
We thank Maarten Krol and an anonymous referee for their comments and suggestions.  

 

Reviewer 1 Maarten Krol 

This is an interesting approach that has the aim to get OH information from CH4 satellite 

retrievals. The paper presents an OSSE and is generally positive about the possibilities to get this 

information. After reading the paper I am much less optimistic and the annotated manuscript 

contains my comments and suggestions. Some main points are summarised below. 

 

First of all, the overly optimistic summary "We find that the satellite observations can constrain 

the global tropospheric OH concentrations with a precision better than 1% and an accuracy of 

about 3% for SWIR and 7% for TIR." relies very much on the OSSE set-up.  

This statement is based on the results of our OSSE analysis. We now change the text to 

emphasize that the purpose of OSSE is assess the potential of the method. The above text is 

modified to “we find that the satellite observations of methane have the potential to 

constrain …”. We now also remind readers in several places (abstract, method, and conclusion) 

that error specifications in our OSSE are idealized and can result in over-optimistic estimation. 

 

I like the fact that the authors took the effort to run the inversion with various different OH 

distributions, because this highlights the problem: we are far from sure what the OH distribution 

is, and how OH varies in time. While for the emissions a grid-optimisation is performed, OH is 

optimised as only 1 parameter. This hides the fact that you assume knowledge of the distribution. 

I acknowledge that the inversion uses a (slightly) different OH distribution, as well as 

perturbations to the meteorology. However, these differences are poorly quantify. It would help 



to show the impact of different OH/meteorology on forward CH4 column simulations (see 

comments in the manuscript). I think it is appropriate to tone down the conclusions considerably 

and to acknowledge that the result is sensitive to the set-up of the OSSE. An optimisation of the 

3D distribution of OH together with an emission scaling would give totally different results I 

guess. 

The argument behind this assumption is that we have certainty about the broad global-scale 

signature of OH distribution (high OH in tropics and shift seasonally with solar radiation), which 

determines the global distribution of methane loss, although the details of OH seasonal and 

spatial distribution is more uncertain. “An optimisation of the 3D distribution of OH together 

with an emission scaling”, the counter-example suggested by the reviewer, is against this prior 

knowledge and the fact that emission distribution is more heterogeneous and more uncertain on a 

large spatial scale.  In Section 4, we quantify the uncertainty resulting from this assumption with 

different OH distributions from ACCMIP, which represents a sufficiently large spread of OH 

distributions (they are not only slightly different). We also add a new figure (Figure 11) to better 

understand which aspect of the OH distribution affects the inversion most, providing insight on 

how to improve the method with better design of the state vector. Following the reviewer’s 

suggestions, we now quantify and visualize the effect of different meteorological fields on CH4 

column simulations in a new figure (Section 2.1 and Figure 3). 

 

Second, the authors claim that "GEOS-Chem relates linearly x to y". This is true for emissions, 

but not for OH. In that sense the analysis might be flawed, although I believe that non-linearities 

are small. Nevertheless this should be corrected and a work-around for the non-linearities should 

be found. 



Thanks for pointing out this issue. We now state the linearity assumption and the reasoning in 

Section 2.3: “The inverse problem presented here is not strictly linear because the loss rate 

depends on the methane concentration. However, a quasi-linearity can be assumed, as the range 

of variability of methane concentrations is sufficiently small.” 

 

Third, figure 6 appears wrong to me since lifetime and emissions should be negatively correlated 

(I guess OH is analysed in the plots).  

Thanks for pointing out the error! We correct the figure and the corresponding text. 

 

Also the authors should try to find a work-around for determining the regularisation parameter 

gamma. I understand that the massive amount of observations in the cost-function has to be de-

weighted, but in practical application the "true" emissions are not available and the methods 

breaksdown. Chi-square statistics or another form of regularisation are possible alternatives.  

We add a panel to Figure 5 (formerly Figure 4) to show the L-curve for determining the 

regularization parameter independent of “truth” information.    

 

Minor 

Page 2 Line 28-29 There is substantial uncertainty in the inter-annual variability derived using 

MCF, and now it is presented as the "benchmark". 

We change the sentence to avoid the impression that MCF is the benchmark “Compared to 

estimates from the methylchloroform proxy, global tropospheric chemistry models tend to 

predict higher OH concentrations (Voulgarakis et al., 2013;Naik et al., 2013), smaller inter-



annual variability (Holmes et al., 2013;Murray et al., 2013), and larger long-term trends (Holmes 

et al., 2013). 

 

Page 3 Line 12 “Evasion of MCF from the ocean” has never been substantiated. Use “possible 

evasion from …” 

We change the sentence to “… possible evasion from the ocean may complicate interpretation”. 

 

Page 3 Line 29 Maasakkers et al. 2018 has not been published.  

We would like to cite Maasakkers et al. (2018) because we inherit much of the methodology 

from Maasakkers et al. (2018). We expect the paper be submitted to ACP in September. We will 

ask the editor, if necessary, to recommend a hold on our paper until Maasakkers et al. (2018) 

appears on ACPD. 

 

Page 4 Line 14 TROPOMI is NOT a candidate mission, it is reality. CrIS also.  

We change “candidate satellite instruments” to “TROPOMI and CrIS”. 

 

Page 5 Line 13 Unclear: the global methane lifetime is in the state (= optimized) while the 

distribution of OH is varied. But these are coupled? 

We only optimize the global methane lifetime but assume the 3-D seasonal and spatial 

distribution in the prior is correct. They are not coupled in our setup. We now state this in 

Section 2.1 “… the magnitude (global mean concentration expressed as global tropospheric 

methane lifetime) and the distribution (seasonal and spatial variations) 

of the OH field are decoupled and only the former is optimized.” 

 



Page 5 Line 33 It would be good here to quantify the differences by running the model forward 

with identical emissions and OH, but different meteo-drivers. 

We add Figure 3, which shows the difference between simulated monthly mean methane column 

with identical emissions and OH but different meteorological fields. We also report the statistics 

(RMSE) that quantifies the difference in simulated daily methane columns (Section 2.1). 

 

Page 6 Line 16 - Line 20 But this does not solve the "bias" problem in general. Adding random 

noise is fine, but a more interesting test would be to included biases, which are known to occur 

for satellite observations (e.g. due to aerosol, cirrus, etc.).  

We now add a line to state this limitation of the idealized error specification in our OSSE here 

and also in the abstract and conclusion. Specifying these error in an OSSE in a realistic way is 

nontrivial. We believe it is better to assess the impact of these error sources with actual data in 

future work.   

 

Page 6 Line 30 Are observations considered independent? (e.g. diagonal SO) 

Yes. We now state this limitation of the idealized error specification. We also point out in 

Section 2.3 that neglecting correlations in the model transport error is the major reason that a 

small regularization parameter is required in our setup. 

 

Page 7 Line 4 This is a bit strange: there is adjoint GEOS-Chem available? Or is full-chemistry 

simulated (including feedback?).  More worrying: the relation between lifetime and y is not 

linear. Using linear assumptions would invalidate the results 



Our simulation does not include full chemistry.  With our method, the Jacobian matrix can be 

pre-computed, which allows us to conduct inversions of varied perturbed “true” atmosphere with 

little additional computational expense, as well as a full characterization of posterior error 

covariance matrix. This cannot be easily done with adjoint. As mentioned in response to major 

comments, we now add text in Section 2.3 to state the rationale for the linearity assumption. 

 

Page 7 Line 29 In general applications, this truth is not available, so this sounds as a rather hand-

waving procedure. The results imply an increase in observational weight of a factor 20. An 

alternative metric for overfitting is the chi-squared approach, and overfitting would introduce 

significant noise in the posterior emissions. 
We add a panel to Figure 5 (formerly Figure 4) to show the L-curve for determining the 

regularization parameter independent of “truth” information.    

 

Page 8 Line 2 The information provided is very limited. In terms of OH it would be good to 

report also the total emissions (since more emissions would logically correspond to more OH). 

