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Abstract. The hydroxyl radical (OH) is the main tropospheric oxidant and is the largest sink for atmospheric methane. The 

global abundance of OH has been monitored for the past decades with the methyl chloroform (CH3CCl3) proxy. This 

approach is becoming ineffective as atmospheric CH3CCl3 concentrations decline. Here we propose that satellite 

observations of atmospheric methane in the shortwave infrared (SWIR) and thermal infrared (TIR) can provide an effective 15 

replacement method. The premise is that the atmospheric signature of the methane sink from oxidation by OH is distinct 

from that of methane emissions. We evaluate this method in an observing system simulation experiment (OSSE) framework 

using synthetic SWIR and TIR satellite observations representative of the TROPOMI and CrIS instruments, respectively. 

The synthetic observations are interpreted with a Bayesian inverse analysis optimizing both gridded methane emissions and 

global OH concentrations with detailed error accounting, including errors in meteorological fields and in OH distributions. 20 

We find that the satellite observations can constrain the global tropospheric OH concentrations with a precision better than 

1% and an accuracy of about 3% for SWIR and 7% for TIR. The inversion can successfully separate contributions from 

methane emissions and OH concentrations to the methane budget and its trend. We also show that satellite methane 

observations can constrain the interhemispheric difference in OH. The main limitation to the accuracy is uncertainty in the 

spatial and seasonal distribution of OH. 25 
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1 Introduction 

The hydroxyl radical (OH) is the main oxidant in the troposphere, responsible for the oxidation of a wide range of gases 

including nitrogen oxides (NOx ≡ NO + NO2), sulfur dioxide (SO2), carbon monoxide (CO), methane, and other volatile 

organic compounds (VOCs). Subsequent reactions can lead to the formation of tropospheric ozone, strong acids, and organic 5 

aerosol. Monitoring of global tropospheric OH concentrations and its trends is a central problem in atmospheric chemistry. 

Here we show that satellite observations of atmospheric methane could provide a powerful vehicle for this purpose.  

 

The chemistry controlling tropospheric OH concentrations is complex (Levy, 1971;Logan et al., 1981). The primary source 

for OH is photolysis of ozone in the presence of water vapor. OH then reacts with CO and VOCs on a time scale of ~1 s to 10 

produce peroxy radicals, which can be converted back to OH by reaction with NO. This cycling of radicals is terminated by 

conversion to non-radical forms, principally peroxides. The dependences of OH concentrations on natural and anthropogenic 

emissions of NOx, CO, and VOCs, as well as on UV radiation and humidity, are complicated and poorly established (Holmes 

et al., 2013;Murray et al., 2013;Monks et al., 2015).  

 15 

OH concentrations are highly variable spatially and temporally, making it nearly impossible to infer global mean OH 

concentration from sparse direct measurements, which are difficult by themselves because of the low concentrations (~106 

molecules cm-3). Singh (1977) and Lovelock (1977) first pointed out the possibility of estimating the global mean OH 

concentration through atmospheric measurements of methyl chloroform (CH3CCl3), an industrial solvent. The industrial 

production of methyl chloroform is well known, and essentially all of this production is eventually released to the 20 

atmosphere, where it mixes globally in the troposphere and is removed by oxidation by OH. From measurements of 

atmospheric methyl chloroform and knowledge of the source, one deduces by mass balance a methyl chloroform lifetime 

against oxidation by tropospheric OH of 6.9 ± 0.4 years (Prather et al., 2012), providing a proxy for the global mean 

tropospheric OH concentration. The method became more accurate after the global ban on methyl chloroform production 

under the Montreal Protocol in the 1990s, as the source could then be assumed close to zero (Montzka et al., 2011).  25 

Estimates of annual and decadal OH variability can be obtained from the long-term methyl chloroform record (Prinn et al., 

2001;Krol and Lelieveld, 2003;Bousquet et al., 2005;Montzka et al., 2011). Global tropospheric chemistry models tend to 

overestimate the OH concentrations inferred from the methyl chloroform proxy by ~ 15% (Voulgarakis et al., 2013;Naik et 

al., 2013) and have little success in reproducing inter-annual variability and long-term trends (Holmes et al., 2013;Murray et 

al., 2013).   30 
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Understanding the factors controlling OH concentrations and its trends is particularly important for interpretation of methane 

trends. Methane is the second most important anthropogenic greenhouse gas after CO2 and contributes to about a quarter of 

the climate warming experienced today (Myhre et al., 2013). About 90% of atmospheric methane is lost by reaction with OH 

(Kirschke et al., 2013). Atmospheric methane rose by 1-2% a-1 in the 1970s and 1980s, stopped growing in the late 1990s, 

and resumed a steady growth of 0.3-0.7% a-1 since 2006 (Rigby et al., 2008;Dlugokencky et al., 2009;Hartmann et al., 2013). 5 

Interpretation of these trends has generally focused on changing emissions (Rice et al., 2016;Hausmann et al., 2016;Nisbet et 

al., 2016;Schaefer et al., 2016), but recent studies have suggested that the growth over the past decade could be contributed 

by a decline in global OH concentration (Turner et al., 2017;Rigby et al., 2017). On the other hand, the trend in atmospheric 

CO over the past decade suggests an increase in global OH concentrations (Gaubert et al., 2017).   

