
Referee Comment #1 

We would like to thank S. P. Burton for providing a series of comments and suggestions that helped us 
to improve the submitting paper. In the following, answers to comments are reported in italics, just 
below each related comment. The comments are underlined and numbered to ease the process. When 
needed, the part of the manuscript we modified or added to the old version is reported in bold. 
Moreover, the references of the cited literature are given in the end of the document. 

Specific comments: 

1. Figures 2 and 7. What are the resolution of the extinction and backscatter profiles? How is the lidar ratio 

calculated? Were the extinction and backscatter at the same resolution before taking the ratio? I ask 

because there are differences in the shape of extinction and backscatter in each of the discussed layers 

that do not seem particularly consistent with the idea that each layer is a specific coherent aerosol type. 

For example, the "layer" below 2 km in Figure 2 has a completely different shape in backscatter vs. 

extinction, leading to large variability in the lidar ratio, much larger than the suggested error bars. Do you 

think this variability is real, or could it be that the local maximum (seen in backscatter) is smoothed out in 

extinction by a coarser vertical resolution? If it’s real, is it likely this is a single consistent aerosol type in 

this layer? Similarly, the different slopes in the "layer" between 3.5 and 5 km lead to a very large slope in 

the lidar ratio that does not seem consistent with the idea that this is a single aerosol type. If this variability 

is spurious, it is liable to create additional apparent noise in the classification that is not really related to 

aerosol variability within classes. (Of course, spurious error would also be a concern in general, not just 

for classification.) 

P34-Figure 2 and P39-Figure 7 in the submitted paper are reporting the profiles at their highest resolutions, i.e. 

the particle backscatter coefficient profiles have a higher resolution when compared to the extinction ones and 

typically the ultraviolet profiles have a better resolution than the visible profiles. The lidar ratio profiles have the 

same resolution of the particle extinction coefficient profiles. Prior to the calculation of the lidar ratio, the particle 

backscatter coefficient profiles are smoothed using a 2nd order Savitzky-Golay filter at an effective vertical 

resolution that varies with height, for more details see Iarlori et al. (2015). 

In particular, for P34-Figure 2, the resolution of the particle backscatter coefficient profiles is 60 m while for the 

particle extinction coefficient the resolution varies with height. The effective resolution for 355 nm (blue line) and 

532 nm (red line) is given in Figure A and follows the procedure described in Pappalardo et al. (2004). For the 

height range 1.5-2.5 km, the highest resolution is 120 m for 355 nm while for 532 nm varies from 120 m to 480 

m. Higher in the atmosphere, the resolution degrades with height (faster for 532 nm) and becomes constant at 

4.5 km for 355 nm (3.5 km for 532 nm). 



 

Figure A: The effective resolution of the extinction coefficient at 355 nm (blue line) and 532 nm (red line) for the MUSA system in Potenza 

on 14/07/2011, 19:20–22:10 UTC. 

Figure B shows the same panels as for P34-Figure 2 along with the smoothed backscatter profiles (panel b) that 

were used for the calculation of the lidar ratio. The next lines are implemented in the revised manuscript: 

 

Figure B: Optical profiles measured in Potenza, on 14 July 2011, 19:20–22:10 UTC with a multiwavelength Raman lidar. From left to right, 

(a) the particle backscatter coefficient with the full resolution, (b) the smoothed particle backscatter coefficient, (c) the particle extinction 

coefficient, and (d) the particle lidar ratio. The error bars correspond to the standard deviation. 



The particle extinction and backscatter coefficient are given with their full resolution. To calculate the lidar 

ratio, the backscatter coefficient was smoothed in the same effective vertical resolution using a Savitzky-Golay 

second order filter (Iarlori et al., 2015) and only the useful range of signals was kept; the effective resolution 

of the resulting profiles varied from 120 m to 480 m using the method described in Pappalardo et al. (2004). 

About the height-independent shape of the intensive properties, in the revised version of the paper we rephrased 

the sentence because it is actually misleading. The referee is right that three different layers are observed as 

reported in P5L19-20. The layer mean intensive parameters are given in Table A. The Ångström exponent for the 

3 layers maintains a rather stable character with values around 0 suggesting large particles over Potenza. 

Regarding the lidar ratio, the values decrease with height and confirm the remark that we should not consider a 

single aerosol type throughout the range. 

Table A: the mean intensive parameters for the 3 layers observed. 

Layer [km] κβ(355,532) κβ(532,1064) κβ(355,1064) κα(355,532) S355 [sr] S532 [sr] 

1.6-2.0 0.45±0.03 0.32±0.03 0.37±0.02 -0.2±0.2 53±8 57±8 
2.0-3.5 -0.02±0.12 0.42±0.06 0.26±0.04 -0.3±0.2 48±4 53±4 
3.5-5.0 0.12±0.26 0.42±0.18 0.31±0.13 0.4±0.2 46±8 41±5 

 

With respect to the apparent different behavior of extinction and backscatter, we do not think that the increase 

of the lidar ratio below 2 km is a smoothing effect as both backscatter and extinction coefficient have the same 

resolution. This increase of the lidar ratio is also followed by a slight increase in the Ångström coefficient (altitudes 

below 1.6 km) and it might indicate the mixing with local aerosols. It is right mentioning here that below 2 km 

(see P33-Figure 1) the planetary boundary layer contribution has to be considered. For the tenuous layer above 

3.5 km, the lidar ratio has indeed a large slope, however a few hundred meters below 5 km, and with a large 

statistical error because of the low aerosol concentration. 

