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Abstract. The hydroxyl radical (OH) is the main tropospheric oxidant and the main sink for atmospheric methane. The 

global abundance of OH has been monitored for the past decades using atmospheric methyl chloroform (CH3CCl3) as a 

proxy. This method is becoming ineffective as atmospheric CH3CCl3 concentrations decline. Here we propose that satellite 

observations of atmospheric methane in the shortwave infrared (SWIR) and thermal infrared (TIR) can provide an alternative 15 

method for monitoring global OH concentrations. The premise is that the atmospheric signature of the methane sink from 

oxidation by OH is distinct from that of methane emissions. We evaluate this method in an observing system simulation 

experiment (OSSE) framework using synthetic SWIR and TIR satellite observations representative of the TROPOMI and 

CrIS instruments, respectively. The synthetic observations are interpreted with a Bayesian inverse analysis optimizing both 

gridded methane emissions and global OH concentrations. The optimization is done analytically to provide complete error 20 

accounting, including error correlations between posterior emissions and OH concentrations. The potential bias caused by 

prior errors in the 3-D seasonal OH distribution is examined using OH fields from 12 different models in the ACCMIP 

archive. We find that the satellite observations of methane have the potential to constrain the global tropospheric OH 

concentration with a precision better than 1% and an accuracy of about 3% for SWIR and 7% for TIR. The inversion can 

successfully separate the effects of perturbations to methane emissions and to OH concentrations. Interhemispheric 25 

differences in OH concentrations can also be successfully retrieved. Error estimates may be overoptimistic because we 

assume in this OSSE that errors are strictly random and have no systematic component. The availability of TROPOMI and 

CrIS data will soon provide an opportunity to test the method with actual observations. 
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1 Introduction 

The hydroxyl radical (OH) is the main oxidant in the troposphere, responsible for the oxidation of a wide range of gases 

including nitrogen oxides (NOx ≡ NO + NO2), sulfur dioxide (SO2), carbon monoxide (CO), methane, and other volatile 

organic compounds (VOCs). Subsequent reactions can lead to the formation of tropospheric ozone, strong acids, and organic 5 

aerosol. Monitoring of global tropospheric OH concentrations and its trends is a central problem in atmospheric chemistry. 

Here we show that satellite observations of atmospheric methane can provide a powerful vehicle for this purpose.  

 

The chemistry controlling tropospheric OH concentrations is complex (Levy, 1971;Logan et al., 1981). The primary source 

is photolysis of ozone in the presence of water vapor. OH then reacts with CO and VOCs on a time scale of ~1 s to produce 10 

peroxy radicals, which can be converted back to OH by reaction with NO. This cycling of radicals is terminated by 

conversion to non-radical forms, principally peroxides. The dependences of OH concentrations on natural and anthropogenic 

emissions of NOx, CO, and VOCs, as well as on UV radiation and humidity, are complicated and poorly established (Holmes 

et al., 2013;Murray et al., 2013;Monks et al., 2015).  

 15 

OH concentrations are highly variable spatially and temporally, making it nearly impossible to infer global mean OH 

concentration from sparse direct measurements, which are difficult by themselves because of the low concentrations (~106 

molecules cm-3). Singh (1977) and Lovelock (1977) first pointed out the possibility of estimating the global mean OH 

concentration through atmospheric measurements of methyl chloroform (CH3CCl3), an industrial solvent. The industrial 

production of methyl chloroform is well known, and essentially all of this production is eventually released to the 20 

atmosphere, where it mixes globally in the troposphere and is removed by oxidation by OH. From measurements of 

atmospheric methyl chloroform and knowledge of the source, one deduces by mass balance a methyl chloroform lifetime 

against oxidation by tropospheric OH of 6.3 ± 0.4 years (Prather et al., 2012), providing a proxy for the global mean 

tropospheric OH concentration. The method became more accurate after the global ban on methyl chloroform production 

under the Montreal Protocol in the 1990s, as the source could then be assumed close to zero (Montzka et al., 2011).  25 

Estimates of annual and decadal OH variability can be obtained from the long-term methyl chloroform record (Prinn et al., 

2001;Krol and Lelieveld, 2003;Bousquet et al., 2005;Montzka et al., 2011). Compared to estimates from the 

methylchloroform proxy, global tropospheric chemistry models tend to predict higher OH concentrations (Voulgarakis et al., 

2013;Naik et al., 2013), smaller inter-annual variability (Holmes et al., 2013;Murray et al., 2013), and larger long-term 

trends (Holmes et al., 2013). 30 
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Understanding the factors controlling OH concentrations and its trends is particularly important for interpretation of methane 

trends. Methane is the second most important anthropogenic greenhouse gas after CO2 and contributes to about a quarter of 

the climate warming from pre-industrial times to present (Myhre et al., 2013). About 90% of atmospheric methane is lost 

through oxidation by tropospheric OH (Kirschke et al., 2013). Atmospheric methane rose by 1-2% a-1 in the 1970s and 

1980s, stopped growing in the late 1990s, and resumed a steady growth of 0.3-0.7% a-1 since 2006 (Rigby et al., 5 

