Reviewer 1:

We thank the reviewer for the careful reading of the manuscript and helpful comments. We have revised the manuscript following his/her suggestions as is described below.

Reviewer #1: The manuscript studies the BC deposition and its radiative effect on the snow cover in the northern Tibetan Plateau. Two sets of measurements were used in this study, which included the air samplings of BC particles during 2004-2006 and the ice core drillings of BC deposition during 1986-1994. These data are very interesting and valuable. In addition, two numerical models are used in this study to analyze the data, including; a global chemical transportation model (MOZART-4) and a radiative transfer model (SNICAR). Their analysis shows that there is a high peak of BC deposition at Muztagh Ata in Northern Tibetan Plateau during 1991-1992 (about 3-4 times higher than other years), caused by the large Kuwait fires at the end of the first Gulf War in 1991. This result suggests that the upward BC emissions had important impacts on this remote site located in Northern Tibetan Plateau. The radiative effect calculated by the radiative Only one month sampling of PM2.5 was conducted in this study, which cannot view the current status of atmospheric fine PM2.5. At least four seasons are commonly required in a typical PM2.5 study. transfer model (SNICAR) shows that a significant increase for the snow melting in Northern Tibetan Plateau due to this fire event. This study is suitable for the scientific scope of ACP, and can be accepted for the publication in ACP. However, there are some minor comments, which should be addressed in the revised version:

Comments; (1) The Authors define 4 BC source regions, which could have important impacts on the BC deposition at the remote site located in Northern Tibetan Plateau. They should make more detailed description for the definition of these 4 regions.

Response: To address the reviewer's comments, we define the 4 sources regions with a detailed description. The corresponding revision can be found from the line 414 to 422. We also plotted the topography of the study region as shown in Fig.1.

(2) The Authors have detailed description for the ice core drill measurements. However, the description of TSP is rather too simple. More descriptions of the TSP should be required.

Response: According to the suggestion, we added the information of the samplers of TSP, including sampling flow rates, power of device and the identification of valid samples from the line 163 to 172. The description of ice core drill measurements in section 2.2 has been revised correspondingly.

(3) The quality of Fig. 6 should be improved. The labels are too small.

Response: Fig.6 has been improved as request.

(4) There are some English typos. For example, in the line 297, Page 9, "In order to the effect of the huge Kuwait fires on the BC ice core deposition" should be "In order to study the effect of the huge Kuwait fires on the BC ice core deposition"

Response: Corrected. We've also checked other typos and make corrections in the revised version.

Reviewer 2:

We thank the reviewer for the careful reading of the manuscript and helpful comments. We have revised the manuscript following his/her suggestions as is described below.

Reviewer #2: This articel investigate the large Kuwait fires on BC deposition on the ice core at Muztagh Ata Mountain, Northern Tibetan Plateau and the related radiative forecing. It has excellent scientific point and is meaningful for the current Tibetan Plateau experiments. I strongly suggest the acceptance and qulick publishment of the articel. Following is some comments and suggestions for the paper:

(1) In Fig.1, the topography should be plotted to illustrate the plateau characteristics.

Response: The topography of Fig.1 has been updated.

(2) In Fig.2, the BC measurements were much lower during Apr to May of 2004, and sharply increased on Jun, while the model results were very flat, the author should give some explanations.

Response: To address the reviewer's comment, we make explanation that the difference between the measured and the modeled BC concentrations during the spring of 2004 is due to the ucertainties of the emissions, simulated meteorological parameter and the low horizontal resolution, which lead to

difference of topography between the model and actual situation. These explanations can be added from line 309 to 320.

(3) I suggest the author made more discussion on the possible impact of the change of ice on regional climate, such as the flood, the drought in china.

Response: Thanks for the constructive suggestion from reviewer. We've added discussion from the line 516-542.

1	Black carbon (BC) in North Tibetan Mountain; Effect of		
2	Kuwait fires on glacier		
3			
4			
5 6	Jiamao Zhou ^{1,6} , Xuexi Tie ^{1,2} , Baiqing Xu ³ , Shuyu Zhao ¹ , Mo Wang ³ , Guohui Li ¹ , Ting Zhang ¹ , Zhuzi Zhao ^{1,7} , Suixin Liu ¹ , Song Yang ³ , Luyu Chang ^{4,5} , Junji Cao ¹		带格式的:
7 8	And Zhung , Zhuzi Zhuy , Suikin Dig , Song Tung , Duyu Chung , Sunji Cuo		带格式的: 带格式的: 带格式的:
9	¹ KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,	////	带格式的:
10	China	$\langle \rangle$	带格式的:
11	² Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese		带格式的:
12	Academy of Sciences, Xiamen 361021, China		带格式的:
13	³ Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan		带格式的:
14	Plateau Research, Chinese Academy of Sciences, Beijing 100101, China		
15	⁴ Shanghai Meteorological Service, Shanghai, 200030, China		
16	⁵ Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China		
17	⁶ University of Chinese Academy of Sciences, Beijing 100049, China		
18	⁷ School of Chemistry & Environmental Engineering, Jiangsu University of Technology		带格式的:
19		\langle	带格式的: 对齐到网格 带格式的:
20 21	Correspondence to: Xue Xi Tie (tiexx@ieecas.cn) or Baiqing Xu (baiqing@itpcas.ac.cn)		New Roman, 磅, 字体颜1
22			
23			

带格式的: 突出显示
带格式的: 上标, 突出显示
带格式的: 突出显示
带格式的: 上标
带格式的: 欠出显示
带格式的: 上标, 突出显示
带格式的: 没带息示
带格式的: 段落间距段前: 0.5 行
带格式的: 段落间距段前: 0.8 行

 带格式的:上标

 带格式的:行距:1.5 倍行距,不 对齐到网格

 带格式的:字体:(默认)Times New Roman,(中文)+中文正文,10 磅,字体颜色:文字 1

Abstract. The BC deposition on the ice core at Muztagh Ata Mountain, Northern 24 Tibetan Plateau was analyzed. Two sets of measurements were used in this study, 25 which included the air samplings of BC particles during 2004-2006 and the ice core 26 drillings of BC deposition during 1986-1994. Two numerical models were used to 27 analyze the measured data. A global chemical transportation model (MOZART-4) 28 was used to analyze the BC transport from the source regions, and a radiative transfer 29 model (SNICAR) was used to study the effect of BC on snow albedo. The results 30 show that during 1991-1992, there was a strong spike of the BC deposition at 31 32 Muztagh Ata, suggesting that there was an unusual emission in the upward region during this period. This high peak of BC deposition was investigated by using the 33 34 global chemical transportation model (MOZART-4). The analysis indicated that the 35 emissions from large Kuwait fires at the end of the first Gulf War in 1991 caused this 36 high peak of the BC concentrations and deposition (about 3-4 times higher than other 37 years) at the Muztagh Ata Mountain, suggesting that the upward BC emissions had 38 important impacts on this remote site located in Northern Tibetan Plateau. Thus, there is a need to quantitatively estimate the effect of surrounding emissions on the BC 39 40 concentrations in the northern Tibetan Plateau. In this study, a sensitive study with 4 individual BC emission regions (Central Asia, Europe, Persian Gulf, and South Asia) 41 42 was conducted by using the MOZART-4 model. The result suggests that during the 43 "normal period" (non Kuwait Fires), the largest effect was due to the Central Asia source (44%) during Indian monsoon period, while during non-monsoon period, the 44 largest effect was due to the South Asia source (34%). The increase of radiative 45 forcing increase (RFI) due to the deposition of BC on snow was estimated by using 46 the radiative transfer model (SNICAR). The results shows that under the fresh snow 47 assumption, the estimated increase of RFI ranged from 0.2 W m⁻² to 2.5 W m⁻², while 48 under the aged snow assumption, the estimated increase of RFI ranged from 0.9 W 49 m⁻² to 5.7 W m⁻². During the Kuwait fires period, the RFI values increased about 2-5 50 times higher than the "normal period", suggesting a significant increase for the snow 51 melting in Northern Tibetan Plateau due to this fire event. This result suggests that the 52 variability of BC deposition at the Muztagh Ata Mountain provides useful information 53 to study the effect of the upward BC emissions on environmental and climate issues in 54 the Northern Tibetan Plateau. The radiative effect of BC deposition on the snow 55 56 melting provides important information regarding the water resources in the region.-57

带格式的: 字体: 小四

带格式的:定义网格后自动调整 右缩进,调整中文与西文文字的间 距,调整中文与数字的间距

58 Key Words; Northern Tibetan glaciers, BC deposition, MOZART model

60 **1 Introduction**

61	Black carbon (BC) particles emitted from combustion are considered as an important
62	air pollutant, as they have direct effect change the radiative balance of the atmosphere
63	directly by absorbing and scattering solar radiation, and indirect effect by the
64	changinge of cloud microphysical processthe microphysical process of cloud (acting
65	as ice nuclei) and efficiency of precipitation efficiency (acting as cloud condensation
66	nuclei) (Ramanathan et al., 2001), Albedo changes induced by strongly light
67	absorbing component by deposited on the surface of snow and ice are the key key
68	parametersto determine govern the radiative forcing and accelerate melting (Holben
69	et al., 1998; Hansen and Nazarenko, 2004), Due to the strong regional to local
70	distribution of BC, Tthese important properties make BC as a key topic related with
71	climate change but are not well understood due to the very different inhomogeneous
72	spatial and temporal distribution of BC, especially in remote areas, particularly in
73	remote regions, such as the Tibetan Plateau.
74	
75	BC particles can deposit and preserve in the ice by the progress of post-deposition on
76	the glaciers and ice sheets. Retrieved ice cores from remote mountain glaciers and ice
77	sheets provide useful information of the historical BC aerosol emissions and
78	synchronous meteorology conditions. Previous studies on records of carbonaceous
79	aerosols show that the emissions of fossil fuel combustion from Central Europe had
80	significant impact on the glacier in the Swiss Alps (Lavanchy et al., 1999), Bisiaux et
81	al., (2012), analyzed two ice cores dirlled in Antarctica and found that the ice core
82	records of BC deposition reflected the change of atmospheric BC emission,
83	distribution and transport in Southern Hemisphere. ByIce cores drilled from
84	Antarctica suggest that the Southern Hemisphere biomass burning were strongly
85	influenced by continental hydrology (Bisiaux et al., 2012), using an ice core in
86	Greenland, tMcConnell et al. (2007), differentiated the BC emissions from industrial
87	activities and forest fires are differentiated using an ice core in
88	Greenland <u>McConnell et al. (2007)-differentiated t</u> . These researches indicate that BC
89	records in history are important and practicable method to investigate the regional
90	aerosol transport and emission variations.
91	
~~	In this study, the instance DC at Mantach Ata, Northean Tilester, D' () 1