We now report in the text that “…all three satellite observing systems retrieve global total 

methane emissions within 5% of the “true” value…” 

 

Page 8 Line 9 I also wonder here what is the role of the (wrong) linearity assumption 

We now add text in Section 2.3 to state the rationale of linearity assumption.  

 

Page 8 Line 14 “correlation should be negative” 

Thanks. We make the corrections. 



 

Page 8 Line 16 “TIR are incapable of resolving the spatial distribution of emission rates” Figure 

5 not informative in this respect. 

I remove this sentence and reference to Figure 5 here. The paragraph is rewritten for 

clarification.  

 

Page 8 Line 20 “become less consequential”  unclear what you want to say here. 

We rewrite the paragraph for clarification.  

 

Page 8 Line 33 Refer to Rigby 

We now cite Rigby et al. (2017). 

 

Page 9 Line 18 “These results are somewhat counterintuitive. Apparently the system is very 

sensitive to combination of TIR observations and OH distribution. Why? More analysis is 

required here. From the annual average zonal mean OH fields CESM, GISS and CICERO do not 

stick out as anomalous. ” 

Additional analysis shows that these outliers are associated errors in N/S OH ratio in the DJF 

months. We add a new figure (Figure 11) and discuss in Section 4. 

 

Page 10 Line 2 I find it a bit suspect that the "combined" SWIR + TIR system is left out of the 

analysis. For sure, it seems that the (vertical) distribution of OH plays a dominant role in 

retrieving information for CH4 TIR and/or SWIR observations.  

The SWIR+TIR results are added in the figure.  



 

Page 10 line 16 I understand that transport is different, but somehow you have to quantify how 

this impacts the calculated CH4 fields. Also an analysis without meteorological perturbations 

would help the interpretation.  

We add Figure 3 as well as a RMSE statistic showing the difference in simulated methane fields 

solely resulting from difference in meteorological fields. 

 

Page 10 Line 19 “…with a precision better than 1%...” This statement attracts attention, but does 

not reflect the overall impression I get. By optimizing emissions on a grid and OH as one scaling 

factor you more or less "force" this result, by trusting the model-calculated OH distribution. 

Indeed sensitivity analyses show much poorer performance when the OH distribution is 

perturbed. One might ask: why not optimizing OH is 3D/monthly?  

We now remind readers that the precision estimation from our OSSE is over-optimistic because 

idealized error specification. The fixed OH distribution issue that reviewers raise here is 

extensively discussed and quantified in Section 4. This error, which is considerably larger than 

1% as the reviewer noted, is attributed as accuracy (rather than precision discussed in this 

sentence) because they behave like systematic biases. The full statement of uncertainty including 

both precision and accuracy is given in the last paragraph of Section 5.  

 

Page 10 Line 30 Quite a positive assessment of figure 10. My estimate would be that the error is 

~10%. 

We now modify the statement to “… retrieved within ~ 10% of the “true” value.” 

 



Figure 9 I guess the solid colored lines represent the median? 

Yes. The caption is modified accordingly. 

 

 

Reviewer 2 

This paper uses OSSEs to test whether satellite CH4 measurements (SWIR and TIR) can be used 

to constrain gridded CH4 emissions and global/hemispheric mean OH simultaneously. The paper 

is well written and within the scope of ACP. I have a few suggestions below. 

 

Major comments: 

The key argument here is that gridded CH4 emissions and global/hemispheric [OH] can be 

constrained independently. To assist such an argument, the paper uses a few sensitivity tests 

using a global scaling of CH4 emissions and/or [OH]. The argument would be much more robust 

if additional tests perturbing the spatial/temporal distribution of gridded CH4 emissions can be 

done. 

We did not use a global scaling of CH4 emissions and/or [OH] in our test. Instead, in the prior 

and “true” simulations, the spatial/temporal distributions of OH fields and methane emissions are 

different (see Figure 2 and Section 2.1). Particularly, the prior gridded methane emissions are 

from a compilation of bottom-up emission inventory including EDGAR v4.3.2+ WetCHARTs 

(see Table 1), while the “true” gridded emissions from an inversion study using the GOSAT 

record. Therefore, they differ both in the global total emission and their distribution. We now 

change the text in method description and footnote in Table 1 to avoid confusion. 

 



MERRA-2 and GEOS-FP are used in both “true” and prior simulations. The two met fields 

are similar in model setups and assimilation system. Thus the effect of transport errors (e.g., in 

horizontal advection) is largely not taken into account in the OSSE, which may mean an 

underestimate of the error in the inversion. Although the native resolutions of MERRA-2 and 

GEOS-FP are different, the GEOS-Chem simulations here are done on a low resolution (4x5), 

lower than the native resolutions, thus the effect of resolution difference (that would lead to 

differences in transport) is not in effect here. These caveats should be better discussed. Is it 

possible to compare the met fields (e.g., wind fields) to ECMWF or other assimilated fields, to 

better discuss the transport errors? The horizontal transport errors are particularly important here, 

because the loss of methane mostly occurs in the tropics but methane emissions can be from 

anywhere. 

We understand the reviewer’s concern. Unfortunately, currently our model (GEOS-Chem) can 

only run with GEOS-FP and MERRA-2. We now mention this limitation in Section 2.1. For 

readers to better evaluate the difference between GEOS-FP and MERRA-2, we add Figure 3 to 

demonstrate the difference in monthly methane columns resulting from the difference in these 

two meteorological fields (with identical emissions and OH). The differences in daily methane 

columns are also quantified in terms of RMSE (Section 2.1).  

 

In Sect. 2.3, please show the equation linking x to y. This will much improve the understanding 

of the inversion theoretical basis.  

We add the equation (𝐲 = 𝐊𝐱 + 𝐜) in the text.  

 



Ignoring the off-diagonal component of a priori error covariance matrix (SA) is a concern, and 

the choice should be better justified. Errors in gridded CH4 emissions are obviously correlated. 

Also, it is no surprise that errors in [OH] (from v11 simulations) and errors in CH4 emissions 

(that drive v11 simulations) may be correlated to some extent. 

To address these questions, we add the follow text in Section 2.3 “This assumes no spatial error 

correlation in the prior emissions on the 4o×5o grid, which is likely adequate for anthropogenic 

emissions because of the fine spatial variability of different source types (Maasakkers et al., 

2016) but may not be adequate for wetlands emissions (Bloom et al., 2017). Prior emission errors 

can only be roughly characterized in any case.”  

 

We also add in Section 2.1 “These OH distributions are generated from GEOS-Chem full 

chemistry simulations with specified methane fields based on observations, and thus are 

independent of the prior emissions used in the inversion” (which are from bottom-up emission 

inventory).  

 

We also discuss in Section 2.3 the linkage between these assumptions and the usage of a 

regularization parameter: “The need for a regularization parameter γ in equation (4) is because of 

uncertainty in the specifications of  𝐒( and SA, and notably the assumption that these matrices 

are diagonal.” 

 

The use of gamma in Eqs. 4-7 changes the weight of a priori versus observation in determining 

the a posteriori, and is essentially an adjustment of the errors in a priori (SA) versus observation 

(SO). The very low value of gamma chosen here (0.05) means that SO is scaled up by a factor of 



20, assuming SA is not changed, which is a concern. An extensive explanation (beyond the 

argument about overfitting) is needed. Could this scaling be a reflection of how the off-diagonal 

components of error covariance matrices (in SA and/or SO) are treated? 

We now explain the reason in Section 2.3. The small γresults mainly from unable to specifying 

off-diagonal elements of SO, particularly the correlations in the model transport error. This is 

supported by a test we performed where inversion with perfect knowledge of meteorology (i.e., 

both prior and “true” simulations are driven by the same meteorological field) achieves best 

performance with γ = 1.  

 

Specific comments: 

P2, L23, the tropospheric OH-induced lifetime is 6.3 yr in Prather et al. 