2008;Dlugokencky et al., 2009;Hartmann et al., 2013). Interpretation of these trends has generally focused on changing 

emissions (Rice et al., 2016;Hausmann et al., 2016;Nisbet et al., 2016;Schaefer et al., 2016), but recent studies have 

suggested that the growth over the past decade could be contributed by a decline in global OH concentration (Turner et al., 

2017;Rigby et al., 2017). On the other hand, the trend in atmospheric CO over the past decade suggests an increase in global 

OH concentrations (Gaubert et al., 2017).   10 

 

Inferring OH trends from methyl chloroform will become more difficult in the future as concentrations approach the 

detection limit (Liang et al., 2017) and possible evasion from the ocean may complicate interpretation (Wennberg et al., 

2004). Finding an alternative proxy for tropospheric OH is viewed as a pressing problem in the atmospheric chemistry 

community (Lelieveld et al., 2006). Huang and Prinn (2002) pointed out that the major limitation to 15 

hydrochlorofluorocarbons and hydrofluorocarbons as alternative proxies is the lack of accurate estimates of global 

emissions. Liang et al. (2017) proposed to use the inter-hemispheric gradients of a suite of these compounds to jointly 

retrieve global emissions and tropospheric OH, but their approach may be limited by the sparsity of the surface observation 

network.   

 20 

Here we propose that satellite methane observations could provide a reliable proxy for global tropospheric OH, using inverse 

analyses that optimize OH concentrations from the satellite data alongside with methane emission rates. Satellite measures 

methane in the shortwave infrared (SWIR, at 1.65 µm and 2.3 µm) by solar backscatter, and in the thermal infrared (TIR, 

around 7.6 µm) by terrestrial emission (Jacob et al., 2016). SWIR measurements are sensitive to the full column of methane 

but are mainly restricted to land, while TIR measurements are most sensitive to the middle/upper troposphere and operate 25 

over both land and ocean (Worden et al., 2015). A number of studies have used SWIR observations from the SCIAMACHY 

and GOSAT satellite instruments to infer methane emissions through inverse analyses. Most of these studies have assumed 

OH to be known (Bergamaschi et al., 2009;Spahni et al., 2011;Bergamaschi et al., 2013;Fraser et al., 2013;Monteil et al., 

2013;Fraser et al., 2014;Houweling et al., 2014;Alexe et al., 2015;Pandey et al., 2015;Turner et al., 2015), while a few have 

optimized methane emissions together with OH concentrations using methyl chloroform measurements (Cressot et al., 30 

2014;Cressot et al., 2016). Maasakkers et al. (2018) used six years of GOSAT data (2010-2015) to constrain methane 

emissions and their trends together with global OH trends.  
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TIR observations are of marginal value for inversion of methane emissions because they are insensitive to the boundary layer 

(Wecht et al., 2012) but they could provide complementary information for constraining OH. The methane sink from 

oxidation by OH has a distinct atmospheric signature peaking in the tropical troposphere, distributed zonally, and shifting 

seasonally with the UV flux (Figure 1). The expected availability in the coming years of new high-density satellite data from 

TROPOMI in the SWIR (Hu et al., 2018) and CrIS in the TIR (Gambacorta et al., 2016) motivates the assessment of the 5 

potential of these data to provide a continuous means for monitoring global tropospheric OH concentrations. 

2 Observing System Simulation Experiment 

We conduct an observing system simulation experiment (OSSE) to examine the feasibility of inferring global tropospheric 

OH concentrations by inversion of satellite observations of atmospheric methane, focusing on the potential of TROPOMI 

and CrIS as representative of SWIR and TIR observations respectively. The OSSE approach allows us to examine the ability 10 

of the observations to separately constrain methane emissions and OH, and to investigate the effects of errors in inversion 

parameters.  

 

Figure 2 describes the structure of the OSSE. We use a chemical transport model (GEOS-Chem CTM) (Maasakkers et al., 

2018) to generate a “true” global 3-D time-dependent distribution of methane concentrations, given a “true” state defined by 15 

known 2-D monthly methane emissions and 3-D monthly OH concentrations. The “true” methane concentration field is 

sampled following the specifications of TROPOMI and CrIS to generate synthetic observations. We then use these synthetic 

observations in an inverse analysis system, with an independent CTM simulation and deliberately incorrect prior estimates of 

emissions and OH concentrations, to assess the capability of the observing system to retrieve the “true” state. See Brasseur 

and Jacob (2017) for further discussion of the OSSE approach. 20 

 

The mean tropospheric OH concentration is often defined in terms of the lifetime of a long-lived gas (Prather and 

Spivakovsky, 1990), and in our case the natural metric is the lifetime of a well-mixed tropospheric methane tracer against 

oxidation by tropospheric OH: 