 10 

Inferring OH trends from methyl chloroform will become more difficult in the future as concentrations approach the 

detection limit (Liang et al., 2017) and evasion from the ocean complicates interpretation (Wennberg et al., 2004). Finding 

an alternative proxy for tropospheric OH is viewed as a pressing problem in the atmospheric chemistry community 

(Lelieveld et al., 2006). Huang and Prinn (2002) pointed out that the major limitation to hydrochlorofluorocarbons and 

hydrofluorocarbons as the alternative proxy is the lack of accurate global emission inventory. To alleviate this difficulty, 15 

Liang et al. (2017) proposed to use the hemispheric gradient of a suite of these compounds to jointly retrieve global 

emissions and tropospheric OH, but their approach may be limited by the sparsity of the surface observation network.   

 

Here we propose that satellite methane observations could provide a reliable proxy for global tropospheric OH, using inverse 

analyses that optimize OH concentrations from the satellite data alongside with methane emission rates. Satellite measures 20 

methane in the shortwave infrared (SWIR, at 1.65 μm and 2.3 μm) by solar backscatter, and in the thermal infrared (TIR, 

around 7.6 μm) by terrestrial emission (Jacob et al., 2016). SWIR measurements are sensitive to the full column of methane 

but are mainly restricted to land, while TIR measurements are most sensitive to the middle/upper troposphere and operate 

over both land and ocean (Worden et al., 2015). A number of studies have used SWIR observations from the SCIAMACHY 

and GOSAT satellite instruments to infer methane emissions through inverse analyses. Most of these studies have assumed 25 

OH to be known (Bergamaschi et al., 2009;Spahni et al., 2011;Bergamaschi et al., 2013;Fraser et al., 2013;Monteil et al., 

2013;Fraser et al., 2014;Houweling et al., 2014;Alexe et al., 2015;Pandey et al., 2015;Turner et al., 2015), while a few have 

optimized methane emissions together with OH concentrations using methyl chloroform measurements (Cressot et al., 

2014;Cressot et al., 2016). Maasakkers et al. (2018) used six years of GOSAT data (2010-2015) to constrain methane 

emissions and their trends together with global OH trends.  30 

 

TIR observations are of marginal value for inversion of methane emissions because they are insensitive to the boundary layer 

(Wecht et al., 2012) but they could provide complementary information for constraining OH. The methane sink from 

oxidation by OH has a distinct atmospheric signature peaking in the tropical troposphere, distributed zonally, and shifting 
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seasonally with the UV flux (Figure 1). The expected availability in the coming years of new high-density satellite data from 

TROPOMI in the SWIR (Hu et al., 2018) and CrIS in the TIR (Gambacorta et al., 2016) motivates the assessment of the 

potential of these data to provide a continuous means for monitoring global tropospheric OH concentrations. 

2 Observing System Simulation Experiment 

We conduct an observing system simulation experiment (OSSE) to examine the feasibility of inferring global tropospheric 5 

OH concentrations by inversion of satellite observations of atmospheric methane, focusing on the potential of TROPOMI 

(SWIR) and CrIS (TIR). The OSSE approach allows us to examine the ability of the observations to separately constrain 

methane emissions and OH, and to investigate the effects of errors in inversion parameters.  

 

Figure 2 describes the structure of the OSSE. We use a chemical transport model (GEOS-Chem CTM) (Maasakkers et al., 10 

2018) to generate a “true” global 3-D time-dependent distribution of methane concentrations, given a “true” state defined by 

known 2-D monthly methane emissions and 3-D monthly OH concentrations. The “true” methane concentration field is 

sampled following the specification of candidate satellite instruments to generate synthetic observations. We then use these 

synthetic observations in an inverse analysis system, with an independent CTM simulation and deliberately incorrect prior 

estimates of emissions and OH concentrations, to assess the capability of the observing system to retrieve the “true” state. 15 

See Brasseur and Jacob (2017) for further discussion of the OSSE approach. 

