire locations and 
intensity are perfectly known. Thus, the authors are going to need to admit here that the aggregation error is an 
unavoidable consequence of the chosen computational method. 



7 
 

Indeed, due to the crude representation of spatial and temporal variability in the emission and conversion factors 
involved in our emission model as well as due to uncertainties in the FRP observations, the actual emission fields 
can be substantially different from those specified in our simulations. This fact is likely to result in an aggrega-
tion error (as was noted in the reviewed manuscript). However, unlike in situ observations, which may not be rep-
resentative of a part of the strong emission sources in a large region, the satellite AAOD and AOD observations 5 
cover (in a quasi-uniform manner) all areas where BB emissions were important. For this reason, we do not ex-
pect the aggregation error to be large in our case. 

The discussion of an aggregation error is extended in Sect. 2.2.4 of the revised manuscript. Furthermore, the ag-
gregation error is also discussed in the revised Supplementary material (see Sect. S2). We argue that the aggrega-
tion error is unlikely to exceed the confidence intervals for our estimates, but we admit that we cannot provide a 10 
reliable quantitative estimate for it and note that the likely presence of the aggregation error emphasizes the im-
portance of validation of our estimates by using independent observations. 

Referee's comments: 12.21: Later in the paper (Figs 5, 6), I was struggling to clarify what constituted the “base” 
simulation. Is this a simulation using initial estimates of BB emissions, or an estimate based on the application of 
the scaling factors optimized from Eq 7? It would be useful to specify here. In presentation of figures of simula-15 
tions that use the optimized emissions, a clearer name (e.g., “optimized”) would be better. 

Figs 5, 6: As mentioned above, not clear what is “base” here. Simulation with scaling factors of 1.0? Or the 
“base case option” (p18, line 25) of the optimized results? Please clarify. 

We evaluated the simulations with the optimized emissions. We presumed that this was sufficiently clearly ex-
plained in the first paragraph of Sect. 3.2. It would hardly be logical to evaluate some arbitrary initial estimates of 20 
the BB emissions instead of the optimized ones. 

To simplify the understanding of this point, we have split the initial "base" scenario in Sect. 2.2.1 into the "base-
opt" and "base-ini" scenarios (with the optimized and unoptimized emissions, respectively). The corresponding 
scenario labels are used in the legends and/ or captions of Figures 5-9. 

Referee's comment: Fig 6: Either way, it would be instructive to see Fig 6 with the emissions scaling factors of 25 
1.0 as well as with the optimized emissions scaling factors, to see the improvement owing to the inversion. 

The magnitude of BB emissions calculated with the scaling factors of 1.0 depends on the empirical (conversion) 
factor relating FRP to the rate of biomass burning (see Eq. 2). The assumed value of this factor is based on a la-
boratory experiment, and it is not necessarily applicable to satellite FRP observations. Further, our "initial" BB 
emissions depend on the way to process the FRP observations (in particular, we could, in principle, consider daily 30 
mean FRP values instead of the daily maximums of the FRP values, and that would result in quite different val-
ues of the emissions). Accordingly, our BB emission estimates calculated with the scaling factors of 1.0 should 
be considered as being rather arbitrary and, as such, cannot be recommended for the use in atmospheric models 
(unlike typical "bottom-up" emission inventory data traditionally used as "a priori" emission estimates in inverse 
modeling studies). For this reasons, we did not originally present any results obtained with the scaling factors of 35 
1.0. Nonetheless, following the Referee's recommendation, we have included the corresponding simulated data in 
Fig. 6 of the revised manuscript.  

Referee's comment: Intro: Missing some papers on BC transport to the Arctic, of which a few more have been 
recently published. 

We have updated a list of the papers devoted to transport of BC to the Arctic. Please note that we did not intend 40 
this list to be exhaustive, as the BC transport to the Arctic is certainly not the main subject of our study. 
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Referee's comment: 3.9-11: References on use of atmospheric observations to constrain BB emissions is a bit 
thin. There have been numerous studies in this area. Even some of the BB emission products use ambient mea-
surements as part of their constraints, such as QFED. Update: some such studies are referenced later in the in-
troduction; still it seems like something is missing at this point. 

 Indeed, the references on the use of atmospheric observations to constrain BB emissions were meant to appear 5 
not in this place but later in the text. However, a few more BB emission inventories, including QFED, are men-
tioned in this paragraph in the revised manuscript.  

Referee's comment: 4.16-19: And also dust? Perhaps that’s not a problem when focused on regions suspected of 
being influenced by BB, but the statement as currently written is more general than that. Also, aerosol layer 
height is an important source of uncertainty in these types of studies. 10 

In the given context, we could not discuss all possible factors which might hamper the use of the OMI AAOD 
observations for estimation of BC emissions in a general case. To make our statement more accurate, we have 
changed the beginning of the corresponding sentence from "the main difficulty is" to "one of the main difficulties 
is". 

Referee's comment: 11.31: I’m confused by this statement. It seems the previous content was all about describing 15 
how AAOD is calculated in CHIMERE. But here the authors state that AAOD values from CHIMERE that in-
clude BB emissions are not used? This seems to contradict page 10, line 21 “we took into account BB emissions . 
. .” UPDATE: after reading the entire paper, this becomes clear. But it could perhaps be written here in a way 
that doesn’t lead to an initial source of confusion.  

We have clarified in Sect. 2.2.1 of the revised manuscript that we calculated the BB fraction of AAOD by using 20 
an empirical parameterization described in Sect. 2.2.3 but that the AAOD values simulated directly with CHI-
MERE were used to characterize the background atmospheric conditions (in the absence of fires). 

Referee's comment: 18.7: Or it would require note more computational resources, but more computational tools, 
such as an adjoint or other (i.e. Lagrangian) source-oriented model. CHIMERE has an adjoint (Menut et al., 
2000) although perhaps it is antiquated. 25 

We have expanded the corresponding sentence accordingly. And indeed, an adjoint is not yet available for CHI-
MERE-2017. 

Referee's comment: Fig 4: Does the non-zero intercept of this line tell you something about the refractive index 
of the OC?  

A non–zero intercept (2) is indeed indicative of an imaginary part of the refractive index of OC, but the interpre-30 
tation of the intercept is not quite straightforward because the brown carbon content in aerosol particles can, in 
principle, correlate or anti-correlate with the BC content. A corresponding remark is introduced in Sect. 2.2.3 of 
the revised manuscript. 

Referee's comment: Fig 7(b): I’m not sure this shows much other than the fact that the modeled EC/(EC+OC) 
ratio is rather consistent, which is likely owing the fact that the model is based on a fixed EC/OC ratios in the 35 
emissions. Still, the authors should comment on the one feature that runs counter to this trend in the figure, the 
cluster of green points above the 1:1 line, which potentially indicates sampling of regions influenced by non-BB 
sources. 
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Indeed, Fig. 7b indicates that the modeled EC/(EC+OC) ratio is rather consistent with the AAOD and AOD ob-
servations from the validation data subset. However, the EC/OC ratio is not fixed in the model but is proportional 
to the ratio of the correction factors which were optimized in our study. 

In the revised manuscript, it is noted (see Sect. 3.2) that a cluster of green points above the regression line in Fig. 
7b indicates a distinct contribution of agricultural and grass fires featuring much larger ratios of the BC and OC 5 
emission factors than the predominant forest fires. 

Referee's comment: 23.7: The authors need to clarify the writing here with regards to precision vs accuracy. If 
the errors were truly random, they would not lead to bias. 

 We meant to discuss the statistical significance of an estimate of the model bias. Of course, the true bias cannot 
be affected by random errors. To avoid the confusion, we have revised the corresponding sentence by using the 10 
word "difference" instead of "bias". 

Referee's comment: Fig 8: The way the background concentrations are included has the downside of skewing the 
vertical scale such that differences between the model and observations appear minimized, visually. Instead, a 
linear scale should be used, and background concentrations could be plotted using a different vertical axis on the 
right hand side, or scaled by x10-100 so they could be plotted on the same scale. Also, more interesting than 15 
showing the background concentrations would be to show the model estimates when using the BB emissions with 
the optimized vs unoptimized emissions factors. Since “base” wasn’t clearly defined in the presentation of the 
results, it’s not clear to me which of these cases is being presented anyways. 

Following the Referee's suggestion, we have plotted the background concentrations by using a vertical axis on the 
right hand side of the figures. We attempted to use a linear scale instead of a logarithmic scale, but found that 20 
many data points in May-June and August-September "collapsed" toward the zero, and so the difference between 
the simulated and observed values became indistinguishable. For this reason, we preferred to keep a logarithmic 
scale in Fig. 8. We also followed the Referee’s suggestion to show the concentrations simulated using the unop-
timized emission factors, even though we are not sure that such simulations are sufficiently meaningful (as noted 
above). Taking into account the magnitude of the optimized correction factors and a rather good agreement of the 25 
EC and OC concentrations observed at ZOTTO and simulated with the optimized emissions, it is not surprising 
that using the BB emission estimates calculated with the scaling factors of 1.0 resulted in an underestimation of 
both EC and OC concentrations.  

Referee's comment: Fig 10: The two cases don’t appear to be significantly different; I would suggest just show-
ing one. Also, I don’t understand what the purple dots in panel (b) represent. 30 

Indeed, Fig. 10a and Fig. 10b do not appear to be significantly different, and this is actually an important result of 
our analysis of the YAK-AEROSIB observations. The matter of fact is that the number of the data points shown 
in Fig. 10b is two times larger than that in Fig. 10a (as indicated in the plots), but, in spite of such a major differ-
ence between the corresponding datasets, the regression lines are almost identical. This result demonstrates the 
robustness of our conclusions based on the analysis of the aircraft measurements. Accordingly, we believe that 35 
showing the both figures makes our conclusions more convincing and, for this reason, we would prefer to keep 
both these panels in the paper. The meaning of the purple dots in Fig. 10b is explained in the figure caption: they 
mark the data points included in Fig. 10a. In the revised manuscript, we try to explain this more clearly. The size 
of the symbols and dots is enhanced to make them more visible.  

 40 
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Referee's comment:  24.27: I thought it was stated in the CHIMERE model description that there was no aging of 
BC included in the model.  

We write about the “representation of the BB aerosol aging processes in CHIMERE”, meaning that these 
processes are mostly determined by the organic component of BB aerosol. There is no mentioning of aging of BC 
here.           5 

Referee's comment: 26.7: While uncertainty information isn’t provided with the GFED4 inventory, there have 
been numerous studies evaluating this inventory compared to other bottom-up inventories as well as evaluations 
based on top-down constraints using ambient measurements. These studies provide some range of estimates for 
the uncertainty in GFED4emissions that could be referenced. In other words, from previous work we know that 
it’s not something small like 1%, and certainly error as large as x2 (or even x10, regionally) have been noted. 10 

We thank the Referee for this useful comment. Indeed, the available studies indicate that the GFED data may be 
rather uncertain.  The discussion is expanded in the revised manuscript accordingly. 

Referee's comments: Editorial: 

4.5 and other locations: Careful with random switches between present and past tense. 
4.10: GEOS-Chem 15 
8.12: “measurement data” is a little redundant. 
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Abstract. Black carbon (BC) emissions from open biomass burning (BB) are known to have a considerable impact on the 

radiative budget of the atmosphere on global and regional scales, but are poorly constrained in models by atmospheric ob-

servations, especially in remote regions. Here, we investigate the feasibility of constraining BC emissions from BB with sa-

tellite observations of the aerosol absorption optical depth (AAOD) and the aerosol extinction optical depth (AOD) retrieved 

from OMI (Ozone monitoring instrument) and MODIS (Moderate Resolution Imaging Spectroradiometer) measurements, 25 

respectively. We consider the case of Siberian BB BC emissions, which have a strong potential to impact the Arctic climate 

system. Using aerosol remote sensing data collected at Siberian sites of the Aerosol Robotic Network (AERONET) along 

with the results of the Fourth Fire Lab at Missoula Experiment (FLAME-4), we establish an empirical parameterization relat-

ing the ratio of the elemental carbon (EC) and organic carbon (OC) contents in BB aerosol to the ratio of AAOD and AOD at 

the wavelengths of the satellite observations. Applying this parameterization to the BC and OC column amounts simulated 30 

with the CHIMERE chemistry transport model, we optimize the parameters of the BB emission model based on MODIS 

measurements of the fire radiative power (FRP) and obtain top-down optimized estimates of the total monthly BB BC 

amounts emitted from intense Siberian fires that occurred in May-September 2012. The top-down estimates are compared to 

the corresponding values obtained using the Global Fire Emissions Database (GFED4) and the Fire Emission Inventory–

northern Eurasia (FEI-NE). Our simulations using the optimized BB aerosol emissions are verified against AAOD and AOD 35 

data that were withheld from the estimation procedure. The simulations are further evaluated against in situ EC and OC mea-

surements at the Zotino Tall Tower Observatory (ZOTTO) and also against aerosol measurement data collected on board of 
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an aircraft in the framework of the Airborne Extensive Regional Observations (YAK-AEROSIB) experiments. We conclude 

that our BC and OC emission estimates, considered with their confidence intervals, are consistent with the ensemble of the 

measurement data analyzed in this study. Siberian fires are found to emit 0.41  0.14 Tg of BC over the whole five-months 

period of the five months considered; this estimate is a factor of 2 larger and a factor of 1.5 smaller compared to that the cor-

responding estimates based on the GFED4 (0.20 Tg) and FEI-NE (0.61 Tg) data, respectively. Our estimates of monthly BC 5 

emissions are also found to be larger than the BC amounts calculated with the GFED4 data and smaller than those calculated 

with the FEI-NE data for any of the five months. Especially large positive differences of our monthly BC emission estimates 

of monthly BC emissions with respect to the GFED4 data are found in May and September. This finding indicates that the 

GFED4 database is likely to strongly underestimate BC emissions from agricultural burns and grass fires in Siberia. All 

these differences have important implications for climate change in the Arctic, as it is found that about a quarter of the huge 10 

BB BC mass emitted in Siberia during the fire season of 2012 was transported across the polar circle into the Arctic. Overall, 

the results of our analysis indicate that a combination of the available satellite observations of AAOD and AOD can provide 

the necessary constraints on BB BC emissions.  

1 Introduction 

Open biomass burning is known to be an important source of black carbon (BC), which is the major absorbing component of 15 

carbonaceous aerosol and one of the main atmospheric species contributing to climate forcing (Bond et al., 2013; IPCC, 

2013). On the global scale, the radiative forcing of BC, including the effects of BC on ice and snow surfaces, has been esti-

mated to be as high as +1.1 W m-2 (Bond et al., 2013). In a more recent, observationally constrained analysis, the BC radia-

tive forcing after subtracting the pre-industrial background was estimated to be +0.53 W m-2 (with the uncertainty bounds of 

+0.14 to +1.19 W m-2) (Wang et al., 2016), still suggesting that it is quite significant in comparison to the radiative forcing of 20 

1.82  0.18 W m-2 (Myhre et al., 2013) associated with carbon dioxide (which is the main climate forcer). Open biomass 

burning (BB) is likely to contribute about 40 % to the total BC emissions (Bond et al., 2013). 

As a significant BC source, BB plays an especially important role in climate processes in the Arctic, where the increase of 

annual surface temperature in the period since 1875 was almost twice as large as that in the rest of the Northern Hemisphere 

(Bekryaev et al., 2010). Several studies (e.g., Shindell and Faluvegi, 2009; Flanner, 2013; Sand et al., 2013) indicated that a 25 

significant part (up to about 50 %) of this temperature increase could have been induced by BC. There is abundant evidence 

that BB provides a significant contribution to BC in the Arctic atmosphere in the spring and summer (e.g., Stohl, 2006; Stohl 

et al., 2006; Warneke et al., 2010; Bian et al., 2013; Hall and Loboda, 2017; Popovicheva et al., 2017; Winiger et al., 2017; 

Qi et al., 2017; Xu et al., 2017; Evangeliou et al., 2018). It was also estimated (Evangeliou et al., 2016) that Siberian fires 

alone contributed almost half (46 %) of the total BC amount deposited in the Arctic over a period of 12 years (2002-2013). 30 

Radiative effects associated with BC residing in the Arctic atmosphere include both direct radiation budget changes causing 

strong warming of the Arctic surface and significant changes in atmospheric stability and cloud cover (Flanner, 2013; Sand 
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et al., 2013). Significant increases in surface temperature in the Arctic as a result of perturbations of the meridional transport 

can be caused even by BC residing in the mid-latitude atmosphere (Sand et al., 2013), which indicates that to correctly eva-

luate correctly the effects of BC on the Arctic climate it is critical to know its concentration not only in the Arctic but also in 

the atmosphere over adjacent regions such as Siberia. Additionally, deposition of BC on ice and snow has been found to con-

tribute strongly to Arctic warming by decreasing surface albedo and promoting ice/snow melting which, in turn, may result 5 

in further surface darkening and provide a positive feedback on the increase of the surface temperature in the Arctic (Hansen 

and Nazarenko, 2004; Flanner et al., 2009; Flanner, 2013). 

The effects of biomass burning on atmospheric composition and climate are commonly evaluated using chemistry transport 

and climate models relying on data of BB emission inventories, such as, for example, the Global Fire Emissions Database 

(GFED) (van der Werf et al., 2017), the Global Fire Assimilation System (GFAS) emission data set (Kaiser et al., 2012), the 10 

Emissions for Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) inventory (Lamarque et al., 

2010), the Fire Inventory from NCAR (FINN) (Wiedinmyer et al., 2011), and Tthe Quick Fire Emissions Dataset (QFED) 

(Damenov and da Silva, 2015), which is are widely used in atmospheric and climate studies. However, emission inventory 

data are usually not constrained by atmospheric observations and are likely to be affected by considerable uncertainties due 

to a limited knowledge of spatio-temporal characteristics and temperature regimes of fires, as well as due to the lack of relia-15 

ble estimates of emission factors for a variety of ecosystems and environmental conditions. These uncertainties lead to large 

discrepancies between emission estimates provided by different inventories. For example, according to the FEI-NE inventory 

recently developed by Hao et al. (2016), the annual BC emissions from fires in northern Eurasia in the period of 2002-2015 

are, on average, a factor of 3.2 larger than those given by the GFED4 (van der Werf et al., 2017) inventory. Using the FEI-

NE inventory in the FLEXPART Lagrangian particle dispersion model, Evangeliou et al. (2016) found the model results to 20 

be in a reasonable agreement with surface BC concentrations observed at several Arctic stations in the period 2002–2013. 