τ"#$
%# =

𝑛(	𝑑𝑣,-./.0/12-2

𝑘(𝑇) OH 𝑛(	𝑑𝑣,-./.0/12-2

1  25 

where 𝑛( is air number density, 𝑣 is volume, and 𝑘 𝑇 = 2.45×10@ABe@ADDE/G cm3  molec-1 s-1 is the temperature-dependent 

oxidation rate constant (Burkholder et al., 2015). We will also examine interhemispheric differences in OH by integrating 

over the northern and southern hemisphere separately (τ"#$
%#,I# and τ"#$

%#,J#). An advantage of using equation (1) as metric for 

OH is that it is independent of the atmospheric distribution of methane. Note that the integration in the numerator of equation 

(1) is over the troposphere, therefore τ"#$
%#  defined in equation (1) is shorter than the lifetime of total atmospheric methane 30 

against oxidation by tropospheric OH (e.g., Prather et al., 2012). 
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2.1 Model simulation 

We use the GEOS-Chem CTM to simulate atmospheric methane concentrations in the “true” atmosphere and to serve as the 

forward model for the inversion, with different meteorological fields and OH distributions to reduce the “fraternal twin” 

problem (Table 1). GEOS-Chem solves the continuity equation for atmospheric methane as  

∂𝑛
∂t
= −∇ ∙ 𝑛𝐮 + 𝐸 − 𝑘 𝑇 𝑛 OH − minor	sinks 2  5 

where n is the methane number density, u is the wind vector, E is the emission field, and k(T) is the rate constant for reaction 

with OH. Minor sinks include other tropospheric sinks (reaction with the Cl atom and soil uptake) and stratospheric sinks 

specified as 2-D loss rate constants. The transport term −∇ ∙ 𝑛𝐮  includes not only advection by grid-resolved winds but 

also parameterized subgrid convection and boundary layer mixing. The methane simulation with GEOS-Chem v11 is as 

described by Wecht et al. (2014).  10 

 

The GEOS-Chem simulation is conducted on a 4o×5o horizontal grid and 47 vertical layers (~ 30 layers in the troposphere). 

The simulation is for year 2015 with a half-year spin-up starting from June 2014 to establish methane gradients driven by 

synoptic-scale transport (Turner et al., 2015). We vary the state vector elements (i.e., gridded methane emission rates and 

global tropospheric methane OH lifetime) between the “true” simulation and the inversion, to assess the ability of the 15 

inversion to retrieve the “true” values given synthetic observations. To include the effect of errors in model parameters that 

are not optimized in the inversion, we also vary in the inversion the model meteorological fields (for the same 

meteorological year) and the monthly 3-D distribution of OH. It should be noted that in this setup the magnitude (global 

mean concentration expressed as global tropospheric methane lifetime) and the distribution (seasonal and spatial variations) 

of the OH field are decoupled and only the former is optimized.  20 

 

Table 1 summarizes the OSSE conditions. The “true” emissions on the 4ox5o grid are the posterior values from the inversion 

of GOSAT data by Maasakkers et al. (2018). The prior emissions include anthropogenic emissions from EDGAR v4.3.2 

global emission inventory (European Commission, 2017) replaced with Sheng et al. (2017) in Mexico and Canada for the oil 

and gas sector and with Maasakkers et al. (2016) in the US, wetland emissions from WetCHARTs v1.0 (Bloom et al. 2017), 25 

and other sources (biomass burning, termite, and geological and geothermal seeps). The “true” global OH concentration as 

expressed by τ"#$
%#  is 8.6 years with spatial/seasonal OH distribution from GEOS-Chem v5, while the prior estimate is 7.5 

years with distribution from GEOS-Chem v11. These OH distributions are generated from GEOS-Chem full chemistry 

simulations with specified methane fields based on observations, and thus are independent of the prior emissions used in the 

inversion. The OH distributions in GEOS-Chem v5 and v11 are significantly different due to many updates between these 30 

versions for lightning, isoprene chemistry, halogen chemistry, and emissions (Hu et al., 2017). In Section 4, we will consider 

even larger differences in OH distributions using the ACCMIP model ensemble (Naik et al., 2013). 
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GEOS-Chem simulations can be conducted with either of two different meteorological data sets produced by the NASA 

Global Modeling and Assimilation Office (GMAO): the operational Goddard Earth Observing System Forward Processing 

(GEOS-FP) product (Lucchesi, 2017) and the Modern-Era Retrospective analysis for Research and Applications, Version 2 

(MERRA-2) (Gelaro et al., 2017). Here we use the GEOS-FP data for 2015 to produce the “true” methane concentrations, 

and the MERRA-2 data also for 2015 in the forward model for the inversion. Although GEOS-FP and MERRA-2 have 5 

commonalities, they differ in grid resolution (cubed-sphere c720 for GEOS-FP and c360 for MERRA-2), model physics (in 

particular convection), and level of data assimilation. This allows us to introduce some model transport errors in the OSSE. 

The root-mean-squared difference in daily methane tropospheric column mixing ratios between the two simulations driven 

by GEOS-FP and MERRA-2 (with identical emissions and OH fields) is ~ 2 ppbv. Comparison of monthly mean columns 

between the two simulations shows patterns of differences on regional and hemispheric scales (Figure 3), introducing a 10 

systematic component of inversion error.  