Besides, we investigated the backward trajectories for the layers of Table A using the HYSPLIT model (Stein et al., 

2015). We initiated the model for a 7-day backward analysis and starting height levels the midpoints of the layers 

and the results are shown in Figure C. The layers 2.0-3.5 km and 3.5-5 km show a similar pattern with the air-

masses flying over 2 km and originating source the Saharan desert. The layer 1.6-2.0 km follows a different 

pathway, the air-masses circulate over the Mediterranean Sea and Algeria and the uptake of marine particles is 

very likely. This information combined with the information of Table A suggests dust particles for the 2 elevated 

layers. 

However, it is right to mention that this case (and the case in P39-Figure 7) is reported for showing how the 

classification is done using intensive properties and backward trajectory analyses. All the intensive properties 

used for setting up the reference dataset and testing dataset are related to elevated layers separated from the 

planetary boundary layer and local influence. 



 

Figure C: HYSPLIT backward trajectories for the aerosol layers observed over Potenza, on 14 July 2011, 19:20–22:10 UTC. 

In synthesis, the 3 layers with the synergistic use of intensive properties and backward trajectory analysis allows 

us to distinguish the different characteristics of the mixed dust layer in the range 1.6-2.0 km and the desert dust 

higher in the atmosphere (2.0-5.0 km). The intensive properties are measured with good level of uncertainty only 

in the layer 2.0-3.5 km. In order to avoid confusion, we will focus our comments in the range 2.0-3.5 km where 

the intensive property analysis is coherent and confirms the existence of a dust layer. The text implemented in 

P5L22-24 is given below: 

The layer 2.0-3.5 km has a constant behavior with the range for the intensive optical profiles indicating the 

presence of the same type of particles. The mean values of all optical parameters in the range are calculated: 

lidar ratios of 48±4 sr at 355 nm and 53±4 sr at 532 nm and Ångström exponents of -0.3–0.4 were found. 

Furthermore, the sentence P13L31 is changed to: 

For the case in Sect. 2.1, the automatic algorithm labelled the aerosol layer as dust, DM=1.2 and the normalized 

probability 55 %. 

The same kind of discussion applies for P39-Figure 7, where the vertical raw resolution is 7.5 m and the effective 

resolution of the extinction coefficient profiles is given in Figure D. The resolution for both wavelengths degrades 

with height (faster for 532 nm). For the height range 1.2-1.9 km, the highest resolution is 240 m for 355 nm while 

for 532 nm varies from 240 m to 480 m. Higher in the atmosphere, the resolution degrades with height (faster 

for 532 nm) and becomes constant at 4.7 km for 355 nm (3.8 km for 532 nm). 



 

Figure D: The effective resolution of the extinction coefficient at 355 nm (blue line) and 532 nm (red line) for the Athens lidar on 
22/05/2014, 20:28–21:28 UTC. 

Similar to Figure B, Figure E shows the same panels as for P39-Figure 7 along with the smoothed backscatter 

profiles (panel b) that were used for the calculation of the lidar ratio. The next sentence is implemented in the 

revised manuscript: 

 

Figure E: Optical profiles measured in Athens, on 22 May 2014, 20:28–21:28 UTC with a multiwavelength Raman lidar. From left to right, 

(a) the particle backscatter coefficient with the full resolution, (b) the smoothed particle backscatter coefficient, (c) the particle extinction 

coefficient, and (d) the particle lidar ratio. The error bars correspond to the standard deviation. 



The particle extinction and backscatter coefficient are given with their full resolution. To calculate the lidar 

ratio, the backscatter coefficient was smoothed in the same effective vertical resolution using a Savitzky-Golay 

second order filter (Iarlori et al., 2015) and only the useful range of signals was kept; the effective resolution 

of the resulting profiles varied from 240 m to 780 m using the method described in Pappalardo et al. (2004). 

2. Would you say that there is a possibility for error in the determination of "truth" aerosol types? If so, it 

would be good to see some discussion of that.  

Aerosol classification as described in Section 2.1 is based on a descriptive analysis of the retrieved optical 

properties and the model simulations, and it is a qualitative method of type assignment. Thus, there is inherent 

possibility of error in the determination of the true aerosol type. This error, if made, propagates into the automatic 

algorithm and the predicted aerosol class might deviate from the “truth” aerosol class. 

As discussed in Sections 2.1 and 3.2, the aerosol type was decided manually by using a set of different tools 

(transport and trajectory models, as well as other observational data). Thus, optical properties for different 

aerosol types observable over Europe were derived. For the selected aerosol types, P27-Table 2 highlights the 

characteristics of each type and the values concur with several aerosol typing studies, such as Müller et al.(2007a), 

Burton et al. (2012, 2013, 2014), Gross et al. (2015), and Giannakaki et al. (2016). 

Nevertheless, there is the possibility for error in the aerosol type definition. In supervised learning techniques, the 

aerosol classes must be well defined, differently the predictions of the predictive algorithm will suffer from the 

wrong definition. For example, this aspect can be observed in the definition of the Smoke and Volcanic category. 