On the other hand, a Bayesian inverse modeling analysis based on carbon isotope characterization of BC measurements at 

Tiksi (East Siberian Arctic) from April 2012 to April 2014 revealed that the best fit of the FLEXPART data to the observa-

tions was achieved by reducing the GFED4 fire emissions given by GFED4 by 53 % (Winiger et al., 2017); this estimate 

may, however, reflect uncertainties in the spatial distribution of the GFED4 emissions, as the sensitivity footprints in this 25 

particular study cover only a part of Siberia (Winiger et al., 2017). In view of these above rather controversial findings and 

the important role that BC emissions from BB are likely to play in climate processes in the Arctic, it is critical to obtain 

stronger observational constraints on BC emissions from fires in northern Eurasia and its major BB BC source regions such 

as Siberia.  

Note that the general term "black carbon", which is used throughout this paper, is rather generic and can be broken down into 30 

more specific terms, including refractory black carbon (rBC), elemental carbon (EC), and equivalent black carbon (eBC); 

these terms refer to three major measurement approaches which that are used to characterize carbonaceous matter, such as 

laser-induced incandescence, thermal or thermal optical methods distinguishing between more and less volatile fractions of 
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carbonaceous aerosol material, and optical methods based on measurements of light-absorption coefficients (Andreae and 

Gelencsér, 2006; Bond et al., 2013; Petzold et al., 2013; Lack et al., 2014; Sharma et al., 2017). Accordingly, BC emission 

data reported by a given emission inventory may be based on one or more specific methods that were employed to evaluate 

the emission factors used in the inventory. However, a concrete "measure" of BC is usually not specified in BB emission 

inventories. 5 

The main goal of this study is to investigate the feasibility of constraining the BB BC emissions by using retrievals of aero-

sol absorption optical depth (AAOD) from satellite measurements performed by the Ozone Monitoring Instrument (OMI) in 

the near-UV region (Torres et al., 2007; Torres et al., 2013). To achieve this goal, we address the case of the severe fires that 

occurred in Siberia in 2012 (see, e.g., Konovalov et al., 2014; Antokhin et al., 2018). The other goals of this study were are 

to obtain "top-down" estimates of the monthly BC emissions from fires in Siberia in May-September 2012 and to evaluate 10 

the corresponding data of the GFED4 and FEI-NE inventories for this period. 

Previous applications of the OMI AAOD retrievals include, in particular, evaluation of BC emissions employed in global 

aerosol models (Koch et al., 2009; Buchard et al., 2015) and identification of atmospheric variability of AAOD at various 

scales (Vadrevu et al., 2014; Huang et al., 2015; Eck et al., 2013; Zhang et al., 2017). Zhang et al. (2015) used AAOD re-

trieved from OMI observations in an inverse modeling analysis involving the GEOS-CHEMhem (Goddard Earth Observing 15 

System-chemistry) global model to constrain BC emissions over Southeastern Asia (where the BC emissions are predomi-

nantly anthropogenic) for April and October 2006; they found overwhelming enhancements (up to 500 %) in anthropogenic 

BC emissions in April relative to a priori emission estimates. In this study, the OMI AAOD measurements are analyzed by 

using simulations performed for the northern Eurasian region (including Siberia) with the CHIMERE chemistry transport 

model (Mailler et al., 2017).  20 

The One of main difficultyies in using the OMI AAOD retrievals for constraining BC emissions stems from the well-

established fact (see, e.g., Andreae and Gelencsér, 2006; Jethva and Torres, 2011; Bahadur et al., 2012; Mok et al., 2016) 

that the absorption of UV and shortwave visible radiation by BB aerosol is strongly affected by brown carbon (that is, by the 

light-absorbing fraction of organic carbon). In view of this fact, explicit modeling of AAOD in the case of BB aerosol as a 

function of its composition would inevitably involve major uncertainties associated with the assumptions regarding the mag-25 

nitude of the imaginary part of the refractive index for organic carbon (OC) and the mixing state of aerosol particles; these 

characteristics are likely strongly variable, depending on sources and atmospheric processing of BB aerosol (Lack et al., 

2012, Saleh et al., 2013; Wong et al., 2017; Saturno et al., 2018). To overcome this difficulty, we follow an empirical ap-

proach (Konovalov et al., 2017a) that involves parameterization of AAOD as a function of the EC/OC (elemental carbon to 

organic carbon) ratio and the aerosol extinction optical depth (AOD). This parameterization is based on the analysis of expe-30 

rimental relationships between the single scattering albedo (SSA) of BB aerosol particles and the EC/OC ratio and is fitted to 

the retrievals of aerosol optical properties from the multi-wavelength measurements made at the Aerosol Robotic Network 
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(AERONET) sites in Siberia in summer 2012. The relationships between SSA and the EC/OC ratio were reported by Pokhrel 

et al. (2016) as a result of the Fourth Fire Lab at Missoula Experiment (FLAME-4).  

Along with the OMI AAOD retrievals, we use AOD retrievals from satellite measurements made by the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS). Numerous studies found the MODIS AOD retrievals to provide useful observa-

tional information for evaluation and estimation of BB emissions of aerosol and co-emitted species (e.g., Ichoku and Kauf-5 

man, 2005; Matichuk et al., 2008; Kaiser et al., 2012; Petrenko et al., 2012; 2017; Huneeus et al., 2013; Xu et al., 2013; Ko-

novalov et al., 2014; 2015; Reddington et al., 2016). In this study, the MODIS AOD data were used to constrain OC emis-

sions and to optimize the calculated AOD values. Note that since BC is usually a minor component of BB aerosol, AOD is 

mostly determined by the organic (scattering) fraction of BB aerosol (Reid et al., 2005a); thus estimation of BC emissions 

using only AOD measurements would require making some assumptions regarding the quantitative aerosol composition. The 10 

AAOD measurements are much more sensitive to the BC fraction of aerosol than the AOD measurements, even though the 

OMI AAOD retrievals are also sensitive to OC due to its strong absorption at shorter wavelengths.  

An essential feature of our estimation procedure is that it does not involve any a priori constraints (in a Bayesian sense) for 

the top-down BC emissions estimates. This feature ensures that our estimates are independent of available fire emission in-

ventories. Furthermore, they are not affected by any quantitative assumptions regarding the model and measurement errors. 15 

The optimized emissions are validated using independent ground-based and aircraft aerosol measurements performed in dif-

ferent parts of Siberia. Therefore, through the use of a chemistry transport model, this study integrates data from satellite and 

ground-based remote sensing and in situ and aircraft measurements to not only obtain independent observation-based esti-

mates of BC emissions from Siberian fires but also to ensure their reliability. Moreover, the use of a chemistry transport 

model allows following the transport path of BB BC emissions in the atmosphere, and to determine the part exported directly 20 

to the Arctic.  

A general overview of the study design is presented in Fig. 1. The methodology of the study is described in detail in Sect. 2. 

The results of our analysis are presented in Sect. 3. Finally, Sect. 4 summarizes our findings followed by the concluding re-

marks. 

2 Methodology 25 

2.1 Observational data 

2.1.1 AAOD retrievals 

We used the OMI AAOD retrievals provided as a part of the OMAERUV (v. 1.8.9.1) Level-2 data product (Torres et al., 

2007; 2013) derived by the NASA group from the OMI observations onboard of the EOS-Aura satellite. OMI is a spectrally 

high-resolution nadir-looking spectrometer measuring the backscattered solar radiance in the ultraviolet and visible regions 30 

of the electromagnetic spectrum (Levelt et al., 2006). The OMI measurements provide daily global coverage at a spatial 



16 
 

resolution of 1324 km2 at nadir. Aura is a part of NASA’s A-train satellite constellation and is in a sun-synchronous as-

cending polar orbit with a local equator crossing time at 13:45. The OMAERUV algorithm derives the UV Aerosol Index in 

the 354-388 nm range from radiance observations by making use of the observed departure of the spectral dependence of the 

near-UV upwelling radiation at the top of the atmosphere from that of a hypothetical pure molecular atmosphere. Along with 

the UV Aerosol Index, the OMAERUV data product provides AAOD, AOD and SSA retrieved following a standard look-5 

up-table approach with assumed aerosol models, surface albedo, and aerosol layer height. 

The major features of the OMAERUV retrieval algorithm that are relevant in the context of inverse modeling applications of 

the AAOD data are described in detail by Zhang et al. (2015). Briefly, they are as follows. First, the OMAERUV algorithm 

identifies one of the three assumed aerosol types, such as BB aerosol, desert dust, and urban/industrial aerosol, representing 

column aerosol load in each pixel. The selection of aerosol type is based on a scheme that uses coincident and collocated 10 

carbon monoxide (CO) observations from AIRS on Aqua and the UV Aerosol Index from OMI (Torres et al., 2013). Second, 

the algorithm is sensitive to assumptions about the altitude of the aerosol center mass. To address this sensitivity, the AAOD 

data are retrieved for a set of five different aerosol center mass locations: at the surface and 1.5, 3.0, 6.0 and 10 km above it. 

The “final” AAOD product derived by OMAERUV is referenced to the monthly climatology aerosol layer height as given 

by the OMI-CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) joint dataset (Torres et al., 2013). Third, the major 15 

factor affecting the quality of the aerosol retrievals provided by OMAERUV is sub-pixel cloud contamination. However, 

compared to AOD and SSA retrievals, AAOD is less affected by cloud contamination due to the partial cancellation of errors 

in AOD and SSA. OMAERUV reports AOD/SSA/AAOD with the associated quality flags '0' and '1'. While all three 

retrievals are reliable with the quality flag '0', only AAOD is reliable with either quality flag. Accordingly, the number of 

reliable AAOD retrievals is greater than the number of those of AOD and SSA.  20 

The OMAERUV product has been validated on a global scale by comparing OMI-retrieved AOD and SSA with the corres-

ponding data derived from ground-based measurements of the sun-sky photometers at the AERONET sites (Ahn et al., 2014; 

Jethva et al., 2014). The comparison confirmed that the OMI AOD and SSA retrievals are quite reliable. Specifically, the 

differences between most of the pairs of matched AOD data were found to fall into the expected uncertainty range (the 

greater of ±30% or ±0.1) for the OMI AOD retrievals for all of the aerosol types, while the majority of collocated SSA re-25 

trievals for the "smoke" and "dust" aerosol were found to agree within the expected uncertainties of ± 0.03 in OMI and 

AERONET inversions. Since AAOD can be expressed through SSA and AOD, these comparisons indicate that the OMI 

AAOD retrievals are also realistic. 

In this study, we made use of the reliable AAOD retrievals corresponding only to the BB type of aerosol. The quality assured 

values of AAOD at 388 nm for the period from 1 May to 30 September 2012 were projected onto a rectangular 1º1 grid 30 

with hourly temporal resolution. Different values falling into the same grid cell and an hourly period were averaged. We 

used both the AAOD data sets corresponding to the pre-defined altitudes of the aerosol layer and “final” AAOD product.  
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2.1.2 AOD retrievals  

As noted above, the available OMI AAOD retrievals are more abundant than the quality assured retrievals of AOD. For this 

reason, the OMI AOD retrievals were not used in our analysis. Instead, we employed the Collection 6 retrievals of AOD at 

550 nm from the MODIS measurements onboard the Aqua satellite (Levy et al., 2013), which is also a part of NASA’s A-

train satellite constellation. The MODIS Aqua measurements are typically taken at around the same time as the OMI mea-5 

surements, as Aqua overpasses the equator daily at the local time of 13:30 in the ascending mode. The merged “Dark Target” 

and “Deep Blue” AOD retrievals with a nominal horizontal resolution of 10  10 km2 were obtained for the period from 1 

May to 30 September 2012 as a part of the MYD04_L2 data product (Levy et al., 2015). Similar to the AAOD data, the qual-

ity assured AOD data for the period from 1 May to 30 September 2012 were projected onto a rectangular 1º1 grid with 

hourly temporal resolution and then averaged. The expected uncertainty range of the MODIS AOD retrievals is ±(0.05 + 15 10 

%). A comparison of the Collection 6 MODIS AOD data with the respective AERONET retrievals has shown that this un-

certainty range covers the majority (69 %) of the differences between the MODIS and AERONET collocated AOD retrievals 

(Levy et al., 2013). 

2.1.3 Fire radiative power 

The Fire Radiative Power (FRP) data (Kaufman et al., 1998; Justice et al., 2002) derived from the MODIS measurements 15 

onboard the Aqua and Terra satellites were used in this study to calculate BB emissions of gases and aerosols with the me-

thods developed earlier (Konovalov et al., 2011a; 2014). The FRP data were provided at nominal 1-km spatial and 5-min 

temporal resolutions as a part of the MYD14/MOD14 Collection 6 MODIS fire products (Giglio and Justice, 2015a; 2015b; 

Giglio et al., 2016). The Collection 6 FRP retrieval algorithm makes use of the difference between the 4-µm radiance of a 

pixel affected by fires with that of a background pixel (Wooster et al., 2012). The Collection 6 Terra MODIS fire products 20 

were validated by using reference 30-m fire maps derived from high-resolution Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) images (Giglio et al., 2016). The fire detection omission error was found to be less than 

10% for relatively large fires composed of 140 or more fire pixels; however, the ASTER data did not allow quantitative 

evaluation of the MODIS FRP retrievals which, in general, may be affected by clouds, heavy smoke, or tree crowns.  

Our processing of the available FRP data was the same as described in Konovalov et al. (2014). Briefly, we first estimated 25 

the FRP density on a 0.20.1 grid covering the northern Eurasian region considered in this study as the ratio of the total 

FRP in a given grid cell to the observed area of that grid cell. The estimation was done for any Aqua and Terra orbit over-

passing a given grid cell during a given day, and a maximum FRP density value for each grid cell and day in the period from 

1 May to 30 September 2012 was selected. Persistent FRP pixels (which may be due to gas flaring) were filtered out. We 

then estimated the daily mean FRP density by scaling the maximum FRP density with the assumed diurnal cycle of FRP. 30 

The diurnal cycle of FRP was estimated using the method proposed by Konovalov et al. (2014) by fitting a Gaussian func-
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tion approximating the diurnal cycle to the selected FRP daily maxima corresponding to different hours of the day. The daily 

mean gridded FRP densities were then used to calculate BB emissions as described below in Sect. 3.2. 

2.1.4 AERONET data  

To characterize the optical properties of BB aerosol in Siberia, we used, along with the satellite retrievals, the aerosol data 

derived from ground-based measurements of the spectral diffuse sky and direct sun radiation by photometers at the sites of 5 

the Aerosol Robotic Network (AERONET) (Holben et al., 1998). Specifically, we used AAOD and SSA retrievals at 440 

and 675 nm and AOD observations at 500 and 675 nm. The AAOD and SSA data were obtained from the Version 2, Level-2 

(cloud screened and quality assured) aerosol inversion product (Dubovik and King, 2000), while the AOD data were pro-

vided from the Version 2, Level-2 direct sun AERONET observations. The uncertainty of the AOD measurements has been 

estimated to be within ±0.01 in the visible region and ±0.02 at the near-UV wavelengths, and the uncertainty in retrieved 10 

SSA has been estimated to be within ±0.03 when AOD at 440 nm is larger than 0.4 (Dubovik et al., 2000). Note that AOD at 

440 nm is greater than 0.4 for all retrievals provided as the Level-2 AERONET inversion product (since inversions corres-

ponding to smaller AOD values are considered to be less accurate). Following Konovalov et al. (2017a), here we analyze the 

AERONET data from sites situated in Siberia. The direct sun measurements and inversions for the fire season of 2012 have 

been available only from two Siberian sites: Tomsk-22 (56.4 N, 84.7 E) situated in western Siberia and Yakutsk (61.7 N, 15 

129.4 E) situated in eastern Siberia.  

2.1.5 Measurement data from the Zotino Tall Tower Observatory 

To evaluate the simulated concentrations of EC and OC, we used the measurement data collected at the Zotino Tall Tower 

Observatory (ZOTTO) established in at a remote location (about 600 km from the nearest city, Krasnoyarsk) in the boreal 

forest of central Siberia (Heimann et al., 2014). The geographic coordinates of the observatory are 60.8 N and 89.4 E. Due 20 

to the background character of its environment, ZOTTO is suitable for studying natural sources of aerosol and gases in the 

boreal forest (Chi et al., 2013). The observatory includes a 300 m tall mast that enables probing the atmospheric composition 

within the planetary boundary layer and capturing the regional concentration signal (Gloor et al., 2001).  

Continuous long-term measurements of ambient aerosol carbonaceous fraction (including those of elemental and organic 

carbon) have been carried out at ZOTTO since 2010 (Mikhailov et al., 2015; 2017). The ambient aerosol was sampled from 25 

the top of the tower through a stainless steel inlet pipe and collected on quartz fiber filters. The sampling period varied from 

10 h to 480 h, depending on the air pollution level. Concentrations of EC and OC were measured by a thermal–optical car-

bon analyzer from Sunset Laboratory (OR, USA). The uncertainties of the EC and OC measurements contain a constant part 

of 0.2 μg[C] cm-2 and a multiplicative part of 5 %. Further details on techniques and protocols of the EC and OC measure-

ments at ZOTTO can be found elsewhere (Mikhailov et al., 2017).  30 
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2.1.6 Aircraft measurements 

Aircraft measurements spanning large areas and wide altitude ranges are an indispensable source of the observational data 

for evaluation of chemistry transport models. Here we use the measurement data collected over Western and Eastern Siberia 

onboard the Optik Tu-134 aircraft laboratory in the framework of the Airborne Extensive Regional Observations (YAK-

AEROSIB) experiments (Paris et al., 2008; 2009a). In summer 2012, the YAK-AEROSIB measurement campaign was car-5 

ried out on 31 July and 1 August (Antokhin et al., 2018). On 31 July, the aircraft departed from Novosibirsk (54.9 N, 85.2 

E) and arrived in Yakutsk (61.9 N, 128.5 E), with an intermediate landing in Tomsk (56.2 N, 84.7 E). On 1 August, the 

aircraft departed back from Yakutsk and landed in Novosibirsk. During the flights, the aircraft performed several ascents and 

descents within the altitude range from about 1 km to 8 km and crossed several major smoke plumes originating from fires in 

Siberia. Further information on the tracks of the flights that were carried out in the framework of the YAK-AEROSIB cam-10 

paign in July-August 2012 can be found elsewhere (Antokhin et al., 2018). 