We change the number from 6.9 ± 0.4 years to 6.3 ± 0.4 years. 
 

P4, L27, the “fraternal twin” problem is reduced here, not avoided. For example, see 

my major comments on transport. 

We change the word “avoid” to “reduce” as suggested. 

 

P5, L20-21. The “true” lifetime here appears to be shorter than Prather et al. (10.2 yr) or the 

multi-model average in Naik et al. (9.7 yr). Please indicate this difference.  

We now indicate this difference in Section 2 when we introduce our definition of tropospheric 

methane lifetime (equation (1)).  

 

P5, L34, please see my major comment. MERRA-2 and GEOS-FP cannot be regarded as two 

independent met fields. 



See response above to the major comment. 

 

P6, L19-20, please indicate that you assume the errors to be random, which may not be realistic. 

We now add a sentence acknowledging this limitation. 

 

P6, L31, are there particular reasons to exclude ice-covered land, which may contain 

anthropogenic emissions (e.g., from industries and pipe lines) and/or natural sources (e.g., from 

seeping). 

We change it to “The state vector … includes annual methane emission rates …  over land 

(excluding Antarctica)”.  

 

P7, L1, “linearly” is not correct. 

We make the correction and add more clarification in the text.  

 

P7, L8-9, the statement that model transport error correlation can be ignored needs better 

explanations. 

We remove this sentence now. Also see response above to major comments. 

 

P7, 9-10, here the a priori error in gridded CH4 emissions is assumed independent from the error 

in [OH]. Please justify this argument. I suspect that these two errors are correlated, because the 

model global [OH] are simulated with inputted CH4 emissions. 



We now explain in Section 2.1 that “These OH distributions are generated from GEOS-Chem 

full chemistry simulations with specified methane fields based on observations, and thus are 

independent of the prior emissions used in the inversion.” 

  

 

P8, L17, TIR is more sensitive to the upper troposphere, which means limited capability of 

retrieving [OH] (as shown in Figure 5). Please revise the sentence. 

We now rewrite the paragraph for clarity. 

 

P8, L22-34, as mentioned before, additional tests on the spatial distribution of priori gridded 

CH4 emissions would be necessary for a robust test of the interdependency between inversed 

gridded CH4 emissions and inversed [OH]. 

P11, L4-5, see my last comment on testing the importance of a priori gridded CH4 emissions. 

See response above to major comments. We change the text mentioned here to clarify what we 

did. 
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Abstract. The hydroxyl radical (OH) is the main tropospheric oxidant and is the largest main sink for atmospheric methane. 

The global abundance of OH has been monitored for the past decades with theusing atmospheric methyl chloroform 

(CH3CCl3) as a proxy. This approach method is becoming ineffective as atmospheric CH3CCl3 concentrations decline. Here 

we propose that satellite observations of atmospheric methane in the shortwave infrared (SWIR) and thermal infrared (TIR) 15 

can provide an effective replacementalternative method for monitoring global OH concentrations. The premise is that the 

atmospheric signature of the methane sink from oxidation by OH is distinct from that of methane emissions. We evaluate 

this method in an observing system simulation experiment (OSSE) framework using synthetic SWIR and TIR satellite 

observations representative of the TROPOMI and CrIS instruments, respectively. The synthetic observations are interpreted 

with a Bayesian inverse analysis optimizing both gridded methane emissions and global OH concentrations. The 20 

optimization is done analytically to provide complete  with detailed error accounting, including error correlations between 

posterior emissions and OH concentrations.  The potential bias caused by prior errors in the 3-D seasonal OH distribution is 

examined using OH fields from 12 different models in the ACCMIP archive. including errors in meteorological fields and in 

OH distributions. We find that the satellite observations of methane can have the potential to constrain the global 

tropospheric OH concentrations with a precision better than 1% and an accuracy of about 3% for SWIR and 7% for TIR. The 25 

inversion can successfully separate contributions the effects of perturbations to  from methane emissions and to OH 

concentrations to the methane budget and its trend. We also show that satellite methane observations can constrain the 

iInterhemispheric differences in OH concentrations can also be successfully retrieved. Error estimates  may be 

overoptimistic because of the idealized treatment of errors inherent in the OSSE approach. The availability of TROPOMI 

and CrIS data will soon provide an opportunity to test the method with actual observations. 30 

. The main limitation to the accuracy is uncertainty in the spatial and seasonal distribution of OH. 
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1 Introduction 

The hydroxyl radical (OH) is the main oxidant in the troposphere, responsible for the oxidation of a wide range of gases 

including nitrogen oxides (NOx ≡ NO + NO2), sulfur dioxide (SO2), carbon monoxide (CO), methane, and other volatile 

organic compounds (VOCs). Subsequent reactions can lead to the formation of tropospheric ozone, strong acids, and organic 5 

aerosol. Monitoring of global tropospheric OH concentrations and its trends is a central problem in atmospheric chemistry. 

Here we show that satellite observations of atmospheric methane could can provide a powerful vehicle for this purpose.  

 

The chemistry controlling tropospheric OH concentrations is complex (Levy, 1971;Logan et al., 1981). The primary source 

for OH is photolysis of ozone in the presence of water vapor. OH then reacts with CO and VOCs on a time scale of ~1 s to 10 

produce peroxy radicals, which can be converted back to OH by reaction with NO. This cycling of radicals is terminated by 

conversion to non-radical forms, principally peroxides. The dependences of OH concentrations on natural and anthropogenic 

emissions of NOx, CO, and VOCs, as well as on UV radiation and humidity, are complicated and poorly established (Holmes 

et al., 2013;Murray et al., 2013;Monks et al., 2015).  

 15 

OH concentrations are highly variable spatially and temporally, making it nearly impossible to infer global mean OH 

concentration from sparse direct measurements, which are difficult by themselves because of the low concentrations (~106 

molecules cm-3). Singh (1977) and Lovelock (1977) first pointed out the possibility of estimating the global mean OH 

concentration through atmospheric measurements of methyl chloroform (CH3CCl3), an industrial solvent. The industrial 

production of methyl chloroform is well known, and essentially all of this production is eventually released to the 20 

atmosphere, where it mixes globally in the troposphere and is removed by oxidation by OH. From measurements of 

atmospheric methyl chloroform and knowledge of the source, one deduces by mass balance a methyl chloroform lifetime 

against oxidation by tropospheric OH of 6.9 3 ± 0.4 years (Prather et al., 2012), providing a proxy for the global mean 

tropospheric OH concentration. The method became more accurate after the global ban on methyl chloroform production 

under the Montreal Protocol in the 1990s, as the source could then be assumed close to zero (Montzka et al., 2011).  25 

Estimates of annual and decadal OH variability can be obtained from the long-term methyl chloroform record (Prinn et al., 

2001;Krol and Lelieveld, 2003;Bousquet et al., 2005;Montzka et al., 2011). Compared to estimates from the 

methylchloroform proxy, gGlobal tropospheric chemistry models tend to overestimate predict higherthe OH concentrations 

(Voulgarakis et al., 2013;Naik et al., 2013), smaller inter-annual variability (Holmes et al., 2013;Murray et al., 2013), and 

larger long-term trends (Holmes et al., 2013), ,inferred from the methyl chloroform proxy by ~ 15% (Voulgarakis et al., 30 

2013;Naik et al., 2013) and have little success in reproducing inter-annual variability and long-term trends (Holmes et al., 

2013;Murray et al., 2013).  . 
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Understanding the factors controlling OH concentrations and its trends is particularly important for interpretation of methane 

trends. Methane is the second most important anthropogenic greenhouse gas after CO2 and contributes to about a quarter of 

the climate warming experienced todayfrom pre-industrial times to present (Myhre et al., 2013). About 90% of atmospheric 

methane is lost by through oxidation byreaction with tropospheric OH (Kirschke et al., 2013). Atmospheric methane rose by 5 

1-2% a-1 in the 1970s and 1980s, stopped growing in the late 1990s, and resumed a steady growth of 0.3-0.7% a-1 since 2006 

(Rigby et al., 2008;Dlugokencky et al., 2009;Hartmann et al., 2013). Interpretation of these trends has generally focused on 

changing emissions (Rice et al., 2016;Hausmann et al., 2016;Nisbet et al., 2016;Schaefer et al., 2016), but recent studies 

have suggested that the growth over the past decade could be contributed by a decline in global OH concentration (Turner et 

al., 2017;Rigby et al., 2017). On the other hand, the trend in atmospheric CO over the past decade suggests an increase in 10 

global OH concentrations (Gaubert et al., 2017).   