The former refers to biomass burning particles with small size and very high lidar ratios whereas aged smoke 

plumes are expected to have different characteristics. The later refers only to fresh volcanic emissions and the 

optical characteristics are similar to the desert dust particles. Moreover, the dust type considers plumes from the 

Saharan desert and not the Arabian where the lidar ratio tends to be smaller. All these will lead the algorithm to 

misclassify the aerosol types not taken into account and allocate them to a wrong type. However, the flexibility 

of the algorithm allows us to circumvent it by inserting more and/or better defined aerosol types. The next lines 

are inserted in Section 3.2.1: 

Aerosol classification as described in Section 2.1 is based on a descriptive analysis of the retrieved optical 

properties and the model simulations, and it is a qualitative method of type assignment. Thus, there is inherent 

possibility of error in the determination of the true aerosol type. This error, if made, propagates into the 

automatic algorithm and the predicted aerosol class might deviate from the “truth” aerosol class. 

3. I also have a particular question about the interpretation of the influence of marine aerosol in the two 

case studies that are discussed at length. FLEXPART, Figures 3 and 8, seems like a very nice tool for 

information on aerosol source. Figure 3 seems to show a large fraction of the incidence below 2 km (a lot 

of the green and yellow) as being in the Mediterranean Sea, but in the discussion, no mention is made of 

marine influence and the case is described as "pure dust". On the other hand, in Figure 8, an apparently 

lesser proportion of the trajectories below 2 km are seen over the Black Sea and the Caspian Sea, and this 

layer is described as a mixture "enriched with marine particles during their overpass over the Black Sea". 

Can you clarify how we can know that there is marine influence in one case and not the other? It seems 

that it would be particularly difficult to say definitively when aerosol types are "pure" rather than mixed, 

using this method. Can you clarify whether there are additional factors that go into these judgements 

besides the FLEXPART tool and what uncertainties are associated with those judgements? 

The manual typing as described in Section 2.1 is not a simple issue and, of course, leaves room to questionable 

type assignment. The backward trajectory analysis is used synergistically with the lidar optical properties and the 



model outputs suffer from the high error on the path (increasing with the path itself) and the source term 

assignment. Therefore, the model simulations have to be used together with the observed lidar optical properties 

for providing a reasonable aerosol typing. 

The FLEXPART plot indicates the possibility of marine influence in the identified layer, however the lidar ratio 

values being over 50 sr indicates low or no presence of maritime aerosol particles. Furthermore, for this specific 

case, particle linear depolarization ratio measurements are available, however these measurements are not 

included in the database and therefore not reported in the submitted manuscript. Figure F shows the particle 

linear depolarization ratio where the values are over 0.2 and, thus, confirming our hypothesis of aspherical 

particles. 

 

Figure F: Particle (blue line) and Volume (red line) linear depolarization ratio at 532 nm for the MUSA system in Potenza on 14/07/2011, 
19:20–22:10 UTC. 

In order to avoid confusion, we rephrased the sentence in P5L30-31 and moved P5L24-25 to end of it: 

The dust-prone area of northern Africa (Morocco and northern Algeria) along with the Mediterranean Sea are 

most likely the sources of the observed layer and suggest a mixture of dust and marine particles. The combined 

information of the backward trajectory analysis and the intensive properties values indicate the presence of 

dust particles and they are in accordance with the typical dust values observed over Potenza (Mona et al., 

2014). 

P40-Figure 8 shows a complicated scene with multiple aerosol sources with low probability of marine influence. 

Unfortunately, there was a misinterpretation of the FLXEPART plot. The sentence in P14L12-15 has been 

rephrased and implemented in the text: 

Therefore, the path of the air masses arriving over Athens suggests a mixture of dust and biomass burning 

particles, originating from the arid areas of the Aral Sea, as well as the agricultural fires in former Soviet Union 

countries (Papayannis et al., 2016). 

4. Section 3.2.4. When you add particle depolarization as a classification variable, I think you should still keep 

the original three variables. You have already shown that all three variables are sufficiently independent 

to be useful, so adding an independent fourth variable would be expected to produce the best 

classification method. I’m not following why you avoid using more than 3 variables. 



The reason that we removed a classifying parameter was that we wanted to compare in a fair and informative 

manner the two setups (i.e., the 3+2 and the 3+2+1). Regarding this remark, the text and figures have been 

corrected in the revised version of the manuscript. 

The main features of the Figure G (same as P38-Figure 6) remain almost the same. The difference between with 

and without depolarization ratio of the error rate of LOOCV is bigger, thus, indicating a better performance when 

the 4 classifying parameters are used. 

 

Figure G: Bar plots showing a) the total Λ, b) the partial Λ, and c)error rate of LOOCV when comparing the training of the algorithm with 
(i.e., S532/S355, S532, and κβ(355,1064)) and without (i.e., δaer,532, Saer,532, and κβ) particle linear depolarization values. For the partial Λ, the 
brown bars correspond to the backscatter-related Ångström exponent and orange one to the particle linear depolarization ratio because 
they represent the most significant classifying parameter in the classification. 

Figure H (same as P41-Figure 9) shows a different behavior when compared to the graph reported in the first 

version of the manuscript. The prediction accuracy when depolarization is used remains almost stable (79%-85%) 

for all considered classes and do not increase almost monotonically when aerosol types are merged. On the 

contrary, for 4 classes the prediction accuracy is the lower among the other classes, however, still it is very high. 

The graphs and the corresponding discussion is changed accordingly. 



 

Figure H: Prediction accuracy for the different aerosol classes and with/without depolarization information. 

The next lines have been inserted in the revised version of the manuscript: 

P13L6-11: In this case, the particle linear depolarization ratio was added to the classifying parameters. Values 

within the aerosol type range were randomly assigned to each sample and the Λ distribution was calculated. 