  

2.2 Synthetic observations 

Synthetic observations sample the “true” methane fields with instrument noise added (Figure 2). For SWIR, the sampling is 

at local time 13:30 over land; and for TIR, at both 13:30 and 1:30, and over land and ocean. The retrieval success rate (ratio 15 

between the number of successful retrievals and the number of attempted retrievals) is taken to be 3% for SWIR (Hu et al., 

2016) and 60% for TIR (Xiong et al., 2008) because SWIR observations require cloud-free pixels whereas TIR has tolerance 

for fractional cloud cover. The retrievals are for the dry air column mixing ratio X [ppb] after applying typical averaging 

kernels to describe vertical sensitivity (Figure 4). Gaussian random noise is added to the individual retrievals to simulate the 

instrument error, with a standard deviation of 0.6% for SWIR TROPOMI (Butz et al., 2012) and 2% for TIR CrIS 20 

(Gambacorta et al., 2016). To account for model biases in simulation of stratospheric methane (Patra et al., 2011) and 

following the recommendation of Saad et al. (2016), we replace the concentrations above 200 hPa by the 2-D seasonal 

climatology from ACE-FTS satellite observations (Koo et al., 2017), both in the synthetic observations and in the forward 

model.  

 25 

The synthetic observations are sampled on the GEOS-Chem 4o×5o grid for the purpose of the inversion. This means that 

successful retrievals from individual pixels are averaged over 4o×5o grid cells. We assume that the noise is random and thus 

reduced by the square root of the number of successful retrievals (Ni,t) within grid cell i at time t. The noise will be greater if 

there are systematic errors in the retrievals. Ni,t is determined as the ratio between the grid cell area (𝐴[) and the pixel area 

(a), weighted by the local cloud-free fraction (1 − 𝑓[,,) taken from the “true” GEOS-FP meteorological fields.: 30 

𝑁[,, = 𝑐×
𝐴[× 1 − 𝑓[,,

𝑎
3  
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The global scaling factor c enforces the designed retrieval success rate (3% for SWIR and 60% for TIR). For 𝑎, we use the 

nadir resolution of SWIR TROPOMI (7×7 km2) and TIR CrIS (14×14 km2). The bracket [] represent the rounding function. 

 

2.3 Inversion 

We use the synthetic observations (assembled in an observation vector y) together with the prior estimates (𝐱b) and error 5 

covariance matrices for the prior (𝐒b) and observations (𝐒%) (Figure 2) to find the analytic solution to the inverse problem. 

The state vector (x) that we seek to optimize consists of annual methane emission rates on a 4o×5o grid over land (excluding 

Antarctica) (1009 elements) plus either 1 or 2 elements representing the global or hemispheric methane inverse lifetimes 

(loss frequency).  

 10 

The inverse problem presented here is not strictly linear because the loss rate depends on the methane concentration. 

However, a quasi-linearity can be assumed, as the range of variability of methane concentrations is sufficiently small. 

GEOS-Chem is therefore described for the purpose of the inversion by its Jacobian matrix K = ∂y/∂x, which relates x to y 

through y = 𝐊𝐱 + 𝐜 (𝐜 is an initialization constant). We compute explicitly this Jacobian matrix by perturbing the individual 

terms of x and calculating the resulting changes in y with GEOS-Chem. 15 

 

The observation error covariance matrix 𝐒% is specified as a diagonal matrix summing the instrument and forward model 

error variances. The instrument error is computed as described in Section 2.2. The forward model error variance is derived 

with the residual error method (Heald et al., 2004). We assume no model transport error correlations on the 4o×5o grid. The 

prior error covariance matrix SA is also specified as a diagonal matrix, assuming 50% error standard deviation for gridded 20 

emission rates as in Maasakkers et al. (2018), and 10% error standard deviation for the methane inverse lifetime (Naik et al., 

2013). This assumes no spatial error correlation in the prior emissions on the 4o×5o grid, which is likely adequate for 

anthropogenic emissions because of the fine spatial variability of different source types (Maasakkers et al., 2016) but may 

not be adequate for wetlands emissions (Bloom et al., 2017). Prior emission errors can only be roughly characterized in any 

case.  25 

 

 

The Bayesian cost function for the inverse problem (Brasseur and Jacob, 2017) is  

𝐽 𝐱 = 𝐱 − 𝐱b h𝐒b@A 𝐱 − 𝐱b + γ 𝐲 − 𝐊𝐱 h𝐒%@A 𝐲 − 𝐊𝐱 4  

where 𝛾 is an adjustable regularization parameter to prevent overfitting to the observations (see below). Analytic solution to 30 

the J(x) minimization problem (dJ/dx = 0) yields the posterior estimate 𝐱:  

𝐱 = 𝐱b + 𝐆 𝐲 − 𝐊𝐱b 5  

where G is the gain matrix given by 
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𝐆 = γ𝐊h𝐒%@A𝐊 + 𝐒b@A @Aγ𝐊h𝐒%@A 6  

 

The solution also provides a closed form of the posterior error covariance matrix (𝐒): 

𝐒 = γ𝐊h𝐒%@A𝐊 + 𝐒b@A @A	 7  

 5 

The diagonal elements of 𝐒 represents the error variances of the posterior estimates 𝐱.  