92 In this study, the ice core BC at Muztagh Ata, Northern Tibetan Plateau is analyzed.

带格式的:	字体:小四
带格式的:	字体:小四
	字体:小四
带格式的:	字体:小四
带格式的:	
带格式的:	
带格式的:	
带格式的:	
C	字体:小四
带格式的:	字体:小四
带格式的:	
带格式的:	
带格式的:	
带格式的:	
带格式的:	字体:小四
带格式的:	字体:小四
	字体:小四
带格式的:	非突出显示
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	字体:小四
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四

带格式的: 非突出显示 带格式的: 非突出显示

带格式的:字体:小四 **带格式的:**字体:小四

Identification the source regions, which have important impact on BC deposition at 93 Muztagh Ata is very important scientific issue, because of its location. In particularly, 94 there was a strong spike of the BC deposition during 1992-1993 at Muztagh Ata (as 95 shown in the following text), reflecting that there was unusual emission in the upward 96 region from Muztagh Ata. This strong spike of the ice core BC was about 3-4 times 97 98 higher than other years, producing important effects on climate and hydrological cycle. As a result, the study of the sources of BC, which affect the ice core BC in this 99 location, needs to be carefully studied. Muztagh Ata locates in the east of Pamir and 100 101 the north of Tibetan Plateau. The ice core data provides important information for atmospheric circulation and climate change in Asia (An et al., 2001), Moreover, the 102 103 climate in Muztagh Ata is very sensitive to solar warming mechanisms because it has 104 a large snow cover in the region, resulting in important impacts on the hydrological 105 cycle of the continent by enhancing glacier melt.

107 The BC sources which contribute the BC deposition in Tibetan Plateau have been previously studied. Their results show that BC deposited on glaciers in of the Pamir 108 109 Mountains was emmitedoriginated, from Europe, Middle East and central Asia (Liu et al., 2008; Xu et al., 2009a; Wang et al., 2015b), whereas BC deposited deposition on 110 111 glaciers on snow and ice over the Himalayas and southeastern Tibetan Plateau was 112 mainly affected by the western upward regions in winter. During the Indian summer 113 monsoon season, they were mainly affected by the BC sources in Indian region (Ming et al., 2008; Xu et al., 2009b; Kaspari et al., 2011; Wang et al., 2015a), However, at 114 115 present, the effects of the transport pathways and individual contributions of BC sources to the Muztagh Ata region have not been carefully studied. Because the 116 117 radiative forcing caused by BC in snow and ice between different regions is very different, depending upon the emitting intensities, ocean-land distributions, 118 119 topography, regional atmospheric circulations, and other factors, detailed study on the source contributions to the region as well as the climate effect are needed to carefully 120 study this important region. 121

122

106

Both the ice core deposition measurements at Muztagh Ata and a global chemical model (MOZART-4; Model for Ozone and Related chemical Tracers, version 4) are used in this study. To better evaluate the model performance, the air samples of BC particles during 2004-2006<u>1986</u> 1994, were also analyzed. The global chemical

10 10 PM 01 1	J rte -	.1.E	
带格式的:	字体:	小四	

小皿

世ぬ言的・ 空休・

带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	字体:小四
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
带格式的:	非突出显示
带格式的:	字体:小四
	带带带带带带带带带带带带带带的 式式式式式式式式式式式式式式式式式式式式式式式

带格式的:字体:小四,突出显示 **带格式的:**字体:小四

transport model (MOZART-4) was used to analyze the long-term trend in the early
90s of the observed BC deposition and to quantify the individual contribution of
different BC sources to the deposition on the snow cover. The modeled temporal
variations and magnitude of the BC concentrations in the atmosphere and snow were
compared to observations. Finally, a radiative transfer model (SNICAR) was used to
study the effect of BC on snow albedo, radiative forcing, and runoff changes induced
by the BC deposition on the Muztagh Ata snow.

134

135 **2 Methodologies**

136 **2.1 Sampling Sites**

137 Muztagh Ata Mountain is located in the north side of Tibetan Plateau. Both atmospheric sampling and ice core drilling BC were conducted at the Muztagh Ata 138 site. The atmospheric sampling BC (38°17.30'N, 75°01.38'E) was conducted by in 139 the Cold and Arid Regions Environmental and Engineering Institute, Chinese 140 Academy of Sciences, at a 4500 m above sea level (a.s.l.). A 170.4 m ice core (9.5 cm 141 in diameter) was drilled during the summer season in 2012 from Kuokuosele (KKSL) 142 Glacier of Muztagh Ata (38°11'N, 75°11'E, 5700 m a.s.l.), which was conducted by 143 144 the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. Because the site is surrounded by several important BC source regions, this measurement site is 145 suitable to investigate the effect of BC emissions on north part Tibetan Plateau, which 146 plays important roles for global climate and hydrology (see Fig. 1). 147

148

The average annual temperature at the peak of the mountain is approximately -20°C. 149 Because the numerous high mountains block the warm and humid air currents from 150 Indian and Pacific Ocean, the climate in this area is relatively dry. The averaged 151 annual precipitation is less than 200 mm, which is mainly snow to form perennial 152 glaciers. There are 128 modern glaciers and on average about 377 square kilometers. 153 The prevailing winds in this region are usually westerly jet stream. Previous studies 154 suggested that there was very small effect by local sources, and the aerosol pollutions 155 were originated mainly from the west by mid- and long-range transport. During 156 157 summer, the South Asia monsoon had also important effect on the transport of BC particles from India (Liu et al., 2008; Wu et al., 2008; Zhao et al., 2011; Wang et al., 158

带格式的: 字体: 小四

159	2015b),	-(带格式的:	字体:	小四	
160						
161	2.2 Measurements					
162						
163	During the period from December 5, 2003 to February 17, 2006, Eighty-one valid	-(带格式的:	字体:	小四,	突出显示
164	total suspended aerosol particle (TSP) and BC samples were obtained with					
165	custom-made samplers at flow rates of 161 min ⁻¹ . The measurements were conducted		带格式的:	字体:	小四,	上标, 突
166	under very difficult environmental conditions, because of its high mountain location.		出显示 带格式的:	字体:	小四,	突出显示
167	The sampler power was supplied by solar energy and a storage battery. The sample	_ \ >	带格式的:			
168	numbers for spring, summer, autumn, and winter was 19, 21, 14, 27, respectively.	$\sim \sim$	带格式的:			突出显示
169	Each sample was collected over one week and on 15 mm Whatman quartz microfibre	Z	带格式的:	字体:	小四	
		C		今休.	л mi	
170	filter (QM/A, Whatman LTD, Maidstone, UK), which was pre-combusted at 800°C		带格式的: Times New		小四,	(国际)
171	for 3 hours to remove the potential carbon disturbance. The sample was identified as	-(带格式的:	字体:	小四,	突出显示
172	valid when its sampling standard volume was greater than 30 m_{sa}^3 As a result, the valid		带格式的: 出显示	字体:	小四,	上标, 突
173	sample numbers for spring, summer, autumn, and winter wereas 19, 21, 14, and 27,		带格式的:	字体:	小四,	突出显示
174	respectively.	X	带格式的:	字体:	小四	
175						
176	For the ice core measurement, a 170.4 m ice core (9.5 cm in diameter) was drilled					
177	during the summer season in 2012 from Kuokuosele (KKSL) Glacier of Muztagh Ata					
178	(38°11'N, 75°11'E, 5700 m a.s.l.), which is close to the BC air sampling site. A					
179	stainless steel scalpel that pre-cleaned at -5°C in a class 100 laminar flow bench was					
180	used to remove A 3 mm oouter layer of the ice sections core was removed with a	5	带格式的:			
181	pre cleaned stainless steel scalpel at 5 ^e C in a class 100 laminar flow bench to	5	带格式的:			
182	eliminate exclude the pollutants contamination that mightay be mixed inhave occurred	ļ	带格式的: Times New	Roman		(国际)
183	during drilling, transport, and storage. The inner section for BC analysis was sealed in	$\sim >$	带格式的: 带格式的:			
184	a 50 ml polypropylene vial (BD Falcon, cat. no. 358206). The ice core dating and		带格式的:			
185	calculation of BC deposition fluxes were provided by Institute of Tibetan Plateau					
186	Research, Chinese Academy of Science. The detailed method for the measurement of					
187	BC deposition is shown by Xu et al. (2009a).	-(带格式的:	字体:	小四	
188		\neg	带格式的:	字体:	小四	
189	2.3 Measurements and Annalytical methods		带格式的:		Times	New
190		\sim >	Roman,小 带格式的:		小四	
191	The elemental carbon (EC, which is proxy to BC in this study) analyses for	$\langle \rangle$	带格式的: 字体颜色:	字体:	小四,	非加粗,
192	atmospheric filters (TSP samples) were carried out by using Desert Research Institute		于体颜色. 带格式的:			

193	(DRI) Model 2001 carbon analyzer (Atmoslytic Inc., Calabasas, CA, USA) with
194	IMPROVE (Interagency Monitoring of PROtected Visual Environments)
195	thermal/optical reflectance (TOR) protocol (Chow et al., 1993; Chow et al., 2004), A
196	0.526 cm^2 punch of a quartz filter sample was heated in a stepwise manner to obtain
197	data for three elemental carbon (EC) fractions-(EC1, EC2, and EC3 in a 2%
198	oxygen/98% helium atmosphere at 580, 740, and 840 °CAt the same time, OP
199	(pyrolyzed carbon) was produced at <580 °C in the inert atmosphere which decreases
200	the reflected light to correct for charred OC. Total EC is the sum of the three EC
201	fractions minus OP. More details and QAQC (Quality Assurance and Quality Control)
202	are shown by Cao et al. (2003) and Cao et al., (2009).

The rBC (refractory black carbon), which is used instead of BC for measurements 204 205 derived from incandescence methods (Petzold et al., 2013), was analyzed at Institute of Tibetan Plateau Research, Chinese Academy of Sciences by using a Single Particle 206 207 Soot Photometer (SP2) coupled with an ultrasonic nebulization system (CETAC UT5000)._ The laser induced incandescence was used to measure the The mass of 208 209 rBC in of individual particles were measured by using a laser-induced incandescence (Schwarz et al., 2006), The incandescence signal can be converted to rBC mass which 210 211 is detected by photomultiplier tube detectors. Previous studies has This analytical 212 method was previously successfully, applied this analytical method to ice cores by 213 several studiesresearches (McConnell et al., 2007; Kaspari et al., 2011; Bisiaux et al., 214 2012), Detailed description on the SP2 analytical process and calibration procedures 215 can be found in (Wendl et al., 2014) and (Wang et al., 2015b),

Although the differences in the two analytical techniques (Wang et al., 2015b), in
order to facilitate the discussions, they are uniformly referred to as black carbon (BC)
in our study since both of them are materials share some of the characteristics of BC
with its light-absorbing properties (Petzold et al., 2013).