Total Λ is 0.004. The value of partial Λ for κβ, S532, S532/S355 and δ532 are 0.55, 0.34, 0.52 and 0.12 respectively. 

The values found for the partial Λ confirm the δ532 as the most important classifier for the considered dataset. 

For the rest aerosol groups the total and partial (for depolarization ratio) Λ are 0.005 and 0.14 respectively (7a 

classes), 0.005 and 0.12 (7b classes), 0.006 and 0.14 (6 classes), 0.040 and 0.68 (5 classes), and 0.050 and 0.69 

(4 classes). 

P15L12-15: With depolarization ratio information, the accuracy for 8 classes equals to 79 % and exceeds the 

80 % for the rest aerosol classes. When comparing the accuracy of the model with and without depolarization 

ratio, it appears to be significantly higher until 6 classes where, further, the discrepancy diminishes (<10 %) 

and becomes smaller for 4 classes. 

P16L19-21: Besides, the training of the algorithm with literature depolarization ratio values decreased the 

error rate of the leave-one-out cross validation from 24% (8 classes) to 4% (4 classes). Furthermore, the 

predictive accuracy increased and remained for all the aerosol classes around 80% (for 8 classes: 79%, for 7a: 

86 %, for 7b: 83 %, for 6: 93 %, for 5: 86 %, and for 4: 93 %). 

5. P4 L14 The idea that the spectral ratio of lidar ratio indicates smoke aging is still a hypothesis, based 

empirically on a small number of suggestive cases. Describing this relationship as "robust" overstates the 

case, I think. Not all of the references actually support the statement. For example, Samaras et al. 2015 

have no measurements related to smoke age, but rather take it as given, substituting the spectral ratio of 

lidar ratios as a proxy for smoke age. Please don’t use a reference to support a hypothesis that merely 

made use of the hypothesis (at least not without more explanation). Anyway, the current manuscript 



doesn’t relate to smoke aging. You could easily remove the statement and avoid controversy. At least don’t 

overstate it and please remove references that do not really support the statement. 

The sentence has been rephrased and the non-relevant references are removed. The next sentence substitutes 

the phrase in P4L13-15: 

This quantity has shown the ability to characterize the ageing status of smoke particles as well as the spectral 

dependence of aerosol (Müller et al., 2007a; Alados-Arboledas et al., 2011; Nepomuceno Pereira et al., 2014; 

Nicolae et al., 2013). 

6. Should the "clean" in the label "clean continental" be taken literally? The description of the clean 

continental category is obliquely defined here as a mixture of polluted continental and clean marine 

aerosol and indeed the data in Figure 5 also seem to support its interpretation as a mixture of the two. I 

think this is an interesting way to think about this type, perhaps much more useful than the standard way 

of thinking of it as a type that, unlike all the others, is defined by an extensive aerosol property (low aerosol 

loading). Any comment on this? Would a case that has the intensive properties of the clean continental 

class but a significant amount of aerosol optical depth (so therefore not particularly "clean") be considered 

"clean continental" in your analysis? 

The clean continental category, as defined in P6L20-23, presents the mixture of anthropogenic aerosols with 

natural sources. It is true that the clean continental subtype occupies the space between polluted continental and 

mixed marine (P34-Figure 5), however this aerosol type is observed in continental EARLINET sites far from 

maritime aerosol sources (e.g., Bucharest, Leipzig). The manual aerosol typing made by Schwarz (2016), part of 

the reference dataset, assigns an aerosol layer as clean continental when the aerosol concentration is low by 

means of optical depth. Based on this definition, the label “clean” can be taken literally. However, the automatic 

typing procedure does not take into account any extensive parameter, hence not “clean” aerosol layers might be 

classified as clean continental. 

7. P9-10. The information about Mahalanobis distance is basically repeated from earlier work. You could 

simplify by referencing Burton et al. 2012 and noting the different thresholds. 

The section 3.1 has been reshaped accordingly. The section reads below: 

We developed an automated typing method, based on the work of Burton et al. (2012), but modified it in 

order to be compatible with the database of EARLINET. Two major steps are identified in the method 

proposed: the training (Sect. 3.2), and the testing (Sect. 4.1) phase. The first step consists of the following 

procedures. As described in Sect. 3.2.1, well characterized aerosol samples are manually separated into classes 

based on their physical characteristics; the set of classes constitutes the reference dataset. This procedure 

involves the determination of each observed aerosol layer location and the estimation of mean layer intensive 

optical properties. Based on this analysis, the classifying parameters that provide the required information for 

a better discrimination of the aerosol type are selected (Sect. 3.2.2). Next, in order to estimate how accurately 

a predictive model will perform, the reference dataset is split into training and validation datasets, and the 

application of the classifier is evaluated (Sect. 3.2.3). Sect. 3.2.4 describes the inference of characteristic 

depolarization values in the algorithm with the intention to increase the prediction of the model. For the 

second step, already pre-classified EARLINET data are used to assess the performance of the automatic typing 

procedure. Figure 1 illustrates the sequence of the proposed methodology starting from the setting of the 

training dataset, up to the assessment of the learning success during the testing phase. 



The Mahalanobis distance of an observation from an aerosol class is estimated, and is assigned to the aerosol 

class for which the distance is minimum. Two screening criteria are applied to the minimum distance following 

the procedure of Burton et al. (2012). The methodology uses 3 and 4 classifying parameters and the minimum 

accepted distance for a measurement to be labelled is 4 and 4.3 respectively. Moreover, the normalized 

probability of the aerosol class needs to be higher than 50 %. 