 

Inferring OH trends from methyl chloroform will become more difficult in the future as concentrations approach the 

detection limit (Liang et al., 2017) and possible evasion from the ocean may complicates interpretation (Wennberg et al., 

2004). Finding an alternative proxy for tropospheric OH is viewed as a pressing problem in the atmospheric chemistry 15 

community (Lelieveld et al., 2006). Huang and Prinn (2002) pointed out that the major limitation to 

hydrochlorofluorocarbons and hydrofluorocarbons as the alternative proxy proxies is the lack of accurate estimates of global 

emission inventorys. To alleviate this difficulty, Liang et al. (2017) proposed to use the inter-hemispheric gradients of a suite 

of these compounds to jointly retrieve global emissions and tropospheric OH, but their approach may be limited by the 

sparsity of the surface observation network.   20 

 

Here we propose that satellite methane observations could provide a reliable proxy for global tropospheric OH, using inverse 

analyses that optimize OH concentrations from the satellite data alongside with methane emission rates. Satellite measures 

methane in the shortwave infrared (SWIR, at 1.65 µm and 2.3 µm) by solar backscatter, and in the thermal infrared (TIR, 

around 7.6 µm) by terrestrial emission (Jacob et al., 2016). SWIR measurements are sensitive to the full column of methane 25 

but are mainly restricted to land, while TIR measurements are most sensitive to the middle/upper troposphere and operate 

over both land and ocean (Worden et al., 2015). A number of studies have used SWIR observations from the SCIAMACHY 

and GOSAT satellite instruments to infer methane emissions through inverse analyses. Most of these studies have assumed 

OH to be known (Bergamaschi et al., 2009;Spahni et al., 2011;Bergamaschi et al., 2013;Fraser et al., 2013;Monteil et al., 

2013;Fraser et al., 2014;Houweling et al., 2014;Alexe et al., 2015;Pandey et al., 2015;Turner et al., 2015), while a few have 30 

optimized methane emissions together with OH concentrations using methyl chloroform measurements (Cressot et al., 

2014;Cressot et al., 2016). Maasakkers et al. (2018) used six years of GOSAT data (2010-2015) to constrain methane 

emissions and their trends together with global OH trends.  
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TIR observations are of marginal value for inversion of methane emissions because they are insensitive to the boundary layer 

(Wecht et al., 2012) but they could provide complementary information for constraining OH. The methane sink from 

oxidation by OH has a distinct atmospheric signature peaking in the tropical troposphere, distributed zonally, and shifting 

seasonally with the UV flux (Figure 1). The expected availability in the coming years of new high-density satellite data from 

TROPOMI in the SWIR (Hu et al., 2018) and CrIS in the TIR (Gambacorta et al., 2016) motivates the assessment of the 5 

potential of these data to provide a continuous means for monitoring global tropospheric OH concentrations. 

2 Observing System Simulation Experiment 

We conduct an observing system simulation experiment (OSSE) to examine the feasibility of inferring global tropospheric 

OH concentrations by inversion of satellite observations of atmospheric methane, focusing on the potential of TROPOMI 

(SWIR) and CrIS  as representative of SWIR and TIR observations respectively(TIR). The OSSE approach allows us to 10 

examine the ability of the observations to separately constrain methane emissions and OH, and to investigate the effects of 

errors in inversion parameters.  

 

Figure 2 describes the structure of the OSSE. We use a chemical transport model (GEOS-Chem CTM) (Maasakkers et al., 

2018) to generate a “true” global 3-D time-dependent distribution of methane concentrations, given a “true” state defined by 15 

known 2-D monthly methane emissions and 3-D monthly OH concentrations. The “true” methane concentration field is 

sampled following the specifications of candidate target satellite instrumentsTROPOMI and CrIS to generate synthetic 

observations. We then use these synthetic observations in an inverse analysis system, with an independent CTM simulation 

and deliberately incorrect prior estimates of emissions and OH concentrations, to assess the capability of the observing 

system to retrieve the “true” state. See Brasseur and Jacob (2017) for further discussion of the OSSE approach. 20 

 

The mean tropospheric OH concentration is often defined in terms of the lifetime of a long-lived gas (Prather and 

Spivakovsky, 1990), and in our case the natural metric is the lifetime of a well-mixed tropospheric  methane tracer against 

oxidation by tropospheric OH: 

τ"#$
%# =

𝑛(	𝑑𝑣,-./.0/12-2

𝑘(𝑇) OH 𝑛(	𝑑𝑣,-./.0/12-2

1  25 

where 𝑛( is air number density, 𝑣 is volume, and 𝑘 𝑇 = 2.45×10@ABe@ADDE/G cm3  molec-1 s-1 is the temperature-dependent 

oxidation rate constant (Burkholder et al., 2015). We will also examine interhemispheric differences in OH by integrating 

over the northern and southern hemisphere separately (τ"#$
%#,I# and τ"#$

%#,J#). An advantage of using equation (1) as metric for 

OH is that it is independent of the atmospheric distribution of methane. Note that the integration in the numerator of equation 

(1) is over the troposphere, therefore τ"#$
%#  defined in equation (1) is shorter than the lifetime of total atmospheric methane 30 

against oxidation by tropospheric OH (e.g., Prather et al., 2012). 
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2.1 Model simulation 

We use the GEOS-Chem CTM to simulate atmospheric methane concentrations in the “true” atmosphere and to serve as the 

forward model for the inversion, with different meteorological fields and OH distributions to avoid reduce the “fraternal 

twin” problem (Table 1). GEOS-Chem solves the continuity equation for atmospheric methane as  

∂𝑛
∂t
= −∇ ∙ 𝑛𝐮 + 𝐸 − 𝑘 𝑇 𝑛 OH − minor	sinks 2  5 

where n is the methane number density, u is the wind vector, E is the emission field, and k(T) is the rate constant for reaction 

with OH. Minor sinks include other tropospheric sinks (reaction with the Cl atom and soil uptake) and stratospheric sinks 

specified as 2-D loss rate constants. The transport term −∇ ∙ 𝑛𝐮  includes not only advection by grid-resolved winds but 

also parameterized subgrid convection and boundary layer mixing. The methane simulation with GEOS-Chem v11 is as 

described by Maasakkers et al. (2018), which builds on the previous work of Wecht et al. (2014) and Turner et al. (2015).  10 

 

The GEOS-Chem simulation is conducted on a 4o×5o horizontal grid and 47 vertical layers (~ 30 layers in the troposphere). 

The simulation is for year 2015 with a half-year spin-up starting from June 2014 to establish methane gradients driven by 

synoptic-scale transport (Turner et al., 2015). We vary the state vector elements (i.e., gridded methane emission rates and 

global tropospheric methane OH lifetime) between the “true” simulation and the inversion, to assess the ability of the 15 

inversion to improve estimations of these elementsretrieve the “true” values given synthetic observations. To include the 

effect of errors in model parameters that are not optimized in the inversion, we also vary in the inversion the model 

meteorological fields (for the same meteorological year) and the monthly 3-D distribution of OH. It should be noted that in 

this setup the magnitude (global mean concentration expressed as global tropospheric methane lifetime) and the distribution 

(seasonal and spatial variations) of OH are decoupled and only the former is optimized.  20 

 

Table 1 summarizes the OSSE conditions. The “true” emissions on the 4ox5o grid are the posterior values taken from the 

inversion of GOSAT dataoptimization of methane emissions by (Maasakkers et al.  (., 2018). The prior emissions used in the 

inversion are specified following Maasakkers et al. (2018)include anthropogenic emissions from (global EDGAR v4.3.2 

global emission inventory (European Commission, 2017) replaced with Sheng et al. (2017) in Mexico and Canada for the oil 25 

and gas sector and with Maasakkers et al. (2016) in the US), wetland emissions (from WetCHARTs v1.0 from (Bloom et al. 