221

216

203

222 2.4 Global chemistry transport model / MOZART-4

223

The model used in this study is MOZART-4 (Model for Ozone and Related chemical
Tracers, version 4). The model is an offline global chemical transport model for the
troposphere developed jointly by the National Center for Atmospheric Research

带格式的:	字体:	小四	
带格式的:	字体:	小四	

1	带格式的: Times New	字体: Roman	小四,	(国际)
Ý	带格式的:	字体:	小四	
4	带格式的:			(国际)
	Times New	Roman	• [],	
-{	带格式的:	字体:	小四	
-{	带格式的:	字体:	小四	
-{	带格式的:	字体:	小四	
Y	带格式的:	字体:	小四	
Υ	带格式的:	字体:	小四	
-{	带格式的:	字体:	小四	
-{	带格式的:	字体:	小四	
X	带格式的:	字体:	小四	
1	带格式的:	字体:	小四	
-[带格式的:	非突出	显示	
-	带格式的:	字体:	小四	
-(带格式的:	非突出	显示	
1	带格式的:	字体:	小四	
Y	带格式的:	非突出	显示	
Y	带格式的:			
Y	带格式的:	字体:	小四	
Y	带格式的:	字体:	小四	
Y	带格式的:	非突出	显示	
ľ	带格式的:	字体:	小四	
Ì	带格式的:	非突出	显示	
Ì	带格式的:	字体:	小四	
	带格式的:	非突出	显示	
N	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
V	带格式的:	字体:	小四	
	带格式的:	字体:	小四	
1	带格式的:	字体:	小四	
1	带格式的:	字体:	小四	
			-	

227	(NCAR), the Geophysical Fluid Dynamics Laboratory (GFDL), and the Max Planck
228	Institute for Meteorology (MPI-Met). The detailed model description and model
229	evaluated can be found in Emmons et al. (2010), The aerosol modules was developed
230	by Tie et al. (2005). This model have been developed and used to quantify the global
231	budget of trace gases and aerosol particles, and to study their atmospheric transport,
232	chemical transformations and removal (Emmons et al., 2010; Chang et al., 2016),
233	The model is built base on the framework of the Model of Atmospheric Transport and
234	Chemistry (MATCH) (Rasch et al., 1997), Convective mass fluxes are diagnosed by
235	using the shallow and mid-level convective transport formulation of Hack (Hack,
236	1994), and deep convection scheme (Zhang and McFarlane, 1995), Vertical diffusion
237	within the boundary layer is built on the parameterization by Holtslag and Boville
238	(1993), Advective transport scheme used the flux form semi-Lagrangian transport
239	algorithm (Lin and Rood, 1996). The wet deposition includes in-cloud as well as
240	below-cloud scavenging developed by Brasseur et al. (1998), is taken into
241	MOZART-4. Details of the chemical solver scheme can be found in the Auxiliary
242	Material (Kinnison et al., 2007).

带格式的:	字体:	小四
带格式的:	字体:	小四
带格式的:	字体:	小四

In the present study, the model includes 85 gas-phase species, 12 bulk aerosol 244 245 compounds and approximately 200 reactions. The horizontal resolution of this study is 1.9 % 2.5 ° with 56 hybrid sigma-pressure vertical levels from the surface to 246 approximately 2 hPa. The meteorological initial and boundary conditions are down 247 248 load from NCAR Community Data Portal (CDP), using National Centers for Environmental Prediction (NCEP) meteorology. The model transport of this study is 249 driven by the Modern-Era Retrospective-analysis for Research and Applications 250 251 (MERRA) 6-hour reanalysis data with a 1.9 % 2.5 ° grid provided by National Aeronautics and Space Administration (NASA). 252

243

253

The BC emission inventory used in this global model is based on the simulation of the POET (Precursors of Ozone and their Effects in the Troposphere) database from 1997 to 2007 and the data of BC emission inventory including fossil fuel and biofuel combustion from a previous study (Bond et al., 2004; Bond et al., 2007), Figure 2 illustrates the updated 21-year average global BC emissions from 1986 to 2006. There are two types of black carbon particles in MOZART-4, hydrophobic and hydrophilic particles. Hydrophobic particles are directly emitted from the sources, and are

带格式的:字体:小四 **带格式的:**字体:小四

261	converted to hydrophilic in the atmosphere (Hagen et al., 1992; Liousse et al., 1993;	带格式的:字体	\$: 小四	
262	Parungo et al., 1994), with a rate constant of 7.1×10^{-6} /s (Cooke and Wilson, 1996),	带格式的		
263		带格式的:字句	4: 小四	
264				
265	2.5 BC deposition estimation			
266				
267	In order to compare to the measured ice core BC deposition at the Muztagh Ata			
268	Mountain, the BC deposition flux is calculated in this study. In the estimation, the			
269	calculated atmospheric BC concentrations and precipitation data obtained from China			
270	Meteorological Data Service Center were compiled and evaluated. In addition, annual			
271	BC deposition parameters and deposition flux calculation methods were described in			
272	other studies (Jurado et al., 2008; Yasunari et al., 2010; Fang et al., 2015; Li et al.,	带格式的:字体	\$: 小四	
273	2017), In brief, deposition fluxes are calculated by the following equations:	带格式的: 字体	\$: 小四	
274				
275	$F_{DD} = 10^{-4} v_D C_{BC} t$	带格式的		
276	(1)	带格式的:字句	4: 小四	
277	$F_{WD} = 10^{-7} p_0 W_p C_{BC}$	带格式的		
278	(2)			
279	$F_{BC} = F_{DD} + F_{WD}$	带格式的		
280	(3)			
281				
282	where 10^{-4} and 10^{-7} are unit conversion factors; F_{DD} and F_{WD} are the annual dry and	带格式的		
283	wet deposition (ng cm ⁻²), respectively; the total BC deposition flux (F_{BC}) (ng cm ⁻²) is	1		
284	the sum of F_{DD} and F_{WD} ; where $v_{D_{A}}$ (m s ⁻¹) is the dry deoposition velocity of black			
285	carbon; t is total estimation time for one year (s); p_0 is the annual precipitation rate			
286	(mm); W_{p} is the particle washout ratio (dimensionless); and C_{BC} is the annual	带格式的		
287	atmospheric BC concentrations at Muztagh Ata Mountain (ng m ⁻³). There are large			
288	differences in estimates on $v_{p_{\lambda}}$ and $W_{p_{\lambda}}$ (Jurado et al., 2005; Jurado et al., 2008;			
289	Yasunari et al., 2013). A fixed small dry deposition velocity of 1.0×10 ⁻⁴ m s ⁻¹ onto	带格式的		
290	snow was adopted (Yasunari et al., 2010; Nair et al., 2013) and the corresponding	带格式的 带格式的		
291	estimation values are likely to represent a lower bound for BC dry deposition in this	/ IF 111 JA 19		<u> (</u>
292	area. Particle washout ratio W_{p_1} is assumed to be a constant and equal to 2×10^5 which			
293	has been adopted in many modeling exercises and fits well with field measurements			

(Mackay et al., 1986; Jurado et al., 2005; Fang et al., 2015; Li et al., 2017),

带格式的: 字体: 小四 带格式的: 字体: 小四

295 **3 Results and discussion**

296 **3.1 Model evaluation and compared to observation**

297

In order to better understand the variation, characteristics, and source contributions of 298 the BC concentrations at Muztagh Ata Mountain, model sensitive studies using 299 MOZART-4 were conducted in this study. Firstly, the model was evaluated by 300 comparing the observed monthly BC concentrations with the calculated monthly BC 301 concentrations during January 2004 to February 2006. As shown in Fig 3a, the 302 simulated BC concentrations had a similar magnitude of measured BC concentrations, 303 with mean values of 62.4 ng m⁻³ and 56.5 ng m⁻³ for the calculation and measurement, 304 respectively. There was also evident that the measured variability of BC was captured 305 306 by the calculation. For example, the calculated variability was comparable to the 307 measured result between July 2014 and Oct. 2015. However, some differences were 308 also noticeable. For example, the calculated BC concentration was overestimated in the spring and winter of 2004 and underestimated in the winter of 2006. Because the 309 measured site locates in a "clean" region of BC emission, the BC particles were 310 mostly transported from long-distance of the upwind regions. There were uncertainty 311 312 related to the emissions and simulated meteorological parameters (wind speeds, wind 313 directions, etc.). As a result, it caused the discrepancy between calculated and 314 measured BC concentrations at the Muztagh Ata Mountain. There was another reason 315 may cause the difficulty of the calculation. The horizontal resolution of the global 316 model is relatively low (1.9 \2.5 ° in this study), which is unable to reproduce some 317 detailed variability in the simulation. However, the overall features of the measured 318 BC concentrations were reproduced by the model, such as the magnitude and seasonal 319 variability (see Fig. 3b), suggesting that the model is capable to study long-range 320 transport from BC source regions to the remote site. 321

带格式的: 字体: 小四, 突出显示
 带格式的: 字体: 小四
 带格式的: 字体: 小四, 突出显示

带格式的: 字体: 小四

The simulated seasonal variation shows in Fig 3b. The result shows that calculated seasonal variation was generally agreed with the measured variation, except the value in spring. According to the analysis of the source contribution (shown in Section 3.3), the BC emission in South Asia has significant contributions to the BC concentrations at Muztagh Ata during non-summer season which accounted for average 31~60% in
spring and few contributions in summer season. The overestimated BC concentrations
may due to the fact that the model overestimated the pollutant transportation from the
emission sources to sampling site crossing the high mountains of Tibet Plateau, which
act as a wall to block the transportation from the BC emission in South Asia to the

331 332

sampling area (Zhao et al., 2013),

333 3.2 Long-term Ice core measurement and possible effect of Kuwait fire event 334