 

The mean tropospheric OH concentration is often defined in terms of the lifetime of a long-lived gas (Prather and 

Spivakovsky, 1990), and in our case the natural metric is the lifetime of well-mixed methane against oxidation by 

tropospheric OH: 20 

τCH4
OH =

∫ 𝑛𝑛𝑎𝑎 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒

∫ 𝑘𝑘(𝑇𝑇)[OH]𝑛𝑛𝑎𝑎 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒

(1) 

where 𝑛𝑛𝑎𝑎  is air number density, 𝑣𝑣  is volume, and 𝑘𝑘(𝑇𝑇) = 2.45 × 10−12e−1775/𝑇𝑇  cm3  molec-1 s-1 is the temperature-

dependent oxidation rate constant (Burkholder et al., 2015). We will also examine interhemispheric differences in OH by 

integrating over the northern and southern hemisphere separately (τCH4
OH,NH and τCH4

OH,SH). 

2.1 Model simulation 25 

We use the GEOS-Chem CTM to simulate atmospheric methane concentrations in the “true” atmosphere and to serve as the 

forward model for the inversion, with different meteorological fields and OH distributions to avoid the “fraternal twin” 

problem (Table 1). GEOS-Chem solves the continuity equation for atmospheric methane as  

∂𝑛𝑛
∂t

= −∇ ∙ (𝑛𝑛𝐮𝐮) + 𝐸𝐸 − 𝑘𝑘(𝑇𝑇)𝑛𝑛[OH] − minor sinks (2) 
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where n is the methane number density, u is the wind vector, E is the emission field, and k(T) is the rate constant for reaction 

with OH. Minor sinks include other tropospheric sinks (reaction with the Cl atom and soil uptake) and stratospheric sinks 

specified as 2-D loss rate constants. The transport term −∇ ∙ (𝑛𝑛𝐮𝐮) includes not only advection by grid-resolved winds but 

also parameterized subgrid convection and boundary layer mixing. The methane simulation with GEOS-Chem v11 is as 

described by Maasakkers et al. (2018), which builds on the previous work of Wecht et al. (2014) and Turner et al. (2015).  5 

 

The GEOS-Chem simulation is conducted on a 4o×5o horizontal grid and 47 vertical layers (~ 30 layers in the troposphere). 

The simulation is for year 2015 with a half-year spin-up starting from June 2014 to establish methane gradients driven by 

synoptic-scale transport (Turner et al., 2015). We vary the state vector elements (i.e., gridded methane emission rates and 

global methane OH lifetime) between the “true” simulation and the inversion, to assess the ability of the inversion to 10 

improve estimations of these elements given synthetic observations. To include the effect of errors in model parameters that 

are not optimized in the inversion, we also vary in the inversion the model meteorological fields (for the same 

meteorological year) and the monthly 3-D distribution of OH.  

 

Table 1 summarizes the OSSE conditions. The “true” emissions are taken from the GOSAT optimization of methane 15 

emissions (Maasakkers et al., 2018). The prior emissions used in the inversion are specified following Maasakkers et al. 

(2018), including anthropogenic (global EDGAR v4.3.2 emission inventory (European Commission, 2017) replaced with 

Sheng et al. (2017) in Mexico and Canada for the oil and gas sector and with Maasakkers et al. (2016) in the US), wetland 

(WetCHARTs v1.0 from Bloom et al. (2017)), and other sources (biomass burning, termite, and geological and geothermal 

seeps). The “true” global OH concentration as expressed by τCH4
OH  is 8.6 years with spatial/seasonal OH distribution from 20 

GEOS-Chem v5, while the prior estimate is 7.5 years with distribution from GEOS-Chem v11. The difference between the 

“truth” and the prior for τCH4
OH  is comparable to the difference between a recent observation-based analysis (Prather et al., 

2012) and the mean values from current models (Naik et al., 2013;Voulgarakis et al., 2013). The OH distributions in GEOS-

Chem v5 and v11 are significantly different due to many updates between these versions for lightning, isoprene chemistry, 

halogen chemistry, and emissions (Hu et al., 2017). In Section 4, we will consider even larger differences in OH distributions 25 

using the ACCMIP model ensemble (Naik et al., 2013). 

 

Meteorological fields used to produce the “true” methane concentrations are the operational Goddard Earth Observing 

System Forward Processing (GEOS-FP) product (Lucchesi, 2017) from the NASA Global Modeling and Assimilation Office 

(GMAO). Meteorological fields used in the forward model for the inversion are the Modern-Era Retrospective analysis for 30 

Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017), also produced by GMAO. GEOS-FP and MERRA-

2 differ in grid resolution (cubed-sphere c720 for GEOS-FP and c360 for MERRA-2), model physics (in particular 

convection), and level of data assimilation and can be viewed as two independent realizations of meteorology for 2015. 
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2.2 Synthetic observations 

Synthetic observations sample the “true” methane fields following the configurations of the satellite instrument with 

instrument noise added (Figure 2). Here we consider the TROPOMI instrument for SWIR and the CrIS instrument for TIR. 