In this study, we considered the YAK-AEROSIB observations of mass concentrations of equivalent black carbon (eBC) and 

fine fraction of aerosol (PM2.5) along with the mixing ratio of carbon monoxide (CO). The measurement techniques have 

been described previously (Paris et al., 2008; 2009a,b). Briefly, eBC was measured with an aethalometer (Panchenko et al., 

2000; 2012), which detects diffuse light attenuation by particles collected on a filter. The measurements considered in this 15 

study were performed at a wavelength of 640 nm. The sensitivity of the aethalometer is estimated as 0.01 μg m−3. The eBC 

measurements were calibrated against gravimetric measurements of BC mass concentration, using BC particles produced by 

a pyrolysis generator. It should be noted that the accuracy of aethalometer measurements may be affected by several factors, 

including the SSA of real ambient aerosol particles, particle size, composition and filter loading (see, e.g., Liousse et al., 

1993; Sharma et al., 2002; Lack et al., 2014). In particular, the eBC concentration may be strongly overestimated due to 20 

greater light scattering by real ambient aerosol particles compared to scattering by the soot particles used in the calibration 

procedure, although this effect can be counterbalanced by lower attenuation for larger filter loadings (see, e.g., Weingartner 

et al., 2003). Furthermore, the eBC concentration can be different from the EC concentration in the same aerosol sample, 

simply because eBC and EC measurements represent fundamentally different physical properties of the aerosol (Andreae 

and Gelencsér, 2006; Bond et al., 2013). Parallel field measurements of eBC (with a standard aethalometer) and EC (with a 25 

thermal technique) at an Arctic station (Sharma et al., 2017) revealed that eBC was systematically larger (by about 30 %) 

than EC in winter and spring (when the aerosol was predominantly anthropogenic) but almost 50 % smaller in summer 

(when the contribution of BB aerosol might be significant). Although, due to all these reasons, the eBC observations that are 

widely used for characterizing radiative properties of aerosol in remote regions cannot provide a strong constraint on BC 

emissions (especially when the BC emissions are interpreted as those of EC), the analysis of the eBC observations performed 30 

during the YAK-AEROSIB campaign is useful as it allows us to get an idea about the consistency of different types of BB 

BC measurements in Siberia. 
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PM2.5 mass concentrations were obtained using the GRIMM 1.109 optical particle counter (GRIMM Aerosol Technik GmbH 

& Co. KG, Germany) which measures particle number concentration in 31 size channels in the range 0.25–32 m. Following 

Burkart et al. (2010), the conversion of number concentration to mass concentration was performed by applying the instru-

ment-specific factor (equal to 1.65) and an additional correction factor, the C-factor, which is dependent on the bulk density 

of the sampled aerosol. Burkart et al. (2010) found that the C-factor can be estimated as the ratio of the instrument-specific 5 

factor to the aerosol density. Accordingly, assuming that the typical density of BB aerosol is about 1.3 g cm−3 (Reid et al., 

2005b), we estimated the C-factor for our case to be of 1.27.  

Measurements of the CO mixing ratio were made with a modified commercial gas analyzer Thermo 48C (Thermo Environ-

mental Instruments, USA; see Nédélec et al., 2003; Paris et al., 2008). Note that the measurements of the CO mixing ratio 

were used in this study only for the selection of aerosol measurements representative of BB plumes (as explained below in 10 

Sect. 3.4). The eBC, PM2.5, and CO observations were matched in time by first averaging the PM2.5 concentrations (which 

were nominally available each second) over a variable period (4 - 16 s) between two consecutive eBC observations and then 

selecting the closest CO observation (among the data that were nominally available every 4 seconds).  

2.2 Modeling and analysis  

2.2.1 Simulations with the CHIMERE model 15 

The simulations considered in this paper were performed with the 2017 version of the CHIMERE model (Mailler et al., 

2017), which is an off-line chemistry transport model designed to produce forecasts and simulations of air pollution over a 

range of spatial scales, from urban to hemispheric. We used the model to simulate mass concentration, composition and opti-

cal depth of BB aerosol as well aerosol optical properties (AOD and AAOD) in the absence of fires. Earlier versions of the 

CHIMERE model have been successfully used in a number of studies of BB aerosol and related atmospheric processes (see, 20 

e.g., Hodzic et al., 2007; 2010; Konovalov et al., 2012; Péré et al., 2014; Turquety et al., 2014). The codes of the 2017 ver-

sion of the CHIMERE model (CHIMERE-2017) have evolved significantly with respect to the codes of the previous ver-

sions; the most significant changes are associated with the realization of parallel computations and the representation of the 

optical effects of aerosols and clouds. However, these changes do not cause major differences in simulations of concentra-

tion and composition of BB aerosol. A detailed description of the CHIMERE-2017 model and a list of the recommended 25 

model settings (most of which were adopted in our simulations) can be found elsewhere (CHIMERE-2017, 2017; Mailler et 

al., 2017); hence we describe below only the main features of our computations. 

We took into account BB emissions of aerosol and reactive gases along with their other anthropogenic and biogenic sources, 

including non-BB sources of dust and sea-salt aerosol. The BB emissions were calculated using the MODIS FRP data as 

explained below in Sect. 2.2.2 The anthropogenic emissions were specified by applying the CHIMERE standard emission 30 

interface to the monthly emission data from the global Hemispheric Transport of Air Pollution (HTAP) v2 emission invento-

ry (Janssens-Maenhout at al., 2015). Since HTAP data for the year 2012 were unavailable, we used the corresponding data 
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for the year 2010; the differences between the annual anthropogenic emissions in 2010 and 2012 is unlikely to exceed a few 

percent in the region considered. Note that the HTAP inventory does not take into account emissions from gas flaring, 

which, however, was likely to provide only a very minor contribution (less than 2 %) to the BC emissions (Winiger et al., 

2017) in Siberia in summer 2012. Other sources of aerosol and gases were taken into account using the standard CHIMERE 

procedures described in Mailler et al. (2017).  5 

The aerosol particles of all types were distributed among ten size bins covering the particle diameters from 10 nm to 40 µm 

following a lognormal size distributions. Based on an empirical BB particle emission model by Reid et al. (2005b), the emis-

sions of BC and OC from fires were distributed among a range of particle sizes using a lognormal particle size distribution 

with a mass mean diameter of 0.3 m and a geometric standard deviation of 1.6. Usually aA minor fraction of BB emissions, 

which comprises coarse particles with a typical mean diameter of about 5 m, was disregarded in our simulations. Note that 10 

these coarse particles are anyway not likely to provide a significant contribution to aerosol optical properties in the visible 

and UV regions of the spectrum (Reid et al. 2005a). The parameters of the distributions for other aerosol types were speci-

fied using the standard settings described in the CHIMERE technical documentation (CHIMERE-2017, 2017). 

Aerosol evolution in the atmosphere was simulated with the standard parameterizations implemented in CHIMERE-2017 

(Mailler et al., 2017) by taking into account secondary organic aerosol (SOA) formationSecondary organic aerosol (SOA) 15 

formation was simulated with the scheme proposed and evaluated by Bessagnet et al. (2008) as well coagulation and dry and 

wet deposition, except that wet deposition of BB aerosol (which was assumed to be hydrophobic) due to in-cloud scavenging 

was effectively disregarded by setting the empirical uptake coefficient to be zero. Specifically, the SOA formation was 

represented by the scheme proposed and evaluated by Bessagnet et al. (2008). Note that, as suggestedshown by Konovalov 

et al. (2015, 2017b), the atmospheric evolution of aerosol originating from Russian boreal fires may be much more strongly 20 

affected by aerosol aging processes involving both primary and secondary- semi-volatile organic compounds than 

represented in the CHIMERE simulations using the standard SOA scheme. Note also that, although experimental findings 

(Hand et al., 2010) suggest that fresh BB aerosol particles originating from forest fires are composed of predominantly hy-

drophobic material, aerosol aging processes are likely to increase hygroscopicity of BC-containing aerosol particles and to 

accelerate their removal from the atmosphere by precipitation through in-cloud scavenging (Stier et al., 2006; Oshima et al., 25 

2012; Paramonov et al., 2013). These shortcomings of our simulations are, however, Note that as suggested by Konovalov et 

al. (2015, 2017b), the atmospheric evolution of aerosol originating from Russian boreal fires may be strongly affected by 

aerosol aging processes involving both primary and secondary-semi-volatile organic compoundsinvolving both primary and 

secondary semi-volatile organic compounds. However, such processes are not represented in the CHIMERE-2017 version, 

and thus they are disregarded in the simulations used in this study. This omission is not likely to lead to any significant bi-30 

ases in our estimates of BC emissions, as evidenced by the sensitivity tests discussed in Sects. 3.6. (see Sect. 2.2.4).  

The chemical evolution of gaseous air pollutants was represented with the MELCHIOR2 chemical mechanism. Following 

Konovalov et al. (2017a,b), we introduced two additional trace species that allowed us to estimate the photochemical age of 



22 
 

the BB aerosol. One of the tracers (T1) is chemically passive, while the second tracer (T2) reacts with OH (without consum-

ing it) with a constant rate (kOH) of 9 × 10−12 s−1 cm3. This rate constant is chosen to give the reactive tracer a lifetime of 

about 6 h, given a typical OH concentration in BB plumes of 5106 cm-3 (Akagi et al., 2012). The emissions of both tracers 

were the same as the BB emissions of OC. The photochemical age (ta) of BB aerosol was evaluated in each grid cell and 

hour as follows: 5 

 ]T/[]T[ln[OH])( 12
-1

OHkta  ,            (1) 

where [T1] and [T2] are column densities of the tracers, and [OH] is the column-average OH concentration within the BB 

aerosol layer.  

As explained in Mailler et al. (2017), the 2017 version of CHIMERE includes the Fast-JX module that computes photolysis 

rates and some additional diagnostics, including aerosol optical depth. The module first calculates aerosol Mie scattering and 10 

absorption for each aerosol species and bin, assuming sphericity of the aerosol particles and using a set of refractive indexes 

provided with the model. It then computes the radiative transfer in the model atmospheric column and evaluates the actinic 

fluxes at each model level. Note that the Fast-JX module was slightly modified in this study to enable simulations of AAOD 

along with AOD. The calculations of AOD and AAOD are performed for five wavelengths (200, 300, 400, 600, and 1000 

nm). To evaluate AOD and AAOD at any other wavelength considered in our study, we used a power-law interpolation (as-15 

suming a constant Ångström exponent within a given wavelength interval) between the nearest wavelengths from the mod-

el’s output. As noted in the introduction, the AAOD values computed in the CHIMERE runs taking into account BB emis-

sions were not used in this study because of the high uncertainty of the imaginary part of the refractive index for organic 

carbon. Instead, we calculated the BB fraction of AAOD by using an empirical parameterization (see Sect. 2.2.3 below) in-

volving the CHIMERE simulations of the BC and OC column amounts and AOD. However, we used AAOD values simu-20 

lated directly with CHIMERE to characterize the background atmospheric conditions (in the absence of fires). 

To enable better consistency between the OMI-derived and simulated AAOD, the simulated vertical profiles of the BB frac-

tion in PM2.5 were used to evaluate the altitude of the center of mass of the BB aerosol layer. The OMI-derived AAOD val-

ues corresponding to different assumed altitudes of the BB aerosol center of mass were linearly interpolated to the peak 

height derived from the simulations. The same approach had beenwas employed earlier by Zhang et al. (2015). Taking into 25 

account that the aerosol distribution was represented in the AAOD retrieval procedure by a Gaussian profile (Torres et al., 

1998), each simulated PM2.5 profile was approximated by a Gaussian function and its maximum was considered as the aero-

sol center of mass. 

Following Konovalov et al. (2014; 2017a,b), the simulations were performed in this study on a 1°×1° model grid covering a 

large region in northern Eurasia (35.5° -136.5° E; 38.5° - 75.5° N), including Siberia and parts of Eastern Europe and the Far 30 

East. In addition, to simulate the aerosol concentrations at the ZOTTO site, the model was run with a higher resolution of 

0.2°×0.1° in a nested domain covering a part of central Siberia (86.2°-92.4° E; 57.6°-63.9° N). In the vertical, the model 
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meshes include 12 non-equidistant layers extending from the surface up to the 200 hPa pressure level. The meteorological 

fields were obtained using the WRF (Weather Research and Forecasting) (version 3.9) model (Skamarock et al., 2008), 

which that was run with a spatial resolution of 5050 km2 and driven with the FNL reanalysis data (NCEP, 2017). Boundary 

and initial conditions were specified using climatological monthly concentrations of aerosols and gases from the LMDZ-

INCA chemistry-transport model. 5 

The model runs were done for the period from 18 April to 30 September 2012 both with and without BB emissions of aero-

sols and gases in the main model domain. Using the results of these model runs, we specified two main modeling scenarios. 

The first (base) scenario (labeled below as the “base” scenario) was assumed to represent the real atmosphere: the modeled 

data corresponding to this scenario wasere obtained by including all contributions to aerosol from BB and other sources. The 

simulations corresponding to the base scenario were performed both with the optimized (as explained in Sect. 2.4.4) and 10 

unoptimized BB emissions. The simulation using the optimized emissions is labeled below as "base-opt", and the one using 

the initial guesses for the parameters involved in our computation of the BB emissions (see Sect. 2.2.2) is labeled as "base-

ini". The second scenario (labeled as the “bgr” scenario) was designed to represent aerosol concentrations and optical proper-

ties under "background" conditions (in the absence of fires): the data corresponding to this scenario were obtained from a 

model run (labeled as “bgr”) performed without BB emissions in the model domain.  The first 13 days (18-30 April) of the 15 

runs were considered as the model spin-up period and were excluded from the subsequent analysis.  

2.2.2 Calculations of BB emissions  

Following a number of previous studies (e.g., Sofiev et al., 2009; Konovalov et al., 2011; Kaiser et al., 2012; Huijnen et al., 

2016), we calculated BB emissions by assuming a direct instantaneous relationship between the FRP and the emission rate at 

a time t: 20 

s
m

l
l

s
lld

s FthtE  )()(  ,            (2) 

where Es (g s-1 m-2) is the emission rate for a species s, d (W m-2) is the daily mean FRP density (see Sect. 2.3), α (g[dry 

biomass] s-1 W-1) is the empirical factor relating FRP to the rate of biomass burning, l is a fraction of a given type, l, of the 

land cover, βl
s(g [model species] g-1[dry biomass]) are the emission factors and hl(t) is the diurnal variation of the FRP densi-

ty. The relationship (2) also involves the correction factors, Fm
s, which are introduced here to enable optimization of the BB 25 

emissions for BC and OC in a given month, m.  

Taking into account the experimental analysis by Wooster et al. (2005), we assumed α to be of 3.6810-4 g s-1 W-1. The vege-

tation land cover fractions, l, were evaluated with the initial resolution of 0.2°×0.1° using the NCAR USGS land-use dataset 

(Homer et al., 2004), which was also used to specify the land use data in the CHIMERE model. Consistent with the land use 

categories defined in CHIMERE, our BB emission model given by Eq. (2) formally takes into account 5 vegetation cover 30 
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types (needleleaf forest, broadleaf forest, shrubs, grassland, and agricultural land), although no practical distinction was 

made in this study between BB emissions from needleleaf and broadleaf forest, as well as between BB emissions from 

shrubs and grassland. The emission factor values for BC and OC (see Table 1) were chosen to be the same as those in the 

GFED4 inventory; this choice simplifies the comparison of the results of our analysis with the GFED4 data. The emissions 

of OC were converted into the emission of particulate organic matter (POM) by using a constant OC-to-POM conversion 5 

factor (denoted below as ) of 1.8, which has been found to provide reasonable agreement between the measurements of 

PM10 in central Siberia during the period of major fires in summer 2012 and the mass concentration of the total carbonaceous 

matter derived from the corresponding EC and OC measurements (Mikhailov et al., 2017; see Fig. 1 therein). The emission 

factor values for gaseous species were taken to be the same as in Konovalov et al. (2015, 2017b); they were specified using 

Andreae and Merlet (2001) and subsequent updates (M.O. Andreae, unpublished data, 2014). The diurnal profile of BB 10 

emissions, h(t), was derived directly from the FRP measurements and approximated by Gaussian functions as described in 

Konovalov et al. (2014, 2015). The correction factors for BC and OC (Fm
BC and Fm

OC) were estimated as described in 

Sect.  32.2.4 below; their initial guess values (corresponding to the "base-ini" simulation scenario) were equal to unity. The 

correction factors for other species were set to be equal to 1.3, based on the results of the optimization of CO emissions from 

Siberian fires in Konovalov et al. (2017b). The fire emissions were first calculated using Eq. (2) with a spatial resolution of 15 

0.2°×0.1° and then projected onto a coarser model grid of 1°×1°. 

Figures 2 and 3 illustrate the FRP data used in our analysis and characterize the spatial structure and temporal evolution of 

the corresponding fires. Specifically, Fig. 2 shows the spatial distributions (within the region covered by the CHIMERE do-

main) of the daily mean FRP densities, d, integrated over the study period from 1 May to 30 September 2012 and scaled 

with the area fraction, l, of a given land cover type; in other words, it shows the integral fire radiation energy per unit area 20 

corresponding to a given type of the land cover. The fire radiation energy distributions are shown in Fig. 2 for the two aggre-

gated types of vegetation land cover, one of which includes needleleaf and broadleaf forest and the other comprises all other 

types of vegetation land cover. Note that the emission estimates are derived in this study for the Siberian region that is de-

picted in Fig. 2 by red rectangles and referred to below as the study region. These definitions of the study region and model 

domain allowed us to focus our analysis on the Siberian fires, and at the same time, to take into account the effects of grass-25 

land fires in Kazakhstan and large anthropogenic emissions in the European part of Russia. The same study region and mod-

el domain had been specified in Konovalov et al. (2014), where, however, BC emissions were not estimated and older ver-

sions of the MODIS FRP and AOD data were used. Figure 3 shows the monthly variations of the FRP densities integrated 

both in time (over a given month) and space (over the study region). Evidently (see Fig. 2), the FRP data are indicative of the 

major fires that occurred in the study region in 2012 both in western Siberia (north of Tomsk) and in eastern Siberia (east of 30 

Yakutsk). The largest fires occurred in the forested areas; the contribution of other (predominantly agricultural and grass) 

fires to the monthly- and regionally-integrated FRP was comparable with to that of the forest fires only in May (see Fig. 3). 
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The fires were, on average, most intensive in July and least intensive in September. The fire radiative energy released from 

Siberian fires in May, June, and August was nearly the same.  