In addition to the atmospheric sampling of BC measurement, there is a long-term ice 335 336 cores measurement of BC at the Muztagh Ata Mountain. This long-term measurement 337 represents a valuable data to show the long-term trend and inter-annual variability. Ice 338 core records obtained at Muztagh Ata Mountain are irreplaceable when evaluating contemporary atmospheric or snow BC concentration variations. A long-term ice-core 339 340 measurement (from 1940 to 2010) was provided by Xu et al. at Muztagh Ata Mountain. Their results showed that the ice core BC concentrations were between 341 0.30 and 39.54 ng g^{-1} from 1940 to 2010, with an average value of 7.22 ng g^{-1} . The 342 BC deposition fluxes were between 9.96 and 909.88 ng cm⁻², with an average of 343 184.18 ng cm⁻². It is interesting to note that both BC concentration and BC deposition 344 of ice core showed a sharply increase in 1992, which was about five times higher than 345 346 the average mean value as shown in Fig 4. No other similar peak was found in the 347 entire record which may indicate a specific event to lead to this sharp increased, 348 which provide useful information to track the BC emissions. In this study, we conduct several model studies to investigate this special event. 349

350

As shown in Figure 4, there was a high BC deposition flux (900 ng cm⁻²) in 1992, 351 compared to 100-300 ng cm⁻² in other years. In order to investigate this special event, 352 we focus our model study on a short period (from 1986 to 1994). One potential reason 353 to cause this sharp increase of BC was that during 1991, when Iraqi troops withdrew 354 from Kuwait at the end of the first Gulf War, they setted a huge fire over 700 oil wells. 355 The fires were started in January and February 1991, and the last well was capped on 356 November 6, 1991. The resulting fires produced a large plume of smoke and particles 357 358 that had significant effects on the Persian Gulf area and the potential for global effects (as shown in Fig. 5). 359

带格式的:字体:小四 **带格式的:**字体:小四

360		
361	In order to estimate intensive of the BC emission from the fires, <i>Hobbs and Radke_(</i> ,	带格式的:字体:小四
362	1992) conducted two aircraft studies during the period 16 May through 12 June 1991	带格式的:字体:小四
363	to evaluate the effects of the smoke. The estimated emission rate of elemental carbon	
364	of the Kuwait fires is ~3400 metric tons per day which is 13 times the BC emissions	
365	from all U.S. combustion sources in total.	
366		
367	In order to study the effect of the huge Kuwait fires on the BC ice core deposition, the	带格式的: 字体:小四,突出显示
368	MOZART-4 model was applied to simulate the atmospheric BC concentrations and	带格式的: 字体: 小四
369	deposition fluxes variation from 1986 to 1994. Several model sensitive studies were	
370	conducted. First, the atmospheric BC concentration was calculated by the	
371	anthropogenic BC emission with the default emissions (POET) as described before.	
372	Second, in order to simulate the large increase in the BC emissions caused by the	
373	Kuwait fires in Persian Gulf (Region 3 in Fig. 1), according to the measured values of	
374	Hobbs and Radke (1992), the BC emissions were significantly enhanced by 50 times	带格式的: 字体: 小四
375	from January to November, 1991 to represent Kuwait fires. Figure 4 shows the	带格式的: 字体: 小四
376	horizontal distribution of the calculated BC plume from the Kuwait fires, with the	
377	enhanced BC emission.	
378		
379		
380	The calculated result suggests that there was a significant increase of BC	
381	concentrations nearby the Kuwait fires (see Fig. 6). The BC concentrations reached to	
382	10-20 $\mu g\ m^{\text{-3}}$ at the surface (see Fig. 6A) and more than 0.7 $\mu g\ m^{\text{-3}}$ at 5 km above the	
383	surface (see Fig. 6B). As shown in Figs. 5 and 6, the winds nearby the fire region were	
384	toward to northern and northwestern directions. Because the lifetime of black carbon	
385	aerosols is sufficiently long (about a week) (Ramanathan et al., 2001; Bauer et al.,	带格式的: 字体:小四
386	2013), the high BC concentrations were transported westerly toward the Muztagh Ata	带格式的: 字体: 小四
387	Mountain.	
388		
389	The evaluation of the modeled BC deposition at the Muztagh Ata Mountain was	
390	conducted by comparison between the calculation and measurement (see Fig. 4).	
391	Figure 4 shows the calculated temporal variation of BC concentrations and deposition,	

which were compared with the measured variations. The result shows that the calculated temporal variability of BC deposition was generally consistent with the 393

measured variability. For example, the both high peaks of calculated and measured 394 BC deposition occurred in 1992. The calculated atmospheric concentrations of BC, 395 however, had a peak value in 1991. This was due to the fact that the deposition of BC 396 in ice core was an accumulated value, while the atmospheric BC concentration was an 397 in-situ value. Despite of the consistence of temporal variations between measured and 398 calculated deposition of BC, there was a consistent underestimate of calculated BC 399 deposition compared to the measured value. Because there were uncertainties in 400 estimates BC emission and the deposition, these uncertainties could result in the 401 402 discrepancy between the calculation and measurement. For example, according to the assimilation meteorological data by Chinese Meteorological Admiration, the annual 403 404 precipitation in 1992 was about twice higher than in 1991 nearby Muztagh Ata Mountain, suggesting that scavenging efficiency may likely underestimated, causing 405 406 the calculated uncertainty in the estimate of the BC deposition.

407 408

409

427

3.3 Effect of regional BC emissions at the Muztagh Ata Mountain

410 To further understand the influence of transportation and deposition on the annual 411 variation of BC at the Muztagh Ata Mountain (as a receptor region), sensitivity 412 experiments using the MOZART-4 model were conducted. In the sensitive study, the 413 effect of different BC emission regions on the BC concentrations at the measurement 414 site was individually calculated. Four primary regions were defined with latitude and 415 longitude as shown in Table 1 and Fig. 1, including (R1) Central Asia, (R2) Europe, 416 (R3) Persian Gulf, and (R4) South Asia. Central Asia, Europe and South Asia previously have been reported as significant BC emission sources of Muztagh Ata 417 418 Mountain (Liu et al., 2008; Xu et al., 2009a; Wang et al., 2015b). Europe is one of 419 the biggeist emission sources of the world located in -the upwind region of receptor site although it is far away. Central Asia and South Asia are surrounding emission 420 sources of the receptor site. -Persian Gulf could be a potentially emission source 421 which could be overlooked before. –In each sensitive study, only the individual BC 422 emission was included, and the BC emissions in other regions were excluded. As a 423 result, the fractional contributions by the individual emission regions to BC 424 concentrations in the receptor region (the Muztagh Ata Mountain) were calculated. 425 426 Table 1 shows the calculated results.

-(带格式的:	字体:	小四,	突出显示
0			1	
-	带格式的:	字体:	小四	

-{	带格式的:	字体:	小四,	突出显示
\neg	带格式的:	字体:	小四	
\searrow	带格式的:	字体:	小四,	突出显示
$ \leq $	带格式的:	字体:	小四	
Y	带格式的:	字体:	小四	
-(带格式的:	字体:	小四,	突出显示
\checkmark	带格式的:	字体:	小四	
\neg	带格式的:	字体:	小四,	突出显示
Υ	带格式的:	字体:	小四	

In order to clearly show the transport pathways from the different regions to the
measurement site and the Tibetan Plateau, the calculated horizontal distributions of
BC concentrations from each region during 3 different periods (summer monsoon,
non-monsoon, and annual mean) were shown in Fig. 7.

432

440

The results from Table 1 and Fig. 7 suggests that during the "normal period" (non Kuwait Fires), the BC emissions from Central Asia and South Asia had the largest contributions to the BC concentrations at measurement site, contributing annual mean of 27% and 25%, respectively. It is interesting to note that there were strong seasonal variations regarding the effects. During the monsoon period, the largest effect was due to the Central Asia source (44%), while during non-monsoon period, the largest effect was due to the South Asia source (34%).

441 As shown in Fig. 7, during the monsoon period, the airflow from the oceans (Persian 442 Gulf and Bengal Bay) moves northward and coupled with the strong precipitation. 443 As a result, the BC particles from south Asian source were washout during the 444 transport pathway, leading to lower BC concentrations at the measurement site. In 445 contrast, during the non-monsoon period, the prevailing winds were western winds, 446 which BC emission in the northern India was transported to the measurement site 447 measurement site, leading to higher BC concentrations. The contributions from 448 Persian Gulf emissions were generally low to the BC concentrations. However during 449 Kuwait fires period, this region had significant contribution to the Muztagh Ata area as well as the Tibetan Plateau. 450

451

453

452 **3.4 Radiative forcing induced by BC in Muztagh Ata glacier**

The deposition of BC on the snow reduces the surface albedo, causing a positive 454 radiative forcing and increases in ice and snow melt. Previous studies show that BC 455 particles produce significant reduction in the snow albedo, with the solar visible 456 wavelengths (Warren and Wiscombe, 1980). In this study, the effect of BC deposition 457 on the snow albedo and radiative forcing during 1986 to 1994 in Muztagh Ata glacier 458 was estimated. The SINICAR model (Snow, Ice, and Aerosol Radiation; available at 459 460 http://snow.engin.umich.edu) was used to estimate the effect of BC particles on snow albedo in different solar wavelengths (Flanner and Zender, 2005; Flanner et al., 2007). 461

带格式的:	字体:小四
带格式的:	字体:小四
带格式的: (默认)+西 色:自动设	默认段落字体,字体: 每文正文,小四,字体颜 3置
带格式的:	字体:小四,无下划线
带格式的:	字体:小四,无下划线
带格式的:	字体:小四,无下划线
带格式的:	字体:小四