(2017)), and other sources (biomass burning, termite, and geological and geothermal seeps). The “true” global OH 

concentration as expressed by τ"#$
%#  is 8.6 years with spatial/seasonal OH distribution from GEOS-Chem v5, while the prior 

estimate is 7.5 years with distribution from GEOS-Chem v11. The difference between the “truth” and the prior for τ"#$
%#  is 

comparable to the difference between a recent observation-based analysis (11.2 ± 1.3 years) (Prather et al., 2012) and the 30 

mean values from current models (9.7 ± 1.5 years) (Naik et al., 2013;Voulgarakis et al., 2013). These OH distributions are 

generated from GEOS-Chem full chemistry simulations with specified methane fields based on observations, and thus are 
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independent of the prior emissions used in the inversion. The OH distributions in GEOS-Chem v5 and v11 are significantly 

different due to many updates between these versions for lightning, isoprene chemistry, halogen chemistry, and emissions 

(Hu et al., 2017). In Section 4, we will consider even larger differences in OH distributions using the ACCMIP model 

ensemble (Naik et al., 2013). 

 5 

GEOS-Chem simulations can be conducted with either of two different meteorological data sets produced by the NASA 

Global Modeling and Assimilation Office (GMAO): Meteorological fields used to produce the “true” methane 

concentrations are the operational Goddard Earth Observing System Forward Processing (GEOS-FP) product (Lucchesi, 

2017) from the NASA Global Modeling and Assimilation Office (GMAO). Meteorological fields used in the forward model 

for the inversion are and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 10 

(Gelaro et al., 2017). Here we use the GEOS-FP data for 2015 to produce the “true” methane concentrations, and the 

MERRA-2 data also for 2015 in the forward model for the inversion. Although GEOS-FP and MERRA-2 have 

commonalities, they , also produced by GMAO. GEOS-FP and MERRA-2 differ in grid resolution (cubed-sphere c720 for 

GEOS-FP and c360 for MERRA-2), model physics (in particular convection), and level of data assimilation. This allows us 

to introduce some model transport error in the OSSE. The root-mean-squared difference in daily methane tropospheric 15 

methane column mixing ratios between the two simulations driven by GEOS-FP and MERRA-2 (with identical emissions 

and OH fields) is ~ 2 ppbv. Comparison of monthly mean columns between the two simulations shows patterns of 

differences on regional and hemispheric scales (Figure 3), introducing a systematic component of inversion error.  

  

2.2 Synthetic observations 20 

Synthetic observations sample the “true” methane fields following the configurations of the satellite instrument with 

instrument noise added (Figure 2). Here we consider the TROPOMI instrument for SWIR and the CrIS instrument for TIR. 

For SWIR, the sampling is at local time 13:30 over land; and for TIR, at both 13:30 and 1:30, and over land and ocean. The 

retrieval success rate (ratio between the number of successful retrievals and the number of attempted retrievals) is taken to be 

3% for SWIR (Hu et al., 2016) and 60% for TIR (Xiong et al., 2008) because SWIR observations require cloud-free pixels 25 

whereas TIR has tolerance for fractional cloud cover. The retrievals are for the dry air column mixing ratio X [ppb] after 

applying typical averaging kernels to describe vertical sensitivity (Figure 34). Gaussian random noise is added to the 

individual retrievals to simulate the instrument error, with a standard deviation of 0.6% for SWIR TROPOMI (Butz et al., 

2012) and 2% for TIR CrIS (Gambacorta et al., 2016). To account for model biases in simulation of stratospheric methane 

(Patra et al., 2011) and following the recommendation of Saad et al. (2016), we replace the concentrations above 200 hPa by 30 

the 2-D seasonal climatology from ACE-FTS satellite observations (Koo et al., 2017), both in the synthetic observations and 

in the forward model. Our test shows that the biases in stratospheric methane concentrations resulting from different 

meteorological fields (MERRA-2 for the forward model and GEOS-FP for the “true” atmosphere) can lead to substantial 
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biases in posterior estimates of τ"#$
%# , particularly for satellite observing systems involving TIR observations. This problem is 

solved by imposition of the ACE-FTS stratospheric methane field.  

 

The synthetic observations are sampled on the GEOS-Chem 4o×5o grid for the purpose of the inversion. This means that 

successful retrievals from individual pixels are averaged over 4o×5o grid cells and. W we assume that and the noise is 5 

random and thus reduced by the square root of the number of successful retrievals (Ni,t) within grid cell i at time t. The noise 

will be greater if there are systematic errors in the retrievals. Ni,t is determined as the ratio between the grid cell area (𝐴[) and 

the pixel area (a), weighted by the local cloud-free fraction (1 − 𝑓[,,) taken from the “true” GEOS-FP meteorological fields.: 

𝑁[,, = 𝑐×
𝐴[× 1 − 𝑓[,,

𝑎
3  

The global scaling factor c enforces the designed retrieval success rate (3% for SWIR and 60% for TIR). For 𝑎, we use the 10 

nadir resolution of SWIR TROPOMI (7×7 km2) and TIR CrIS (14×14 km2). The brackets [] represent the rounding 

function. 

 

2.3 Inversion 

We use the synthetic observations (assembled in an observation vector y) together with the prior estimates (𝐱b) and error 15 

covariance matrices for the prior (𝐒b) and observations (𝐒%) (Figure 2) to find the analytic solution to the inverse problem. 

The state vector (x) that we seek to optimize includes consists of annual methane emission rates on a 4o×5o grid cells over 

for ice-free land (excluding Antarctica) (1009 elements) plus either 1 or 2 elements representing the global or hemispheric 

methane inverse lifetimes (loss frequency).  

 20 

The inverse problem presented here is not strictly linear because the loss rate depends on the methane concentration. 

However, a quasi-linearity can be assumed, as the range of variability of methane concentrations is sufficiently small. 

GEOS-Chem canis therefore be described for the purpose of the inversion by its Jacobian matrix K = ∂y/∂x, which relates 

linearly x to y andthrough y = 𝐊𝐱 + 𝐜 (𝐜 is an initialization constant) can therefore be described for the purpose of the 

inversion by its Jacobian matrix K = ∂y/∂x. We compute explicitly this Jacobian matrix by perturbing the individual terms of 25 

x and calculating the resulting changes in y with GEOS-Chem. 