 

The need for a regularization parameter γ in equation (4) is because of uncertainty in the specifications of  𝐒% and SA, and 

notably the assumption that these matrices are diagonal. Here we determine based on the L-curve plot (Hansen, 2000) that γ 

should be in the range of 0.01-0.1 (left panel of Figure 5). This range of values also achieves the best agreement of the 10 

inversion with the “true” emissions as evaluated with the root mean square error (RMSE) (right panel of Figure 5). We use 

γ = 0.05 in the subsequent analysis. The small γ value mainly results from neglecting correlations in the model transport 

errors; a sensitivity test in which both prior and “true” simulations are driven by MERRA-2 meteorology shows best 

performance with γ = 1 for the metrics of Figure 5. 

 15 

3 Joint Optimization of Global 𝛕𝐂𝐇𝟒
𝐎𝐇 and Methane Emission Rates 

Figure 6 shows the ability of the three different satellite observing systems considered here (SWIR, TIR, and SWIR+TIR) to 

jointly constrain gridded emission rates and τ"#$
%# . The ability to constrain the spatial distribution of emissions is measured by 

the RMSE on the 4o×5o grid. Although all three satellite observing systems retrieve global total methane emissions within 

5% of the “true” value, the inversions with SWIR observations are able to resolve the distribution of methane emissions (low 20 

RMSE) while the one with only TIR observations is not (high RMSE). This is consistent with the low sensitivity of TIR to 

the lower troposphere (Figure 4), where most of the information on spatially resolved emissions is contained. On the other 

hand, both SWIR and TIR are able to retrieve τ"#$
%#  within 3% of the “true” value.  

 

Analysis of the posterior error covariance matrix (S) shows that the error standard deviations σv on the posterior estimate of 25 

τ"#$
%#  are 0.75%, 0.46%, and 0.39% for SWIR, TIR, and SWIR+TIR satellite observing systems, respectively, for a one-year 

inversion (Table 2). S tends to be overoptimistic as a measure of posterior error because it assumes no systematic error in 

model parameters affecting the accuracy of the inversion (Brasseur and Jacob, 2017). Below we will explore the effect of 

errors in the global OH distribution as a limitation on accuracy. 

 30 

A central question is the ability of the inversion to independently constrain τ"#$
%#  and total emissions. The error covariance 

between the two can be computed from 𝐒 (See Appendix for the method) and is visualized in Figure 7. For SWIR, the 

significant negative correlation (r = -0.78) implies aliasing between corrections to OH concentration and emissions; 
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nevertheless, the posterior error on  τ"#$
%#  is greatly decreased relative to its 10% prior value. Error correlation is less (r = -

0.47) with the TIR observing system and the error on τ"#$
%# is further decreased. TIR observations are more effective than 

SWIR for independently constraining global emissions and OH concentrations because they provide better global coverage 

(higher retrieval success rate) including over the oceans. The combined SWIR+TIR system has the lowest posterior errors 

for τ"#$
%#  even though the error correlation with global emissions (r = -0.57) is greater than that for TIR-only. 5 

 

To go further than the error correlation analysis, we used the OSSE environment to directly test whether perturbations to OH 

concentrations and global emissions can be retrieved independently. We perturbed the emission rates and/or OH 

concentrations in three additional simulations for the “true” atmosphere. In the first case we increased global emissions by 

10%, in the second case we decreased global OH concentration by 5%, and in the third case we combined both perturbations. 10 

Figure 8 shows that the posterior estimations all correctly identify the percentage changes in global total emissions and/or 

OH concentration, within 2% from the “true” changes, in all three tests. This result further demonstrates the potential for 

satellite observations of methane to independently constrain global methane emissions and OH concentrations. Among all 

three satellite observing systems, inferred OH percentage changes with SWIR+TIR observations are closest to the “true” 

changes for all three cases, consistent with the analysis of posterior error covariance matrices (Figure 7). The results shown 15 

in Figure 8 suggest that satellite observations of methane should be able to detect trends in OH separately from trends in 

methane emissions, which has important implications for the attribution of trends in methane observations (Turner et al., 

2017;Rigby et al., 2017). 