462		C	
463	To estimate the effect of the BC deposition on surface albedo, in addition to the BC		带格式的: 字体:小四,无下划线
464	concentrations, there are several environmental factors such as snow grain size, solar		
465	zenith angle, and snow depth were needed to be estimated (Warren and Wiscombe,		带格式的: 字体:小四,无下划线
466	1980), The setup of input parameters required for running the SNICAR model is		带格式的: 字体:小四,无下划线
467	briefly described as below. As we focus on the calculation of radiative forcing caused		
468	by BC particles, other impurity contents, such as dust and volcanic ash, were set to be		
469	zero. A mass absorption cross section (MAC) of 7.5 m ² g ⁻¹ at 550 nm for uncoated BC		
470	particles (Bond and Bergstrom, 2006) was assumed to be same as the default value,	< >	带格式的:字体:小四,无下划线
471	and the MAC scaling factor in the online SNICAR model as one of input parameters	٦	带格式的: 字体:小四,无下划线
472	was set to be 1.0. The effective radius of 100 μm with a density of 60 kg $m^{\text{-3}}$ was used		
473	for new snow, and the effective radius of 400 μm with a density of 400 kg $m^{\text{-3}}$ was		
474	adopted for the albedo estimation according to the previous studies and measurements		
475	in other studies in Tibetan Plateau (Wiscombe and Warren, 1980; Wu et al., 2006).	< >	带格式的: 字体:小四,无下划线
476	The extractive snow height from MERRA (the Modern-Era Retrospective-analysis for		带格式的: 字体:小四,无下划线
477	Research and Applications) reanalysis products was used for snowpack thickness. The		
478	forcing dataset used in this study was developed by Data Assimilation and Modeling		
479	Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research, Chinese		
480	Academy of Sciences (Chen et al., 2011), The recovered BC concentrations of ice		带格式的: 字体:小四,无下划线
481	core were used as the input parameter of uncoated black carbon concentration. The		带格式的: 字体:小四,无下划线
482	averaged short-wave flux and solar zenith angle of each month were obtained from		
483	China Meteorological Forcing Dataset provided by Data Assimilation and Modeling		
484	Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research, Chinese		
485	Academy of Sciences.		带格式的: 字体:小四
486			
487	The measured average BC concentration in ice core during 1986-1994 was 15.2 ng g ⁻¹ ,		带格式的: 字体:小四,无下划线
488	with a peak value of 39.2 ng g^{-1} . The calculated snow albedo reduction by using the		
489	SNICAR model ranged from 0.11% to 1.36% by assuming that the snow layer was		
490	totally covered by fresh snow (lower limit). However, if it was aged layer, the		
491	estimated snow albedo reduction increased, ranging from 0.47% to 2.97% (upper		
492	limit). The actual value should be lied between the two ranges. This result is		
493	consistent with the previous studies. For example, (Yasunari et al., 2010) reported that	_	带格式的: 字体:小四,无下划线
495	the reduction of snow albedo ranged from 2.0% to 5.2%, with the BC concentration of	< >	带格式的:字体:小四,无下划线
494 495	26.0-68.2 ng/g, based on atmospheric BC measurements at NCO-P over the southern		
430			
	16		

496	slopes of western Himalayas.	带格式的: 字体:小四
497		
498	The reduction of snow albedo enhanced the absorption of solar energy and accelerated	带格式的:字体:小四,无下划线
499	snow and ice melt (Conway et al., 1996), Several studies suggested that that BC	带格式的:字体:小四,无下划线
500	containments on snow were very effective to reduce the surface albedo (Warren and	带格式的:字体:小四,无下划线
501	Wiscombe, 1980; Petr Chylek and Srivastava, 1983; Gardner and Sharp, 2010). In this	带格式的:字体:小四,无下划线 带格式的:字体:小四,无下划线
502	study, the effects of BC containments on snow albedo and snow water equivalent	
503	(SWE) reduction were estimated.	带格式的:字体:小四
504		
505	Figure 8 shows the calculated the effects of BC containments on annual mean	带格式的:字体:小四,无下划线
505	radiative forcing increase (RFI) (W m^{-2}) and snow water equivalent (SWE) reduction	
	$(mm yr^{-1}; millimeter per year), under fresh snow assumption and aged snow$	
507		
508	assumption. The results show that under the fresh snow assumption (lower limit), the	
509	increases of RFI ranged from 0.2 W m ⁻² to 2.5 W m ⁻² , while under the aged snow	
510	assumption (upper limit), the increases of RFI ranged from 0.9 W m ⁻² to 5.7 W m ⁻² .	
511	This estimate is consistent with the previous studies (Flanner et al., 2009)During the	带格式的:字体:小四,无下划线
512	Kuwait fires period, the RFI values increased about 2-5 times higher, which led to a	带格式的:字体:小四,无下划线
513	significant increase for the snow melting during the period.	带格式的:字体:小四
514		
515	The runoff of the melted snow due to the increase of snow surface albedo was	带格式的:字体:小四,无下划线
516	estimated in this study. The potential influence for BC deposition on galciers glaciers $\sqrt{1}$	带格式的: 字体: 小四, 无下划线, 突出显示
517	from forest fires was highlighted that was coincident with an increase discharge in the	带格式的:字体:小四,无下划线
518	downriver in previous study (Kaspari et al., 2015), The runoff of the melted snow due	带格式的: 字体:小四,无下划线, 突出显示
519	to the increase of snow surface albedo was estimated in this study. A first-order	带格式的:字体:小四,无下划线
520	estimation was based on the additional energy contribution to the snowpack due to BC	带格式的: 字体: 小四, 无下划线, 突出显示
521	deposition. First the melting point of snow was estimated. Second, the extra snow	带格式的:字体:小四,无下划线
522	melt from light absorbing black carbon was estimated by dividing hourly	带格式的: 字体:小四,无下划线, 突出显示
523	instantaneous radiative forcing, with the enthalpy of fusion of water at 0 $^{\circ}$ C of 0.334 \times	带格式的:字体:小四,无下划线
524	10 ⁶ J kg ⁻¹ (Painter et al., 2013; Kaspari et al., 2015). The estimation represented the	带格式的:字体:小四,无下划线 带格式的:字体:小四,无下划线
525	snow melt in kg m ⁻² across the hour during acquisition translates, or melt in mm of	带格式的: 字体:小四,无下划线, (国际) Times New Roman
526	snow water equivalent (SWE). The melted snow due to the BC water was calculated	带格式的:字体:小四,无下划线
527	(shown in Fig. 8). The result shows that the estimated averaged SWE reductions were	带格式的:字体:小四,无下划线
528	111 mm and 270 mm, for fresh and aged snow respectively. During the Kuwait fires	带格式的: 字体:小四,无下划线
520	The man and 270 min, for fresh and aged show respectively. During the Ruwalt files	

period, the estimated SWE significantly increased, reaching to 600 mm for aged snow 529 condition, and 300 mm for fresh snow condition. The increase was about 3 times than 530 pre- and post- Kuwait fires, suggesting that this special event had a significant impact 531 on snow melting for the Tibetan glaciers and the water resources in the region. 532 533 However, this estimate of runoff is speculative since there are a number of influential 534 factors. (Schmale et al., (2017), found that combination effect of meteorological parameters and snow albedo could be 3 times larger than model results. The Tibetan 535 Plateau is recognized as "Water Tower of Asia" with largely contribution to annual 536 river discharge of Yangtze River, Indus and Brahmaputra etc. The snowmelt runoff 537 will impact on regional climate system including the timing of runoff-, the frequency 538 and intensity of floods and rainfall patterns because of since its tightening interactive 539 with the hydrologic cycle (Jain et al., 2010). Wu and Qian (2003) reported that 540 Tibetan winter snow cover is anormalyabnormally, is linked to rainfall over south, 541 southeast and east Asia by observation data analysis. 542

543 **4** Conclusions

Black carbon (BC) particles change the radiative balance of the atmosphere by 544 absorbing and scattering solar radiation. As a result, BC deposition on the surface of 545 546 snow and ice changes the albedo of solar radiation. Albedo change is the key parameter to affect the melting of glacier in Tibetan Plateau. In order to study this 547 548 effect, two sets of measurements were used to study the variability of BC deposition at Muztagh Ata Mountain, Northern Tibetan Plateau. The measured data included the 549 550 air samplings of BC particles during 2004-2006 and the ice core drillings of BC deposition during 1986-1994. To identify the effect of BC emissions on the BC 551 552 deposition in this region, a global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions. A radiative transfer model 553 554 (SNICAR) was used to study the effect of BC deposition on snow albedo.

The results show some important highlights to reveal the temporal variability of BC	
deposition and the effect of long-rang transport on the BC pollution in the Northern	
Tibetan Plateau, which are summarized as the follows;	_
(1) During 1991-1992, there was a strong spike of the BC deposition at Muztagh	_
	deposition and the effect of long-rang transport on the BC pollution in the Northern Tibetan Plateau, which are summarized as the follows;

Ata, suggesting that there was unusual emission in the upward region. This

560

555

带格式的:字体:小四
带格式的:字体:小四,无下划线
带格式的:字体:小四
带格式的:字体:小四,无下划线
带格式的:字体:小四
带格式的:字体:小四
带格式的:字体:小四,无下划线

带格式的:字体:小四,无下划线,

带格式的:字体:小四,无下划线 带格式的:字体:小四,无下划线,

带格式的:字体:小四,无下划线

带格式的:字体:小四,无下划线,

带格式的: 字体: 小四, 无下划线

带格式的:字体:小四,无下划线,

带格式的:字体:小四,无下划线

带格式的:字体:小四,无下划线,

带格式的: 字体: 小四, 无下划线

带格式的:字体:小四,无下划线 带格式的:字体:小四,无下划线,

带格式的:字体:小四,无下划线

带格式的: 字体: 小四, 无下划线 带格式的: 字体: 小四, 无下划线

带格式的:字体:小四,无下划线

带格式的:字体:小四,无下划线,

带格式的:字体:小四,无下划线,

带格式的:字体:小四,无下划线,

带格式的: 字体: 小四, 无下划线

带格式的:字体:小四,无下划线

带格式的:字体:小四,无下划线

无下划线

无下划线

带格式的:字体:小四,

带格式的: 字体: 小四,

带格式的: 字体: 小四

带格式的: 字体: 小四

突出显示

突出显示

突出显示

突出显示

突出显示

突出显示

突出显示

突出显示

突出显示

561	high peak of BC deposition was investigated by using the global chemical	
562	transportation model (MOZART-4). The analysis indicated that the emissions	
563	from large Kuwait fires at the end of the first Gulf War in 1991 caused the	
564	high peak of the BC concentrations and the BC deposition. As a result, the BC	
565	deposition in 1991 and 1992 at the Muztagh Ata Mountain was 3-4 times	
566	higher than other periods.	带格式的: 字体:小四
567	(2) The effect of Kuwait fires on the BC deposition at the Muztagh Ata Mountain	带格式的:字体:小四,无下划线
568	suggested that the upward BC emissions had important impacts on this remote	
569	site located in Northern Tibetan Plateau. In order to quantitatively estimate the	
570	effect of surrounding emissions on the BC concentrations in the northern	
571	Tibetan Plateau, a sensitive study with 4 individual BC emission regions	
572	(Central Asia, Europe, Persian Gulf, and South Asia) was conducted by using	
573	the MOZART-4 model. The result suggests that during the "normal period"	
574	(non Kuwait Fires), the largest effect was due to the Central Asia source (44%)	
575	during Indian monsoon period. During non-monsoon period, the largest effect	
576	was due to the South Asia source (34%).	带格式的: 字体:小四
577	(3) The increase of radiative forcing increase (RFI) due to the deposition of BC on	带格式的:字体:小四,无下划线
578	snow was estimated by using the radiative transfer model (SNICAR). The	
579	results show that under the fresh snow assumption, the estimated RFI ranged	
580	from 0.2 W m^{-2} to 2.5 W m^{-2} , while under the aged snow assumption, the	
581	estimated RFI ranged from 0.9 W m ⁻² to 5.7 W m ⁻² . During the Kuwait fires	
582	period, the RFI values increased about 2-5 times higher than the "normal	
583	period", suggesting a significant increase for the snow melting in Northern	
584	Tibetan Plateau due to this fire event.	带格式的: 字体:小四
585		
586	This result suggests that the variability of BC deposition at the Muztagh Ata	带格式的:字体:小四,无下划线
587	Mountain provides useful information to study the effect of the upward BC emissions	
588	on environmental and climate issues in the Northern Tibetan Plateau. The radiative	带格式的:字体:小四
589	effect of BC deposition on the snow melting provides important information regarding	带格式的:字体:小四,无下划线 带格式的:字体:小四
590	the water resources in the region.	带格式的:字体:小四,无下划线
591	× •	带格式的: 字体: 小四 带格式的: 字体: 小四, 无下划线,
592	Acknowledgement	字体颜色:自动设置
593	This work was supported by the National Natural Science Foundation of China	带格式的:字体:小四,无下划线,字体颜色:自动设置,突出显示
594	(NSFC) under Grant Nos. 41430424-and, 41730108 and 41230641. The Authors	带格式的: 字体: 小四, 无下划线, 字体颜色: 自动设置
	10	