 

The observation error covariance matrix 𝐒% is specified as a diagonal matrix summing the instrument and forward model 

error variances. The instrument error is computed as described in Section 2.2. The forward model error variance is derived 

with the residual error method (Heald et al., 2004). We assume no mModel transport error correlations (which would 30 

introduce off-diagonal terms in 𝐒%) can be ignored for daily or twice daily sampling on a the 4o×5o grid.  (Heald et al., 

2004). The prior error covariance matrix SA is also specified as a diagonal matrix, assuming 50% error standard deviation for 
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gridded emission rates as in Maasakkers et al. (2018), and 10% error standard deviation for the methane inverse lifetime 

(Naik et al., 2013). TAgain this assumes no spatial error correlation in the prior emissions on the 4o×5o grid, which is likely 

adequate for anthropogenic emissions because of the fine spatial variability of different source types (Maasakkers et al., 

2016) but may not be adequate for wetlands emissions (Bloom et al., 2017). Prior emission errors can only be roughly 

characterized in any case.  5 

 

 

The Bayesian cost function for the inverse problem (Brasseur and Jacob, 2017) is  

𝐽 𝐱 = 𝐱 − 𝐱b h𝐒b@A 𝐱 − 𝐱b + γ 𝐲 − 𝐊𝐱 h𝐒%@A 𝐲 − 𝐊𝐱 4  

where 𝛾 is an adjustable regularization parameter to prevent overfitting to the observations (see below). Analytic solution to 10 

the J(x) minimization problem (dJ/dx = 0) yields the posterior estimate 𝐱:  

𝐱 = 𝐱b + 𝐆 𝐲 − 𝐊𝐱b 5  

where G is the gain matrix given by 

𝐆 = γ𝐊h𝐒%@A𝐊 + 𝐒b@A @Aγ𝐊h𝐒%@A 6  

 15 

The solution also provides a closed form of the posterior error covariance matrix (𝐒): 

𝐒 = γ𝐊h𝐒%@A𝐊 + 𝐒b@A @A	 7  

 

The diagonal elements of 𝐒 represents the error variances of the posterior estimates 𝐱.  

 20 

The need for a regularization parameter γ in equation (4) is because of uncertainty in the specifications of  Ignoring the error 

correlations in 𝐒% and SA , and notably the assumption that these matrices are diagonal. may lead to overfitting when the cost 

function in equation (4) is minimized with γ = 1 in a sStandard Bayesian optimization. by minimizing the cost function in 

equation (4) with γ = 1 assumes that the observations are independent and identically distributed (IID condition) but this is 

generally not the case and can result in overfitting. Here we determine based on the L-curve plot (Hansen, 2000) that optimal 25 

γ isshould be in the range of 0.01-0.1 (left panel of Figure 5). We also show cThis range of values also hoose an optimal 

value for γ based on the ability of the inversion to achieves the best match agreement of the inversion with the “true” 

emissions in this γ range as evaluated with the root mean square error (RMSE) (right panel of Figure 5). We use γ = 0.05 in 

the subsequent analysis. The small γ value mainly results from neglecting the correlations in the model transport errors; a 

sensitivity test in which both prior and “true” simulations are driven by MERRA-2 meteorology) shows best performance 30 

with γ = 1 for the metrics of Figure 45. 

 

3 Joint Optimization of Global 𝛕𝐂𝐇𝟒
𝐎𝐇 and Methane Emission Rates 
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Figure 5 6 shows the ability of the three different satellite observing systems considered here (SWIR, TIR, and SWIR+TIR) 

to jointly constrain gridded emission rates and τ"#$
%# . The ability to constrain the spatial distribution of emissions is measured 

by the RMSE on the 4o×5o grid. Although all three satellite observing systems retrieve global total methane emissions within 

5% of the “true” value (not shown), tThe inversions with SWIR observations areis able to resolve the distribution ofconstrain 

methane emissions (low RMSE) but  while the one with only TIR observations is not (high RMSE). This is consistent with 5 

the low sensitivity of TIR to the lower troposphere (Figure 34), where most of the information on spatially resolved 

emissions is contained. On the other hand, both SWIR and TIR are able to retrieve τ"#$
%#  within 3% of the “true” value.  

 

Analysis of the posterior error covariance matrix (S) shows that the error standard deviations σv on the posterior estimate of 

τ"#$
%#  are 0.75%, 0.46%, and 0.39% for SWIR, TIR, and SWIR+TIR satellite observing systems, respectively, for a one-year 10 

inversion (Table 2). S tends to be overoptimistic as a measure of posterior error because it assumes no systematic error in 

model parameters affecting the accuracy of the inversion (Brasseur and Jacob, 2017). Below we will explore the effect of 

errors in the global OH distribution as a limitation on accuracy. 

 

A central question is the ability of the inversion to independently constrain τ"#$
%# global OH concentrations and total 15 

emissions. The error covariance between the two can be computed from 𝐒 (See Appendix for the method) and is visualized 

in Figure 67. For SWIR, the significant negative correlation (r = -0.78) implies some aliasing between corrections to OH 

concentration and emissions; nevertheless, the posterior error on  τ"#$
%# . is greatly decreased relative to its 10% prior value. 

Error correlation is much less (r = -0.47) with the TIR observing system and the error on . τ"#$
%# is further decreased.  TIR 

observations are more effective than SWIR for independently constraining global emissions and OH concentrations because 20 

they provide better global coverage (higherbetter retrieval success rate) including over the oceans. TIR observations can 

constrain global total emissions although they are incapable of resolving the spatial distribution of emission rates (Figure 5), 

and this provides a basis for successful inversion of τ"#$
%# . The combined SWIR+TIR system results in smallest confidence 

ellipses (Figure 6) has the lowest posterior errors for  among the three satellite observing systems, suggesting that combining 

SWIR and TIR observations improves the ability to jointly constrain OH concentration and emissions. It should be noted that 25 

because SWIR+TIR achieves smaller errors in both τ"#$
%#  and global total emission (probable solutions of τ"#$

%#  and total even 

though the error correlation with global emissions lie in a smaller subspace), the error correlation (r = -0.57) also become 

less consequential than the SWIR oris greater than for TIR-only. case. 

 

To go further than the error correlation analysis, we used the OSSE environment to directly test whether perturbations to OH 30 

concentrations and global emissions can be retrieved independently. We perturbed the emission rates and/or OH 

concentrations in three additional simulations for the “true” atmosphere. In the first case we increased global emissions by 
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10%, in the second case we decreased global OH concentration by 5%, and in the third case we combined both perturbations. 

Figure 7 8 shows that the posterior estimations all correctly identify the percentage changes in global total emissions and/or 

OH concentration, within 2% from the “true” changes, in all three tests. This result provides evidence thatfurther 

demonstrates the potential for satellite observations of methane to independently constrain global methane emissions and OH 

concentrations.  our method has good ability to resolve the aliasing effect between emissions and OH on the global scale. 5 

Among all three satellite observing systems, inferred OH percentage changes with SWIR+TIR observations are closest to the 

“true” changes for all three cases, demonstrating that combining SWIR and TIR observations improves the ability to separate 

changes in OH from changes in emissions, consistent with the analysis of posterior error covariance matrices (Figure 67). 

The results shown in Figure 7 8 suggest that satellite observations of methane should be able to detect trends in OH 

separately from trends in methane emissions, which has important implications for attribution of trends in methane 10 

observations (Turner et al., 2017;Rigby et al., 2017). 

4 Impact of Errors in Prior OH Distributions 

In our method, global OH abundance (i.e., global methane inverse lifetime) is represented by a single state vector element . 

τ"#$
%# . The seasonal and spatial distribution of OH is a forward model parameter that the inversion does not seek to optimize. 

Errors in the prior OH distribution may therefore result in errors in the posterior estimate of τ"#$
%#  that , which may not be 15 

fully captured by 𝐒. To test the impact of this uncertainty source, we use alternative “true” OH distributions from the 11 

models that participated in the ACCMIP intercomparison (Naik et al., 2013), replacing the OH distribution from GEOS-

Chem v5. The ACCMIP archive includes provides present-day (the 2000s) 3-D monthly mean OH concentrations from the 

different models and was retrieved downloaded from http://badc.nerc.ac.uk/ (See Lamarque et al. (2013) for model 

descriptions). The ACCMIPse models differ greatly in both global OH abundance and distribution (Figure 89). To focus on 20 

errors in OH distributions, we applied a global scaling factor to each model to impose a methane lifetime τ"#$
%# of 8.6 years, 

same as in our baseline “true” atmosphere. To avoid complicating influence from errors in the meteorological field, we do 

not vary the meteorological field (i.e. MERRA-2) between the “true” simulation and the inversion in this test of the 

sensitivity to the OH distribution. 