 

4 Impact of Errors in Prior OH Distributions 20 

In our method, global OH abundance is represented by a single state vector element τ"#$
%# . The seasonal and spatial 

distribution of OH is a forward model parameter that the inversion does not seek to optimize. Error in the prior OH 

distribution may therefore result in error in the posterior estimate of τ"#$
%#  that may not be fully captured by 𝐒. To test the 

impact of this uncertainty source, we use alternative “true” OH distributions from the 11 models that participated in the 

ACCMIP inter-comparison (Naik et al., 2013), replacing the OH distribution from GEOS-Chem v5. The ACCMIP archive 25 

provides present-day (the 2000s) 3-D monthly mean OH concentrations from the different models and was downloaded from 

http://badc.nerc.ac.uk/ (See Lamarque et al. (2013) for model descriptions). The ACCMIP models differ greatly in both 

global OH abundance and distribution (Figure 9). To focus on errors in OH distributions, we applied a global scaling factor 

to each model to impose a methane lifetime τ"#$
%# of 8.6 years, same as in our baseline “true” atmosphere. To avoid 

complicating influence from errors in the meteorological field, we do not vary the meteorological field (i.e. MERRA-2) 30 

between the “true” simulation and the inversion in this test of the sensitivity to the OH distribution. 
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Figure 10 shows the posterior estimation of  τ"#$
%#  resulting from the 12 different “true” OH distributions (all with the same 

“true” τ"#$
%# ). For all three satellite observing systems, the median posterior τ"#$

%#  is within 2% of the “true” τ"#$
%# . But some 

model OH distributions (CESM-CAM-superfast, GISS-E2-R, and CICERO-OsloCTM2) result in large errors when using 

TIR observations even though they do not seem anomalous in Figure 9. Further inspection indicates that the errors are due to 

large anomalies in hemispheric τ"#$
%#  ratios in boreal winter (Figure 11), when the effect of emissions and OH on atmospheric 5 

methane is most differentiated. Errors in posterior τ"#$
%# 	are smaller for SWIR only and this is because SWIR draws its 

information on emissions from regional patterns in concentrations, rather than the larger-scale patterns in TIR. We determine 

the relative accuracy due to the uncertainty in the OH distribution (σa ) as the ratio of the half interquartile range to the 

“true” τ"#$
%# . This results in σa  of 2.6%, 6.9%, and 6.0% for SWIR, TIR, and SWIR+TIR (Table 2). Our results suggest that 

satellite observing systems involving TIR measurements are likely more susceptible to errors in the OH distribution for τ"#$
%#  10 

estimations.  

 

We also applied these different “true” OH distributions to the OSSE test of Figure 8 perturbing emissions and/or OH to 

evaluate the impact of errors in OH distribution on detecting and separating changes in global τ"#$
%# and emissions. The spread 

in inferred changes in OH is almost negligible for all the observing systems considered (Figure 8), indicating that the errors 15 

resulting from imperfect OH distribution in a single-year inversion are systematic. An important implication is that these 

errors from imperfect OH distribution may not impair the ability to detect inter-annual trends in OH concentrations as long 

as the inter-annual variability in the OH distribution is relatively small.  

 

The above results suggest that we may improve the estimation of τ"#$
%#  if the inversion is able to retrieve information on the 20 

OH distribution from the satellite methane observations. For this purpose, we tried to optimize separately the mean OH 

concentrations in the northern and southern hemisphere, expressed as τ"#$
%#,I# and τ"#$

%#,J#. In general, the inversion is able to 

resolve the interhemispheric OH ratio (τ"#$
%#,I#/τ"#$

%#,J#) for the range of OH distributions from the different global models 

using both SWIR and TIR satellite observing systems (Figure 12). However, the improvement in the estimate of the global 

OH concentration τ"#$
%#  (computed as harmonic mean of τ"#$

%#,I#  and τ"#$
%#,J# ) is insignificant in most cases (not shown), 25 

indicating that errors in other factors in OH distributions (e.g., vertical and seasonal distributions) in addition to the annual 

hemispheric ratio are also important contributors to errors in τ"#$
%# . A careful design of the state vector that balances the 

resolution of OH distribution with the aliasing of OH and emissions should further improve the accuracy of the method but is 

beyond the scope of the current study. 

 30 
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5 Conclusions 

We conducted observing system simulation experiments (OSSEs) to test the feasibility of monitoring global tropospheric 

OH concentrations using satellite observations of methane. We considered short-wave infrared (SWIR) TROPOMI and 

thermal infrared (TIR) CrIS as target satellite instruments for this application, since methane retrievals from these 5 

instruments are expected to be available in the near future and will provide much improved coverage compared to current 

instruments. Through inversion of synthetic observations from these instruments sampling a “true” atmosphere, we jointly 

optimized gridded methane emission rates and the global tropospheric OH concentration (expressed as the lifetime of a well-

mixed tropospheric methane tracer against oxidation by tropospheric OH, τ"#$
%#  as given in Equation (1)). The OSSE used 

different meteorological fields for the “true” atmosphere and for the inversion, and tested the effect of errors in the prior OH 10 

distributions. 

 

Our results show that either SWIR or TIR observations can constrain τ"#$
%#  with a precision better than 1%. This is an 

optimistic estimation of precision because we assume observational noise to be random whereas it would have a systematic 

component that we cannot characterize. Nevertheless, the results show that the method has strong potential. Analysis of the 15 

posterior error covariance matrix shows that emissions and global OH concentrations can be separately retrieved because 

they have different signatures on the distribution of atmospheric methane. There is some error correlation, particularly for 

SWIR-only observations, but the posterior errors on global OH concentrations still improve considerably on the prior. 