595	thanks the supports of Center for Excellence in Urban Atmospheric Environment,	
596	Institute of Urban Environment, Chinese Academy of Sciences. The National Center	
597	for Atmospheric Research is sponsored by the National Science Foundation,	带格式的: 字体:小四
598		
599		

References

601	An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian	「 带格式的: 字体 Roman,小四,ラ
602	monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene	色:自动设置
603	times, Nature, 411, 62–66, doi:10.1038/35075035, 2001,	带格式的: 字体
604	Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B., Edwards, R., Bisiaux,	Roman, 小四 带格式的: 字体
605	M., and McConnell, J.: Historical and future black carbon deposition on the three	Roman, 小四, ラ
606	ice caps: Ice core measurements and model simulations from 1850 to 2100, J.	色: 自动设置 带格式的: 字体
607	Geophys. Res. Atmos., 118, 7948–7961, doi:10.1002/jgrd.50612, 2013,	而 袖 氏的: 子神 Roman, 小四
608	Bisiaux, M. M., Edwards, R., McConnell, J. R., Curran, M. A. J., van Ommen, T. D.,	带格式的: 字体
609	Smith, A. M., Neumann, T. A., Pasteris, D. R., Penner, J. E., and Taylor, K.:	Roman, 小四, ラ 色: 自动设置
610	Changes in black carbon deposition to Antarctica from two high-resolution ice	带格式的: 字体
611	core records, 1850–2000 AD, Atmos. Chem. Phys., 12, 4107–4115,	Roman, 小四
612	doi:10.5194/acp-12-4107-2012, 2012,	带格式的: 字体 Roman,小四, 5
613	Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An	色:自动设置
614	Investigative Review, Aerosol Sci. Tech., 40, 27–67,	带格式的: 字体 Roman,小四
615	doi:10.1080/02786820500421521, 2006	带格式的: 字体
616	Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, JH., and Klimont, Z.:	Roman, 小四, ラ 色: 自动设置
617	A technology-based global inventory of black and organic carbon emissions from	带格式的: 字体
618	combustion, J. Geophys. Res., 109, 1042, doi:10.1029/2003JD003697, 2004.	Roman, 小四
619	Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, JF., Granier, C.,	带格式的: 字体 Roman,小四, ラ
620	and Tie, X. X.: MOZART, a global chemical transport model for ozone and related	色: 自动设置
621	chemical tracers: 1. Model description, J. Geophys. Res., 103, 28265–28289,	带格式的: 字体 Roman,小四
622	doi:10.1029/98JD02397, 1998.	带格式的: 字体
623	Cao, J. J., Lee, S. C., Ho, K. F., Zhang, X. Y., Zou, S. C., Fung, K., Chow, J. C., and	Roman, 小四, ラ 色: 自动设置
624	Watson, J. G.: Characteristics of carbonaceous aerosol in Pearl River Delta Region,	带格式的: 字体
625	China during 2001 winter period, Atmos. Environ., 37, 1451–1460,	Roman, 小四
626	doi:10.1016/\$1352-2310(02)01002-6, 2003.	带格式的: 字体 Roman,小四, ラ
627	Cao, J. J., Xu, B. Q., He, J. Q., Liu, X. Q., Han, Y. M., Wang, G. H., and Zhu, C. S.:	色:自动设置
628	Concentrations, seasonal variations, and transport of carbonaceous aerosols at a	带格式的: 字体 Roman,小四
629	remote Mountainous region in western China, Atmos. Environ., 43, 4444–4452,	带格式的: 字体
630	2009	Roman, 小四, ラ
631	Chang, L. Y., Xu, J. M., Tie, X. X., and Wu, J. B.: Impact of the 2015 El Nino event	色: 自动设置 带格式的: 字体
632	on winter air quality in China, Sci. Rep., 6, 34275, doi:10.1038/srep34275, 2016.	市福式的, 宁座 Roman, 小四
633	Chen, Y., Yang, K., He, J., Qin, J., Shi, J., Du, J., and He, Q.: Improving land surface	带格式的: 字体
634	temperature modeling for dry land of China, J. Geophys. Res., 116, 251,	Roman, 小四, ラ 色: 自动设置
635	doi:10.1029/2011JD015921, 2011	带格式的: 字体
636	Chow, J. C., Watson, J. G., Chen, L. W. A., Arnott, W. P., Moosmüller, H., and Fung,	Roman, 小四 #故書的, 今休
637	K.: Equivalence of elemental carbon by thermal/optical reflectance and	带格式的 :字体 Roman,小四, 5
638	transmittance with different temperature protocols, Environ. Sci. Technol., 38,	色:自动设置
639	4414–4422, 2004,	带格式的: 字体 Roman,小四
640	Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., and Purcell,	进校士的 , 空体

R. G.: The dri thermal/optical reflectance carbon analysis system: Description,

\$: Times New 无下划线,字体颜 : Times New 4: Times New 无下划线,字体颜 : Times New \$: Times New 无下划线,字体颜 : Times New \$: Times New 无下划线,字体颜 : Times New

带格式的: 字体: Times New Roman, 小四

\$: Times New 无下划线,字体颜

: Times New

k: Times New 无下划线,字体颜

: Times New

\$: Times New 无下划线,字体颜

: Times New

\$: Times New 无下划线,字体颜

: Times New

s: Times New 无下划线,字体颜

: Times New

x: Times New 无下划线,字体颜

: Times New

\$: Times New 无下划线,字体颜

: Times New

带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜 色: 自动设置

642	evaluation and applications in U.S. Air quality studies, Atmos. Environ. Part A.		
643	General Topics., 27, 1185–1201, doi:10.1016/0960-1686(93)90245-T, 1993.		带格式的: 字体: Times New Roman,小四
644	Conway, H., Gades, A., and Raymond, C. F.: Albedo of dirty snow during conditions		带格式的: 字体: Times New Roman,小四,无下划线,字体颜
645	of melt, Water Resour. Res., 32, 1713–1718, doi:10.1029/96WR00712, 1996,		Roman, 小四, 尤下划线, 子体颜色: 自动设置
646	Cooke, W. F. and Wilson, J. J. N.: A global black carbon aerosol model, J. Geophys.		带格式的: 字体: Times New Roman, 小四
647	Res., 101, 19395–19409, doi:10.1029/96JD00671, 1996,		带格式的:字体: Times New
648	Emmons, L. K., Walters, S., Hess, P. G., Lamarque, JF., Pfister, G. G., Fillmore, D.,	\mathbf{X}	Roman, 小四, 无下划线, 字体颜 色: 自动设置
649	Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall,	$ \setminus $	巴. 日幼设量 带格式的: 字体: Times New
650	G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation		Roman, 小四
651	of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),		带格式的: 字体: Times New
652	Geosci. Model Dev., 3, 43–67, doi:10.5194/gmd-3-43-2010, 2010.		Roman,小四,无下划线,字体颜 色:自动设置
653	Fang, Y., Chen, Y. J., Tian, C. G., Lin, T., Hu, L. M., Huang, G. P., Tang, J. H., Li, J.,		带格式的: 字体: Times New
654	and Zhang, G.: Flux and budget of BC in the continental shelf seas adjacent to	\searrow	Roman, 小四
655	Chinese high BC emission source regions, Global Biogeochem. Cycles, 29,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
656	957–972, doi:10.1002/2014GB004985, 2015,		色:自动设置
657	Flanner, M. G. and Zender, C. S.: Snowpack radiative heating: Influence on Tibetan		带格式的: 字体: Times New Roman, 小四
658	Plateau climate, Geophys. Res. Lett., 32, 10,219, doi:10.1029/2004GL022076,		
659	2005.		带格式的: 字体: Times New Roman,小四,无下划线,字体颜 色:自动设置
660	Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,		巴·日切议直 带格式的: 字体: Times New
661	Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover		Roman, 小四
662	from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
663	doi:10.5194/acp-9-2481-2009, 2009,		色:自动设置
664	Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate		带格式的: 字体: Times New
665	forcing and response from black carbon in snow, J. Geophys. Res., 112, 3131,		Roman, 小四 带格式的: 字体: Times New
666	doi:10.1029/2006JD008003, 2007.		Roman, 小四, 无下划线, 字体颜
667	Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the		色: 自动设置 带格式的: 字体: Times New
668	development of a new physically based broadband albedo parameterization, J.	\searrow	Roman, 小四
669	Geophys. Res., 115, D13203, doi:10.1029/2009JF001444, 2010.		带格式的: 字体: Times New
670	Hack, J. J.: Parameterization of moist convection in the National Center for	\searrow	Roman, 小四, 无下划线, 字体颜色: 自动设置
671	Atmospheric Research community climate model (CCM2), J. Geophys. Res., 99,	\backslash	带格式的: 字体: Times New
672	5551, doi:10.1029/93JD03478, 1994		Roman, 小四
673	Hagen, D. E., Trueblood, M. B., and Whitefield, P. D.: A Field Sampling of Jet	\mathbf{N}	带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
674	Exhaust Aerosols, Particulate Sc. & Tech., 10, 53-63,	$\backslash \setminus$	
675	doi:10.1080/02726359208906598, 1992.		带格式的: 字体: Times New Roman, 小四
676	Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, P. Natl.	\nearrow	带格式的 (
677	Acad. Sci. USA, 101, 423–428, 2004.	\backslash	带格式的: 字体: Times New
678	Hobbs, P. V. and Radke, L. F.: Airborne studies of the smoke from the kuwait oil fires,	$\backslash /$	Roman, 小四
679	Science, 256, 987–991, doi:10.1126/science.256.5059.987, 1992.	//	带格式的 带格式的: 字体: Times New
680	Holben, B. N., Eck, T. F., Slutsker, I., Tanr é, D., Buis, J. P., Setzer, A., Vermote, E.,	$\backslash /$	市研究的、于体、Times New Roman, 小四
681	Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and	//,	带格式的
682	Smirnov, A.: AERONET—A Federated Instrument Network and Data Archive for		带格式的: 字体: Times New
683	Aerosol Characterization, Remote Sens. Environ., 66, 1–16,		Roman, 小四 带格式的
684	doi:10.1016/S0034-4257(98)00031-5, 1998.		带格式的 (带格式的: 字体: Times New
685	Holtslag, A. A. M. and Boville, B. A.: Local Versus Nonlocal Boundary-Layer		Roman, 小四
			一带格式的

(...