Similar to Konovalov et al. (2014; 2017a,b), the injection height of BB emissions was evaluated using the parameterization 

proposed by Sofiev et al. (2012) as a function of the observed FRP, the boundary layer height and the Brunt-Väisälä fre-

quency. However, in this study, we used the advanced (“two-step”) version of the same parameterization (Sofiev et al., 5 

2012), which allows avoiding underestimation of the heights of BB plumes injected above the atmospheric boundary layer 

into the free troposphere. Both the boundary layer height and the Brunt-Väisälä frequency were derived from the same WRF 

output data that were used for the simulations with the CHIMERE model. The BB emissions given by Eq. (2) for each model 

grid cell were distributed among the model layers proportionally to the weighted number of pixels yielding the injection 

height that corresponds to the altitude of a given layer; the weight of each pixel was defined proportionally to the corres-10 

ponding FRP value. The FRP values in any pixel were assumed to have the same diurnal variation as the BB emissions in 

Eq. (2). 

2.2.3 The AAOD parameterization 

The method used in this study to evaluate AAOD as a function of the modeled BB aerosol composition and AOD was intro-

duced in Konovalov et al. (2017a). The main assumption underlying our method is that the dependence of the SSA on the 15 

ratio of elemental to total carbon, EC/(EC+OC), in the aerosol can be approximated by a linear function. This assumption is 

based on the results of the Fourth Fire Laboratory at Missoula Experiment (FLAME-4) (Pokhrel et al., 2016), where an al-

most linear relationship between SSA and EC/(EC+OC)the elemental to total carbon was found for fresh BB aerosol from a 

wide variety of biomass fuels. Furthermore, this assumption has been corroborated by the analysis of aircraft observations of 

aging BB aerosol (Pokhrel et al., 2016; Konovalov et al., 2017a). Accordingly, based on this assumption, we evaluate 20 

EC/(EC+OC) in the atmospheric BB aerosol column using the following empirical relationship: 
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where [EC] and [OC] are the column densities of EC and OC, 0 is the columnar SSA (at wavelength ) of dry BB aerosol 

particles, and a and b are empirical fitting parameters. Note that a is a negative number. Estimates of a and b for several 

wavelengths (405, 532, and 660 nm), which are rather close to minus and plus unity, respectively, have been reported by 25 

Pokhrel et al. (2016). In particular, a660 and b660 have been estimated to be 1.11 (0.04) and 0.99 (0.004), respectively, 

using the orthogonal distance regression, ODR, method. These values and Eq. (3) indicate, for instance, that SSA is very 

close to one (at 660 nm) for pure OC aerosol without absorbing EC.  

In this study, we applied Eq. (3) to the AERONET observations at 675 nm. The empirical coefficients a675 and b675 were eva-

luated using the power-law extrapolation from the absolute values reported by Pokhrel et al. (2016) at 532 and 660 nm and 30 
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were found to be 1.12 (0.04) and 0.99 (0.004), respectively. Note that using a more sophisticated analysis, Konovalov et 

al. (2017a) derived EC/(EC+OC) from the AERONET observations at 870 nm. However, we found that the impact of the 

differences between the EC/(EC+OC) estimates corresponding to the two wavelengths on the empirical parameterization 

discussed below was negligible, and so we opted for a simpler and more transparent approach in this study.  

The estimates of EC/(EC+OC) derived from the AERONET observations using Eq. (3) were then related to the ratio of 5 

AAOD at 388 nm (AAOD388) and AOD at 550 nm (AOD550). As noted in Sects. 2.1.1 and 2.1.2, we considered the ratio of 

the AAOD and AOD observations at the different wavelengths rather than directly SSA retrievals because the number of 

reliable OMI AAOD retrievals is much greater than the number of those of SSA. The AAOD388 and AOD550 values were 

obtained by extrapolating AAOD and AOD observations at 440 nm to the 388-nm and 550-nm wavelengths, respectively, by 

using the corresponding Ångström exponents, which were evaluated using the AERONET observations at pairs of different 10 

wavelengths: 440 nm and 675 nm for AAOD and 440 nm and 500 nm for AOD. The relationship between the 

AAOD388/AOD550 ratio and the EC/(EC+OC) ratio was approximated by a linear regression fitted to the data with the ODR 

method: 
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where 1 and 2 are the regression coefficients, which were estimated in Konovalov et al. (2017a) to be 2.05 (0.86) and 15 

0.014 (0.028) (the confidence intervals are given in terms of the 90th percentile). Note that unlike the standard least-squares 

method which disregards errors in a predictor variable, the ODR method takes into account random errors in both dependent 

variables. 

In this study, the analysis involving Eqs. (3) and (4) was performed using the same AERONET data (see Sect. 2.1.4) as in 

Konovalov et al. (2017a) but with relaxed selection criteria. Specifically, instead of requiring that AOD at 500 nm should 20 

exceed the fixed value of 0.5, we demanded that AOD550 derived from the AERONET measurements should be at least a 

factor of two larger than the corresponding "background" AOD550 values predicted by CHIMERE (see Sect. 2.2.1). We also 

did not put any restrictions on the photochemical age of BB aerosol [whereas Konovalov et al. (2017a) required that the pho-

tochemical age must not exceed 30 h]. While the restriction on the photochemical age allows diminishing the risk that the 

relationship between SSA and the EC/(EC+OC) can be affected by morphological changes in aged BB aerosol particles, it 25 

also strongly reduces the amount of data available for the analysis and greatly increases the statistical uncertainty of the re-

gression coefficients 1 and 2. We assume that the effects of aging processes are manifested as deviations of the data points 

from the linear relationship given by Eq. (4), and thus can be taken into account in the confidence intervals of the optimal 

estimates of 1 and 2. Furthermore, unlike Konovalov et al. (2017a), we did not assume that the selected SSA observations 

are fully representative of BB aerosol (in other words, we did not assume that the impact of the background fraction of aero-30 

sol on the observed SSA can be disregarded). Instead, we derived SSA for BB aerosol particles from the AERONET retriev-
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als of AAOD and AOD by using the background AAOD and AOD values predicted by in the CHIMERE simulation without 

BB emissions. That is, we evaluated 0 as follows: 


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 1 ,                  (5) 

where the subscripts "o" and "b" denote the observations and the simulations for the "bgr" scenario (without BB emissions), 

respectively.  5 

As the validity of Eq. (3) has been demonstrated only for dry aerosol, any AERONET observations corresponding to average 

relative humidity in the aerosol column (RHC) greater than 60% were disregarded [similar to Konovalov et al. (2017a)]. The 

values of RHC were derived from the CHIMERE simulations.  

Figure 4 demonstrates the linear relationship between the AAOD388/AOD550 and the EC/(EC+OC) ratios (see Eq. 4) that was 

obtained in this study. In spite of a considerable scatter of the data points, the relationship is rather well constrained because 10 

of the large number (equal 66) of selected observations. The regression coefficients, 1 and 2, are estimated to be 2.31 

(0.24) and 0.012 (0.008), respectively. Note that a non–zero intercept (2) is indicative of a contribution of brown carbon 

to the  imaginary part of the BB aerosol refractive index, but it should also be noted that the brown carbon content in aerosol 

particles can, in principle, correlate or anti-correlate with the BC content. The confidence intervals were evaluated using the 

bootstrapping method in terms of the 68.3 percentile (1-sigma) and take into account both random uncertainties in the 15 

EC/(EC+OC) and AAOD388/AOD550 ratios and the uncertainty in the empirical coefficients a675 and b675. It is noteworthy that, 

taking into account the uncertainty ranges, these estimates are entirely consistent with the corresponding estimates (see 

above) obtained earlier (Konovalov et al., 2017a) with a much smaller number (20) of selected data points.  

To evaluate the impact of the possible biases in the simulated data involved in Eq. (4) on our estimates of 1 and 2, we per-

formed several sensitivity tests (see the Supplementary material, Sect. S1), in which 
bAAOD and 

bAOD were scaled with 20 

constant factors. The test results indicate (see Figs. S1-S3) that our optimal estimates of the regression coefficients 1 and 2 

are sufficiently robust with respect to possible biases in 
bAAOD and 

bAOD .  

Based on the empirical parameterization given by Eq. (4), we could predict AAOD388 for the BB aerosol in a given model 

grid cell using the model output data as follows: 
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where [BC] and [POM] are the BC and POM column densities that were simulated together with AOD550 with the CHI-

MERE model by taking into account only BB emissions of aerosol (see Sect. 2.2.1), and  is the OC-to-POM conversion 

factor of 1.8 (see Sect. 2.2.2).  
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2.2.4 Optimization procedure 

We inferred optimal BB emissions of BC and OC by following an inverse modeling approach (Enting et al., 20012002) 

which, in a general case, suggests that the emissions specified in an atmospheric model can be constrained by analyzing the 

differences between observations of the atmospheric composition and corresponding simulations. Our inverse modeling 

analysis was aimed at optimizing the correction factors, Fm
BC and Fm

OC (see Eq. 2), for the emissions of BC and OC in each 5 

month, m, of the study period (May-September 2012). Accordingly, the monthly values of the correction factors constitute 

the components of the state vectors, FBC and FOC of our inverse modeling problem. The same value of a correction factor for 

a given species and a given month applies to each grid cell in the model domain. We require that the optimal estimates of 

FBC and FOC enable eliminating the relative differences between the mean values of both AOD and AAOD simulated with 

optimized BB emissions and their pre-selected matchups derived from satellite measurements for a given month: 10 

;


co

csco

V

VV
                  (7) 

 

     

,0)(,

;5;1;)()(
1

1 11 1






     

mj

mVmVVm

ij
m

Nd
j

Nc
i

ij
co

ijNd
j

Nc
i

ij
cs

ij
co

ij




                                     (7) 

where Vсo is the matrix whose components are the daily AOD (when с equals 1) or AAOD (when с equals 2) values derived 

from satellite observations, Vcs is are the simulated counterpart of Vco, Nc is the total number (equal 3876) of grid cells in the 15 

CHIMERE domain, Nd is the total number (equal 153) of days in the study period, ij is a binary operator equal to unity if 

both Vco and Vcs for a given day and a given grid cell are available and equal zero otherwise, m denotes the set of days in a 

given month m, the angular brackets denote averaging over the available data (pre-selected as explained below) for the study 

region in a given month, and  is an arbitrarily small number (depending on the desired numerical accuracy), which, for de-

finiteness, was set to be of 310-2 in this study both when c equals 1 and 2. Note that thea value of  approximately characte-20 

rizes the relative numerical error (imprecision) of the correction factor estimates. The values components of Vcs are depen-

dent on FBC and FOC, which were optimized independently for each month by assuming that the simulated values of AAOD 

and AOD in a given month are independent of the BB emissions in any other months. To better isolate different months in 

the estimation procedure, we established a "buffer" between each two neighboring months, comprising five days that were 

excluded from the analysis. Note that BB BC and OC transported into the study region from outside of the model domain are 25 

regarded as a part of background concentrations of these species. 

The optimization of FBC and FOC in accordance with Eq. (7) is equivalent to establishing a simple balance between spatially- 

and temporally-averaged AAOD (or AOD) retrievals and their simulated matchups on a monthly basis. Note that the crite-
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rion given by Eq. (7) would not be sufficient if we were interested not only in constraining total monthly emissions but also 

in improving their spatial structure. A more general approach to the estimation of BB emissions using satellite observations 

involves minimization of the least-square differences between the observations and simulations (see, e.g., Konovalov et al., 

2014; 2016; Heymann et al., 2017). However, it was shown (Konovalov et al., 2011b) that the application of the least-square 

method may result in an underestimation of BB emissions in the presence of multiplicative model errors (which may be due 5 

to random uncertainties in the spatial structure and temporal evolution of BB emissions); consistently with the analysis by 

Konovalov et al. (2011b), some negative biases (10-15%) in simulated AOD values were found in Konovalov et al. (2014; 

2017a) after optimization of BB emissions in Siberia. Such biases are "automatically" avoided in the optimization method 

used in this study. Note also that improving the spatial structure of the emissions would require much larger computational 

resources than were availablecould be used for this study or more sophisticated computational tools, such as an adjoint mod-10 

el, which was not available for CHIMERE-2017. Furthermore, the findings from a previous study of BB emissions in Siberia 

(Konovalov et al., 2014) indicate that increasing the dimension of the state vector would result in a very large uncertainty of 

the optimal estimates of its components, at least when no a priori constraints (in the Bayesian sense) and explicit quantitative 

assumptions about the magnitudes of model and measurement errors are used. Fixing the spatial structure of the emissions, 

on the other hand, can unavoidably results in an aggregation error of the top-down emission estimates (Kaminski et al., 15 

2001), as the actual emission fields can be substantially different from those specified in the simulations due to crude repre-

sentation of spatial and temporal variability of the factors involved in our emission model (see Eq. 2) as well as due to uncer-

tainties in the FRP observations. However, thise aggregation error  kind of error is unlikely to be considerable in our case, as 

the satellite observations are expected to be representative of all areas in the study region where BB emissions were impor-

tant., and so the contributions of random errors in the emission values for different grid cells to the uncertainty of our total 20 

monthly emission estimates are likely to compensate each other. Possible uncertainties associated with the optimization cri-

terion given by Eq. (7) are discussed in more detail in Sect. S2 (see the Supplementary material). 

The data selected for our optimization procedure satisfied the following two criteria. First, taking into account the limitations 

of the empirical parameterization given by Eq. (4), we disregarded any data points (on an hourly basis) corresponding to 

RHC (see Sect. 2.2.3) greater than 60%. The remaining hourly data matching the corresponding hourly data from the satellite 25 

observations were averaged on a daily basis. Note that we did not require the AAOD observations to overlap with the AOD 

observations in space and time, as the estimates of FBC and FOC are supposed to be representative of BB emissions in the 

whole study region. Second, we tried to ensure that the selected data contained a sufficiently strong “signal” from BB aero-

sol, so that the emission estimates would not be strongly affected by possible biases in the simulated background AOD or 

AAOD values. Specifically, we required: 30 

   1
bb AODAODAOD ,                  (8) 

where AOD includes both the background and BB components, AODb represents the background component of AOD, and  

is a constant. This criterion, which is aimed at removing any data points for which the contribution of fire emissions to AOD 



30 
 

is small, was applied in each grid cell to the daily AOD data from both observations and simulations. As a base case option, 

we put  equal to unity; other values were considered in sensitivity tests described in Sect. 3.6. To enable validation of our 

simulations against an independent subset of the OMI-derived AAOD and MODIS-derived AOD data, one third of the daily 

data points satisfying the above criteria were randomly withheld from the estimation procedure to constitute a validation 

subset of the satellite data. 5 

The optimization problem defined by Eq. (7) was solved iteratively. In each iteration i, Vcs was computed using the corres-

ponding estimates of the correction factors, FOC(i) and FBC(i), and the improved estimates, FOC(i+1) and FBC(i+1), were 

obtained as follows: 
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where V1s and V2s are calculated using the values of FOC(i) and FBC(i), and V1sb and V2sb  are the simulated background values 

of AOD and AAOD. Note that the optimization problem considered is not strictly linear, particularly because the results of 15 

the application of the second criterion (see Eq. 8) to the AOD simulated with different OC emissions can be different. None-

theless, the nonlinearities are relatively weak, and the convergence of the simple iteration procedure given by Eqs. (9) and 

(10) is ensured as long as the BC contribution to AOD is small compared to that of OC. In this study, the initial guesses for 

FOC and FBC (corresponding to the "base-ini" case) were equal to unity, and the convergence criterion given by Eq. (7) was 

satisfied after four iterations. 20 

The uncertainty in the optimal estimates of FOC and FBC was evaluated by means of a bootstrapping technique (Efron, 1993) 

using Eqs. (9) and (10) which were applied to the optimized estimates of the correction factors and corresponding simula-

tions. Specifically, the AOD and AAOD data involved in Eq. (9) and (10) were randomly sampled (with replacements) 3000 

times, and the spread of the correction factor values from the left-hand part of Eqs. (9) and (10) was used to evaluate the con-

fidence intervals for the optimal estimates of FBC and FOC. To take into account possible spatial and temporal covariances of 25 
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the model and/or measurement errors, we ensured that the size of any sampled dataset is not larger than the number of the 

available (in the optimization subset) data points, for which the distances between them (both in space and time) are larger 

than the corresponding de-correlation length/time scales (which were evaluated separately both for AAOD and AOD). As a 

result of this limitation, the size of any sampled monthly dataset was several times smaller than the size of the original opti-

mization dataset for a given month. At In each iteration of the bootstrapping procedure, we randomly changed the parameters 5 

of the AAOD parameterization given by Eq. (6) by sampling them from a Gaussian distribution with the standard deviations 

evaluated above (see Sect. 2.2.3).  

Furthermore, we took into account that the AOD simulated by CHIMERE may be biased and/or not sufficiently representa-

tive of the variability in the mass extinction efficiency (e) of the actual BB aerosol in Siberia. Based on BB aerosol proper-

ties summarized by Reid et al. (2005a), we assumed that the regional scale variability of e for BB aerosol can be characte-10 

rized by means of the confidence intervals (in terms of the 90th percentile) of 0.7 m2 g-1. Accordingly, we took into account 

the uncertainty of e by sampling its value in each iteration of the bootstrapping procedure from a Gaussian distribution with 

a standard deviation of 0.43 m2 g-1. Note that the average value of e for BB aerosol in our simulations is found to be of 4.92 

m2 g-1, which is rather close to the likely value of 4.7 m2 g-1 suggested by Reid et al. (2005a).  