Simulation experiments with perturbations to either global methane emissions and/or global OH concentration demonstrate 

that the method can distinguish changes in OH from changes in emissions as contributors to trends in atmospheric methane. 20 

Best performance is achieved by combining the SWIR and TIR observations. 

 

The effect of prior errors in the seasonal and spatial distributions of OH concentrations was investigated by considering 

global 3-D monthly concentrations fields from the 12 ACCMIP models (Naik et al., 2013), which show considerable inter-

model variability.  We find that these errors limit the accuracy of our method but precision is not compromised, so that inter-25 

annual OH trends can still be retrieved.  The effect of errors in the OH distribution could be addressed by optimizing this 

distribution in the state vector for the inversion, and we show that the interhemispheric OH difference at least can be 

successfully retrieved within ~ 10% of the “true” value.  

 

We conclude that satellite observations of methane are a potentially promising alternative for methyl chloroform as a proxy 30 

for global tropospheric OH concentrations. Based on our OSSE ensemble results, we estimate the precision of the method to 

be 0.75%, 0.46%, and 0.39% and accuracy 2.6%, 6.9%, and 6.0% for SWIR, TIR, and SWIR+TIR satellite observing 

systems, respectively. These estimates are probably overoptimistic because of the idealized treatment of errors in the OSSE 



12 
 

approach. The availability of TROPOMI and CrIS data will soon provide an opportunity to test the method with actual 

observations. 

 

Appendix 

The posterior error covariance matrix (𝐒) in our inversion is a 1010×1010 matrix that characterizes the error covariance 5 

structure of gridded emission rates (𝐸[) in 1009 grid cells and global methane lifetime against oxidation by tropospheric OH 

(τ"#$
%# ). We condense 𝐒 into a 2×2 matrix 𝐒𝟐, which represents the error covariance of global total emissions (𝐸G = 𝐸[x

[yA , 

where n=1009) and τ"#$
%# : 

𝐒B =
Var(𝐸G) Cov(𝐸G, τ"#$

%# )
Cov(𝐸G, τ"#$

%# ) Var(τ"#$
%# )

 

where Var(τ"#$
%# )  is directly obtained from 𝐒 , and Var 𝐸G  and Cov 𝐸G, τ"#$

%#  are computed from 𝐒  with the following 10 

formulae: 

Var 𝐸G = Var(𝐸[)
x

[yA

+ 2 Cov(𝐸[, 𝐸~)
A�[�~�x

 

Cov 𝐸G, τ"#$
%# = Cov(𝐸[, τ"#$

%# )
x

[yA

 

𝐒B can then be visualized as a bi-variate Gaussian distribution (Figure 7). 

 15 
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Table 1 OSSE conditions. 

 “True” Atmosphere Prior estimate and Parameters 

State Vector (x) 

Gridded Emission Rates a Posterior from GOSAT analysisb EDGAR v4.3.2+ WetCHARTsc 

Global OH concentration 

(τ"#$
%# ) d 

8.6 years  7.5 years 

Parameters 

OH Distribution  GEOS-Chem v5, ACCMIP e GEOS-Chem v11 

Meteorological Field f GEOS-FP  MERRA-2 

a Methane emission rates on a 4o×5o grid over land excluding Antarctica (1009 elements).  
b From Maasakkers et al. (2018). 
c The prior estimate for the inversion uses anthropogenic emissions from EDGAR v4.3.2 (European Commission, 2017) 

except in the US (Maasakkers et al., 2016) and oil/gas in Canada and Mexico (Sheng et al., 2017). WetCHARTs is from 5 

Bloom et al. (2017).   
d Expressed as the lifetime of a well-mixed tropospheric methane tracer against oxidation by tropospheric OH (equation (1)). 
e Sensitivity simulations in Section 4 use additional 11 global OH distributions from the ACCMIP ensemble (Naik et al., 

2013).  
f Meteorological fields are for 2015.   10 
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Table 2   Uncertainty in 𝛕𝐂𝐇𝟒
𝐎𝐇 	estimations with different satellite observing systems. 

Observing System SWIR TIR SWIR+TIR 

Precision (σv) 0.75% 0.46% 0.39% 

Accuracy (σ�) a 2.6% 6.9% 6.0% 
a Accuracy is derived from inversions using different OH distributions from 12 global models for the “true” atmosphere 

(Section 4). 

 5 
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Figure 1 Monthly methane loss rate from oxidation by OH in January and July 2015 computed with the GEOS-Chem 

model (Wecht et al., 2014). The top panels show the column loss rates and the bottom panels show the zonally 5 

integrated loss rates.  
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Figure 2 Observing System Simulation Experiment (OSSE) framework to test the ability of SWIR and TIR satellite 

observations of atmospheric methane to simultaneously constrain methane emission rates (Ei) and the global mean 

tropospheric OH concentration expressed as methane lifetime against oxidation by tropospheric OH (𝛕𝐂𝐇𝟒
𝐎𝐇 ). 

  5 
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Figure 3 Differences in monthly mean methane dry air tropospheric column mixing ratios between two simulations 

with different meteorological fields (GEOS-FP minus MERRA-2) for January (left) and July (right).  