8. P10, L7. Similar probabilities for two different classes do not indicate mixing between those two classes. 

This only reflects that those two classes are close to each other in your measurement space. For example, 

any point that is close to your "smoke" class is also close to your "polluted continental" class because the 

classes are close to each other. If it actually is smoke plus a little bit of marine influence, the 2nd closest 

class will still be "polluted continental", not marine. 

Thanks for this comment. This sentence is removed. 

9. Section 3.2.2 classifying variables selection. I think choosing variables solely based on Wilks’ partial lambda 

may not catch everything. It may be that different variables have more power to separate different subsets 

of classes. For example, depolarization obviously has a lot of power to separate dust classes and almost 

no power to separate non-dust classes. If you had a variable that helped separate smoke from polluted 

continental, even partially, but did nothing else, it may have a poor partial lambda but it would 

nevertheless be extremely valuable. I suggest a plot similar to figure 10 in Burton et al. 2012 as a way to 

understand more thoroughly what each variable contributes to separating the classes. By looking at the 

variability of each variable within each class you can see where the overlaps are in every dimension. Your 

figure 5 also does this but it’s usefulness maxes out at 2 dimensions, since it is very difficult to visualize 

more than 2 dimensions in a literal space. Your Wilks’ lambda analysis suggests that the ratio of lidar ratios 

has significant discriminatory power, but Figure 5 does not reveal how (that is, whether some sets of 

classes that look like they overlap might be distinguished by the 355 nm lidar ratio or the spectral lidar 

ratio). It would be nice to have a visualization that answers that question. This would also address the 

question of whether spectral lidar ratio separates smoke and pollution aerosol (Muller et al. 2007a) which 

would be an interesting discussion in itself. 

The starting point of this work was a 3+2 Raman lidar configuration. Therefore, we sought for intensive 

parameters that are type sensitive and can be used for an effective aerosol characterization. The intensive 

parameters were presented in Section 2 and type specific values were given in Section 2.2. The Wilks’ lambda 

analysis performed in Section 3.2.2 was made on the basis of the available wavelengths and the already pre-

selected classifying parameters: the lidar ratio, the Ångström exponent, and the spectral ratio of the lidar ratio. 

The bar chart in Figure I show the median (black dot), 25-75 percentile (box), and 5-95 percentile (whiskers) for 

each of the aerosol types and each classifying parameters. The discriminatory power of the Ångström exponent 

and lidar ratio is apparent whereas the ratio of the lidar ratios performs the worst among the three, in agreement 

with the Wilks’ lambda analysis. The polluted and mixed dust yield the highest variability in the ratio of the lidar 

ratios that spans a wide range with median values slightly over 1. The rest of the categories have median values 

below 1 with dust and volcanic being the types with values almost 1. This behaviour can be seen as a confirmation 

of their spectral independence. Regarding Smoke and Polluted Continental there seems to be no evidence that 

this variable can distinguish them. However, this finding is a further confirmation of the comment #2. 



 

Figure I: Bar plots and whiskers show the median (horizontal line), 25-75 percentile (box) and 5-95 percentile (whisker) of the three 
classifying parameters: κβ(355,1064), S532, and S532/S355. 

10. P16, Perhaps you could discuss more explicitly the tradeoff between more classes and less classes. All of 

your statistics (except Wilks’ lambda) seem to show better performance with fewer classes, but that 

could be taken to an extreme. That is, with only one class, there would be no errors at all! How do you 

address this tradeoff? 

Typing in multiple classes and typing accuracy are two conflicting aspects. The number of classes as well as the 

typing accuracy depends on the specific needs. Currently typing methodologies provide different typing outputs 

with different level of accuracy: e.g., MISR (Multi-angle Imaging SpectroRadiometer) algorithm provides aerosol 

classification into 5 classes with high accuracy but also a finer typing (74 classes) with degraded accuracy (Kahn 

et al., 2015). 

This could be an approach leaving to the specific user the possibility to select appropriate balance for his own 

application. Another possibility is to find a compromise between degrading accuracy and gaining insight into the 

aerosol type. In this direction, we indicated into the conclusions that for a 3β+2α setup, 6 aerosol classes can be 

used for the aerosol typing whilst for a 3β+2α+1δ setup a finer classification – with 7 aerosol classes – can be 

made. Whenever better performance in terms of accuracy is requested the number of aerosol classes can be 

reduced to 4 because of the similarities of the physical characteristics of the aerosol classes. The choice of 4 classes 

is also a good analogy for the proposed aerosol typing by Baars et al. (2017). 

The next phrase is inserted in Section 3.2.3: 



It should be mentioned that the typing in multiple classes and typing accuracy are two conflicting aspects. The 

choice of 8 aerosol classes appears to be sufficient to describe the major aerosol components, however 

ostentatious for a 3+2 lidar configuration. 4 classes, on the other hand, provide a coarse aerosol 

characterization and the prediction accuracy of the algorithm is expected to increase. 

11. Do you plan to share these aerosol typing results publically? What about the training database of manually 

typed samples? Also please include links to the EARLINET database. 

The data used into this paper are freely and publicly available on the European Research Infrastructure for the 

observation of Aerosol, Clouds, and Trace gases (ACTRIS) website (https://www.actris.eu/). Moreover, the 

complete EARLINET dataset for 2000-2015 period is currently on the way for publication on the CERA database. 

This information will be added, if available, before the final publication of the paper. 