Finally, we took into account that the estimates of both FBC and FOC could be affected by the uncertainty of the assumed 15 

value of the OC-to-POM conversion factor () (see Sect. 2.2.2 and Eq. (6) in Sect. 2.2.3): larger values of  would yield 

smaller values of the correction factors. The BB aerosol composition measurements performed in different regions of the 

world and summarized by Reid et al. (2005b) suggest that the POM/OC ratio is likely to range from 1.4 to 1.8. On the other 

hand, Turpin and Lim (2001) indicated that the POM/OC ratio in non-urban aged aerosol affected by wood smoke could be 

as large as 2.6. However, we believe that the reported extreme values of the POM/OC ratio do not characterize the range of 20 

the uncertainty of the assumed value of  (equal 1.8), as this estimate is supposed to represent the average properties of BB 

aerosol of different origin and age in the vast region considered in this study. For definiteness, we characterized the uncer-

tainty of  by means of a Gaussian distribution with a standard deviation of 0.2. This value corresponds to an uncertainty 

range of  from about 1.5 to 2.1 in terms of the 90th percentile confidence intervals.  

Note that the mean POM/OC ratio representative of the ensemble of aerosol observations considered in this study can actual-25 

ly be different from that representative of BB aerosol emissions, in contrast to our assumption that  has the same value both 

for the observed aerosol and the fresh emissions. The variability of the POM/OC ratio in ambient (aging) aerosol may partly 

be due toThe possible difference is mainly due to the formation of SOA from the oxidation of semi-volatile organic com-

pounds (SVOCs) and other processes involving SVOCs. These processes, which have been shown to significantly affect BB 

aerosol evolution in Siberia and to have a potential to cause strong biases in OC emission estimates inferred from AOD mea-30 

surements (Konovalov et al., 2017b), are not taken into account in the simulations performed in this study. To get some idea 

about the impact of this omission on our BC emission estimates, it is useful to transform Eq. (6) by taking into account that 

(i) POM constitutes the major component of BB aerosol, typically accounting for about 80% of its mass, and (ii) the BC 
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mass fraction is about 10 times smaller than that of OC in BB aerosol in temperate/boreal forest (Reid et al., 2005b). Accor-

dingly, by assuming that AOD is determined only by POM and disregarding the contribution of BC to total carbon concen-

tration, Eq. (6) can be approximated as follows: 

])[][( 21
388 POMBCAAOD e   ,         (11) 

where αe is the mass extinction efficiency discussed above. According to Eq. (11), AAOD may be underestimated in our 5 

simulations in the cases with fresh aerosol (where  and [POM] are likely underestimated) but overestimated in the cases 

with aged aerosol. However, it seems reasonable to expect that such biases in AAODWhile this omission could affect the 

optimal estimates of FOC and the corresponding OC emission, it cannot cause a significant bias in our optimal estimates of 

FBC and BC emissions as long as the assumed value of the factor  is representative of the average value of this factor over 

the ensemble of the all (both fresh and aged) plumes observed from the satellites and as long as  the simulated AOD values 10 

(and, accordingly, POM columns) are, on average, fitted consistent to with the AOD observations. and the factor  involved 

in Eq. (6) is evaluated properly. Furthermore, taking into account that the term proportional to κ2 in Eq. (11) is typically 

much smaller than that proportional to κ1 (see Fig. 4), the possible biases in AAOD due to BB aerosol aging are effectively 

included in our confidence intervals for BC emission estimates by considering the uncertainties in  and αe as noted above. 

Any uncertainty of our estimates of FBC and BC emissions due to model errors in the spatial and temporal distributions of the 15 

OC POM columns and AOD is also taken into account in the respective confidence intervals as explained above. The ro-

bustness of our BC emission estimates with respect to treatment of SOA formation processes in our model is confirmed by a 

sensitivity test reported in Sect. 3.6. 

3 Results 

3.1 Optimal estimates of the correction factors for BB emissions of BC and OC 20 

The optimal estimates of the correction factors, FBC and FOC, and their uncertainties for each of the five months considered 

are reported in Table 2; note that the subscript “m” is omitted here and below for brevity. The estimates range from about 

2.3 (in May) to 3.7 (in September) for BC and from 1.5 (in May) to 2.7 (in August) for OC. Table 2 also lists our estimates 

of the FBC/FOC ratios, which range from about 0.7-0.8 (in June - August) to 1.5-1.7 (in May and September). The estimates of 

both FBC and FOC as well as of their ratios are reasonably well constrained by the observations: the respective uncertainties 25 

are less than or about 35% for FBC and less than 30% for FOC in the summer months. The uncertainties are largest in the esti-

mates of FBC and FOC for September (45% and 47%, respectively). This is not surprising taking into account that the fires 

were relatively small in that month (see Fig. 3), and so the number of the available observation data points in the optimiza-

tion dataset is many times lower for September (58) than, e.g., for July (3017).  

The monthly variations in both the correction factors and their ratios exhibit a rather pronounced seasonal pattern. Specifical-30 

ly, the values of FOC are smaller in May and September than in the summer months. In contrast, the values of FBC and the 
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FBC /FOC ratio are much smaller in the summer months than in May and September. Although the differences between the 

correction factors for different months are mostly not statistically significant, a more than two-fold decrease in the FBC/FOC 

ratio in June and July is statistically significant with respect to both May and September.  

While the monthly variations of FBC and FOC may, in principle, account for changes in both the emission factors and in the 

conversion factor α (see Eq. 2), the changes variations in the FBC/FOC ratio may be explained by changes only in the ratio of 5 

the BC and OC emission factors. It seems possible that the variations of the FBC/FOC ratio are partly associated with high va-

riability of the contributions of different fire types (featuring different emission factors) to the observed FRP (see Fig. 3): 

specifically, the contributions of agricultural and grass fires to the integral FRP were 41 and 21 % in May and September, 

respectively, but only 14, 10, and 9 % in June, July and August. To examine this possibility, we performed an additional 

estimation (see the Supplementary material, Sect. S3) using the AAOD and AOD observations only over a selected sub-10 

region (50-57N, 60-115 E, see Fig. 2) where the relative contribution of agricultural and grass fires to FRP was much larg-

er and more uniformly distributed across the different months than in the whole region (see Fig. S4). The estimates of the 

FBC/FOC ratio obtained for such athis sub-region (see Table S1) show much smaller (and statistically insignificant) variations 

between different months, as compared to the corresponding estimates for the whole region (in particular, the FBC/FOC ratio 

has decreased in May but increased in the summer months), whereas monthly variations of the FBC and FOC factors them-15 

selves (see also Table S1) have even increased. Therefore, this additional analysis supports the possibility that the monthly 

variations of the FBC/FOC ratio are associated with different fire types and, therefore, indicates that that the emission factors 

(for BC or OC or the both species) specified in the GFED4 inventory and in our simulation are biased in case of at least one 

fire type. However, it should be noted that the variability of the FBC/FOC ratio for the whole study region can also be ex-

plained by other reasons, such as spatial variability of the emission factors across different ecosystems in the region consi-20 

dered, as well as by the emission factor monthly variability which is not represented by the constant emission factor values 

specified in the GFED4 inventory (see Table 1). Based on the limited amount of the available data, we cannot exclude these 

alternative explanations.   

Therefore, although we cannot isolate the monthly variations of FBC and FOC from those in the factor α, our results indicate 

that the emission factors for either BC or OC or both are likely to exhibit considerable monthly variations that are not 25 

represented by the constant emission factor values specified in the GFED4 inventory (see Table 1) and our simulations. 

3.2 Evaluation of the optimized simulations of AAOD and AOD 

In this section we examine whether the simulations that have been employed in the inverse modeling analysis are sufficiently 

reasonable and representative of the observations that have not been used for optimization of the BB emission parameters. 

To this end, we compare our simulations, in which the BB emissions have been computed using the correction factors pre-30 

sented above, with a validation subset of the satellite data (see Sect. 2.2.4). A comparison of our simulations with in situ 

measurements is presented in the following subsequent two sections. 
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Figure 45 presents the spatial distributions of the temporally averaged AAOD and AOD values over the study region accord-

ing to the satellite observations and our simulations performed both with the optimized BB emission and with zero BB emis-

sions. Note that blank pixels indicate that either the satellite observations are available for less than two days in these grid 

cells, or the observed and/or simulated data have not been included in the validation subset according to the criteria formu-

lated in Sect. 2.2.4. Evidently, both the observed and simulated (with the BB emissions) data show rather similar spatial pat-5 

terns, indicating the presence of heavy smoke plumes over many areas both in western Siberia (in particular, between Omsk 

and Krasnoyarsk) and eastern Siberia (south-east of Yakutsk). Importantly, the effects of the same fires can be readily seen 

in both the AAOD and AOD data. The differences between the satellite data and simulations are also considerable (the root 

mean square errors normalized to the mean values equal 0.49 and 0.46 in the cases of the AAOD and AOD distributions, 

respectively). In particular, both AAOD and AOD tend to be overestimated by the model in Central Siberia and the Far East 10 

but underestimated in Western Siberia. These differences may be due to a variety of reasons, including errors in the spatial 

allocation and the magnitude of fire emissions, uncertainties in the satellite retrievals, as well as the model’s inability to take 

into account spatial and temporal variations in the optical properties of the actual BB aerosol. 

Figure 6 presents the temporal (daily) variations in the spatially-averaged AAOD and AOD data. Taking into account that 

the number of the spatially resolved data points averaged over a given day strongly varies from day to day and that the 15 

agreement between the daily mean data from the simulations and observations is likely to degrade on days with a small 

amount of available data, we required that each observational data point (and its simulated matchup) shown in Fig. 6 was 

composed of at least ten values corresponding to different grid cells. Otherwise, an observational data point was considered 

as an outlier. These outliers were not included in Fig. 6 and disregarded in the comparison statistics (reported in the legend 

of Fig. 6); the corresponding simulated values (shown in Fig. 6) were averaged over the whole study region. The results pre-20 

sented in Fig. 6 indicate that when the model used the optimized emissions, it reproducesd the daily variations both in 

AAOD and AOD reasonably well, with a correlation coefficient values of about 0.8 and a very small biases that does not 

exceed 5%. The agreement of the simulations is evidently better with the AOD observations than with the AAOD retrievals. 

This is an expected result, given the fact that both the OMI-derived AAOD data and the corresponding simulations are likely 

to have larger uncertainties than the observations and simulations of AOD. The correlation coefficient values were consider-25 

ably smaller and biases were much larger when the model used the "initial-guess" BB emissions calculated with the correc-

tion factors equal unity. These findings indicate that the inversion of the AAOD and AOD observations results in major im-

provements in the model performance. 

Figure 7 compares the relationships between AAOD and AOD according to the satellite observations and our simulations. 

The relationships include all of the gridded daily data points selected for the validation dataset. As follows from Eq. (4), the 30 

relationship between AAOD and AOD is indicative of the EC/OC ratio in BB aerosol particles. Therefore, the adequacy of 

the relationship between the modeled AAOD and AOD values is an important pre-requisite for accurate estimations of the 

EC/OC ratio in the BB aerosol emissions. Figure 7 also shows the similar relationships between the AAOD and AOD data 
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derived from the AERONET measurements, which were used to evaluate the parameters of Eq. (4), and between their mod-

eled counterparts. 

Evidently, although the model cannot explain some strong variations in the AAOD/AOD ratios derived from the observa-

tions (which may be enhanced an artifact of due to temporal and spatial inconsistencies between the OMI and MODIS mea-

surements), it reproduces the “observed” relationship quite well on average. Specifically, both the observations and simula-5 

tions indicate that the ratios of the average values (indicated by angle brackets) of AAOD and AOD, as well as the slopes of 

the regression lines fitted to the AAOD and AOD values, are close to 0.1 (±11%) According to Eq. (4), this value corres-

ponds to an EC/OC ratio of about 0.045, which is rather similar to that of 0.052 assumed in the GFED4 inventory for BB 

emissions in extratropical forests. Similar values of the <AAOD>/<AOD> ratio are characteristic for the AERONET data 

and their simulated matchups, although the latter is slightly biased positively. The consistency between the 10 

<AAOD>/<AOD> ratios in the satellite observations and AERONET data can be considered as evidence that the measure-

ments of the optical properties of BB aerosol at the AERONET sites are sufficiently representative of the typical optical 

properties of BB aerosol in the whole study region. Note that athe cluster of green points above the regression line in Fig. 7b 

indicates a distinct contribution of the agricultural and grass fires featuring much larger ratios of the BC and OC emission 

factors (see Table 1) than the predominant forest fires. 15 

3.3 Evaluation of the simulated BC and OC concentrations against observations at ZOTTO 

Figure 8 illustrates the evaluation of the simulated concentrations of EC and OC against the corresponding in-situ observa-

tions at the ZOTTO site, which in summer 2012 was surrounded in summer 2012 by numerous fires (see Fig. 2). The obser-

vational data points shown in Fig. 8 represent EC or OC concentrations detected in the individual aerosol filter samples. The 

simulated data from the CHIMERE model, which was run both with the optimized and initial-guess BB emissions as well as 20 

and without BB emissions, were averaged over each individual sampling period, which was of different length for different 

samples (see Sect 2.1.5). The comparison statistics, including the mean value, the difference between the mean values of the 

simulated and observed data (the bias) bias (along with the 90 % confidence interval, ), the root mean square error (RMSE) 

and the correlation coefficient are reported for each simulation in the legends of Fig. 8. Note that to the best of our know-

ledge, aerosol simulations performed with a chemistry transport model have never been evaluated previously against EC and 25 

OC measurements in Siberia.    

Both the EC and OC concentrations predicted by the model for the “base-opt” and “base-ini” cases correlate very well (r > 

0.9) with the corresponding observations. Although tThe EC concentrations are on average somewhat overestimated in the 

simulations with the optimized emissionsare biased high (by 23 %): the agreement of the mean concentrations would be per-

fect if the simulated concentrations were reduced by 23 %,. However, a predominant part of this bias difference between the 30 

mean simulated and measured concentrations can be explained by random model errors. A remaining smaller part of the bias 

difference may be explained by the uncertainty in our estimates of the emission correction factors (and thus in BC emissions 
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specified in the model), which is about 35 % (see Sect 3.1). The EC concentrations in the simulation with the initial-guess 

emissions are, on the other hand, a factor of 1.32 too low on average. The fact that the “base-ini” simulation demonstrates a 

slightly better performance in terms of the correlation coefficient than the “base-opt” simulation may be indicative of a 

smaller monthly variability of the BC emission and/ or conversion factors representative of the predominantly forest fires, 

which predominate in the vicinity of the ZOTTO site, compared to the variability of the same parameters representative of 5 

the fires inacross the whole study region.   

The simulated OC concentrations simulated with the optimized emissions are appear to be slightly biased low, but the biasa-

vailable bias estimate is not statistically significant. In contrast, the OC concentrations are strongly (by more than a factor of 

2) underestimated in the “base-ini” simulation: this result is consistent with a similar underestimation of AOD in the same 

simulation (see Fig. 6) and further supports our finding (see Table 2) that the initial-guess OC emissions should be strongly 10 

enhancedincreased. Note that according to our "bgr" simulation, i.e., if BB emissions in Siberia were completely absent, both 

EC and OC concentrations at the ZOTTO site would be more than an order of magnitude lower than observed, if BB emis-

sions in Siberia were completely absent. This fact indicates that possible uncertainties in anthropogenic EC emissions are not 

likely to be responsible for any noticeable bias in the EC concentrations simulated with BB emissions. Overall, the above 

comparison indicates that our top-down BB EC and OC emission estimates, considered together with their confidence inter-15 

vals, are consistent with the EC and OC observations made in Central Siberia.      

3.4 Comparison of the simulated data with aircraft measurements  

Figure 9 shows the tracks of the flights performed in the framework of the YAK-AEROSIB campaign in July-August 2012. 

The northern and southern sectors of the trajectory correspond to the flights performed on 31 July and 1 August, respective-

ly. The flight tracks are overlaid onto the grid of our model and are shown along with the observed and simulated values of 20 

the CO mixing ratio, which were averaged over the region covered by each grid cell that had been intersected by the aircraft 

trajectory. One can notice several grid cells (north and south of Krasnoyarsk and around Yakutsk) where the CO mixing ra-

tios (both in the measurements and in the simulations) exceed 400 ppb. These "hot spots", corresponding to high percentiles 

of the CO mixing ratio, were not found in the respective data from the “bgr” simulations for the “bgr” scenario (which are 

not shown in Fig. 9) and thus are likely due to BB emissions. Note that crossing BB smoke coinciding with high CO plumes 25 

has been confirmed by direct visual/olfactory evidence as well as by a clear increase in the K+ ion concentration in the forest 

fire plumes (Antokhin et al., 2018). Taking these considerations into account, we used high percentiles of the CO observa-

tions to pinpoint occurrences when the aircraft traversed BB plumes.  

Specifically, we selected PM2.5 and BC (eBC) measurements matching the CO mixing ratios exceeding the 90th percentile 

(395 ppb) or 80th percentile (277 ppb) of the distribution of the CO mixing ratios. The average CO mixing ratios in the se-30 

lected subsets of the measurement and simulated data were, respectively, 602 ppb and 374 ppb for the 90th percentile and 465 

ppb and 311 ppb for the 80th percentile. As the selection criterion was applied only to the observational data that manifest 

strong subgrid variability, the fact that the average CO mixing ratios are larger in the observations than in the simulations 
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does not necessarily mean that the model underestimates the CO mixing ratios in the BB plumes. More importantly, the cor-

responding average CO mixing ratios simulated without BB emissions (110 and 111 ppb for the selection criteria based on 

90th and 80th percentiles, respectively) are much smaller than those simulated with BB emissions: this fact confirms that the 

BB plumes observed during the YAK-AEROSIB campaign are reasonably well matched in the simulations by large concen-

trations of CO originating from vegetation fires. 5 

Figure 10 shows the relationships between the PM2.5 and BC mass concentrations selected as explained above. To evaluate 

these relationships, they were fitted with linear regressions without intercept; the fit equations are reported in the legends of 

Fig. 10. Assuming that the contribution of the background aerosol fraction to the selected BC and PM2.5 measurements was 

negligible, we regard the value of the slope of the best fit line as an estimate of the BC-to-PM2.5 ratio in BB aerosol measured 

during the flights. Note that according to our simulations, the background BC and PM2.5 concentrations corresponding to the 10 

selected measurements were, on average, very small (only 0.02 and 14 g m-3, respectively, for the selection criterion based 

on the 80th percentile) compared to the range of the values presented in Fig. 10. The slopes of the fits to the observational 

data are about 0.021 for any of the two selection criteria considered. This value is in the middle of the range of the 

eBC/PM2.5 ratio values (0.01-0.045) observed in Siberian smoke plumes earlier (Kozlov et al., 2008). For comparison, the 

BC/PM2.5 ratio for fresh BB aerosol in extratropical forest is assumed to be 0.033 in the GFED4 inventory (van der Werf et 15 

al., 2017); that is, a factor of 1.5 larger than the value found in this study. 