For SWIR, the sampling is at local time 13:30 over land; and for TIR, at both 13:30 and 1:30, and over land and ocean. The 

retrieval success rate (ratio between the number of successful retrievals and the number of attempted retrievals) is taken to be 5 

3% for SWIR (Hu et al., 2016) and 60% for TIR (Xiong et al., 2008) because SWIR observations require cloud-free pixels 

whereas TIR has tolerance for fractional cloud cover. The retrievals are for the dry air column mixing ratio X [ppb] after 

applying typical averaging kernels to describe vertical sensitivity (Figure 3). Gaussian random noise is added to the 

individual retrievals to simulate the instrument error, with a standard deviation of 0.6% for SWIR TROPOMI (Butz et al., 

2012) and 2% for TIR CrIS (Gambacorta et al., 2016). To account for model biases in simulation of stratospheric methane 10 

(Patra et al., 2011) and following the recommendation of Saad et al. (2016), we replace the concentrations above 200 hPa by 

the 2-D seasonal climatology from ACE-FTS satellite observations (Koo et al., 2017), both in the synthetic observations and 

in the forward model. Our test shows that the biases in stratospheric methane concentrations resulting from different 

meteorological fields (MERRA-2 for the forward model and GEOS-FP for the “true” atmosphere) can lead to substantial 

biases in posterior estimates of τCH4
OH , particularly for satellite observing systems involving TIR observations. This problem is 15 

solved by imposition of the ACE-FTS stratospheric methane field.  

 

The synthetic observations are sampled on the GEOS-Chem 4o×5o grid for the purpose of the inversion. This means that 

successful retrievals from individual pixels are averaged over 4o×5o grid cells and the noise is reduced by the square root of 

the number of successful retrievals (Ni,t) within grid cell i at time t. Ni,t is determined as the ratio between the grid cell area 20 

(𝐴𝐴𝑖𝑖 ) and the pixel area (a), weighted by the local cloud-free fraction ( 1 − 𝑓𝑓𝑖𝑖,𝑡𝑡 ) taken from the “true” GEOS-FP 

meteorological fields.: 

𝑁𝑁𝑖𝑖,𝑡𝑡 = �𝑐𝑐 ×
𝐴𝐴𝑖𝑖 × �1 − 𝑓𝑓𝑖𝑖,𝑡𝑡�

𝑎𝑎
� (3) 

The global scaling factor c enforces the designed retrieval success rate (3% for SWIR and 60% for TIR). For 𝑎𝑎, we use the 

nadir resolution of SWIR TROPOMI (7×7 km2) and TIR CrIS (14×14 km2). The brackets [] represent the rounding 25 

function. 

 

2.3 Inversion 

We use the synthetic observations (assembled in an observation vector y) together with the prior estimates (𝐱𝐱A) and error 

covariance matrices for the prior (𝐒𝐒A) and observations (𝐒𝐒O) (Figure 2) to find the analytic solution to the inverse problem. 30 

The state vector (x) that we seek to optimize includes annual methane emission rates on a 4o×5o grid cells for ice-free land 

(1009 elements) plus either 1 or 2 elements representing the global or hemispheric methane inverse lifetimes (loss 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-467
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 29 May 2018
c© Author(s) 2018. CC BY 4.0 License.

rev
Sticky Note
But this does not solve the "bias" problem in general. Adding random noise is fine, but a more interesting test would be to included biases, which are known to occur for satellite observations (e.g. due to aerosol, cirrus, etc.). 

rev
Sticky Note
again, a bias will not behave like this!

rev
Sticky Note
are observations considered independent? (e.g. diagonal S0)



7 
 

frequency). GEOS-Chem relates linearly x to y and can therefore be described for the purpose of the inversion by its 

Jacobian matrix K = ∂y/∂x. We compute explicitly this Jacobian matrix by perturbing the individual terms of x and 

calculating the resulting changes in y with GEOS-Chem. 

 

The observation error covariance matrix 𝐒𝐒O is specified as a diagonal matrix summing the instrument and forward model 5 

error variances. The instrument error is computed as described in Section 2.2. The forward model error variance is derived 

with the residual error method (Heald et al., 2004). Model transport error correlations (which would introduce off-diagonal 

terms in 𝐒𝐒O) can be ignored for daily or twice daily sampling on a 4o×5o grid (Heald et al., 2004). The prior error covariance 

matrix SA is also specified as a diagonal matrix, assuming 50% error standard deviation for gridded emission rates and 10% 

error standard deviation for the methane inverse lifetime (Naik et al., 2013). 10 

 