(..

(...

686	Diffusion in a Global Climate Model, J. Climate, 6, 1825–1842,		
687	doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2, 1993,		带格式的: 字体: Times New
688	Jain, S. K., Goswami, A., and Saraf, A. K.: Assessment of Snowmelt Runoff Using		Roman, 小四 带格式的: 字体: Times New
689	Remote Sensing and Effect of Climate Change on Runoff, Water Resour Manage,		Roman, 小四, 无下划线, 字体颜 色: 自动设置
690	24, 1763–1777, doi:10.1007/s11269-009-9523-1, 2010.		巴·日动议直 带格式的: 字体: Times New
691	Jurado, E., Dachs, J., Duarte, C. M., and Sim ó, R.: Atmospheric deposition of organic		Roman, 小四
692	and black carbon to the global oceans, Atmos. Environ., 42, 7931-7939,		带格式的: 字体: Times New
693	doi:10.1016/j.atmosenv.2008.07.029, 2008.		Roman,小四,无下划线,字体颜 色:自动设置
694	Jurado, E., Jaward, F., Lohmann, R., Jones, K. C., Simó, R., and Dachs, J.: Wet		带格式的: 字体: Times New
695	Deposition of Persistent Organic Pollutants to the Global Oceans, Environ. Sci.		Roman, 小四
696	Technol., 39, 2426–2435, doi:10.1021/es048599g, 2005,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
697	Kaspari, S., McKenzie Skiles, S., Delaney, I., Dixon, D., and Painter, T. H.:	\searrow	色:自动设置
698	Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due	$\overline{\ }$	带格式的: 字体: Times New Roman, 小四
699	to deposition of black carbon and mineral dust from wildfire, J. Geophys. Res.		带格式的: 字体: Times New
700	Atmos., 120, 2793–2807, doi:10.1002/2014JD022676, 2015,		Roman, 小四, 无下划线, 字体颜 色: 自动设置
701	Kaspari, S. D., Schwikowski, M., Gysel, M., Flanner, M. G., Kang, S., Hou, S., and		带格式的: 字体: Times New
702	Mayewski, P. A.: Recent increase in black carbon concentrations from a Mt.		Roman, 小四
703	Everest ice core spanning 1860-2000 AD, Geophys. Res. Lett., 38, n/a-n/a,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
704	doi:10.1029/2010GL046096, 2011,		色:自动设置
705	Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F.,		带格式的: 字体: Times New
706	Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J.,		Roman, 小四 世故子的・ 字休・ Timos Now
707	Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
708	U., and Simmons, A. J.: Sensitivity of chemical tracers to meteorological		色: 自动设置
709	parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112,		
710	32295, doi:10.1029/2006JD007879, 2007.		带格式的: 字体: Times New
711	Lavanchy, V.M.H., Gäggeler, H. W., Schotterer, U., Schwikowski, M., and		Roman, 小四 带格式的: 字体: Times New
712	Baltensperger, U.: Historical record of carbonaceous particle concentrations from		Roman, 小四, 无下划线, 字体颜
713	a European high-alpine glacier (Colle Gnifetti, Switzerland), J. Aerosol Sci., 30,		色: 自动设置
714	S611-S612, doi:10.1016/S0021-8502(99)80316-4, 1999,		带格式的: 字体: Times New
715	Li, C. L., Yan, F. P., Kang, S. C., Chen, P. F., Han, X. W., Hu, Z. F., Zhang, G. S.,		Roman, 小四 带格式的: 字体: Times New
716	Hong, Y., Gao, S. P., Qu, B., Zhu, Z. J., Li, J. W., Chen, B., and Sillanp ää, M.:		Roman,小四,无下划线,字体颜
717	Re-evaluating black carbon in the Himalayas and the Tibetan Plateau:		色: 自动设置
718	Concentrations and deposition, Atmos. Chem. Phys., 17, 11899–11912,		
719	doi:10.5194/acp-17-11899-2017, 2017.		带格式的: 字体: Times New Roman, 小四
720	Lin, SJ. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian Transport		带格式的: 字体: Times New
721	Schemes, Mon. Wea. Rev., 124, 2046–2070,		Roman, 小四, 无下划线, 字体颜 色: 自动设置
722	doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2, 1996.		带格式的: 字体: Times New
723	Liousse, C., Cachier, H., and Jennings, S. G.: Optical and thermal measurements of		Roman, 小四
724	black carbon aerosol content in different environments: Variation of the specific		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
725	attenuation cross-section, sigma (σ), Atmospheric Environment. Part A. General		色:自动设置
726	Topics, 27, 1203–1211, doi:10.1016/0960-1686(93)90246-U, 1993,		带格式的: 字体: Times New Roman,小四
727	Liu, X. Q., Xu, B. Q., Yao, T. D., Wang, N. L., and Wu, G. J.: Carbonaceous particles		带格式的:_字体: Times New
728	in Muztagh Ata ice core, West Kunlun Mountains, China, Sci. Bull., 53,		Roman,小四,无下划线,字体颜 色:自动设置
729	3379–3386, doi:10.1007/s11434-008-0294-5, 2008.		带格式的: 字体: Times New
			Roman, 小四

730	Mackay, D., Paterson, S., and Schroeder, W. H.: Model describing the rates of transfer		带格式的: 字体: Times New
731	processes of organic chemicals between atmosphere and water, Environ. Sci.		Roman,小四,无下划线,字体颜 色:自动设置
732	Technol., 20, 810-816, doi:10.1021/es00150a009, 1986,		带格式的: 字体: Times New
733	McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E.		Roman, 小四
734	S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th-century		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
735	industrial black carbon emissions altered Arctic climate forcing, Science, 317,		色: 自动设置
736	1381–1384, doi:10.1126/science.1144856, 2007,	_	带格式的: 字体: Times New
737	Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.: Black carbon		Roman, 小四 带格式的: 字体: Times New
738	record based on a shallow Himalayan ice core and its climatic implications, Atmos.		Roman, 小四, 无下划线, 字体颜
739	Chem. Phys., 8, 1343–1352, doi:10.5194/acp-8-1343-2008, 2008,		
740	Nair, V. S., Babu, S. S., Moorthy, K. K., Sharma, A. K., Marinoni, A., and Ajai: Black		带格式的: 字体: Times New Roman, 小四
741	carbon aerosols over the Himalayas: Direct and surface albedo forcing, Tellus B,		带格式的: 字体: Times New
742	65, 19738, doi:10.3402/tellusb.v65i0.19738, 2013.		Roman, 小四, 无下划线, 字体颜 色: 自动设置
743	Painter, T. H., Seidel, F. C., Bryant, A. C., McKenzie Skiles, S., and Rittger, K.:		带格式的: 字体: Times New
744	Imaging spectroscopy of albedo and radiative forcing by light-absorbing		Roman, 小四
745	impurities in mountain snow, J. Geophys. Res. Atmos., 118, 9511-9523,		带格式的: 字体: Times New Roman,小四,无下划线,字体颜
746	doi:10.1002/jgrd.50520, 2013.		色: 自动设置
747	Parungo, F., Nagamoto, C., Zhou, MY., Hansen, A. D.A., and Harris, J.: Aeolian		带格式的: 字体: Times New Roman,小四
748	transport of aerosol black carbon from Aeolian transport of aerosol black carbon		带格式的: 字体: Times New
749	from China to the ocean, Atmos. Environ., 28, 3251–3260, 1994,		Roman, 小四, 无下划线, 字体颜 色: 自动设置
750	Petr Chylek, V. R. and Srivastava, V.: Albedo of soot-contaminated snow, J. Geophys.		带格式的: 字体: Times New
751	Res., 88, 10837–10843, 1983,		Roman, 小四
752	Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, SM., Baltensperger, U.,	$\langle \rangle$	带格式的: 字体: Times New Roman,小四,无下划线,字体颜
753	Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C.,	$\langle \rangle$	色:自动设置
754	Wiedensohler, A., and Zhang, XY.: Recommendations for reporting "black	$\langle \rangle$	带格式的: 字体: Times New Roman, 小四
755	carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379,		带格式的: 字体: Times New
756	doi:10.5194/acp-13-8365-2013, 2013,		Roman, 小四, 无下划线, 字体颜
757	Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and		色: 自动设置 带格式的: 字体: Times New
758	the hydrological cycle, Science, 294, 2119–2124, 2001,		而而又加了。于母、 Times New Roman, 小四
759	Rasch, P. J., Mahowald, N. M., and Eaton, B. E.: Representations of transport,	$\langle \rangle$	带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
760	convection, and the hydrologic cycle in chemical transport models: Implications	$\langle \rangle$	Roman, 小四, 儿下划线, 子体颜 色: 自动设置
761	for the modeling of short-lived and soluble species, J. Geophys. Res., 102,	$\langle \rangle$	带格式的: 字体: Times New
762	28,127-28,138, 1997.		Roman, 小四 带格式的: 字体: Times New
763	Schmale, J., Flanner, M., Kang, S., Sprenger, M., Zhang, Q., Guo, J., Li, Y.,	\backslash	Roman, 小四, 无下划线, 字体颜
764	Schwikowski, M., and Farinotti, D.: Modulation of snow reflectance and	$\backslash /$	色: 自动设置 带格式的: 字体: Times New
765	snowmelt from Central Asian glaciers by anthropogenic black carbon, Sci. Rep., 7,		审格式的: 子译: limes New Roman, 小四
766	40501, doi:10.1038/srep40501, 2017		带格式的: 字体: Times New
767	Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C.,		Roman,小四,无下划线,字体颜 色:自动设置
768	Reeves, J. M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H.,	//	带格式的: 字体: Times New
769	Schulz, M., Hendricks, J., Lauer, A., K ärcher, B., Slowik, J. G., Rosenlof, K. H.,		Roman, 小四
770	Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.:		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
771	Single-particle measurements of midlatitude black carbon and light-scattering		色: 自动设置
772	aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111,		
773	2845, doi:10.1029/2006JD007076, 2006.	/	带格式的: 字体: Times New Roman 小四