The large scatter of the experimental data points may reflect the actual variability of the BC/PM2.5 ratios in BB aerosol par-

ticles sampled by the aircraft instruments, although it also may also be due to the measurement uncertainty, including tem-

poral mismatches between BC and PM2.5 measurements. The emissions from the flaming and smoldering phases of fires 

have very different BC/PM2.5 ratios, and an aircraft flying through plumes near the fires often passes through sub-plumes 20 

originating from the different fire phases and thus having very different compositions. After some transport, the smoke from 

the flaming and smoldering parts of fires becomes well mixed in the plumes. This may explain why the scatter is smaller in 

the relationships between EC and OC concentrations in the BB aerosol samples collected at the ZOTTO site (see Mikhailov 

et al., 2017 and Fig. 9a therein). In contrast, the scatter of the simulated data points is very small. The variability of the 

BC/PM ratios may be strongly underestimated in our simulations as a result of the simplistic model representation of the 25 

complex patterns of spatial and temporal variability of BB BC and PM2.5 emissions and also due to the probably inadequate 

representation of the BB aerosol aging processes in CHIMERE.  

The BC/PM2.5 ratio in our simulations is about 3 % and 10 % larger than the corresponding estimate derived from the YAK-

AEROSIB measurements with the selection criteria based on the 90th and 80th percentiles of the CO mixing ratio, respective-

ly. As the eBC concentrations measured with an aethalometer are likely to be different from EC concentrations measured 30 

with a thermo-optical method (see Sec. 2.1.6), these differences are not indicative of any biases in our estimates of BC emis-

sions (which are evaluated in this study as emissions of EC). Furthermore, any discrepancy between the slopes of the best 
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fits to the observational and simulation data could easily be eliminated by decreasing the correction factors FBC (and thus BC 

emissions) in the simulations within the uncertainty range of the optimal estimates of FBC.  

Unfortunately, due to the absence of frequent measurements of an independent tracer of biomass burning in the YAK-

AEROSIB observations, we could not use them for evaluation of model predictions of the absolute values of BC and PM2.5 

concentrations. Unlike the measurements at ZOTTO, which were performed in an almost pristine environment, the aircraft 5 

trajectory during the YAK-AEROSIB campaign passed over polluted areas near large cities, where the contributions of anth-

ropogenic sources to the BC and PM2.5 concentrations could be considerable or even predominant. Nonetheless, we could 

compare our simulations with the campaign-average concentrations. Accordingly, we found that the average BC and PM2.5 

concentrations were 0.62 and 22 g m-3 in the observations, while the average of their simulated matchups were 0.44 and 28 

g m-3. In view of the potentially large measurement uncertainties as well as the limited representativeness of the aircraft 10 

measurements at the scales resolved in our simulations, the differences between these average concentrations cannot be con-

sidered as clear evidence for biases in either BB or anthropogenic emissions specified in our model. Overall, the comparison 

of our simulations with the YAK-AEROSIB data shows a reasonable agreement, although it also highlights the difficulties 

and uncertainties associated with validation of BC simulations against the optical measurements of aerosols.  

3.5 BC and OC emission estimates  15 

Figure 11 shows the spatial distribution of the average BB BC emissions calculated for the study period in accordance with 

Eq. (2) using the MODIS FRP data and optimal estimates of the correction factors (see Sect. 4.1) constrained with the OMI 

AAOD and MODIS AOD retrievals. Not surprisingly, the distribution of BC emissions generally replicates the spatial pat-

terns of FRP (see Fig. 2) and is also similar to the distributions of AOD and AAOD shown in Fig. 5. Grid cells with strong 

BC emissions cover vast areas in Western and Central Siberia, as well as in Eastern Siberia (east of Yakutsk and along Rus-20 

sia’s border with China). For comparison, Fig. 11 also shows the corresponding spatial distributions based on the data from 

the GFED4.1s and FEI-NE emission inventories. All the distributions look rather similar, although there are also many dif-

ferences between them. Most of the differences appear to have a random character, but it is noticeable that the emissions 

obtained in this study and based on the FEI-NE data tend to be stronger in many “hot spots” than those based on the GFED 

data. Greater FEI-NE BC emissions compared to those from GFED4 can be explained by an almost a factor of two differ-25 

ence in the BC emission factors assumed in FEI-NE and GFED4, as well as by differences in the methodologies to estimate 

fuel loadings. Similar reasons (that is, biases in the emission factors and/or in the fuel consumption estimates involved in the 

GFED4 inventory) may be behind the differences between the GFED4 data and our estimates. It is also noticeable that a 

much larger number of grid cells in the distributions based on our estimates are associated with relatively weak emissions in 

the range from 0.01 to 0.05 g m-2 than in the distributions based on both the GFED and FEI-NE data. This difference indi-30 

cates that emissions from some small fires (especially in agricultural areas) may be missing in the GFED and FEI-NE inven-

tories (based on the burnt area data) but are taken into account in our calculations based on the FRP measurements.   
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Figure 12 and Table 3 report our top-down estimates of the total monthly BC emissions from fires in the study region, as 

well as the estimate of the integral BB BC mass emitted in the study region in May-September. The uncertainties of our es-

timates are reported in terms of the 90th percentile confidence level. Our estimates are shown in comparison with the corres-

ponding values which were calculated using the GFED4 and FEI-NE emission data. The uncertainty level in the GFED4 data 

is has not been knownreported, and therefore it is not indicated in Fig. 12. Note, however, that previous studies in which 5 

AOD simulations based on the GFED inventory were evaluated against corresponding observations in different regions of 

the world (see, e.g., Tosca et al., 2013; Reddington et al., 2016; Petrenko et al., 2017) indicated that the GFED data for BB 

aerosol emissions may be very uncertain, such that they need to be corrected with the adjustment factors sometimes exceed-

ing 10 on a regional scale.but The uncertainty reported for the FEI-NE data is 63 % (Hao et al. (2016) reported an uncertain-

ty (indicated in Fig. 12) of 63 % for the FEI-NE data. Note that Iit has not been specified whether this uncertainty characte-10 

rizes gridded data or total regional emission estimates; we assume here that the latter is true. 

According to our estimates, the fires in the Siberian study region released 405 (135) Gg of BC during the study period. This 

value is many times larger than the total BC amount (25 Gg) that was emitted, from other sources in the study region and 

period, according to our calculations based on the data of the ECLIPSE V5 emission inventory for 2010, in the study region 

and period from other sources (Klimont et al., 2017). For comparison, our estimate of the total BB BC emissions is also 15 

much larger than the total annual anthropogenic BC emissions in the North America (249 Gg yr-1) and less than a factor of 

two smaller than the total annual anthropogenic BC emissions in Europe and Russia (660 Gg yr-1) in 2010 (Klimont et al., 

2017). About 40 % (139 Gg) of the total amount of BC released from the fires during the whole study period was emitted in 

July. The emissions were smallest in September (20 Gg) and ranged from 71 to 96 Gg in May, June, and August. Note again 

that BC emissions are evaluated in this study as emissions of EC. 20 

Our estimates indicate that the total BC emissions from Siberian fires in the period considered are strongly underestimated in 

the GFED4 inventory (by more than a factor of 2), in which these emissions are estimated at about 198 Gg. Taking into ac-

count that GFED is widely used as a "reference" database for estimations of atmospheric and climatic effects of open bio-

mass burning, we believe that this is a significant finding. The relative difference between our monthly BC emission esti-

mates and the corresponding GFED4 data is largest in September, exceeding a factor of 8; it is also large (a factor of 3) in 25 

May. In contrast, the BC emissions in the FEI-NE inventory (614 Gg) are larger than ours, although this difference is not 

significant in view of the reported uncertainty in the FEI-NE data. Note that, while no specific measure (EC, EBC, rBC) is 

identified for BC in the GFED4 inventory, Hao et al. (2016) specified that the FEI-NE inventory employed emission factors 

for refractory BC (rBC). However, we are not aware of any procedure that could allow us to adjust for the differences be-

tween rBC and EC. Overall, our top-down estimates provide a compromise between the data of the GFED4 and FEI-NE in-30 

ventories. Importantly, their the evaluated uncertainty in our estimates range is much smaller than both the differences be-

tween the estimates based on the two inventories considered and the reported uncertainty of the FEI-NE data. Therefore, the 
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satellite data provide stronger constraints on BC emissions from Siberian fires, compared to the state-of-the-art emission 

inventories.  

Although the estimation of OC emissions was not the focus of our study, our top-down estimates of the OC emissions (see 

Fig. 13a and Table 3) are useful to consider here, as they allow us to further evaluate the overall integrity of our method and 

results. We also report BC/OC emission ratios (see Fig. 13b) calculated as the ratio of our estimates for BC and OC emis-5 

sions along with the emission ratios calculated using the GFED4.1s data. Note that FEI-NE does not provide data on OC 

emissions. 

The results shown in Fig. 13a indicate that the pattern of monthly variations of OC emissions is not very similar to that of 

BC emissions. Specifically, the OC emissions in May are found to be much smaller than in June, while the BC emissions 

were larger in May (see Fig. 12). But similar to our BC emission estimates, our estimates of OC emissions are much larger 10 

than the corresponding estimates based on the GFED4 data. Our estimate for the integral emissions over the fire season con-

sidered is a factor of 2.2 larger than the corresponding estimate based on the GFED4 data. Based on comparison of satellite-

derived and simulated AOD, several previous studies showed evidence that OC emissions provided by the GFED inventory 

may indeed be underestimated in different regions of world, including Siberia (see, e.g., Petrenko et al., 2012; 2017; Tosca et 

al., 2013; Konovalov et al., 2014; 2015; Reddington et al., 2016), although it was also argued (Konovalov et al., 2015; 15 

2017b) that models may underestimate AOD due to inadequate representations of the BB aerosol aging processes. So it is 

possible that a part of the differences between our optimal estimate of the OC emissions and the corresponding GFED data 

may compensate for some missing processes (e.g., involving the formation of SOA due to oxidation and condensation of 

semi-volatile organic compounds) in our model.  

In spite of the very significant differences of our BC and OC emission estimates with respect to the GFED4 data, the BC/OC 20 

emission ratio (0.0460.014 g g-1) obtained in our analysis (see Fig. 13b) is consistent, in the case of the integral emissions 

for the study period, with that in GFED4 (0.054 g g-1). Furthermore, the monthly variations of the BC/OC emission ratio 

according to our estimates are qualitatively similar to those according to the GFED4 data. Specifically, both the GFED4 in-

ventory and our estimates indicate that the BC/OC emission ratio was bigger in May and September than in the summer 

months. However, our estimates also indicate that the BC/OC emission ratio may be underestimated by GFED4 in May and 25 

overestimated in the summer months. Monthly variations of the BC/OC emission ratio in the GFED inventory are a result of 

changes in the presumed fire fuel: in particular, the monthly variations shown in Fig. 13b indicate that, according to the 

GFED4 data, the contributions of agricultural and grass fires to the BB BC emissions were slightly bigger in May and Sep-

tember than in the summer months. The same factor can explain (at least partly) the monthly variations in our estimates of 

the BC/OC emission ratio. To illustrate this point, Figure 14 shows the spatial distributions of the relative contribution of 30 

agricultural/grass fires to BB BC emissions integrated over a month, along with the spatial distributions of the corresponding 

BB BC emission values. The distributions were obtained for three different months (May, July, and September) using Eq. (2) 

and the optimal estimates of the correction factors, FBC. Evidently, the fires that occurred in the study region in May affected 
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burned mostly in agricultural lands and grasslands, even though the BC emissions from intensive forest fires were also quite 

significant in several grid cells. In contrast, forest fires were clearly predominant in July (as well as in the other summer 

months). Unlike the situations in both May and July, BB BC emissions in September were not clearly associated with any 

predominant fire fuel category: along with agricultural/grass fires in the southwestern and southern parts of the study region, 

there were relatively strong forest fires north of Tomsk and Krasnoyarsk and west of Yakutsk. Taking these observations 5 

into account, it can be speculated that the big difference between the BC/OC emission ratios in July and September is, to 

some extent, a manifestation of the diversity of fire regimes across the boreal forest region (Conny and Slater, 2002). Note 

that the spatial distribution of our emission data is insufficient to enable distinguishing between agricultural and grassland 

fires. However, according to the GFED4 inventory, agricultural burns strongly dominate over grass fires both in May and 

September (by a factor of 5 at least). 10 

It is noteworthy that our estimates of the BC/OC emission ratios (in the range from 0.036 to 0.042 g g-1) for the summer 

months are only insignificantly – taking into account the confidence intervals – different from the EC/OC ratio of 0.038 g g-1 

that was derived for BB aerosol by Mikhailov et al. (2017) from aerosol measurements at ZOTTO in summer. Furthermore, 

our estimate for May (0.093±0.03 g g-1) is in a good agreement with the EC/OC ratio (0.08±0.02 g g-1) found by Mikhailov 

et al. (2017) for BB aerosol originating predominantly from agricultural fires in spring. As SOA formation simulated with 15 

the “standard” aerosol module of CHIMERE contributes very insignificantly to BB aerosol concentrations (Konovalov et al., 

2015; 2017b), the ratios of the BC and OC emissions specified in our simulations are quantitatively almost the same as the 

simulated BC/OC ratios in the ambient aerosol particles, irrespective of their age. Therefore, our estimates of the BC/OC 

emission ratios look reasonable in view of the independent ambient observations in central Siberia. This finding confirms the 

validity of our estimation method and the obtained results.  20 

3.6 Sensitivity tests 

The confidence intervals for our optimal estimates of BC emissions (Table 3 and Fig. 12) do not necessarily include possible 

uncertainties and biases that may be associated with systematic model errors and data selection criteria. Based on our under-

standing of likely reasons for such uncertainties and biases, we specified eight sensitivity tests listed in Table 4. The sensitiv-

ity analysis was focused on the estimation of the total BC emissions over the study period. The correction factors FBC and 25 

FOC for each test case were obtained by applying Eq. (9) and (10) to the optimal (“base case”) estimates of the correction 

factors (see Table 2). One more iteration of the estimation procedure was sufficient to obtain the test estimates of the total 

BC emissions with a relative numerical error of 3 % or less. The total BC emission estimates for each case and the relative 

differences with respect to the base case estimate reported in Table 3 are also listed in Table 4.     

Test case No. 1 addresses systematic differences between the photochemical ages of BB aerosol observed at the AERONET 30 

sites that provided the data considered in our analysis (see Sect. 2.4) and those of BB aerosol observed by satellites. Figure 

15 shows the histograms of the photochemical ages estimated in accordance with Eq. (1) separately for the AERONET data 

and for the satellite data from the datasets selected for our analysis. Compared to BB aerosol observed from satellites (which 



42 
 

have a median photochemical age of 15.4 h), the BB aerosol at the AERONET sites was typically more aged (with a median 

photochemical age of 25.8 h). If the relationship given by Eq. (4) is sensitive to the photochemical age of the aerosol, these 

differences can result in some bias in the modeled AAOD values. To get an idea about the significance of such bias, we dis-

regarded satellite data corresponding to photochemical ages smaller than 11 h. The remaining satellite data have approx-

imately the same median photochemical age as the AERONET data. This restriction resulted in a small change of the optim-5 

al BC emission estimate, which increased by less than 3 %. This result does not necessarily mean that the BB aerosol com-

position and its optical properties are not strongly affected by aging; rather it may mean that changes of AOD and AAOD, as 

well as those of the monthly BC emission estimates due to aerosol aging, tend to compensate each other in the total BC 

emission estimate. 

The impact of aerosol aging on our estimates is further addressed in the test case No. 2. Specifically, the goal of this test case 10 

is to assess a potential bias in our BC emission estimates due to a probable underestimation of the SOA contribution to aged 

BB aerosol. To this end, we performed a simulation in which the yields of all SOA species from oxidation of major volatile 

SOA precursors (such as toluene, xylenes, isoprene and terpenes) were enhanced by a factor of 7 with respect to the “base-

opt” simulation, whereaswhile the reaction list and the reaction rates (as well as all other simulation settings) were kept un-

changed. As a result of such athis model modification, a relative enhancement of the averaged (over the whole period and 15 

region considered) POM column amounts due to SOA formation increased from only 2.6 % (in the "base-opt" case) up to 

27 % (in the test case). Note that the SOA enhancement increased more strongly than the SOA yields, probably because 

some of the SOA species are assumed to be semi-volatile in CHIMERE, and thus their condensed fraction increases with 

their total concentration. The increased SOA contribution to POM in our test case simulation corresponds to the upper ed-

gemargin of the wide range of the BB POM enhancements observed in aging BB plumes in several field studies in North 20 

America (Cubison et al., 2011). In spite of the considerable changes in the simulated POM fields, the optimal BC emission 

estimate changed ratheronly insignificantly, having increasinged only by 4.6 % (see Table 4). This result is in line with the 

above discussion of the robustness of our BC emission estimates (see Sect. 2.2.4) with respect to the treatment of POM aging 

in our model. It is not surprising, however, that our estimates of the correction factors FOC and of the OC emissions were 

found to be more sensitive to the changes in the POM simulations; specifically, the top-down estimate of the total OC emis-25 

sions dropped by ~15 % in the test case as a result of the increases in aerosol abundances and of a slight decrease in the mass 

extinction efficiency.          

Test case No. 3 addresses the uncertainty associated with the representation of wet deposition of BB aerosol particles in our 

simulations. As noted in Sect. 2.2.1, we assumed that BB aerosol particles are hydrophobic and therefore are not susceptible 

to in-cloud scavenging; accordingly, the empirical uptake coefficient in the base case simulations with BB emissions was set 30 

to be zero. This assumption can result in overestimation of the life-time of BB aerosol particles, which tend to become more 

hydrophilic as the aerosol ages (Paramonov et al., 2013), and, consequently, in a negative bias of our BC emission estimates. 