Additionally, the reference and training datasets will be publicly available as well: a special dataset will be 

available through EARLINET/ACTRIS web page. In addition, this dataset will be part of a larger initiative about 

aerosol typing within AEROSAT (International Satellite Aerosol Science Network; http://www.aero-sat.org/), in 

which it is planned to set up an extensive reference dataset for aerosol typing investigation. 

Typos and requests for clarification: 

1. P2, last sentence: Both cluster analysis techniques and supervised classification techniques need the 

number of groups as input. 

Yes, it is true that for cluster analysis it is needed the number of groups as input, however the identities of groups 

are not known in advance in contrast with the classification analysis (see Wilks 2006, page 529). The P2L32-33 

sentence is rephrased: 

Whereas in cluster analysis, the groups are not known beforehand and the classifier is tasked with it. 

2. P4 L7: "operates" should be "operate"  

Ok, fixed. 

3. P5, L18: talks about the region of incomplete overlap. What altitude does this go up to? 

The full overlap height for the 1064 nm channel is approximately 405 a.g.l. m (Madonna et al., 2015). This 

information is implemented in the text: 

MUSA has a full overlap at around 1,15 km a.s.l. for 1064 nm (Madonna et al., 2015). 

4. P5, L22-23: the sentence "the aforementioned layers" is unclear and should be reworded. I think you are 

suggesting that the intensive properties are approximately constant throughout each layer, but that does 

not really appear to be true, so perhaps I’m misunderstanding the wording. 

Based on the comment #1, the sentences P5L22-24 now read:  

The layer 2.0-3.5 km has a constant through the range behavior for the intensive optical profiles and, thus, 

corresponds to the same type of particles. The mean values of all optical parameters in the range are 

calculated: lidar ratios of 48±4 sr at 355 nm and 53±4 sr at 532 nm and Ångström exponents of -0.3–0.4 were 

found. 



5. P5, L24 and throughout: there are four Angstrom exponents discussed but often the text refers to 

"Angstrom exponent" as if there is only one. Please clarify which one you mean. Likewise, it should be 

specified which wavelength is meant when "lidar ratio" is used. 

For P5L24, we use “Ångström exponents” for all the available 4 sets appearing in Figure 2 – κβ(355,1064), 

κβ(532,1064), κβ(355,532), κα(355,532). The Ångström exponent and lidar ratio wavelengths, whenever it was 

needed, are now reported. The following sentences are implemented in the text. 

P8L23: lidar ratios at 532 nm of 50–65 sr 

P8L27-28: Pappalardo et al. (2004) and Wang et al. (2008) reported lidar ratios of 50–60 sr at 355 nm and 

backscatter-related Ångström exponent (355, 532) of 2.4. 

P5L24: Ångström exponents (κβ(355,1064), κβ(532,1064), κβ(355,532), κα(355,532) of 0–0.4 were found. 

P10L28: Ångström exponent for the available. 

P10L30: The Ångström exponents (κβ(355,1064), κβ(532,1064), κβ(355,532), κα(355,532) for mixed dust are. 

P10L31: Ångström exponents lie. 

P10L33: with mean Ångström exponent from all the available variables around ∼1.4 and ∼1.3 respectively. 

P11L1: 81±16 sr and 78±11 sr for 355 nm and 532 nm respectively. 

P11L3: Ångström exponents (κβ(355,1064), κβ(532,1064), κβ(355,532), κα(355,532) are. 

P11L5: Ångström exponents (κβ(355,1064), κβ(532,1064), κβ(355,532), κα(355,532) in the range 0.8–1.0 

P12L3: S532 and κβ(355,1064) 

P13L16: lidar ratio at 532 nm. 

P14L5: Within this layer the mean value of backscatter-related Ångström (355,1064) exponent is 0.9±0.1 

P38-Figure 6: κβ(355,1064). 

6. P6 L23. I recommend taking more care about using the word "absorbing". It seems that "more absorbing" 

is here used as a synonym for "higher lidar ratio", but lidar ratio depends on particle size and other factors 

as well as light absorption and is really not as direct an indicator as this language suggests. Also P11 L4 and 

L14 (continental pollution is not necessarily absorbing); P8 L5 (smoke is often absorbing but not always 

highly absorbing especially when aged); and perhaps elsewhere. 

It is true that the lidar ratio depends on many factors and it is not a direct indicator of light absorption. The 

following sentences are changed and implemented in the manuscript. 

P6L23: The clean continental, therefore, differentiates from the polluted continental type due to lower lidar 

ratio values. 

P11L4: This characteristic separates clean continental from polluted continental as the particles yield lower 

lidar ratio values. 

P11L14: Two pathways were followed, first, the smoke and the polluted continental categories were grouped 

into the more generic type of small with high lidar ratio values. 

P8L5: Generally, smoke particles are relatively small and spherical that produce low depolarization, high 

Ångström exponents, and large lidar ratios (Amiridis et al., 2009; Baars et al., 2012; Giannakaki et al., 2016). 

7. P7, L14. Delete "mainly". Although the variability in the lidar ratio is a "hot topic" there is also significant 

variability in, for instance, extinction Angstrom exponent. 

Deleted. 



8. P7, L31. The suggestion for CALIPSO to add a dust+marine type was made several times before 2016 also, 

for example Kim et al. 2013, Burton et al. 2013, Rogers et al. 2014. 