 25 

Figure 9 10 shows the posterior estimation of  τ"#$
%#  resulting from the 12 different “true” OH distributions (all with the same 

“true” τ"#$
%# ). For all three satellite observing systems, the median posterior τ"#$

%#  is within 2% of the “true” τ"#$
%# . But some 

model OH distributions (CESM, GISS, and CICERO) result in large errors when using TIR observations even though they 

do not seem anomalous in Figure 89. Further inspection indicates that the errors are due to large anomalies in hemispheric 

τ"#$
%#  ratios in boreal winter (Figure 11), when the effect of emissions and OH on atmospheric methane is most differentiated. 30 

Errors in posterior τ"#$
%# 	are smaller for SWIR only and this is because SWIR draws its information on emissions from 

regional patterns in concentrations, rather than the larger-scale patterns in TIR. We determine the relative accuracy due to the 
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uncertainty in the OH distribution (σa ) as the ratio of the half interquartile range to the “true” τ"#$
%# . This results in σa  of 

2.6%, 6.9%, and 6.0% for SWIR, TIR, and SWIR+TIR (Table 2). Our results suggest that satellite observing systems 

involving TIR measurements are likely more susceptible to errors in the OH distribution for τ"#$
%#  estimations.  

 

We also applied these different “true” OH distributions to the OSSE test of Figure 7 8 perturbing emissions and/or OH to 5 

evaluate the impact of errors in OH distribution on detecting and separating changes in global τ"#$
%# and emissions. The spread 

in inferred changes in OH is almost negligible for all the observing systems considered (Figure 78), indicating that the errors 

resulting from imperfect OH distribution in a single-year inversion are systematic. An important implication is that these 

errors from imperfect OH distribution (Figure 9) may not impair the ability to detect long-terminter-annual trends in OH 

concentrations, as long as the inter-annual variability in the OH distribution is relatively small. We therefore present them in 10 

Table 2 as a statement of accuracy. 

 

The above results suggest that we may improve the estimation of τ"#$
%#  if the inversion is able to retrieve information on the 

OH distribution from the satellite methane observations. For this purpose, we tried to optimize separately the mean OH 

concentrations in the northern and southern hemisphere, expressed as τ"#$
%#,I# and τ"#$

%#,J#. In general, the inversion is able to 15 

resolve the interhemispheric OH ratio (τ"#$
%#,I#/τ"#$

%#,J#) for the range of OH distributions from the different global models 

using both SWIR and TIR satellite observing systems (Figure 1012). However, the improvement in the estimate of the global 

OH concentration τ"#$
%#  (computed as harmonic mean of τ"#$

%#,I#  and τ"#$
%#,J# ) is insignificant in most cases (not shown), 

indicating that errors in other factors in OH distributions (e.g., vertical and seasonal distributions) in addition to the 

hemispheric ratio are also important contributors to errors shown in Figure 109. A careful design of the state vector that 20 

balances the resolution of OH distribution with the aliasing of OH and emissions should further improve the accuracy of the 

method but is beyond the scope of the current study. 

 

5 Conclusions 

We conducted observing system simulation experiments (OSSEs) to test the feasibility of monitoring global tropospheric 25 

OH concentrations using satellite observations of methane. We considered short-wave infrared (SWIR) TROPOMI and 

thermal infrared (TIR) CrIS as target candidate satellite instruments for this application, since methane retrievals from these 

instruments are expected to be available in the near future and will provide much improved coverage compared to current 

instruments. Through inversion of synthetic observations from these instruments sampling a “true” atmosphere, we jointly 

optimized gridded methane emission rates and the global tropospheric OH concentration (expressed as the methane lifetime 30 

of a well-mixed tropospheric methane tracer against oxidation by tropospheric OH, τ"#$
%#  as given in Equation (1)). The 
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OSSE used different meteorological fields for the “true” atmosphere and for the inversion, and tested the effect of errors in 

the prior OH distributions. 

 

Our results show that either SWIR or TIR observations can constrain τ"#$
%#  with a precision better than 1%. This is an 

optimistic estimation of precision because we assume observational noise to be random while real retrieval errors are subject 5 

to a multitude of factorswhereas it would have a systematic component that we cannot characterize. Nevertheless, the results 

show that the method has strong potential. Analysis of the posterior error covariance matrix shows that emissions and global 

OH concentrations can be separately retrieved because they have different signatures on the distribution of atmospheric 

methane. There is some error correlation, particularly for SWIR-only observations, but the posterior errors on global OH 

concentrations still improve considerably on the prior. Simulation experiments with perturbations to either global methane 10 

emissions and/or global OH concentration demonstrate that the method can distinguish changes in OH from changes in 

emissions as contributors to trends in atmospheric methane. Best performance is achieved by combining the SWIR and TIR 

observations. 

 

The effect of prior eErrors in the seasonal and spatial distributions of OH concentrations was investigated by considering 15 

global 3-D monthly concentrations fields from the 12 ACCMIP models (Naik et al., 2013), which show considerable inter-

model variability.  We find that these errors limit the accuracy of our method but precision is not compromised, so that inter-

annual OH trends can still be retrieved.  The effect of errors in the OH distribution could be addressed by optimizing this 

distribution in the state vector for the inversion, and we show that the interhemispheric OH difference at least can be 

successfully retrieved within ~ 10% of the “true” value. assumed in the inversion of methane concentrations are the principal 20 

limitation to the accuracy in inferring the global OH concentration. Using archived OH distributions from the 12 ACCMIP 

models, we find that the majority of the models can accurately retrieve global OH concentrations but a few are problematic 

when using TIR observations. Errors in the OH distribution do not degrade the ability to retrieve perturbations to OH fields 

and separate them from perturbations in emissions. Interhemispheric ratios of OH are also shown to be successfully 

constrained within ~ 10% of the “true” values if inversion optimizes hemispheric OH concentrations.  25 

 

We conclude that satellite observations of methane are a potentially promising replacement alternative for methyl 

chloroform as a proxy for global tropospheric OH concentrations. Based on our OSSE ensemble results, we estimate the 

precision of the method to be 0.75%, 0.46%, and 0.39% and accuracy 2.6%, 6.9%, and 6.0% for SWIR, TIR, and 

SWIR+TIR satellite observing systems, respectively. The accuracy is limited primarily by uncertainty in the OH distribution 30 

but inference of temporal trends in OH would not be affected if any bias in the OH distribution remains constant. These 

estimates are probably overoptimistic because of the idealized treatment of errors inherent in the OSSE approach. The 

availability of TROPOMI and CrIS data will soon provide an opportunity to test the method with actual observations. 
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Appendix 

The posterior error covariance matrix (𝐒) in our inversion is a 1010×1010 matrix that characterizes the error covariance 

structure of gridded emission rates (𝐸[) in 1009 grid cells and global methane lifetime against oxidation by tropospheric OH 

(τ"#$
%# ). We condense 𝐒 into a 2×2 matrix 𝐒𝟐, which represents the error covariance of global total emissions (𝐸G = 𝐸[x

[yA , 

where n=1009) and τ"#$
%# : 5 

𝐒B =
Var(𝐸G) Cov(𝐸G, τ"#$

%# )
Cov(𝐸G, τ"#$

%# ) Var(τ"#$
%# )

 

where Var(τ"#$
%# ) can beis directly obtained from 𝐒, and Var 𝐸G  and Cov 𝐸G, τ"#$

%#  can beare computed from 𝐒 with the 

following formulae: 

Var 𝐸G = Var(𝐸[)
x

[yA

+ 2 Cov(𝐸[, 𝐸~)
A�[�~�x

 

Cov 𝐸G, τ"#$
%# = Cov(𝐸[, τ"#$

%# )
x

[yA

 10 

𝐒B can then be visualized as a bi-variate Gaussian distribution (Figure 67). 
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Table 1 OSSE conditions. 