To get an idea about the magnitude of this possible bias, we performed a test simulation (with the optimized BB emissions) 
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in which the empirical uptake coefficient was set to be unity; this setting corresponds to the assumption that BB aerosol par-

ticles are hydrophilic. The use of such athis simulation instead of the original simulation with the optimized BB emissions in 

our estimation procedure resulted only in a minor increase (~6 %) in our optimal estimate of the total BB BC emissions; the 

changes in the monthly estimates are found to be similarly small. This is an expected result, as the major fires considered in 

our analysis occurred mostly during dry periods with low precipitation. Therefore, the test case No. 3 indicates that probable 5 

changes in hygroscopicity of ambientreal aerosol particles due to BB aerosol aging processes cannotwill not significantly 

affect our BC emission estimates.           

Test cases No. 2 4 and No. 3 5 are designed to evaluate to which extent our top-down BC emission estimate can be affected 

by a possible bias in the background AOD values predicted by CHIMERE. To get an idea about such a bias, we followed the 

approach suggested by Konovalov et al. (2014). Specifically, we first selected the days and grid cells (irrespective of the 10 

availability of AAOD data) in which the MODIS-retrieved AOD data are available and the contribution of fires to the mod-

eled AOD values (corresponding to the selected the days and grid cells) does not exceed 10 % of the background AOD val-

ues, and then we evaluated the mean difference between the MODIS-retrieved and modeled AOD for these selected data 

points. It isWe found that the mean value for the modeled AOD (~0.17) is considerably higher than the mean value (~0.10) 

for the observed AOD. Taking into account that the bias in the background AOD values in pixels affected by fires may be 15 

somewhat different from that representative of background conditions, we considered larger changes in the background 

AOD by increasing or decreasing it by 50 %. The test results indicate that a probable positive bias in the background AOD 

values is associated with some underestimation (by less than 20 %) of BC emissions in our procedure; if the bias were ab-

sent, the difference between the BC emission estimates inferred from the satellite observations and those calculated with the 

GFED4 data would be even larger than in the base case. The sensitivity of the optimal estimate is strongly asymmetric with 20 

respect to the enhancement and reduction of the background AOD: this is probably due to an impact of the changes in the 

background AOD on the selection of data according to the criterion given by Eq. (8).  

Test case No. 4 6 addresses the uncertainties associated with the background AAOD. On the one hand, the AAOD data have 

been retrieved from the OMI measurements under the assumption that each observed pixel is characterized by only one type 

of aerosol. Consequently, the absorption caused by other types of aerosol has effectively been disregarded, although it might 25 

actually affect the AAOD retrievals. Thus, to prevent overestimation of the BC emissions, the background AAOD (predi-

cated by CHIMERE) was subtracted from the AAOD retrievals as suggested by Eq. (7). On the other hand, BB plumes are 

typically reaching much higher altitudes than anthropogenic aerosol: this is taken into account in the OMAERUV retrieval 

algorithm by assuming that the vertical distribution of urban/industrial aerosol is largest at the surface, while the concentra-

tion of carbonaceous aerosol in smoke layers at mid- and high-latitudes typically peaks at 6 km. The AAOD values retrieved 30 

by assuming that the aerosol layer is residing near the ground are much larger than those corresponding to the assumed 

heights of 6 km or even 3 km. So, if the aerosol in a given pixel is identified as carbonaceous BB aerosol, a part of AAOD 

corresponding to the anthropogenic aerosol is likely to be underestimated in the retrievals. Therefore, a simple subtraction of 
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the background AAOD values from the AAOD retrievals may result in an underestimation of the BC emissions in our analy-

sis. To get an idea about the maximum magnitude of this underestimation, the background AAOD values were entirely dis-

regarded in test case No. 46. The test result indicates that the underestimation is probably rather small (less than 10 %); note, 

however, that it may actually be larger if the background AAOD values in our simulations are biased high. Unfortunately, 

we cannot properly evaluate the possible overestimation of the BC emissions in the case where the background AAOD is 5 

strongly underestimated. However, as noted above, the simulated background AOD is overestimated, so it seems reasonable 

to assume that the background AAOD is overestimated, too. Accordingly, we believe that the uncertainty of the best estimate 

of the BB BC emissions with respect to the intrinsic uncertainty associated with the background part of the AAOD retrievals 

is likely within the difference between the estimates given by the “base-opt” case and test case No. 46. 

As noted above (see Sect. 2.2.1), the AAOD retrievals corresponding to different assumed altitudes of the aerosol center of 10 

mass were selected in our analysis by using the smoke layer heights derived from our simulations. Ideally, this approach 

ensures that the AAOD retrievals are consistent with the observed variations in the location and intensity of the fires. None-

theless, in view of the possible uncertainties in the simulated vertical distributions of the BB aerosol, it is also useful to con-

sider the BC emission estimates derived from the standard (“OMI_final”) data product based on rather rough (climatologi-

cal) estimates of the smoke layer heights. This is done in test case No. 57. We found that the standard data product yields a 15 

22 percent lower BC emission estimate than the base case estimate. The difference between the two estimates is considera-

ble, but it is still well within the uncertainty limits of the base case estimate.  

Test cases No. 6 8 and No. 7 9 examine the sensitivity of our estimates to the selection criterion defined by Eq. 8. Specifical-

ly, we used a 50 percent higher and 50 percent lower values of  for test cases No. 6 8 and No. 79, respectively. The larger 

value of  selects data points with larger values of AOD and vice versa. The emission estimates obtained with a smaller value 20 

 are more prone to uncertainties associated with the background AOD. On the other hand, a stricter selection criterion re-

sults in a loss of information about relatively small fires. Anyway, the test results show that the sensitivity of our estimates to 

the big changes in  is relatively weak, suggesting that our base case estimates are sufficiently robust with respect to the se-

lection criterion considered.  

Finally, test case No. 8 10 is designed to address a potential issue concerning the representativeness of the OMI retrievals in 25 

view of the rather coarse resolution of our simulations. It seems reasonable to expect that when, for example, only one 

AAOD observation corresponding to BB aerosol is available for a given grid cell, the mean observed AAOD value inferred 

in our procedure for this grid cell is likely to be overestimated, as AAOD over for the rest of the grid cell's area may be much 

smaller. However, the overestimation can hardly be very large for the very intense and widespread Siberian fires considered, 

because, in this case, the smoke plumes are likely to cover a large fraction of the grid cell area. To examine this issue, we 30 

disregarded any gridded AAOD data points that comprised less than 10 different AAOD observations (data pixels), while the 

maximum number of the pixels per grid cell in the data considered equals 26. Contrary to our expectations, we found that the 

estimate obtained in test case No. 8 is larger (by 17 %). This increase is found to be mostly due to an increase in the optimal 
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estimates of FOC. Apparently, the above limitation resulted in selection of MODIS AOD data that are more representative of 

grid cells affected by major fires and are matched by smaller AOD values simulated for the base case. Therefore, the result 

of this test is not indicative of any representativeness issue for the available OMI retrievals. 

In general, the results presented in this section demonstrate that our estimate of the total BC emissions from Siberian fires is 

sufficiently robust with respect to possible uncertainties in the input data and the choices made in the estimation procedure. 5 

In particular, these results strongly support our findings that the GFED4 inventory significantly underestimates the BC emis-

sions from Siberian fires. 

3.7 BC transport into the Arctic 

As argued in the introduction, studying BB BC emissions in Siberia is stimulated by the need to properly evaluate the role of 

BC in Arctic climate change. Therefore, it is important to know not only the amount of BC emitted from the fires but even 10 

more so the amount of BC transported into the Arctic. Using the three-dimensional hourly fields of BC mass concentrations 

and of the meridional component of wind speed from our optimized simulations, we calculated the hourly BC fluxes from 

the study region across the polar circle (6633 N) and then integrated them over altitude (from the surface up to the model 

domain top coinciding, approximately, with the tropopause), longitude, and time on a monthly basis. The fluxes were calcu-

lated separately for BC emitted from fires and from anthropogenic sources. In this way, we evaluated the total masses of BB 15 

and anthropogenic BC transported from the study region into the Arctic each month (see Fig. 16). Note that a part of the BC 

mass transported into the Arctic may be transported out of it back to the study region (when the corresponding transport 

times are shorter than the typical lifetime of BB aerosol with respect to deposition); however, such backward transport of BC 

is mostly not bebeing taken into account in our calculations, as the model domain does not extend to the whole Arctic. We 

also evaluated the BC transport efficiency, defined here as the ratio of the BC amounts transported to the Arctic to the cor-20 

responding amounts of BC emitted from Siberian fires. This definition is similar but not identical to that introduced in Evan-

geliou et al. (2016), where the transport efficiency was defined as the ratio between the mass of BC deposited in the Arctic 

and the mass of BC emitted from a given region.  

Our estimates indicate that vegetation fires contributed a predominant part (as large as 95 %) of the integral BC mass trans-

ported into the Arctic from the study region during the five months considered (see Fig. 16a). This amount corresponds to an 25 

overall transport efficiency of about 27 % (see Fig. 16b): that is, about a quarter of the total BC emitted from Siberian fires 

was transported into the Arctic. This estimate of the transport efficiency is comparable with that (about 30 %) obtained by 

Evangeliou et al. (2016) for BC emitted from fires in Asia in the summer periods 2012-2013. Our results show that the 

transport efficiency was not constant across the different months. In particular, it exceeded 60 % in September and was less 

than 15 % in June. Interestingly, the total BB BC mass transported into the Arctic in September is found to be slightly larger 30 

than that in June (see Fig. 16a), in spite of the fact that the amount of BB BC emissions is more than a factor of 3 larger in 

June than in September. This fact indicates emphasizes the special potential climatic importance of the fires that occur in 
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Siberia in early fall. According to our results (see Sect. 3.5), the BB emissions from these fires (which were most intensive 

within about 300-500 km west of Yakutsk, see Fig. 14f) are very strongly (by a factor of 8) are underestimated in the GFED4 

inventory (but note also that our BB BC emission estimate for September is very uncertain). By using the model run the for 

test case No. 3 (see Sect. 3.6) instead of the “base-opt” run, we made sure that disregarding the impact of BB aerosol aging 

on hygroscopicity of aerosol particles in our simulations did not have a significant effect on our analysis of BC fluxes. In 5 

particular, the overall transport efficiency evaluated under the assumption that BB aerosol particles are composed of hydro-

philic material turned out to be only slightly smaller (25.2 %) than the corresponding base case estimate (27.6 %); among the 

individual months, the transport efficiency decreased most in May (from 29 % in the base case to 24 % in the test case). As a 

caveat, it should be noted that because of inter-annual meteorological variability, our monthly estimates of the transport effi-

ciency in 2012 may not be applicable to other years. To improve the current understanding of the role of Siberian fires in the 10 

Arctic warming, the analysis suggested in this paper should be extended to a multi-annual period. 

4 Summary and Conclusions 

We have investigated the feasibility of constraining BC emissions from open biomass burning with AAOD retrievals from 

OMI satellite measurements by considering the case of the severe fires that occurred in Siberia in 2012. We developed an 

inverse modeling procedure enabling optimization of BB emissions based on MODIS FRP measurements by combining 15 

OMI AAOD retrievals and MODIS AOD data with simulations performed with the CHIMERE CTM. To limit possible er-

rors in the simulated AAOD data due to uncertainties in the absorption properties of the BB aerosol, we employed an empir-

ical parameterization predicting AAOD as a function of AOD and the ratio of BC and OC column densities. The parameteri-

zation is based on the experimental findings reported earlier (Pokhrel et al., 2016) and is fitted to data from two AERONET 

sites in Siberia; it assumes that the SSA of BB aerosol particles is a linear function of the elemental to total carbon ratio. As a 20 

result of the application of our inverse modeling procedure to the measurement and simulation data characterizing the BB 

aerosol in Siberia during the period from 1 May to 30 September, we evaluated the monthly correction factors for BB BC 

and OC emissions calculated using the FRP data and obtained top-down estimates of the total BC and OC amounts emitted 

each month in the period considered. Note that our estimation method implies that the BC emissions are evaluated as emis-

sions of elemental carbon (EC) measured using a thermo-optical technique.   25 

To validate the optimized BC and OC emissions, we used them to perform simulations that were evaluated against indepen-

dent observational data. Specifically, we first compared our simulations with the OMI AAOD and MODIS AOD data that 

had been withheld from the optimization procedure. A reasonable agreement between the observations and simulations is 

found in the spatial distributions and daily time series of the both AAOD and AOD data. In particular, the correlation coeffi-

cients for the time series of spatially averaged AAOD and AOD values were found to be 0.79 and 0.84, respectively. Our 30 

simulations were further compared with in situ measurements of EC and OC mass concentrations at the top of the 300 m 

tower at the ZOTTO site (Mikhailov et al., 2017), situated at a remote location in central Siberia. Although the simulated EC 
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concentrations turned out to be about 23 % larger than the observed ones, the bias was not found to be significant consider-

ing the uncertainties of our emission estimates and random model errors. A minor negative bias of about 7 % is found in the 

simulations of OC concentrations. It should be noted that unlike the satellite data, which cover the whole study region, the in 

situ measurements of BB aerosol may contain some local features of fire regimes and fuels, which could not be reproduced 

in our simulations. We also compared our simulation with optical measurements of BC and PM2.5 mass concentrations on-5 

board an aircraft in the framework of the YAK-AEROSIB experiments. Due to a problem of distinguishing between the sig-

nificant (on average) contributions of anthropogenic and BB sources to the measured aerosol concentrations, a direct com-

parison of the simulated and measured BC concentrations would not be sufficiently informative of the accuracy of our simu-

lations of BB aerosol. Instead, we focused on a comparison of the relationships between the BC and PM2.5 concentrations in 

the simulations and observations by using measurements of CO concentration to select the observations most representative 10 

of BB aerosol. The slopes of linear fits to the BC and PM2.5 data from the simulations and observations are found to be in 

good agreement (within 10 %). This finding further confirms that the BB aerosol composition was simulated adequately. 

We found that Siberian fires emitted 405  135 Gg of BC in May -September 2012 (at the 90% confidence level). The BB 

BC emissions were largest in July, when 139  49 Tg BC was emitted and smallest in September (20  9 Gg). Our estimates 

were compared to the corresponding estimates obtained from the GFED4 and FEI-NE databases. Our estimate of the total 15 

BB BC emissions in the study region and period is found to be a factor of 2 larger than the GFED4 estimate, but a factor of 

1.5 smaller than the FEI-NE estimate. The differences of our monthly and season-total BC emission estimates with respect to 

both GFED4 and FEI-NE data are statistically significant, although the differences with respect to the FEI-NE estimates are 

smaller than the large uncertainty range reported for the FEI-NE data.  

The results of several sensitivity tests indicate that, although our estimates can be influenced to some extent by a number of 20 

factors associated, in particular, with data selection criteria and uncertainties in the simulations of optical properties of aero-

sol in the absence of fires, the possible bias in our estimate of the total BC emission is unlikely to exceed the estimated un-

certainty of about 35 %. 

In spite of the significant differences between our BC emission estimates and the GFED data, the ratio of the total BC and 

OC emission estimates derived from the satellite data (0.046  0.014 g g-1) is found to be consistent with the ratio of the cor-25 

responding BC and OC emission totals according to the GFED data (0.054 g g-1). However, there are considerable differenc-

es between the BC/OC emission ratios obtained in this study and those calculated with the GFED4 data for the different 

months. In particular, a larger value of the ratio of BC and OC emissions in May is found in this study (0.093  0.030 g g-1) 

compared to that suggested by GFED4 (0.06 g g-1): this difference may be indicative of an underestimation of BC emissions 

from agricultural burns and grass fires in the GFED4 inventory.  30 

Finally, we estimated that about a quarter (27 %) of the huge BC amount emitted from Siberian fires in May-September 

2012 was transported across the polar circle into the Arctic. Therefore, the results of this study have a direct implication for 



48 
 

reducing major uncertainties associated with the current estimates of sources of BC in the atmosphere and snow/ice cover in 

the Arctic and for improving the general understanding of the role of BC in the Arctic climate system. 

Overall, our analysis demonstrated that the OMI AAOD retrievals combined with the MODIS AOD data can provide useful 

constraints to the BB BC emissions. It is especially noteworthy that in the case considered in this study, the entire uncertain-

ty range for the BC emission estimates constrained with the satellite measurements turned out to be a factor of 1.5 smaller 5 

than the difference between the corresponding estimates provided by the two state-of- the-art emission inventories, GFED4 

and FEI-NE. A major factor limiting the accuracy of the top-down estimates of BC emissions from Siberian fires is the un-

certainty of the AAOD simulations. To reduce this uncertainty, more data of remote sensing and in situ measurements of 

aerosol optical properties and composition (such as measurements of SSA and of the BC/OC and OC/POM ratios) in north-

ern Eurasia are needed. Another significant uncertainty source in our estimates is associated with estimation of the altitude of 10 

the aerosol layer center of mass. Accordingly, future developments of our approach should include evaluation and optimiza-

tion of the simulated vertical distribution of BB aerosol by using suitable satellite observations, such as, e.g., Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et al., 2004).   
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Table 1. Emission factors (g kg-1) for the carbonaceous components of BB aerosol. The numbers are adopted from the GFED4 inventory 
(van der Werf et al., 2017) and are based on Akagi et al. (2011) and Andreae and Merlet (2001) with subsequent updates. 

 agricultural 

burning 

grassland forest 

OC 2.3 2.62 9.6 

BC 0.75 0.37 0.5 

 

 

 5 

 

Table 2. Optimal monthly estimates of the correction factors, FBC and FOC, for the OC and BC emission rates (see Eq. 2), along with the 
ratios of optimal estimates for FBC and FOC. The values in brackets indicate the 90% confidence intervals. 