The Bayesian cost function for the inverse problem (Brasseur and Jacob, 2017) is  

𝐽𝐽(𝐱𝐱) = (𝐱𝐱 − 𝐱𝐱A)T𝐒𝐒A−1(𝐱𝐱 − 𝐱𝐱A) + γ(𝐲𝐲 − 𝐊𝐊𝐊𝐊)T𝐒𝐒O−1(𝐲𝐲 − 𝐊𝐊𝐊𝐊) (4) 

where 𝛾𝛾 is an adjustable regularization parameter to prevent overfitting to the observations. Analytic solution to the J(x) 

minimization problem (dJ/dx = 0) yields the posterior estimate 𝐱𝐱�:  15 

𝐱𝐱� = 𝐱𝐱A + 𝐆𝐆(𝐲𝐲 − 𝐊𝐊𝐱𝐱A) (5) 

where G is the gain matrix given by 

𝐆𝐆 = (γ𝐊𝐊T𝐒𝐒O−1𝐊𝐊 + 𝐒𝐒A−1)−1γ𝐊𝐊T𝐒𝐒O−1 (6) 

 

The solution also provides a closed form of the posterior error covariance matrix (𝐒𝐒�): 20 

𝐒𝐒� = (γ𝐊𝐊T𝐒𝐒O−1𝐊𝐊 + 𝐒𝐒A−1)−1 (7) 

 

The diagonal elements of 𝐒𝐒� represents the error variances of the posterior estimates 𝐱𝐱�.  

 

Standard Bayesian optimization by minimizing the cost function in equation (4) with γ = 1 assumes that the observations are 25 

independent and identically distributed (IID condition) but this is generally not the case and can result in overfitting. Here we 

choose an optimal value for γ based on the ability of the inversion to match the “true” emissions as evaluated with the root 

mean square error (RMSE). Figure 4 shows that the best results (lowest RMSE) are achieved with γ in the 0.005-0.1 range 

and we choose here to use γ = 0.05. 

 30 

3 Joint Optimization of Global 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎 and Methane Emission Rates 

Figure 5 shows the ability of the three different satellite observing systems considered (SWIR, TIR, and SWIR+TIR) to 

jointly constrain gridded emission rates and τCH4
OH . The ability to constrain emissions is measured by the RMSE on the 4o×5o 
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grid. The inversion with SWIR observations is able to constrain methane emissions but the one with TIR observations is not. 

This is consistent with the low sensitivity of TIR to the lower troposphere (Figure 3), where most of the information on 

spatially resolved emissions is contained. On the other hand, both SWIR and TIR are able to retrieve τCH4
OH  within 3% of the 

“true” value.  

 5 

Analysis of the posterior error covariance matrix (S�) shows that the error standard deviations σp on the posterior estimate of 

τCH4
OH  are 0.75%, 0.46%, and 0.39% for SWIR, TIR, and SWIR+TIR satellite observing systems, respectively, for a one-year 

inversion (Table 2). S� tends to be overoptimistic as a measure of posterior error because it assumes no systematic error in 

model parameters affecting the accuracy of the inversion (Brasseur and Jacob, 2017). Below we will explore the effect of 

errors in the global OH distribution as a limitation on accuracy. 10 

 

A central question is the ability of the inversion to independently constrain global OH concentrations and total emissions. 

The error covariance between the two can be computed from 𝐒𝐒� (See Appendix for the method) and is visualized in Figure 6. 

For SWIR, the significant correlation (r = 0.78) implies some aliasing between corrections to OH concentration and 

emissions. Error correlation is much less (r = 0.47) with the TIR observing system. TIR observations can constrain global 15 

total emissions although they are incapable of resolving the spatial distribution of emission rates (Figure 5), and this provides 

a basis for successful inversion of τCH4
OH . The SWIR+TIR system results in smallest confidence ellipses (Figure 6) among the 

three satellite observing systems, suggesting that combining SWIR and TIR observations improve the ability to jointly 

constrain OH concentration and emissions. It should be noted that because SWIR+TIR achieves smaller errors in both τCH4
OH  

and global total emission, the error correlation (r = 0.57) also become less consequential than the SWIR or TIR case. 20 

 

To go further than the error correlation analysis, we used the OSSE environment to directly test whether perturbations to OH 

concentrations and global emissions can be retrieved independently. We perturbed the emission rates and/or OH 

concentrations in three additional simulations for the “true” atmosphere. In the first case we increased global emissions by 

10%, in the second case we decreased global OH concentration by 5%, and in the third case we combined both perturbations. 25 

Figure 7 shows that the posterior estimations all correctly identify the percentage changes in global total emissions and/or 

OH concentration, within 2% from the “true” changes, in all three tests. This result provides evidence that our method has 

good ability to resolve the aliasing effect between emissions and OH on the global scale. Among all three satellite observing 

systems, inferred OH percentage changes with SWIR+TIR observations are closest to the “true” changes for all three cases, 

demonstrating that combining SWIR and TIR observations improves the ability to separate changes in OH from changes in 30 

emissions, consistent with the analysis of posterior error covariance matrices (Figure 6). The results shown in Figure 7 

suggest that satellite observations of methane should be able to detect trends in OH separately from trends in methane 

emissions, which has important implications for attribution of trends in methane observations (Turner et al., 2017). 
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4 Impact of Errors in Prior OH Distributions 

In our method, global OH abundance (i.e., global methane inverse lifetime) is represented by a single state vector element. 