Thank you for this suggestion. These literature references are implemented in the document and the sentence 

reads as follows: 

Several studies (Burton et al., 2013; Kim et al., 2013; Rogers et al., 2014; Papagiannopoulos et al., 2016a) have 

indicated that this mixture is important and suggested its inclusion in the CALIPSO retrieval scheme for 

improving the accuracy of aerosol backscatter and extinction coefficient profiles. 

9. P8 L10 and in the references: I think Pereira should be Nepomucino Pereira (that is, the first author appears 

to have a two-part surname). 

Yes, it is fixed. The reference becomes: 

Nepomuceno Pereira, S., Preißler, J., Guerrero-Rascado, J. L., Silva, A. M., and Wagner, F.: Forest Fire Smoke 

Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and 

Microphysical Properties, Scientific World Journal, 2014, doi:10.1155/2014/42183, 2014. 

10. P9 first paragraph and third paragraph: There are a few places, including these 2 paragraphs, where the 

wording is awkward with several errors in English language usage that make them hard to understand. 

Please reword for clarity 

Following specific comment #7, the first paragraph is reworded and merged with the second paragraph as 

follows: 

We developed an automated typing method, based on the work of Burton et al. (2012), but modified it in 

order to be compatible with the database of EARLINET. Two major steps are identified in the method 

proposed: the training (Sect. 3.2), and the testing (Sect. 4.1) phase. The first step consists of the following 

procedures. As described in Sect. 3.2.1, well characterized aerosol samples are manually separated into classes 

based on their physical characteristics; the set of classes constitutes the reference dataset. This procedure 

involves the determination of each observed aerosol layer location and the estimation of mean layer intensive 

optical properties. Based on this analysis, the classifying parameters that provide the required information for 

a better discrimination of the aerosol type are selected (Sect. 3.2.2). Next, in order to estimate how accurately 

a predictive model will perform, the reference dataset is split into training and validation datasets, and the 

application of the classifier is evaluated (Sect. 3.2.3). Sect. 3.2.4 describes the inference of characteristic 

depolarization values in the algorithm with the intention to increase the prediction of the model. For the 

second step, already pre-classified EARLINET data are used to assess the performance of the automatic typing 

procedure. Figure 1 illustrates the sequence of the proposed methodology starting from the setting of the 

training dataset, up to the assessment of the learning success during the testing phase. 

The third paragraph is changed: 

For the second step, unclassified EARLINET data (the testing dataset) is categorized using the reference 

dataset. Besides, the testing dataset has been classified following the method shown in Sect. 2.1 and, hence, 

compared against the output of the automatic procedure. Figure 4 illustrates the sequence of the proposed 

methodology, starting from the setting of the training dataset up to the assessment of the learning success 

during the testing phase. 



11. P12 L28, I think you mean Burton et al. 2015, not 2014. Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. 

A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A., and 

Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols 

using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453- 13473, 

10.5194/acp-15-13453-2015, 2015. 

Thank you. Fixed. 

12. P13, L25 & L27, and throughout. When you count measurements or samples, what defines a single 

measurement, given that the lidar systems operate basically continuously? Please discuss how you select 

data and discuss what criteria are used in data selection and how much averaging is done. 

EARLINET is a research network born in 2000 on the basis of bringing together the existing research lidars around 

Europe. At that time, none of the members could provide continuous measurements. Nowadays, there are some 

systems working 24/7 unattended, but EARLINET is working on a measurements schedule (see P4L1). 

Furthermore, measurements are performed during CALIPSO site overpasses and special events, such as biomass 

burning episodes, dust advection, and volcanic eruptions. To accommodate these kind of events, it was agreed to 

have some measurements lasting 2-3 hours in order to monitor the evolution of each specific event. Then, it is 

responsibility of the stations to provide aerosol profiles better representing the observed atmospheric aerosol 

conditions: i.e., deciding the time window and the time averaging needed for the lidar signal inversion.  

Throughout the paper, we refer to measurements as a set of aerosol optical profiles reported in the EARLINET 

database and corresponding to the same temporal window, which typically spans about 1 hour of temporal 

integration. 

For making clearer this point we added the following sentence in P4L6: 

Throughout the paper, we refer to measurements to a set of aerosol optical profiles reported on the EARLINET 

database and corresponding to the same temporal window, which typically extend on about 1 hour of 

temporal integration. 

We refer instead to samples as identified layers. We changed samples into layers in the related text. 

13. P13, L25 & L27. Also, the numbers in this paragraph are confusing. If there are only 42 measurements 

available with three wavelengths, how are there 47 samples? Of if you don’t need all 3 wavelengths, then 

why only 47 instead of 157? 

For the considered period there are 157 measurements (see definition above). 42 of which provide 3 (at 355 nm, 

532 nm, and 1064 nm) backscatter coefficient profiles and 2 (355 nm and 532 nm) extinction coefficient profiles 

(this reduced number is due to low SNR for some oprical properties especially extinction with inhibited the 

retrieval but most to the fact that in daytime conditions Raman technique does not allow the extinction retrieval 

at all). Out of the 42 measurements, 47 aerosol layers have been identified in the free troposphere and a 

reasonable typing was possible. 

14. P14-15, discussion of recall, precision and accuracy (also error rate from the earlier discussion). The 

description of these variables could be made clearer and it should be specified that recall and precision 

refer to specific classes. I think the use of the terms false negative and false positive contributes to 

confusion rather than clarity; the descriptions are too similar to distinguish them. I think you are saying 

that recall for a particular class indicates the number of correct identifications divided by the number of 

actual instances of that class. Precision for a particular class indicates the number of correct identifications 



of that class divided by the number of times when that class was predicted, whether rightly or wrongly. 