Correction fac-
tor 

May June July August September 

FBC 2.30( 0.76) 1.79 (0.61) 1.52 (0.53) 2.24 (0.79) 3.70 (1.70) 

FOC 1.51 ( 0.48) 2.27 (0.55) 2.28 (0.57) 2.73 (0.78) 2.14 (1.02) 

FBC/FOC 1.52 ( 0.49) 0.79 ( 0.26) 0.67 ( 0.21) 0.82 ( 0.27) 1.72 ( 0.64) 

 
  10 
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Table 3. Optimal estimates of the BC and OC mass (Gg) emitted from fires in the study region for individual months of 2012 and for the 
whole period considered (1 May - 30 September). The numbers given in brackets are confidence intervals reported in terms of the 90th 
percentile.  

Species May June July August September All months 

BC 96.2 ( 32.0) 71.4 (24.3)  139.0 (48.4) 78.9 (27.9) 19.8 (9.1) 405.3 
(135134.6) 

OC 1032 ( 331) 1774 (430) 390 3895 
(0.983) 

1889 (0.5438) 254 (121) 885 8844  
(220197) 

 5 

 

Table 4. Estimates of the total BC emissions (Tg) from fires in the study region over the period from 1 May to 30 September 2012 for 
several test cases of the estimation procedure.  

test case No. Brief description   Total BC emis-

sions (Gg) 

A relative difference with 

respect to the base case 

estimate, % 

1 BB aerosol photochemical age is larger than 11 h  416  +2.6 

2 the SOA yield in the simulations is increased by a 
factor of 7   

424 +4.6 

3 BB aerosol particles are assumed to be hydrophilic 
and affected by in-cloud scavenging  

431 +6.3 

24 the background AOD is reduced by 50 % 477 17.8 

35 the background AOD is enhanced by 50 % 398 1.6 

46 the background AAOD is disregarded 443 9.2 

57 the OMI "final AAOD" data product is used instead 
of the retrieval data provided for different aerosol 
layer heights 

317 21.8 

68 a weaker selection criterion (=0.5, see Eq. 8) is used 477 17.8 

79 a stricter selection criterion (=1.5, see Eq. 8) is used 388 4.1 

810 any gridded data point considered includes at least 10 
AAOD pixels 

457 13.0 

 

  10 
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Figure 1: Schematic representation of the study design. Green color is used to depict the observational data used in the analy-
sis. Red color and dotted lines illustrate the iterative procedure aimed at optimization of the BB BC and OC emissions. 
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(a) 

 

(b) 

 

 

        

 

Figure 2: Spatial distributions of the mean fire radiative energy density (MJ m-2) in May-September 2012 for (a) forest fires and 
(b) other vegetation fires. The distributions with the spatial resolution of 0.2°×0.1° have been derived from the MODIS FRP 
data and are shown for the territories covered by a Siberian domain in the CHIMERE model. Red dashed rectangles depict the 
study region and short purple dashes indicate a supplementary sub-region discussed in Sect. 3.1. Pink asterisks indicate are the 
locations of the ZOTTO site and two AERONET sites, Tomsk-22 (T22), and Yakutsk (Yak.)  
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Figure 3: Estimates of the total fire radiative energy (PJ) released from forest and other vegetation fires in the study region 
(see Fig. 2) in May-September 2012. The estimates have been obtained in this study from the MODIS FRP measurements as 
explained in Sect. 3.2. 
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Figure 4: The ratio of AAOD at 388 nm and AOD at 550 nm as a function of the ratio of elemental to total carbon 
in BB aerosol. Both ratios (depicted by red crosses) have been derived from observations at the Tomsk-22 and Ya-
kutsk AERONET sites. A linear regression fitted with the ODR method and 1-sigma (68.3 %) confidence intervals 
of the fit are shown by solid and dashed blue lines, respectively. The best fit equation is given at the top of the fig-
ure. 
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   (a) 

 

   (b) 

 

 

   (c)  

 

   (d) 
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    (e) 

 

 

    

    (f) 

 

Figure 5: Spatial distributions of the mean values of AAOD at 388 nm (a, c, e) and AOD at 550 nm (b, d, f) in the period from 
1 May to 30 September 2012 according to (a, b) the OMI and MODIS observations, respectively, and simulations performed with 
the optimized BB emissions (c, d) and without them BB emissions (e, f). 
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Figure 6: Time series of daily AAOD (a) and AOD (b) values averaged over the study region according to the OMI AAOD and 
MODIS AOD observations and simulations ("base-opt" and "base-ini) performed with the optimized and initial-guess BB BC 
and OC emissions,  as well as ("bgr") and without fire emissions. Note that whenever a sufficient number of the observational 
data points is available (see Sect. 4.2), the simulations have been averaged over the same grid cells as the observations; otherwise, 
the simulated AAOD and AOD values have been averaged over the whole study region. The numbers given in the figure legends 
report the mean AAOD and AOD values obtained by averaging over the observational data points and their simulated matchups 
shown in the figure as well as the values of the correlation coefficient.  
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Figure 7: The relationship between AAOD and AOD values according to (a) the satellite and AERONET data and (b) correspond-
ing simulated data for the from the “base-opt” scenariomodel run. In the case of the satellite data, each data point represents a 
value of AAOD or AOD for a given cell of the model grid. The AERONET data are described in Sect. 2.4; the corresponding mod-
eled data have been extracted for grid cells and days matching the AERONET observations. The figure legends report the equa-
tions of a linear regression without intercept, the mean values of the AAOD and AOD for the different datasets, and the values of 
the correlation coefficient for each set.      
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Figure 8: Time series of the EC and OC mass concentrations (µg m-3) measured at ZOTTO in comparison with their simulated 
matchups forom the “base-opt”, “base-ini” and “bgr” scenariossimulations. Values of several statistical characteristics are re-
ported in the figure legends; the confidence intervals for the biases are evaluated in terms of the 90th percentile. The EC and OC 
concentrations from the “bgr” simulation are plotted using the corresponding axes on the right-hand side of the panels.    
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Figure 9: CO mixing ratios (ppb) derived from the measurements that were made in the framework of the YAK-AEROSIB expe-
riment on 31 July and 1 August 2012 (a) in comparison with corresponding simulated values from the “base-opt” CHIMERE run 
for the “base” scenario (b). The mixing ratios are overlaid on the CHIMERE grid: their values have been calculated by averaging 
the original measurement data and their simulated matchups over the region covered by each grid cell that was intersected by the 
aircraft trajectory. 
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Figure 10: Relationships between BB BC and PM2.5 concentrations obtained from the YAK-AEROSIB observations and from the 
simulations performed with the optimized BC and OC emissions. The relationships have been obtained by selecting PM2.5 and BC 
concentrations matching (in space and time) the measured CO mixing ratios that exceed the 90th percentile (a) or 80th percentile 
(b) of the observed distribution of the CO mixing ratios. The observational data points shown in plot (a) are marked by purple 
dots in plot (b). Purple dots depicted in the panel (b) represent the observational data shown in the panel (a). The figure legends 
give the equations for a simple linear regression without an intercept. The shaded areas indicate the 90th percentile confidence 
intervals for the linear regression lines fitted to the measurement data.   
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                                                (a) 

                                                (b) 

 

                                                (c) 

 

Figure 11: Gridded estimates of the BB BC emission totals (g m-2) obtained in this study (a) and calculated using GFED4 (b) and 
FEI-NE (c) data for the period from 1 May to 30 September 2012.   10 
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Figure 12: BC amounts (Gg) emitted from fires in the study region in May-September 2012: the estimates constrained by sa-
tellite AAOD and AOD satellite observations are presented in comparison with to corresponding estimates calculated with the 
GFED4.1s and FEI-NE data. The error bar in the positive direction for the FEI-NE estimate is not shown to improve reada-
bility of the figure.    
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Figure 13: (a) OC amounts (Tg) emitted in the study region in May-September 2012 according to this study and the GFED4 data 

along with (b) the corresponding estimates of the BC/OC emission ratios (g g-1).    
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   (a) 

 

   (b) 

 

   (c) 

 

   (d) 

 

    (e) 

 
 

    (f) 

 

Figure 14: Spatial distributions of the relative contribution of both grassland and agricultural (“grass”) fires to the BB BC emis-
sions integrated over a monthly period (a,c,d) along with spatial distributions of the corresponding BB BC emission values (b,d,f) 
for May (a,b), July (c,d), and September (e,f), 2012. The distributions were obtained using Eq. (2) and the optimal estimates of the 
correction factors, FBC. 5 
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Figure 15: Histograms of the BB aerosol photochemical ages estimated in accordance with Eq. (1) for the (a) satellite and (b) 
AERONET data selected for this study. Note that very minor fractions of the data points, which correspond to the age exceeding 
60 h and 56 h in the cases of satellite and AERONET data, respectively, are not represented in the histograms for the sake of their 
better readability.     
 
 
 
 
 5 
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Figure 16: (a) The estimates of the BC mass (Gg) transported from the study region across the polar circle into the Arctic along 
with (b) the corresponding estimates of the BC transport efficiency (see Sect. 3.7).  
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Supplement ofto  

Estimation of black carbon emissions from Siberian fires using satellite observations of absorp-

tion and extinction optical depths   

Igor B. Konovalov et al.  

Correspondence to: Igor B. Konovalov (konov@appl.sci-nnov.ru) 5 

HereS1. Sensitivity analysis of the empirical AAOD parameterization 

In this supplementary section, we report several supplementary tests that were designed to evaluate the sensitivity of the em-

pirical AAOD parameterization (see Eq. 4) discussed in Sect. 2.2.3 with respect to possible biases in the simulated AAOD 

and AOD data for the "bgr" scenario (see Eq. 5). The different test cases involved different AAODb and AODb values that 

were modified by applying to them the constant scaling factors, s1 and s2, respectively.   10 

First, we considered the case where the both s1 and s2 were equal zero. That is, an impact of the "background" aerosol on the 

columnar SSA values was entirely disregarded. This case is analogous to one addressed in Konovalov et al. (2017a), except 

that the data selection criteria were different (see Sect. 2.2.3). The estimate of 1 obtained in this case (see Fig. S1) is 15 % 

lower than that for the base case (see Fig. 4). The difference can be explained by the uncertainty at the 90th percentile confi-

dence level. Using the parameterization presented in Fig. S1 for estimation of BB BC emission estimation procedure would 15 

accordingly result in about 15 % larger top-down estimates of BC emissions than those reported in Sect. 3.5. 

Figure S1: The AAOD/AOD ratio as a function of the EC/(EC+OC) ratio. Both ratios shown by red crosses have been derived 
from the observations at the AERONET sites as explained in Sect. 2.2.3, except that the AAODb and AODb values involved in 
Eq. (5) were zeroed. A linear regression fitted with the ODR method and its 68.3 % (1-sigma) confidence intervals are shown by 
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solid and dashed blue lines, respectively.  

In the second test, s1 was equal to 0.5 or 1.5 (AAODb was increased or decreased by 50 %), while s2 was equal to 1.0. The 

results indicate (see Fig. S2) that the parameterization is quite insensitive to the large changes in the background AAOD val-

ues. Although we cannot estimate possible biases in AAODb, the fact that the decrease of the AAODb values decreases the 

uncertainty of both 1 and 2 may be regarded as evidence that AAODb is biased positively.   

Finally, in the third test, the AAODb values were kept constant (s1 was equal 1.0) but the AODb values were increased or 5 

decreased by 50 % (s2 was set to be 0.5 or 1.5). The decrease of AODb results in a rather small decrease of 1 (by 8 %), but 

the increase of AODb leads to a substantial increase (by 20 %) of the same coefficient. Therefore, if AODb iswere strongly 

underestimated, the AAOD/AOD ratio maywould also be considerably underestimated in our simulations, while the BB BC 

emissions obtained in our analysis maywould be accordingly overestimated. However, although we do not have any informa-

tion about probable biases in AODb at the AERONET sites considered in this study, there is evidence (see Sect. 3.6) that 10 

AODb is actually overestimated by about 40 % on average for the whole study region. Therefore, the underestimation of 

AAOD/AOD ratio by the parameterization presented used in our analysis (see Fig. 4) is possible but not likely.  

             (a) 

 

            (b) 

 

Figure S2: The same as in Fig. S1, but with the original AODb values and with the AAODb values (see Eq. (5)) that were (a) de-
creased by a factor 0.5 and (b) increased by a factor of 1.5.  

 

       (a)          (b) 
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Figure S3: The same as in Figs. S1 and S2, but with the original AAODb values and with the AODb values that were (a) decreased 
by a factor 0.5 and (b) increased by a factor of 1.5. 
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S2. The effect of the observation and model errors on the top-down BC emission estimates   

Here we briefly analyze an impact of the observation and model errors on our top-down BC emission. Let us Vo be the ob-

served AAOD value in an arbitrary grid cell and day of a given month. We assume that Vo depend linearly on the BB BC 

emissions, E, as follows:
 
 

ob
j

jjoV VES                 (S1)   5 

where S is a vector describing the sensitivities of AAOD to the BB BC emissions, Vb is the corresponding background 

AAOD value, and o is an observational error. Note that the components of the vector E are the BC emissions in different 

grid cells of the study region and different days of a given month. We further can assume similar relationships between the 

simulated AAOD and the corresponding emission fields: 

sb
j

BC
jjmV VFeS               (S2) 10 

where e is the BB BC emission field ( in a general case, different from E) specified in the model, FBC is the emission correc-

tion factor, and s is a model error. For simplicity, we assume that S and Vb represent exact values of the sensitivities and of 

the background part of AAOD (otherwise, the corresponding errors could be represented by s). We assume also that the 

modeled AOD values involved into our simulations of AAOD have already been optimized. 

By requiring (in accordance to Eq. 7) that the mean values of Vo and Vs are approximately equal and using Eqs. (S1) and 15 

(S2), we obtain the following estimates for the FBC: 
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where angular brackets denote averaging over values available (in different grid cells and days) for a given month, Nv is the 

total number of the available AAOD or AOD data points, Ne is the product of the total numbers of days and grid cells in the 

month and region considered, and Ŝ specifies the cumulative contribution of the BB BC emissions in a given grid cell / day 20 

to AAOD values throughout the study region and a month considered: 

  
i
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,             (S4) 

where i is the index of a grid cell / day.  Similarly, we can obtain an estimate for the total BC emissions, Êtot, and to evaluate 

the relative error, e, of Êtot: 
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where Etot is the true (unknown) value of the total BB BC emissions. 

We can further transform Eq. (S6) as follows: 
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 where Ŝ, E, and e denote the deviations from the corresponding mean values. It is reasonable to expect that because the 5 

sensitivity of the AAOD values to BC emissions is mostly determined by transport processes independent of the emissions, 

the co-variances <ŜE> and < Ŝe>  should approach zero if the number of the data is sufficiently large and they are suffi-

ciently representative of an entire region and a period considered. Then, if both the observations and simulations of AAOD 

are unbiased (that is, <o> and <s> are negligible), the estimation error approaches zero. In other words, the above analysis 

indicates that given an unlimited amount of the unbiased observational and simulated data, our optimization procedure based 10 

on Eq. (7) is expected to yield an unbiased estimate of the total BC emissions.   

In the real situation considered in this study, the amount of the data is limited, and thus our estimate is likely to be affected 

by uncertainties. We also cannot exclude that the observations and simulations are affected by some biases. However, we 

expect that the resulting uncertainty associated with the random observation and model errors is included in the confidence 

intervals evaluated by means of a bootstrapping procedure (see Sect. 2.2.4). Possible biases in the simulated and observa-15 

tional data and their effect on our BC emission estimates are discussed in Sect. 3.6.    

Note, finally, that if some emission sources are systematically underrepresented in the available observation data, the co-

variances < ŜE > and <Ŝe> will likely be different from zero, and the emission estimate will be affected by the aggregation 

error.  However, unlike the case of a scarce ground-based monitoring network discussed, e.g., by Kaminski et al. (2001), the 

satellite data cover our study region quasi-uniformly. Moreover, at least a part of this potential error is accounted for in our 20 

bootstrapping procedure described in Sect. 2.2.4. Therefore, we believe that the aggregation error does not exceed the confi-

dence intervals for our estimates. Nonetheless, we cannot provide a reliable quantitative estimate for the aggregation error in 

our case. The likely presence of the aggregation error emphasizes the importance of validation of our estimates by using in-

dependent observations (see Sect. 3.3 and 3.4).             

S3. Estimation of the correction factors for BB BC and OC emissions in a selected sub-region 25 

In this section, we present the optimal estimates of the correction factors, FBC and FOC, for a sub-region covering the south-

west part (50-57 N, 60-115 E) of our study region (see purple dashed rectangles in Fig. 2). Figure S4 shows our calcula-

tions of the integral fire radiative energy released from forest and other (mainly agricultural and grass) fires in this sub-
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region. Values shown in Fig. S4 can be compared with similar values calculated for the entire study region and presented in 

Fig. 3. Evidently, compared to the whole study region, the sub-region features much larger contributions (ranging from 44 % 

in June to 88 % in July) of agricultural and grass fires to FRP in any month considered. Furthermore, agricultural and grass 

fires provide the predominant contribution to FRP (exceeding 70 %) in each month except June.  

 

Figure S4: The same as in Fig. 3 but for the sub-region covering the south-west part (50-57N, 60-115 E) of the study region. 

 We employed the same estimation procedure as that described in Sect. 2.2.4, except that the satellite AAOD and AOD data 5 

outside of the selected sub-region were disregarded. Note that the FBC and FOC estimates obtained in this way are, to some 

extent, affected by BB aerosol that was emitted outside of the given sub-region but transported into it. Nonetheless, for the 

purposes of the analysis discussed here, it is sufficient that the selected observations are more sensitive to the emissions in 

the considered sub-region than the disregarded observations made outside it. 

The correction factor estimates derived from the observations corresponding to the considered sub-region are reported in 10 

Table S1 and are discussed in Sect. 3.1. Note that the estimates for September could not be obtained, as there were no satel-

lite data satisfying the common criteria specified in Sect. 2.2.4 and corresponding to the given sub-region.  

 Table S1. The same as in Table 2 but for the selected sub-region (50-57N, 60-115 E) of the study region.  

Correction fac-
tor 

May June July August September 

FBC 3.32 ( 1.31) 2.15 (0.72) 1.94 (0.68) 5.21 (2.27) NA 

FOC 2.87 ( 0.95) 2.16 (0.55) 2.66 (0.65) 3.77 (1.34) NA 

FBC/FOC 1.16 ( 0.37) 0.99 ( 0.32) 0. 73 ( 0.23) 1.38 ( 0.50) NA 
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