The seasonal and spatial distribution of OH is a forward model parameter that the inversion does not seek to optimize. Errors 

in the prior OH distribution may therefore result in errors in the posterior estimate of τCH4
OH , which may not be fully captured 

by 𝐒𝐒�. To test the impact of this uncertainty source, we use alternative “true” OH distributions from the 11 models that 5 

participated in the ACCMIP intercomparison (Naik et al., 2013), replacing GEOS-Chem v5. The ACCMIP archive includes 

present-day (the 2000s) 3-D monthly mean OH concentrations and was retrieved from http://badc.nerc.ac.uk/ (See Lamarque 

et al. (2013) for model descriptions). These models differ greatly in both global OH abundance and distribution (Figure 8). 

To focus on errors in OH distributions, we applied a global scaling factor to each model to impose a methane lifetime τCH4
OH of 

8.6 years, same as in our baseline. To avoid complicating influence from errors in the meteorological field, we do not vary 10 

the meteorological field (i.e. MERRA-2) between the “true” simulation and the inversion in this test of the sensitivity to the 

OH distribution. 

 

Figure 9 shows the posterior estimation of  τCH4
OH  resulting from the 12 different “true” OH distributions (all with the same 

“true” τCH4
OH ). For all three satellite observing systems, the median posterior τCH4

OH  is within 2% of the “true” τCH4
OH . But some 15 

model OH distributions (CESM, GISS, and CICERO) result in large errors when using TIR observations. Errors are smaller 

for SWIR only. We determine the relative accuracy due to the uncertainty in the OH distribution (σa ) as the ratio of the half 

interquartile range to the “true” τCH4
OH . This results in σa  of 2.6%, 6.9%, and 6.0% for SWIR, TIR, and SWIR+TIR (Table 2). 

Our results suggest that satellite observing systems involving TIR measurements are likely more susceptible to errors in the 

OH distribution for τCH4
OH  estimations.  20 

 

We also applied these different “true” OH distributions to the OSSE test of Figure 7 perturbing emissions and/or OH to 

evaluate the impact of errors in OH distribution on detecting and separating changes in global τCH4
OH and emissions. The spread 

in inferred changes in OH is almost negligible for all the observing systems considered (Figure 7), indicating that the errors 

resulting from imperfect OH distribution in a single-year inversion are systematic. An important implication is that these 25 

errors from imperfect OH distribution (Figure 9) may not impair the ability to detect long-term trends in OH concentrations, 

as long as inter-annual variability in the OH distribution is relatively small. We therefore present them in Table 2 as a 

statement of accuracy. 

 

The above results suggest that we may improve the estimation of τCH4
OH  if the inversion is able to retrieve information on the 30 

OH distribution from the satellite methane observations. For this purpose, we tried to optimize separately the mean OH 

concentrations in the northern and southern hemisphere, expressed as τCH4
OH,NH and τCH4

OH,SH. In general, the inversion is able to 
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resolve the interhemispheric OH ratio (τCH4
OH,NH/τCH4

OH,SH) for the range of OH distributions from the different global models 

using both SWIR and TIR satellite observing systems (Figure 10). However, the improvement in estimate of global OH 

concentration τCH4
OH  (computed as harmonic mean of τCH4

OH,NH and τCH4
OH,SH) is insignificant in most cases (not shown), indicating 

that errors in other factors in OH distributions (e.g., vertical and seasonal distributions) in addition to the hemispheric ratio 

are also important contributors to errors shown in Figure 9. A careful design of the state vector that balances the resolution of 5 

OH distribution with the aliasing of OH and emissions should further improve the accuracy of the method but is beyond the 

scope of the current study. 

 

5 Conclusions 

We conducted observing system simulation experiments (OSSEs) to test the feasibility of monitoring global tropospheric 10 

OH concentrations using satellite observations of methane. We considered short-wave infrared (SWIR) TROPOMI and 

thermal infrared (TIR) CrIS as candidate satellite instruments for this application, since methane retrievals from these 

instruments are expected to be available in the near future and will provide much improved coverage compared to current 

instruments. Through inversion of synthetic observations from these instruments sampling a “true” atmosphere, we jointly 

optimized gridded methane emission rates and the global tropospheric OH concentration (expressed as the methane lifetime 15 

against oxidation by tropospheric OH, τCH4
OH ). The OSSE used different meteorological fields for the “true” atmosphere and 

for the inversion, and tested the effect of errors in the prior OH distributions. 