Am I understanding it right? And what is "accuracy"? Is it defined the same as "error rate" or does 

"accuracy" only count the instances that are classified and not the ones that are unclassified due to overlap 

between classes? Are all four of these statistics independently useful, or could it be simplified by using 

fewer? 

Am I understanding it right? Yes, this is what recall and precision are. 

And what is "accuracy"? Is it defined the same as "error rate" or does "accuracy" only count the instances that 

are classified and not the ones that are unclassified due to overlap between classes? Accuracy is defined as 1-

Error Rate (as introduced in Section 3.2.3), and it is demonstrating how often the classifier is correct. 

Are all four of these statistics independently useful, or could it be simplified by using fewer? In order to reduce 

the number of the statistics, the accuracy is replaced by the error rate throughout the document. 

The description of the error rate in P12L20-21 is changed and implemented in the text: 

The error rate is estimated as a percentage of all incorrect predictions divided by the total number of the 

reference dataset. Values near zero show high predictive performance while values near one show low 

predictive performance. 

The recall and precision relate to one class independent of any other classes. Error rate or accuracy is not a reliable 

metric for the assessment of the real performance of the classifier, because it may produce misleading results. 

That is, the number of observations vary greatly and this effect can be seen in P30-Table 5. We decided to keep 

the metrics recall and precision, however we provide a clearer description and the formulas removed. The P14L25-

30 & P15L1-8 is restructured and the next sentences are introduced in the document:  

… is already known. Recall of an aerosol group is defined as the number of correctly predicted cases over the 

number of correctly plus the number of incorrectly predicted cases. Recall can be thought as the model’s ability 

to predict the specific aerosol class. Precision of an aerosol class is defined as the number of correctly predicted 

cases over the number of correctly predicted cases plus the number of incorrectly predicted cases that belong 

to this aerosol class. In other words, given the prediction of a specific class, what is the probability of being 

correct? 

15. P15 L9 "cannot be evaluated". It seems that even though they don’t appear in the training set, they were 

occasionally predicted by the method. If so, perhaps reporting ow often that happened would be useful. 

This comment refers to P15L30. The frequency of detection for MD (PD) is 18% (4%) for 8 classes, 15% (3%) for 7b 

classes, 17% (3%) for 7a classes, and 15% (3%) when 3 classifying parameters are used. The algorithm predicted 

as MD only dust cases with mean S532=47±2 sr, S532/S355=1.1±0.1 and κβ(355,1064)=0.4±0.1; thus the lower lidar 

ratio and the over 1 value of the ratio of the lidar ratio assigns these cases as dust. The PD case refers to a PC 

case with S532=69 sr, S532/S355=1.2 and κβ(355,1064)=0.9. 

The frequency of detection for MD is 0% for all classes when particle depolarization ratio is added. The frequency 

for PD is 17% for 8 classes, 13% for 7b classes, 17% for 7a classes, and 13% for 6 classes. The PD refers to a case 

with low particle depolarization ratio. Following this remark, we added the next sentences in the revised 

document: 

Note that mixed dust and polluted dust aerosol types are not reported in the tables due to the fact that they 

are not present in Table 5 and these parameters cannot be evaluated. The frequency of detection for MD (PD) 



is 18% (4%) for 8 classes, 15% (3%) for 7b classes, 17% (3%) for 7a classes, and 15% (3%) when 3 classifying 

parameters are used. The algorithm predicted as MD only dust cases with S532 around 45 sr and S532/S355 over 

1. The PD case refers to a PC case with κβ(355,1064) lower than 1. The frequency of detection for MD is 0% for 

all classes when depolarization ratio is added. The frequency for PD is 17% for 8 classes, 13% for 7b classes, 

17% for 7a classes, and 13% for 6 classes. The wrongly classified cases have depolarization ratio around 20%. 

16. Table 1. I don’t understand what the value in parentheses represents. 

The number in parentheses indicate the mixtures of more than two aerosol types. These numbers will be removed 

because they do not add to our discussion. 

17. Table 2. Am I interpreting this correctly, that smoke is never predicted by the classification methodology? 

Any comments about implications of that? 

We think the comment refers to P31-Table 6. The smoke cases examined show optical properties similar to 

polluted continental, hence the Mahalanobis distance classifier labels them as polluted continental. The mean 

lidar ratio at 532 nm is 61±5, the β-related Ångström coefficient (355, 1064 nm) is 1.5±0.2, and the spectral ratio 

of the lidar ratios is 1.15±0.08. 

We think that the high values of lidar ratio considered in the reference dataset do not allow the correct 

classification of smoke layers and as a consequence these smoke layers are typed as polluted continental. We 

acknowledged in the manuscript that well-defined aerosol types are paramount for the correct classification and, 

for instance, it is needed to split the smoke category into fresh and aged biomass burning. 

18. Table 2. I think PC+C in the 7th column on the top should be PC + S, and I think the 2nd CC in the 4th 

column on the bottom should be S. 

This was a typo and it is fixed. 

19. Figure 4. What does "trained classifier" in the middle of the flowchart mean? How is it different from 

"typing procedure"? 

By trained classifier we consider the whole iterative process whereby we build the best possible classifier, i.e., the 

Section 3. Whereas the typing procedure refers to the labeling of the instances using the Mahalanobis distance 

classifier. 

We consider changing the word “classifier” with “classifying parameter” in the P13L6 and P13L9 as it might 

confuse the reader. 
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