1			
774	Tie, X. X., Madronich, S., Walters, S., Edwards, D. P., Ginoux, P., Mahowald, N.,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
775	Zhang, R. Y., Lou, C., and Brasseur, G.: Assessment of the global impact of		色: 自动设置
776	aerosols on tropospheric oxidants, J. Geophys. Res., 110, 13,791,		
777	doi:10.1029/2004JD005359, 2005		带格式的: 字体: Times New Roman,小四
778	Wang, M., Xu, B., Cao, J., Tie, X., Wang, H., Zhang, R., Qian, Y., Rasch, P. J., Zhao,		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
779	S., Wu, G., Zhao, H., Joswiak, D. R., Li, J., and Xie, Y.: Carbonaceous aerosols		Roman, 小凹, 无下划线, 字体颜 色: 自动设置
780	recorded in a southeastern Tibetan glacier: Analysis of temporal variations and		带格式的: 字体: Times New
781	model estimates of sources and radiative forcing, Atmos. Chem. Phys., 15,		Roman, 小四
782	1191–1204, doi:10.5194/acp-15-1191-2015, 2015a		带格式的: 字体: Times New Roman,小四,无下划线,字体颜
783	Wang, M., Xu, B. Q., Kaspari, S. D., Gleixner, G., Schwab, V. F., Zhao, H. B., Wang,		色: 自动设置
784	H. L., and Yao, P.: Century-long record of black carbon in an ice core from the	/	带格式的: 字体: Times New Roman, 小四
785	Eastern Pamirs: Estimated contributions from biomass burning, Atmos. Environ.,		带格式的: 字体: Times New
786	115, 79–88, doi:10.1016/j.atmosenv.2015.05.034, 2015b		Roman, 小四, 无下划线, 字体颜
787	Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow. II:	/	色: 自动设置 带格式的: 字体: Times New
788	Snow Containing Atmospheric Aerosols, J. Atmos. Sci., 37, 2734–2745,		Roman, 小四
789	doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2, 1980,	/ /	带格式的: 字体: Times New
790	Wendl, I. A., Menking, J. A., Färber, R., Gysel, M., Kaspari, S. D., Laborde, M. J. G.,		Roman, 小四, 无下划线, 字体颜色: 自动设置
791	and Schwikowski, M.: Optimized method for black carbon analysis in ice and	/	带格式的: 字体: Times New
792	snow using the Single Particle Soot Photometer, Atmos. Meas. Tech., 7,		Roman, 小四
793	2667–2681, doi:10.5194/amt-7-2667-2014, 2014,	/ /	带格式的: 字体: Times New Roman,小四,无下划线,字体颜
794	Wiscombe, W. J. and Warren, S. G.: A Model for the Spectral Albedo of Snow. I: Pure		色:自动设置
795	Snow, J. Atmos. Sci., 37, 2712–2733,		带格式的: 字体: Times New Roman,小四
796	doi:10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2, 1980.		带格式的: 字体: Times New
797	Wu, G. J., Yao, T. D., Xu, B. Q., Li, Z., Tian, L. D., Duan, K. Q., and Wen, L. K.:		Roman,小四,无下划线,字体颜 色:自动设置
798	Grain size record of microparticles in the Muztagata ice core, Sci. China Ser. D, 49,		带格式的: 字体: Times New
799	10–17, doi:10.1007/s11430-004-5093-5, 2006,		Roman, 小四
800	Wu, G. J., Yao, T. D., Xu, B. Q., Tian, L. D., Li, Z., and Duan, K. Q.: Seasonal		带格式的: 字体: Times New Roman,小四,无下划线,字体颜
801	variations of dust record in the Muztagata ice cores, Sci. Bull., 53, 2506–2512,		色:自动设置
802	doi:10.1007/s11434-008-0197-5, 2008,		带格式的: 字体: Times New Roman,小四
803	Wu, T. and Qian, Z.: The relation between the Tibetan winter snow and the Asian		带格式的: 字体: Times New
804	summer monsoon and rainfall: an observational investigation, Journal of Climate,		Roman, 小四, 无下划线, 字体颜色: 自动设置
805	16, 2038–2051, 2003		巴. 日切反直 带格式的: 字体: Times New
806	Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., Wu, G., Wang, M., Zhao,		Roman, 小四
807	H., Yang, W., Liu, X., and He, J.: Black soot and the survival of Tibetan glaciers, P.		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
808	Natl. Acad. Sci. USA, 106, 22114–22118, doi:10.1073/pnas.0910444106, 2009a		Roman, 小四, 九下划线, 子体颜 色: 自动设置
809	Xu, B. Q., Wang, M., Joswiak, D. R., Cao, J. J., Yao, T. D., Wu, G. J., Yang, W., and		带格式的: 字体: Times New
810	Zhao, H. B.: Deposition of anthropogenic aerosols in a southeastern Tibetan		Roman, 小四
811	glacier, J. Geophys. Res., 114, 9185, doi:10.1029/2008JD011510, 2009b		带格式的: 字体: Times New Roman, 小四, 无下划线, 字体颜
812	Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A.,	\searrow	色: 自动设置
813	Cristofanelli, P., Duchi, R., Tartari, G., and Lau, KM.: Estimated impact of black	\backslash	带格式的: 字体: Times New Roman, 小四
814	carbon deposition during pre-monsoon season from Nepal Climate Observatory -		带格式的: 字体: Times New
815	Pyramid data and snow albedo changes over Himalayan glaciers, Atmos. Chem.		Roman, 小四, 无下划线, 字体颜色: 自动设置
816	Phys., 10, 6603–6615, doi:10.5194/acp-10-6603-2010, 2010		世,日初设直 带格式的: 字体: Times New
817	Yasunari, T. J., Tan, Q., Lau, KM., Bonasoni, P., Marinoni, A., Laj, P., M én égoz, M.,		Roman, 小四
			(带格式的 (

818	Takemura, T., and Chin, M.: Estimated range of black carbon dry deposition and	
819	the related snow albedo reduction over Himalayan glaciers during dry	
820	pre-monsoon periods, Atmos. Environ., 78, 259-267,	
821	doi:10.1016/j.atmosenv.2012.03.031, 2013,	 带格式的: 字体: Times New Roman、小四
822	Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the	带格式的: 字体: Times New
823	parameterization of cumulus convection in the Canadian climate centre general	Roman, 小四, 无下划线, 字体颜
824	circulation model, Atmos. Ocean, 33, 407-446,	色: 自动设置
825	doi:10.1080/07055900.1995.9649539, 1995.	 带格式的: 字体: Times New
826	Zhao, H. B., Xu, B. Q., Yao, T. D., Tian, L. D., and Li, Z.: Records of sulfate and	Roman, 小四 带格式的: 字体: Times New
827	nitrate in an ice core from Mount Muztagata, central Asia, J. Geophys. Res., 116,	Roman, 小四, 无下划线, 字体颜
828	275, doi:10.1029/2011JD015735, 2011,	色:自动设置 ### + # #
829	Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, LW. A., Su, X., Liu, S., Han, Y.,	带格式的: 字体: Times New Roman, 小四
830	Wang, G., and Ho, K.: Aerosol particles at a high-altitude site on the Southeast	带格式的:字体: Times New
831	Tibetan Plateau, China: Implications for pollution transport from South Asia, J.	Roman,小四,无下划线,字体颜 色:自动设置
832	Geophys. Res. Atmos., 118, 11,360-11,375, doi:10.1002/jgrd.50599, 2013,	 带格式的:_字体: Times New
833		Roman, 小四
834		

Fig 1. The Muztagh Ata measurement site (indicated by the red-dot), and the surrounding BC source areas (R1-Central Asia region; R2-European region; R3-Persian Gulf region; and R4-South Asia region).

841 Fig 2. The trend of global BC emission (Tg/yr) from 1986 to 2006 used in this study

Fig 3a. Comparison of calculated (red) and measured (blue) monthly mean BC concentrations at the surface

level during Jan. 2004 to Feb. 2006 measured by the Cold and Arid Regions Environmental and

Fig 3b. Comparison of calculated (red) and measured (blue) seasonal variation during Jan. 2004 to Feb. 2006. Spring includes March, April and May in 2004 and 2005. Summer includes June, July and August in

2004, 2005; Autumn includes September, October and November in 2004, 2005; Winter includes December,

January and February of 2004, 2005 and January, February in 2006.

Engineering Institute, Chinese Academy of Sciences.

856 Fig 4. Comparison of measured annual BC deposition flux with the model calculation between ice core and

- simulation, as well as the modelled atmospheric BC concentration and precipitation used for BC deposition
- 858 flux calculation
- 859

- Fig 5. The image of the fires in Kuwait during 1991. It shows the intensive fires and the raise up of plume
- due to the heat buoyance. The lower panel shows the fires were transported to east due to western winds.

带格式的:居中,缩进:首行缩进: 0 厘米

Fig. 6. The calculated horizontal distributions of BC concentrations (µg m⁻³) at the surface (A) and the
concentrations (ng m⁻³) at 5 km above the surface (B) in Kuwait during 1991. The wind direction and speed
are indicated by black arrows.

Fig 7. The calculated spatial BC distributions due to individual BC from the four source regions (Central Asia, Europe, Persian Gulf and South Asia) above 5 km above the surface during different periods, i.e., monsoon (June-September), non-monsoon (October-May), and annual mean in 1993. The red star is where the study site of Muztagh Ata located. The red boxes indicate the boundary of the four source regions.

Fig 8. Estimated the effects of BC containments on annual mean radiative forcing increase (RFI) (W/m²)
and snow water equivalent (SWE) reduction (mm/a), under fresh snow assumption (purple line and bars)
and aged snow assumption (yellow line and bars).

883 Table 1. Source regions and corresponding fractional contributions to atmospheric BC concentrations at the

884 Muztagh Ata site in monsoon, non-monsoon and all months during 1993

	Source regions	Latitude	Longitude	Summer monsoon (June-September)	Non-monsoon (October-May)	Annual
R1	Central Asia	37-56 N	50-95 E	43.9%	18.1%	26.7%
R2	Europe	35-67 N	0-50 E	26.6%	11.5%	16.5%
R3	Persian Gulf	24-35 N	35-55 E	9.4%	12.1%	11.2%
R4	South Asia	14-37 N	55-95 E	7.3%	33.7%	24.9%
	Others	NA	NA	7.9%	6.2%	6.8%