 
“True” Atmosphere 

Inversion Prior estimate and 

Parameters 

State Vector (x) 

Gridded Emission Rates a Posterior from GOSAT analysisb EDGAR v4.3.2+ WetCHARTsc 

Global OH concentration 

(τ"#$
%# ) d 

8.6 years  7.5 years 

Parameters 

OH Distribution  GEOS-Chem v5, ACCMIP e GEOS-Chem v11 

Meteorological Field f GEOS-FP  MERRA-2 

a Methane emission rates on a 4o×5o grid over ice-free land (1009 elements).  
b From Maasakkers et al. (2018). 
c Prior emissions are specified following Maasakkers et al. (2018). The prior estimate for the inversion uses anthropogenic 

emissions from EDGAR v4.3.2 (European Commission, 2017) except in the US (Maasakkers et al., 2016) and oil/gas in 5 

Canada and Mexico (Sheng et al., 2017). is used as the global default for anthropogenic emissions, but is replaced with 

Sheng et al. (2017) in Mexico and Canada for the oil and gas sector and Maasakkers et al. (2016) in the US. WetCHARTs is 

from Bloom et al. (2017). Sources from biomass burning, termite, and geological seeps are also specified with available 

emission inventories.   
d Expressed as the lifetime of a well-mixing tropospheric methane lifetime tracer against oxidation by tropospheric OH 10 

(equation (1)). 
e Sensitivity simulations in Section 4 use 11 global OH distributions from the ACCMIP ensemble (Naik et al., 2013).  
f Meteorological fields are for 2015.   
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Table 2   Uncertainty in 𝛕𝐂𝐇𝟒
𝐎𝐇 	estimations with different satellite observing systems. 

Observing System SWIR TIR SWIR+TIR 

Precision (σv) 0.75% 0.46% 0.39% 

Accuracy (σ�) a 2.6% 6.9% 6.0% 
a Accuracy is derived from inversions using different OH distributions from 12 global models for the “true” atmosphere 

(Section 4). 

 5 
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Figure 1 Monthly methane loss rate from oxidation by OH in January and July 2015 computed with the GEOS-Chem 

model (Maasakkers et al., 2018Wecht et al., 2014). The top panels show the column loss rates and the bottom panels 5 

show the zonally integrated loss rates.  
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Figure 2 Observing System Simulation Experiment (OSSE) framework to test the ability of SWIR and TIR satellite 

observations of atmospheric methane to simultaneously constrain methane emission rates (Ei) and the global mean 

tropospheric OH concentration expressed as methane lifetime against oxidation by tropospheric OH (𝛕𝐂𝐇𝟒
𝐎𝐇 ). 
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Figure 3 Differences in monthly mean methane dry air tropospheric column mixing ratios between two simulations 

with different meteorological fields (GEOS-FP minus MERRA-2) for January (left) and July (right).  

 

  5 
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Figure 3 4 Typical vertical sensitivities (column averaging kernels) for satellite observations of atmospheric methane 

in the SWIR and in the TIR. Adapted from Worden et al. (2015). 
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Figure 4 5 Optimization of the regularization parameter γ in equation (4) for the SWIR+TIR satellite observing 

systemfor the inversion. Left: L-Curve plot (log-log plot of the squared errors of a regularized solution versus 

corresponding residual). The denoted numbers are vValues of γ corresponding to each point are indicated. The 5 

“turning corner” of the curve indicates an optimal choice of γ (Hansen, 2000). Right: Ability of the inversion to match 

the “true” gridded methane emission field as a function of the regularization parameter γ in equation (4) for the 

SWIR+TIR satellite observing system. The ability is measured by the RMSE. 
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Figure 5 6 Ability of SWIR, TIR, and SWIR+TIR systems to jointly constrain gridded methane emissions and global 

OH concentrations (as measured by the methane lifetime 𝛕𝐂𝐇𝟒
𝐎𝐇 )	in our base 1-year inversion. The left panel shows the 

RMSE in fitting the “true” 4ox5o gridded emission rates. The right panel compares the posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇  to 

the prior estimate and to the “true” value. The prior error standard deviation is shown as a vertical bar. Posterior 5 

error bars are too small to be shown, although this reflects overoptimistic error characterization in the inversion (see 

text). 
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Figure 6 7 Joint distribution of relative uncertainties in 𝛕𝐂𝐇𝟒
𝐎𝐇  and total methane emissions, summarized as given by 

the from posterior error covariance matrices, for different satellite observing systems. Contours represent confidence 

ellipses from probability 0.1 (innermost) to 0.9 (outermost) at an interval of 0.1. The correlation coefficients (r) 5 

between errors in 𝛕𝐂𝐇𝟒
𝐎𝐇  and total methane emissions are inset. 
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Figure 7 8 OSSE experiments perturbing global emissions (E+10%), OH (OH-5%), and both (E+10%  OH-5%) to 

test whether the inversion can retrieve separately these perturbations. Results are shown for different satellite 

observing systems (SWIR, TIR, and SWIR+TIR). Blue symbols represent posterior estimation of changes in 

emissions and red symbols posterior estimation of change in global OH concentration. The boxes represent the 75th, 5 

50th, and 25th percentiles and the whiskers represent the maximum and minimum of the results using 12 different OH 

distributions in “true” simulations. Dashed lines are “true” changes in global emissions (blue) and OH concentration 

(red). 
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Figure 8 9 Variability of OH distributions across global models. The figure shows annual zonal mean OH 

concentrations for 13 different models used in the OSSE. GEOS-Chem v11 is used in the forward model for the 

inversion with 𝛕𝐂𝐇𝟒
𝐎𝐇  = 7.5 years. GEOS-Chem v5 is used for the baseline “true” atmosphere with 𝛕𝐂𝐇𝟒

𝐎𝐇  = 8.6 years. The 

other 11 distributions are from the ACCMIP model ensemble (Naik et al., 2013), with global scaling factors to impose  5 

𝛕𝐂𝐇𝟒
𝐎𝐇  = 8.6 years in all cases, and are used in alternative representations of the “true” atmosphere. 

  



32 
 

 
Figure 9 10 Effect of error in OH distribution on the optimization of the global OH concentration (methane lifetime 

𝛕𝐂𝐇𝟒
𝐎𝐇 )	 from satellite observations. The Figure shows the posterior estimation of 𝛕𝐂𝐇𝟒

𝐎𝐇  using 12 different OH 

distributions (Figure 89) in simulations of the “true” atmosphere sampled by SWIR, TIR, and SWIR+TIR 

instruments, in comparison with “true” (dashed line) and prior (dotted line) 𝛕𝐂𝐇𝟒
𝐎𝐇 . The boxes represent the 75th , 50th, 5 

and 25th percentiles, solid lines inside the boxes represent the medians, the whiskers represent the maximum and 

minimum, and dots represent results for each OH distribution. 
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Figure 11 Relationship between errors in posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇 and errors in the prior 𝛕𝐂𝐇𝟒

𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒
𝐎𝐇,𝐒𝐇 ratio for the 

entire year and for boreal winter (December, January, and Feburary). Red dots represent the three cases with large 

positive errors in posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇  in Figure 10 and blue dots represent the other nine cases.  

The plots show that the large errors in posterior estimates of 𝛕𝐂𝐇𝟒
𝐎𝐇  are associated with large errors in the prior 5 

𝛕𝐂𝐇𝟒
𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒

𝐎𝐇,𝐒𝐇 ratio in DJF months.  
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Figure 10 12 Ability of the inversion of satellite methane observations to retrieve the interhemispheric OH ratio 

defined by 𝛕𝐂𝐇𝟒
𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒

𝐎𝐇,𝐒𝐇. Posterior inversion results using either SWIR, or TIR or SWIR+TIR observations are 

compared to the “true” ratio from 12 different model OH distributions (Figure 89). The dashed vertical line 

represents the prior 𝛕𝐂𝐇𝟒
𝐎𝐇,𝐍𝐇/𝛕𝐂𝐇𝟒

𝐎𝐇,𝐒𝐇 common to all inversions. 5 
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