 

Our results show that either SWIR or TIR observations can constrain τCH4
OH  with a precision better than 1%. Analysis of the 

posterior error covariance matrix shows that emissions and global OH concentrations can be separately retrieved because 20 

they have different signatures on the distribution of atmospheric methane. Simulation experiments with perturbations to 

either global methane emissions and/or global OH concentration demonstrate that the method can distinguish changes in OH 

from changes in emissions as contributors to trends in atmospheric methane. Best performance is achieved by combining the 

SWIR and TIR observations. 

 25 

Errors in the seasonal and spatial distributions of OH assumed in the inversion of methane concentrations are the principal 

limitation to the accuracy in inferring the global OH concentration. Using archived OH distributions from the 12 ACCMIP 

models, we find that majority of the models can accurately retrieve global OH concentrations but a few are problematic 

when using TIR observations. Errors in the OH distribution do not degrade the ability to retrieve perturbations to OH fields 

and separate them from perturbations in emissions. Interhemispheric ratios of OH are also shown to be successfully 30 

constrained.  
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We conclude that satellite observations of methane are a promising replacement for methyl chloroform as a proxy for global 

tropospheric OH concentrations. Based on our OSSE ensemble results, we estimate the precision of the method to be 0.75%, 

0.46%, and 0.39% and accuracy 2.6%, 6.9%, and 6.0% for SWIR, TIR, and SWIR+TIR satellite observing systems, 

respectively. The accuracy is limited primarily by uncertainty in the OH distribution but inference of temporal trends in OH 

would not be affected if any bias in the OH distribution remains constant.  5 

 

Appendix 

The posterior error covariance matrix (𝐒𝐒�) is a 1010×1010 matrix that characterizes the error covariance structure of gridded 

emission rates (𝐸𝐸𝑖𝑖) in 1009 grid cells and global methane lifetime against oxidation by tropospheric OH (τCH4
OH ). We condense 

𝐒𝐒� into a 2×2 matrix 𝐒𝐒�𝟐𝟐, which represents the error covariance of global total emissions (𝐸𝐸𝑇𝑇 = ∑ 𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where n=1009) and 10 

τCH4
OH : 

𝐒𝐒�2 = �
Var(𝐸𝐸𝑇𝑇) Cov(𝐸𝐸𝑇𝑇, τCH4

OH )
Cov(𝐸𝐸𝑇𝑇, τCH4

OH ) Var(τCH4
OH )

� 

where Var(τCH4
OH )  can be directly obtained from 𝐒𝐒� , and Var(𝐸𝐸𝑇𝑇)  and Cov�𝐸𝐸𝑇𝑇, τCH4

OH �  can be computed from 𝐒𝐒�  with the 

following formulae: 

Var(𝐸𝐸𝑇𝑇) = �Var(𝐸𝐸𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+ 2 � Cov(𝐸𝐸𝑖𝑖, 𝐸𝐸𝑗𝑗)
1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛

 15 

Cov�𝐸𝐸𝑇𝑇, τCH4
OH � = �Cov(𝐸𝐸𝑖𝑖, τCH4

OH )
𝑛𝑛

𝑖𝑖=1

 

𝐒𝐒�2 can then be visualized as a bi-variate Gaussian distribution. 
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Table 1 OSSE conditions. 

 “True” Atmosphere Inversion Prior and Parameters 

State Vector (x) 

Gridded Emission Rates a Posterior from GOSAT analysisb EDGAR v4.3.2+ WetCHARTsc 

Global OH concentration 

(τCH4
OH ) d 

8.6 years  7.5 years 

Parameters 

OH Distribution  GEOS-Chem v5 e GEOS-Chem v11 

Meteorological Field f GEOS-FP  MERRA-2 

a Methane emission rates on a 4o×5o grid over ice-free land (1009 elements).  
b From Maasakkers et al. (2018). 
c Prior emissions are specified following Maasakkers et al. (2018). EDGAR v4.3.2 (European Commission, 2017) is used as 

the global default for anthropogenic emissions, but is replaced with Sheng et al. (2017) in Mexico and Canada for the oil and 5 

gas sector and Maasakkers et al. (2016) in the US. WetCHARTs is from Bloom et al. (2017). Sources from biomass burning, 

termite, and geological seeps are also specified with available emission inventories.   
d Expressed as methane lifetime against oxidation by tropospheric OH (equation (1)). 
e Sensitivity simulations in Section 4 use 11 global OH distributions from the ACCMIP ensemble (Naik et al., 2013).  
f Meteorological fields are for 2015.   10 
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Table 2   Uncertainty in 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎  estimations with different satellite observing systems. 