 

  5 
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Figure 4 Typical vertical sensitivities (column averaging kernels) for satellite observations of atmospheric methane in 

the SWIR and in the TIR. Adapted from Worden et al. (2015). 
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Figure 5 Optimization of the regularization parameter γ in equation (4) for the SWIR+TIR satellite observing system. 

Left: L-Curve plot (log-log plot of the squared errors of a regularized solution versus corresponding residual). Values 

of γ corresponding to each point are indicated. The “turning corner” of the curve indicates an optimal choice of γ 5 

(Hansen, 2000). Right: Ability of the inversion to match the “true” gridded methane emission field as a function of 

the regularization parameter. The ability is measured by the RMSE. 
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Figure 6 Ability of SWIR, TIR, and SWIR+TIR systems to jointly constrain gridded methane emissions and global 

OH concentrations (as measured by the methane lifetime 𝛕𝐂𝐇𝟒
𝐎𝐇 )	in our base 1-year inversion. The left panel shows the 

RMSE in fitting the “true” 4o×5o gridded emission rates. The right panel compares the posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇  to 

the prior estimate and to the “true” value. The prior error standard deviation is shown as a vertical bar. Posterior 5 

error bars are too small to be shown, although this reflects overoptimistic error characterization in the inversion (see 

text). 
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Figure 7 Joint distribution of relative uncertainties in 𝛕𝐂𝐇𝟒

𝐎𝐇  and total methane emissions as given by the posterior 

error covariance matrices for different satellite observing systems. Contours represent confidence ellipses from 

probability 0.1 (innermost) to 0.9 (outermost) at an interval of 0.1. The correlation coefficients (r) between errors in 5 

𝛕𝐂𝐇𝟒
𝐎𝐇  and total methane emissions are inset. 

  



29 
 

 
Figure 8 OSSE experiments perturbing global emissions (E+10%), OH (OH-5%), and both (E+10%  OH-5%) to test 

whether the inversion can retrieve separately these perturbations. Results are shown for different satellite observing 

systems (SWIR, TIR, and SWIR+TIR). Blue symbols represent posterior estimation of changes in emissions and red 

symbols posterior estimation of change in global OH concentration. The boxes represent the 75th, 50th, and 25th 5 

percentiles and the whiskers represent the maximum and minimum of the results using 12 different OH distributions 

in “true” simulations. Dashed lines are “true” changes in global emissions (blue) and OH concentration (red). 
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Figure 9 Variability of OH distributions across global models. The figure shows annual zonal mean OH 

concentrations for 13 different models used in the OSSE. GEOS-Chem v11 is used in the forward model for the 

inversion with 𝛕𝐂𝐇𝟒
𝐎𝐇  = 7.5 years. GEOS-Chem v5 is used for the baseline “true” atmosphere with 𝛕𝐂𝐇𝟒

𝐎𝐇  = 8.6 years. The 

other 11 distributions are from the ACCMIP model ensemble (Naik et al., 2013), with global scaling factors to impose  5 

𝛕𝐂𝐇𝟒
𝐎𝐇  = 8.6 years in all cases, and are used in alternative representations of the “true” atmosphere. 
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Figure 10 Effect of error in OH distribution on the optimization of the global OH concentration (methane lifetime 

𝛕𝐂𝐇𝟒
𝐎𝐇 )	 from satellite observations. The Figure shows the posterior estimation of 𝛕𝐂𝐇𝟒

𝐎𝐇  using 12 different OH 

distributions (Figure 9) in simulations of the “true” atmosphere sampled by SWIR, TIR, and SWIR+TIR instruments, 

in comparison with “true” (dashed line) and prior (dotted line) 𝛕𝐂𝐇𝟒
𝐎𝐇 . The boxes represent the 75th and 25th percentiles, 5 

solid lines inside the boxes represent the medians, the whiskers represent the maximum and minimum, and dots 

represent results for each OH distribution. 
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Figure 11 Relationship between errors in posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇 and errors in the prior 𝛕𝐂𝐇𝟒

𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒
𝐎𝐇,𝐒𝐇 ratio for the 

entire year and for boreal winter (December, January, and Feburary). Red dots represent the three cases with large 

positive errors in posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇  in Figure 10 and blue dots represent the other nine cases. The plots show 

that the large errors in posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇  are associated with large errors in the prior 𝛕𝐂𝐇𝟒

𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒
𝐎𝐇,𝐒𝐇 ratio in 5 

DJF months.  
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Figure 12 Ability of the inversion of satellite methane observations to retrieve the interhemispheric OH ratio defined 

by 𝛕𝐂𝐇𝟒
𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒

𝐎𝐇,𝐒𝐇. Posterior inversion results using SWIR, TIR or SWIR+TIR observations are compared to the “true” 

ratio from 12 different model OH distributions (Figure 9). The dashed vertical line represents the prior 𝛕𝐂𝐇𝟒
𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒

𝐎𝐇,𝐒𝐇 

common to all inversions. 5 

 

 