Observing System SWIR TIR SWIR+TIR 

Precision (σp) 0.75% 0.46% 0.39% 

Accuracy (σa) a 2.6% 6.9% 6.0% 
a Accuracy is derived from inversions using different OH distributions from 12 global models for the “true” atmosphere 

(Section 4). 

 5 
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Figure 1 Monthly methane loss rate from oxidation by OH in January and July 2015 computed with the GEOS-Chem 

model (Maasakkers et al., 2018). The top panels show the column loss rates and the bottom panels show the zonal loss 5 

rates.  

  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-467
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 29 May 2018
c© Author(s) 2018. CC BY 4.0 License.



22 
 

 
Figure 2 Observing System Simulation Experiment (OSSE) framework to test the ability of SWIR and TIR satellite 

observations of atmospheric methane to simultaneously constrain methane emission rates (Ei) and the global mean 

tropospheric OH concentration expressed as methane lifetime against oxidation by tropospheric OH (𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎 ). 
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Figure 3 Typical vertical sensitivities (column averaging kernels) for satellite observations of atmospheric methane in 

the SWIR and in the TIR. Adapted from Worden et al. (2015). 
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Figure 4 Ability of the inversion to match the “true” gridded methane emission field as a function of the 

regularization parameter γ in equation (4) for the SWIR+TIR satellite observing system. The ability is measured by 

the RMSE. 5 
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Figure 5 Ability of SWIR, TIR, and SWIR+TIR systems to jointly constrain gridded methane emissions and global 

OH concentrations (as measured by the methane lifetime 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎 ) in our base 1-year inversion. The left panel shows the 

RMSE in fitting the “true” 4ox5o gridded emission rates. The right panel compares the posterior estimates of 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎  to 

the prior estimate and to the “true” value. The prior error standard deviation is shown as a vertical bar. Posterior 5 

error bars are too small to be shown, although this reflects overoptimistic error characterization in the inversion (see 

text). 
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Figure 6 Joint distribution of relative uncertainties in 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒

𝐎𝐎𝐎𝐎  and total methane emissions, summarized from posterior 

error covariance matrices, for different satellite observing systems. Contours represent confidence ellipses from 

probability 0.1 (innermost) to 0.9 (outermost) at an interval of 0.1. The correlation coefficients (r) between errors in 5 

𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎  and total methane emissions are inset. 
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Figure 7 OSSE experiments perturbing global emissions (E+10%), OH (OH-5%), and both (E+10%  OH-5%) to test 

whether the inversion can retrieve separately these perturbations. Results are shown for different satellite observing 

systems (SWIR, TIR, and SWIR+TIR). Blue symbols represent posterior estimation of changes in emissions and red 

symbols posterior estimation of change in global OH concentration. The boxes represent the 75th, 50th, and 25th 5 

percentiles and the whiskers represent the maximum and minimum of the results using 12 different OH distributions 

in “true” simulations. Dashed lines are “true” changes in global emissions (blue) and OH concentration (red). 
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Figure 8 Variability of OH distributions across global models. The figure shows annual zonal mean OH 

concentrations for 13 different models used in the OSSE. GEOS-Chem v11 is used in the forward model for the 

inversion with 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎  = 7.5 years. GEOS-Chem v5 is used for the baseline “true” atmosphere with 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒

𝐎𝐎𝐎𝐎  = 8.6 years. The 

other 11 distributions are from the ACCMIP model ensemble (Naik et al., 2013), with global scaling factors to impose  5 

𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎  = 8.6 years in all cases, and are used in alternative representations of the “true” atmosphere. 
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Figure 9 Effect of error in OH distribution on the optimization of the global OH concentration (methane lifetime 

𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎 ) from satellite observations. The Figure shows the posterior estimation of 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒

𝐎𝐎𝐎𝐎  using 12 different OH 

distributions in simulations of the “true” atmosphere sampled by SWIR, TIR, and SWIR+TIR instruments, in 

comparison with “true” (dashed line) and prior (dotted line) 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎 . The boxes represent the 75th, 50th, and 25th 5 

percentiles, the whiskers represent the maximum and minimum, and dots represent results for each OH distribution. 
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Figure 10 Ability of the inversion of satellite methane observations to retrieve the interhemispheric OH ratio defined 

by 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎,𝐍𝐍𝐍𝐍/𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒

𝐎𝐎𝐎𝐎,𝐒𝐒𝐒𝐒. Posterior inversion results using either SWIR or TIR observations are compared to the “true” ratio 

from 12 different model OH distributions (Figure 8). The dashed vertical line represents the prior 𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒
𝐎𝐎𝐎𝐎,𝐍𝐍𝐍𝐍/𝛕𝛕𝐂𝐂𝐇𝐇𝟒𝟒

𝐎𝐎𝐎𝐎,𝐒𝐒𝐒𝐒 

common to all inversions. 5 
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